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§1. Introduction

Let H = {x, x′, . . .} be a Hilbert space, with scalar product (x|x′) ,
and K = {y, y′, . . .} a Hilbert space with scalar product (y|y ′) . We do not
rule out finite-dimensional or inseparable Hilbert spaces.

If E,F,G are complex vector spaces, a mapping ϕ : E × F → G is
bilinear if

ϕ(x1 + x2, y) = ϕ(x1, y) + ϕ(x2, y)

ϕ(λx, y) = λϕ(x, y)

ϕ(x, y1 + y2) = ϕ(x, y1) + ϕ(x, y2)

ϕ(x, λy) = λϕ(x, y)

for all vectors x ∈ E , y ∈ F and (complex) scalars λ ; ϕ is called sesquilinear
if the last condition is replaced by ϕ(x, λy) = λϕ(x, y) , where λ denotes
the conjugate of λ (“linear in x , semilinear in y ”).

Definition 1. — A tensor product of H with K is a Hilbert space
P , together with a bilinear mapping ϕ : H × K → P , such that

(1) the set of all vectors ϕ(x, y) (x ∈ H , y ∈ K ) forms a total subset
of P , that is, its closed linear span is equal to P ;

(2)
(

ϕ(x1, y1)|ϕ(x2, y2)
)

= (x1|x2)(y1|y2) for x1, x2 ∈ H , y1, y2 ∈ K .
We refer to the pair (P, ϕ) as the tensor product.

If (P, ϕ) is a tensor product of H with K , it is customary to write
x⊗y in place of ϕ(x, y) , and H ⊗K in place of P . Thus a tensor product
of H with K is a Hilbert space H ⊗ K and a mapping (x, y) 7→ x⊗ y
of H × K into H ⊗ K such that

(0)

(x1 + x2) ⊗ y = x1 ⊗ y + x2 ⊗ y

(λx) ⊗ y = λ(x⊗ y)

x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2

x⊗ (λy) = λ(x⊗ y)

1



(1) the vectors x⊗ y form a total subset of H ⊗ K ,
(2) (x1 ⊗ y1|x2 ⊗ y2) = (x1|x2)(y1|y2) .

We shall denote by H �K the linear subspace of H ⊗K generated
by the vectors x⊗ y . This consists of all finite linear combinations

n
∑

1

λk(xk ⊗ yk) =

n
∑

1

(λkxk) ⊗ yk ,

thus H � K is the set of all finite sums
∑n

1 xk ⊗ yk . Condition (1)
is equivalent to the assertion that H � K is a dense linear subspace of
H ⊗K ; equivalently, the only vector orthogonal to every x⊗ y is the zero
vector.

In condition (2), putting x1 = x2 = x and y1 = y2 = y , we see that
‖x⊗ y‖ = ‖x‖ ‖y‖ .

In this section we shall prove several important properties of tensor
products, leading up to the theorem that the tensor product of H with
K is “essentially unique”. Of course we may be working in a vacuum—it
is conceivable that the axioms for a tensor product are inconsistent or only
sometimes consistent. The purpose of §2 is to show that a tensor product
always does exist.

In Propositions 1,2,3, we assume given a tensor product (H ⊗K ,⊗) ,
where the symbol ⊗ in the second coordinate abbreviates the associated
bilinear mapping.

Proposition 1. — If
∑n

1 xk ⊗ yk = 0 , and the yk are linearly inde-
pendent, then x1 = . . . = xn = 0 .

Proof. Let z1, . . . , zm ∈ H be orthonormal vectors spanning the same
linear subspace as x1, . . . , xn . Say

xk =

m
∑

r=1

λkrzr (k = 1, . . . , n) .

Then

0 =
∑

k

xk ⊗ yk =
∑

k

(

∑

r

λkrzr

)

⊗ yk

=
∑

k

∑

r

λkr zr ⊗ yk =
∑

r

zr ⊗
(

∑

k

λkryk

)

.

Writing y′r =
∑

k λkryk (r = 1, . . . ,m) , we have
∑

r zr⊗y
′
r = 0 . The terms

in this last sum are orthogonal: if r 6= s , then

(zr ⊗ y′r|zs ⊗ y′s) = (zr|zs)(y
′
r|y

′
s) = 0 · (y′r|y

′
s) = 0 .
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Also, clearly ‖zr ⊗ y′r‖ = ‖y′r‖ . By the “Pythagorean relation”,

0 =
∥

∥

∑

r

zr ⊗ y′r
∥

∥

2
=

∑

r

‖zr ⊗ y′r‖
2 =

∑

r

‖y′r‖
2 ,

hence y′1 = . . . = y′m = 0 . Then 0 =
∑

k λkryk for r = 1, . . . ,m ; since
the yk are linearly independent, λkr = 0 for all k, r . But then xk =
∑

r λkrzr = 0 for all k . ♦

Proposition 2. — If E is a complex vector space, and α : H �K → E

is any linear mapping, then ψ(x, y) = α(x ⊗ y) defines a bilinear mapping
ψ : H × K → E .

Proof. For example,

ψ(x1 + x2, y) = α
(

(x1 + x2) ⊗ y
)

=α(x1 ⊗ y + x2 ⊗ y) =

α(x1 ⊗ y) + α(x2 ⊗ y) = ψ(x1, y) + ψ(x2, y) . ♦

Lemma. — If ψ : H × K → E is a bilinear mapping, then every
relation

∑n
1 xk ⊗ yk = 0 implies

∑n
1 ψ(xk, yk) = 0 .

Proof. Let y′1, . . . , y
′
m be linearly independent vectors spanning the

same linear subspace as y1, . . . , yn . Say

yk =

m
∑

r=1

λkry
′
r (k = 1, . . . , n) .

Then

0 =
∑

k

xk ⊗ yk =
∑

k

∑

r

λkr xk ⊗ y′r =
∑

r

(

∑

k

λkrxk

)

⊗ y′r .

By Prop. 1,
∑

k λkrxk = 0 for all r , hence

0 =
∑

r

ψ(0, y′r) =
∑

r

ψ
(

∑

k

λkrxk, y
′
r

)

=
∑

r

∑

k

λkr ψ(xk, y
′
r)

=
∑

k

ψ
(

xk,
∑

r

λkry
′
r

)

=
∑

k

ψ(xk, yk). ♦

Proposition 3. — If ψ : H × K → E is any bilinear mapping, there
exists a unique linear mapping α : H � K → E such that ψ(x, y) =
α(x⊗ y) .

Proof. Given u ∈ H �K , let us define α(u) ∈ E . Say u =
∑n

1 xk⊗yk ;
we set α(u) =

∑n
1 ψ(xk, yk) . If also u =

∑m
1 x′r ⊗ y′r , so that

n
∑

1

xk ⊗ yk +

m
∑

1

(−x′r) ⊗ y′r = 0 ,
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then by the Lemma,

n
∑

1

ψ(xk, yk) +

m
∑

1

ψ(−x′r, y
′
r) = 0

and so
∑n

1 ψ(xk, yk) =
∑m

1 ψ(x′r, y
′
r) . Thus α : H �K → E is unambigu-

ously defined.
Clearly α is linear. If β : H � K → E is another linear mapping

satisfying ψ(x, y) = β(x⊗ y) , then for any u =
∑n

1 xk ⊗ yk ∈ H � K ,

β(u) = β
(

n
∑

1

xk ⊗ yk

)

=
n

∑

1

β(xk ⊗ yk) =
n

∑

1

ψ(xk, yk) = α(u) ,

thus α = β . ♦

Theorem 1. — If (H ⊗K ,⊗) and (H ⊗K , ⊗ ) are any two tensor
products of H with K , then there exists a unique bounded linear mapping
U : H ⊗ K → H ⊗K such that U(x ⊗ y) = x⊗ y. This mapping is
unitary, i.e., it is one-one onto and (Uu|Uv) = (u|v) for all u, v ∈ H ⊗K .

Proof. We denote by H �K the linear subspace of H ⊗K spanned
by the vectors x⊗ y .

Taking E = H �K , and ψ(x, y) = x⊗ y , Prop. 3 provides a linear
mapping U : H � K → H �K such that x⊗ y = U(x ⊗ y) . Clearly U
is ‘onto’ (i.e., ‘surjective’), by the definition of H �K .

The mapping U preserves scalar products. For, if u =
∑

k xk ⊗yk and
v =

∑

r x
′
r ⊗ y′r ,

(Uu|Uv) =
(

∑

k

xk ⊗ yk

∣

∣

∑

r

x′r ⊗ y′r
)

=
∑

k

∑

r

(xk ⊗ yk|x
′
r ⊗ y′r)

=
∑

k

∑

r

(xk|x
′
r)(yk|y

′
r) =

∑

k

∑

r

(xk ⊗ yk|x
′
r ⊗ y′r)

=
(

∑

k

xk ⊗ yk

∣

∣

∑

r

x′r ⊗ y′r
)

= (u|v) .

Since H �K is dense in H ⊗K , and H ⊗K is complete, there is
a unique continuous linear extension U : H ⊗ K → H ⊗K . Clearly U
still preserves scalar products, hence norm; its range is therefore complete,
hence closed. But the range contains H �K , and so must be dense. We
conclude that U(H ⊗ K ) = H ⊗K . ♦
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§2. Construction of H ⊗ K .

As in §1, H = {x, . . .} and K = {y, . . .} are fixed Hilbert spaces.

Lemma 1. — If T : K → H is conjugate-linear (briefly, c-linear) and
bounded, there exists a unique c-linear bounded T# : H → K such that

(T#x|y) = (Ty|x) (x ∈ H , y ∈ K ) .

Proof. For fixed x ∈ H , y 7→ (x|Ty) is a bounded linear form on K ;
let T#x denote the unique vector in K such that (x|Ty) = (y|T#x) for
all y ∈ K .

The conjugate-linearity of T# results from the calculations

(

T#(x1 + x2)|y
)

= (Ty|x1 + x2) = (Ty|x1) + (Ty|x2)

= (T#x1|y) + (T#x2|y) = (T#x1 + T#x2|y) ,

and

(

T#(λx)
∣

∣y
)

= (Ty|λx) = λ (Ty|x) = λ (T#x|y) = (λT#x|y) .

The norm of T#x is the same as the norm of the bounded linear form
it defines on K . Since

|(y|T#x)| = |(x|Ty)| 6 ‖x‖ ‖Ty‖ 6 ‖x‖ ‖T‖ ‖y‖ ,

one has ‖T#x‖ 6 ‖x‖ ‖T‖ . Thus T# is bounded, indeed ‖T#‖ 6 ‖T‖ . ♦

Definition 1. — We denote by Lc the set of all bounded c-linear map-
pings T : K → H ; more precisely, Lc(K ,H ) . Clearly Lc is a complex
vector space, relative to the natural operations

(

e.g., (λT )x = λ(Tx)
)

.

If T ∈ Lc(K ,H ) , then T# ∈ Lc(H ,K ) . Some further properties
of the correspondence T 7→ T# :

Lemma 2. — If S, T ∈ Lc(K ,H ) , and λ is complex, then
(1) T## = T ,
(2) ‖T#‖ = ‖T‖ ,
(3) (S + T )# = S# + T# ,
(4) (λT )# = λT# .
(5) If A ∈ L (H ) and B ∈ L (K ) are bounded linear operators then

(ATB)# = B*T#A* .
Proof. (1) (T##y|x) = (T#x|y) = (Ty|x) .
(2) It was shown in the proof of Lemma 1 that ‖T#‖ 6 ‖T‖ . Hence

‖T‖ = ‖(T#)#‖ 6 ‖T#‖ 6 ‖T‖ .
(3), (4) Routine.
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(5) It is clear that ATB ∈ Lc(K ,H ) . Moreover,

(

(ATB)#x
∣

∣y
)

= (ATBy|x)

= (TBy|A*x) = (T#A*x|By) = (B*T#A*x|y) . ♦

Corollary. — T 7→ T# is a linear norm-preserving mapping of
Lc(K ,H ) onto Lc(H ,K ) .

Let {ej}j∈J be an orthonormal basis for H , and {fk}k∈K an orthonor-
mal basis for K .

Lemma 3. — If T ∈ Lc , then

∑

k

‖Tfk‖
2 =

∑

j

‖T#ej‖
2 (perhaps = +∞ ) .

In particular, each expression is independent of the specific basis chosen.
Proof. By Parseval’s identity,

‖Tfk‖
2 =

∑

j

∣

∣(Tfk|ej)
∣

∣

2
,

‖T#ej‖
2 =

∑

k

∣

∣(T#ej |fk)
∣

∣

2
.

Since (Tfk|ej) = (T#ej |fk) , the lemma results from
∑

j

∑

k =
∑

k

∑

j

(certainly valid for positive-term sums). ♦

Definition 2. — We denote by T the set of all T ∈ Lc(K ,H ) for
which

∑

k∈K ‖Tfk‖
2 < +∞ . By Lemma 3, T does not depend on the

specific basis {fk} . More precisely: T = T (K ,H ) . It will be shown in
this section that T is a Hilbert space and that it has the properties required
of the Hilbert space P in the definition of the tensor product (Def. 1 of §1).

Remark. — By
∑

k∈K ‖Tfk‖
2 < +∞ is meant that the finite sums are

bounded; the value of
∑

k is the LUB (least upper bound, or supremum) of
these finite sums. In particular, Tfk = 0 except for countably many k .

Lemma 4. — T is a linear subspace of Lc .
Proof. Let S,T ∈ T , λ complex. Since {‖Sfk‖} and {‖Tfk‖} are

square-summable, so is the sequence {‖Sfk‖ + ‖Tfk‖} (recall the Hilbert

space of square-summable numerical sequences). Thus
{(

‖Sfk‖+‖Tfk‖
)2}

is summable. Since ‖(S + T )fk‖ 6 ‖Sfk‖ + ‖Tfk‖ ,
{

‖(S + T )fk‖
2
}

is
summable by the “comparison test”. Thus S + T ∈ T .

Also {‖(λT )fk‖} = {|λ| ‖Tfk‖} is square-summable, so λT ∈ T . ♦
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Remark. — It is clear from Lemma 3 that T 7→ T# effects a (norm-
preserving) linear isomorphism of T (K ,H ) onto T (H ,K ) .

Lemma 5. — If S, T ∈ T , then
∑

k∈K(Sfk|Tfk) =
∑

j∈J(S
#ej |T

#ej) ,
and both series are absolutely convergent. In particular, each expression is
independent of the specific basis.

Proof. For each k ∈ K , the form (S, T ) → (Sfk|Tfk) on T × T is
linear in S and conjugate-linear in T (i.e., it is sesquilinear), hence, by the
“polarization identity” (see, e.g., Th. 3 on p. 29 of Introduction to Hilbert
space [Oxford UP, 1961; 2nd. edn., Chelsea, 1976; AMS-Chelsea, 1999),

(Sfk|Tfk) =
1

4

{

‖(S + T )fk‖
2 − ‖(S − T )fk‖

2

+ i ‖(S + iT )fk‖
2 − i ‖(S − iT )fk‖

2
}

.

Similarly, for each j ∈ J the form ψ(S, T ) = (S#ej |T
#ej) being sesquilinear

(linear in S , conjugate-linear in T ),

ψ(S, T ) =
1

4

{

ψ(S + T, S + T ) − ψ(S − T, S − T )

+ i ψ(S + iT, S + iT ) − i ψ(S − iT, S − iT )
}

.

that is,

(S#ej |T
#ej) =

1

4

{

‖(S + T )#ej‖
2 − ‖(S − T )#ej‖

2

+ i ‖(S + iT )#ej‖
2 − i ‖(S − iT )#ej‖

2
}

.

The first and third displayed formulas exhibit the asserted absolute conver-
gence; summing the first formula over k and the third over j , the assertion
of the lemma follows from Lemma 3. ♦

Definition 3. — If S, T ∈ T , we set

(S|T ) =
∑

k∈K

(Sfk|Tfk) =
∑

j∈J

(S#ej |T
#ej)

(the sums being absolutely convergent, and independent of specific orthonor-
mal basis).

Remark. — Now that the possible visual conflict with the complex num-
ber i is past, we will write {fi}i∈I instead of {fk}k∈K for the given or-
thonormal basis of K .

Remark. — If S, T ∈ T (K ,H ) , then (S|T ) = (S#|T#) (the right
hand side is given by Def. 3 applied in T (H ,K ) ).
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Lemma 6. — T is a pre-Hilbert space, with (S|T ) as scalar product.
Proof. Clearly (S, T ) 7→ (S|T ) is sesquilinear. Moreover, (T |T ) =

∑

i ‖Tfi‖
2 > 0 , and (T |T ) = 0 if and only if Tfi = 0 for all i , that is,

T = 0 . ♦

It will be shown later in this section that T is a Hilbert space, i.e. is
complete relative to the scalar product (S|T ) .

Definition 4. — If T ∈ T , we write ‖T‖2 = (T |T )1/2 . The notation
‖T‖ is reserved for the bound of T as an operator on K .

Remark. — T 7→ T# effects a scalar-product preserving linear isomor-
phism of T (K ,H ) onto T (H ,K ) . In particular, ‖T#‖2 = ‖T‖2 .

In order to show that T is complete with respect to the norm ‖T‖2 ,
it will be convenient to discuss matrices.

If T ∈ Lc(K ,H ) , then Tfi =
∑

j λijej for suitable unique scalars
λij . The array (λij) is called the matrix of T (relative to the given
orthonormal bases). By Parseval’s identity, ‖Tfi‖

2 =
∑

j |λij |
2 , hence

∑

i

‖Tfi‖
2 =

∑

i,j

|λij |
2 .

Thus T ∈ T = T (K ,H ) if and only if
∑

i,j |λij |
2 < +∞ , i.e., its matrix

is “square-summable”.
Denote by M the set of all matrices (λij) for which

∑

i,j |λij |
2 < +∞ .

As is well-known, M is a Hilbert space relative to the operations

(λij) + (µij) = (λij + µij)

λ (λij) = (λλij)
(

(λij)
∣

∣(µij)
)

=
∑

i,j

λijµij

Thus we have a mapping θ : T → M , θ(T ) being the matrix of T
relative to the given orthonormal bases. If S has matrix (µij) and T
has matrix (λij) , clearly S + T has matrix (µij + λij) ; in other words
θ(S + T ) = θ(S) + θ(T ) . Similarly θ(λT ) = λ θ(T ) . Also clearly S = T if
and only if µij = λij for all i, j , that is, if and only if θ(S) = θ(T ) . Thus
θ is a one-one (i.e., “injective”) linear mapping of T into M .

Actually θ is onto (i.e., “surjective”). For, suppose (λij) ∈ M is given;
we seek T ∈ T with Tfi =

∑

j λijej for all i . If y =
∑

i αifi ∈ K , where
∑

i |αi|
2 < +∞ , we must have
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Ty =
∑

i

αi Tfi

=
∑

i

αi

∑

j

λijej

=
∑

j

(

∑

i

αi λij

)

ej(1)

Thus we wish to define Ty by the formula (1). To do this, we must verify
that

(2)
∑

j

∣

∣

∑

i

αi λij

∣

∣

2
< +∞ .

Now, for each j , {λij} is square-summable with respect to i ; so is {αi} ;
working in the sequence space `(2)(I) , we have, by the Schwarz inequality,

∣

∣

∑

i

αi λij

∣

∣

2
6

(

∑

i

|αi|
2
)(

∑

i

|λij |
2
)

= ‖y‖2
∑

i

|λij |
2 ;

summing over j ,

∑

j

∣

∣

∑

i

αi λij

∣

∣

2
6 ‖y‖2

∑

j,i

|λij |
2 = ‖y‖2 ‖(λij)‖

2 .

Hence it is permissible to define Ty by (1), and we have

(3) ‖Ty‖ 6 ‖(λij)‖ · ‖y‖ .

It is readily verified that T : K → H is bounded and conjugate-linear.

Lemma 7. — The correspondence T 7→ (λij) (T ∈ T ), where (λij)
is the matrix of T relative to the given orthonormal bases, is a linear iso-
morphism of T onto M , preserving scalar product. In particular T is a
Hilbert space relative to (S|T ) .

Proof. By the preceding remarks, we need only show that (T |S) =
(

θ(T )
∣

∣θ(S)
)

. Let T have matrix (λij) , and S have matrix (µij) . Then

(T |S) =
∑

i∈I

(Tfi|Sfi)

=
∑

i∈I

(

∑

j∈J

λijej

∣

∣

∑

k∈J

µikek

)

=
∑

i∈I

∑

j∈J

∑

k∈J

λij µik δjk

=
∑

i∈I

∑

j∈J

λij µij =
(

(λij)
∣

∣(µij)
)

=
(

θ(T )
∣

∣θ(S)
)

. ♦
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Corollary. — If T ∈ T , then ‖T‖ 6 ‖T‖2 .
Proof. Relation (3) preceding Lemma 7. ♦

Lemma 8. — If x ∈ H , y ∈ K are fixed, the mapping

y′ 7→ (y|y′) · x (y′ ∈ K )

defines an element of T , to be denoted x⊗ y
(

thus (x⊗ y)y′ = (y|y′)x
)

.
Proof. Set Ty′ = (y|y′) · x (y′ ∈ K ) . Clearly T : K → H is c-linear,

and T is bounded because

‖Ty′‖ = |(y|y′)| · ‖x‖ 6
(

‖y‖ · ‖x‖
)

‖y′‖ .

Thus T ∈ Lc . It remains to show that T ∈ T . This is clear if y = 0 .
Otherwise, since Ty′ =

(

1
‖y‖ · y

∣

∣y′
)

· ‖y‖x , we may suppose that ‖y‖ = 1 .

Expand {y} to an orthonormal basis {y, zk} of K . Since Tzk = (y|zk)x =
0 · x = 0 for all k , ‖Ty‖2 +

∑

k ‖Tzk‖
2 = ‖Ty‖2 < +∞ , hence T ∈ T by

Def. 2. ♦

Corollary. — If x ∈ H , y ∈ K , T ∈ T , then (x⊗ y|T ) = (x|Ty) .
Proof. Recall that if {fi}i∈I is the given orthonormal basis of K and

if y ∈ K , then y =
∑

i(y|fi)fi and the formula σ(y) = {(y|fi)} defines a
Hilbert space isomorphism σ : K → `(2)(I) (cf. P.R. Halmos, Introduction
to Hilbert space and the theory of spectral multiplicity, §14, p. 27, Th. 1).
Thus,

(x⊗ y|T ) =
∑

i

(

(x⊗ y)fi

∣

∣Tfi

)

(Def. 3)

=
∑

i

(

(y|fi)x
∣

∣Tfi

)

(see Lemma 8)

=
∑

i

(y|fi)(x|Tfi) =
∑

i

(y|fi) (Tfi|x)

=
∑

i

(y|fi) (T#x|fi) (see Lemma 1)

=
(

{(y|fi)}
∣

∣{T#x|fi}
)

(in `(2)(I) )

=
(

σ(y)
∣

∣σ(T#x)
)

= (y|T#x)

= (x|Ty) . ♦ (Lemma 1)

Lemma 9. — For x, x1, x2 ∈ H and y, y1, y2 ∈ K ,

(x1 + x2) ⊗ y = x1 ⊗ y + x2 ⊗ y , (λx) ⊗ y = λ(x⊗ y)(1)

x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2 , x⊗ (λy) = λ(x⊗ y)

(x1 ⊗ y1|x2 ⊗ y2) = (x1|x2)(y1|y2)
(

hence ‖x⊗ y‖2 = ‖x‖ ‖y‖
)

(2)

(x⊗ y)# = y ⊗ x(3)
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Proof. (1) The expression (x⊗ y)y′ = (y|y′)x is linear in x and linear
in y .

(2) Here, ‖x⊗ y‖2 denotes norm in the Hilbert space H ⊗K . By the
preceding Corollary,

(x1 ⊗ y1|x2 ⊗ y2) =
(

x1

∣

∣(x2 ⊗ y2)y1
)

=
(

x1

∣

∣(y2|y1)x2

)

= (x1|x2)(y2|y1) = (x1|x2)(y1|y2) .

(3) Citing Lemma 1 and 8,

(

(x⊗ y)#x′
∣

∣y′
)

=
(

(x⊗ y)y′
∣

∣x′
)

=
(

(y|y′)x
∣

∣x′
)

= (y|y′)(x|x′)

=
(

(x|x′)y
∣

∣y′
)

=
(

(y ⊗ x)x′
∣

∣y′
)

. ♦

Definition 5. — We denote by T0 = T0(K ,H ) the set of all finite
sums of elements x⊗ y of H ⊗ K (x ∈ H , y ∈ K ).

Remarks. — Since λ(x⊗ y) = (λx)⊗ y , T0 is a linear subspace of T .
By part (3) of Lemma 9, T 7→ T# maps T0(K ,H ) onto T0(H ,K ) .

Lemma 10. — {ej ⊗ fi} is an orthonormal basis for T . In particular,
T0 is a dense linear subspace of the Hilbert space T .

Proof. If j 6= j′ or i 6= i′ , clearly ej ⊗ fi ⊥ ej′ ⊗ fi′ by part (2) of
Lemma 9. Also ‖ej⊗fi‖2 = ‖ej‖ ‖fi‖ = 1 . Thus the vectors ej⊗fi form an
orthonormal set. If T ∈ T is orthogonal to every ej ⊗ fi then, for all i, j,

0 = (ej ⊗ fi|T ) = (ej |Tfi)

by the corollary to Lemma 8, hence Tfi = 0 for all i , whence T = 0 . Thus
the ej ⊗ fi form a “complete orthonormal system”, i.e., an orthonormal
basis. ♦

Summarizing, and fulfilling the promise of §1,

Theorem 2. — There exists a tensor product of H with K .
Proof. In Def. 1 of §1, take P = T and ϕ(x, y) = x⊗ y . ♦

Remark. — The mapping x⊗ y 7→ y⊗ x extends to a unitary mapping
of H ⊗K onto K ⊗H . For, (x⊗y)# = y⊗x , and T 7→ T# is a unitary
mapping of T (K ,H ) onto T (H ,K ) ; for instance, ‖T#‖2 = ‖T‖2 was
remarked following Def. 4.

Proposition 4. — If T ∈ Lc(K ,H ) , then T ∈ T0 if and only if T
has finite-dimensional range.

Proof. “only if”: x⊗y has range of dimension 6 1 , hence
∑n

1 xk ⊗yk

has range of dimension 6 n (spanned by x1, . . . , xn ).
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“if”: Suppose T ∈ Lc(K ,H ) has finite-dimensional range, spanned
say by the orthonormal vectors x1, . . . , xn . Then

Ty =

n
∑

1

αk(y)xk (y ∈ K ) ,

for suitable unique conplex coefficients αk(y) (depending on y ). Since T
is c-linear, so are the αk . Moreover,

‖Ty‖2 =
n

∑

1

|αk(y)|2

shows that the αk are bounded c-linear forms. Hence there exist vectors
y1, . . . , yn ∈ K such that

αk(y) = (yk|y) (y ∈ K )

(consider the bounded linear forms y 7→ αk(y) ). Then Ty =
∑n

1 (yk|y)xk =
(
∑n

1 xk ⊗ yk

)

y , so T =
∑n

1 xk ⊗ yk ∈ T0 . ♦

Corollary. — Every T ∈ T is the uniform limit of finite-dimensional
c-linear bounded operators (hence is “completely continuous”).

Proof. Since T0 is dense in T , there is a sequence Tn ∈ T0 such that
‖Tn − T‖2 → 0 (Lemma 10). Then ‖Tn − T‖ 6 ‖Tn − T‖2 → 0 (see the
Corollary of Lemma 7). ♦

§3. Tensor product of operators

Lemma 11. — If T ∈ T (K ,H ) , A ∈ L (H ) , B ∈ L (K ) , then
ATB* ∈ T (K ,H ) , and ‖ATB*‖2 6 ‖A‖ ‖B‖ ‖T‖2 .

Proof. Obviously ATB* ∈ Lc(K ,H ) . Moreover,

∑

i∈I

‖ATB*fi‖
2

6 ‖A‖2
∑

i∈I

‖TB*fi‖
2 = ‖A‖2

∑

j∈J

(TB*)#ej‖
2

= ‖A‖2
∑

j∈J

‖BT#ej‖
2

6 ‖A‖2‖B‖2
∑

j∈J

‖T#ej‖
2

= ‖A‖2‖B‖2
∑

i∈I

‖Tfi‖
2

(for the first and third equalities, cite Lemma 3; for the second equality, in
each term cite (5) of Lemma 2 with A = I and B replaced by B* ). ♦

Definition 7. — For fixed A ∈ L (H ) , B ∈ L (K ) , by Lemma 11
the mapping T 7→ ATB* (T ∈ T ) is a bounded linear mapping of the
Hilbert space T into T . We denote it by A⊗B . Thus A⊗B ∈ L (T ) .
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Theorem 3. — If A ∈ L (H ) , B ∈ L (K ) , there exists a unique
C ∈ L (H ⊗ K ) such that

C(x⊗ y) = Ax⊗By for all x ∈ H , y ∈ K .

Namely: C = A⊗B .
Proof. Uniqueness: Obvious from the density of H � K in H ⊗ K

(Lemma 10).
Existence: Let A ∈ L (H ) , B ∈ L (K ) , x ∈ H , y ∈ K , and let us

write C = A⊗B ∈ L (H ⊗ K ) and T = x⊗ y ∈ T = Lc(K ,H ) .
By definition, C sends T to ATB* (Def. 7), so we are to show that

ATB* = Ax⊗By . For every y′ ∈ K ,

TB*y′ = (x⊗ y)(B*y′) = (y|B*y′)x (see Lemma 8)

= (By|y′)x

therefore ATB*y′ = (By|y′)Ax = (Ax ⊗ By)y′ (Lemma 8 again), that is,
ATB* = Ax⊗By . Thus C sends T = x⊗ y to ATB* = Ax⊗By . ♦

Theorem 4. — With the obvious notations,

(A1 +A2) ⊗B = A1 ⊗B +A2 ⊗B(1)

(λA) ⊗B = λ(A⊗ B)

A⊗ (B1 +B2) = A⊗B1 +A⊗B2

A⊗ (λB) = λ(A⊗B)

(2) I ⊗ I = I ( I the identity mapping on H , K , H ⊗ K ).
(3) (A⊗B)(C ⊗D) = (AC) ⊗ (BD)
(4) (A⊗B)* = A* ⊗B*
(5) ‖A⊗B‖ = ‖A‖ ‖B‖ .
(6) A ⊗ B is invertible if and only if A and B are both invertible, in

which case (A⊗B)−1 = A−1 ⊗B−1 .
(7) If σ denotes spectrum, then

σ(A⊗B) = σ(A) · σ(B) = {λµ : λ ∈ σ(A) , µ ∈ σ(B)} .

Proof. (1) For example,

[(A1 +A2) ⊗B]x⊗ y = [(A1 +A2)x] ⊗By

= (A1x+A2x) ⊗By

= A1x⊗By +A2x⊗By

= (A1 ⊗B +A2 ⊗B)x⊗ y .
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Quote Lemma 10 (or Theorem 3).
(2) (I ⊗ I)x⊗ y = Ix⊗ Iy = x⊗ y = I(x⊗ y) .

[(A⊗B)(C ⊗D)]x⊗ y = (A⊗B)(Cx⊗Dy) = A(Cx) ⊗B(Dy)(3)

= [(AC)x] ⊗ [(BD)y]

= (AC ⊗BD)(x⊗ y)

(

(A⊗B)*x⊗ y
∣

∣u⊗ v
)

=
(

x⊗ y
∣

∣(A⊗B)u⊗ v
)

= (x⊗ y|Au⊗Bv)(4)

= (x|Au)(y|Bv) = (A*x|u)(B*y|v)

= (A*x⊗B*y|u⊗ v)

(5) The inequality ‖A⊗B‖ 6 ‖A‖ ‖B‖ is shown by Lemma 11 and the def-
inition of A⊗B (Def. 7). To prove the reverse inequality, choose sequences
xn ∈ H , yn ∈ K such that ‖xn‖ = ‖yn‖ = 1 and ‖Axn‖ → ‖A‖ ,
‖Byn‖ → ‖B‖ . Then

‖Axn ⊗Byn‖ = ‖Axn‖ ‖Byn‖ → ‖A‖ ‖B‖ .

Since ‖xn ⊗ yn‖ = ‖xn‖ ‖yn‖ = 1 , we have ‖(A⊗B)(xn ⊗ yn)‖ 6 ‖A⊗B‖ ,
whence ‖A‖ ‖B‖ 6 ‖A⊗B‖ on passing to the limit.

(6) If A and B are invertible, then

(A⊗B)(A−1 ⊗B−1) = (AA−1) ⊗ (BB−1) = I ⊗ I = I ,

and similarly (A−1 ⊗ B−1)(A ⊗ B) = I , thus A ⊗ B is invertible and
(A⊗B)−1 = A−1 ⊗B−1 .

Conversely, suppose A⊗B is invertible. Since

A⊗B = (A⊗ I)(I ⊗B) = (I ⊗B)(A⊗ I) ,

it follows that A⊗ I and I ⊗B are also invertible, so it will suffice to show
that the invertibility of A⊗I implies that of A (the proof for B is similar).

We know that A⊗ I and (A ⊗ I)* = A* ⊗ I* = A* ⊗ I are bounded
below, and it will suffice to show that A and A* are bounded below (Intro-
duction to Hilbert space, p. 156, part vi of Exer. 11). Thus we are reduced
to showing that the boundedness below of A⊗ I implies that of A .

By supposition, there exists an ε > 0 such that ‖(A ⊗ I)u‖ > ε ‖u‖
for all u ∈ H ⊗ K . Then, ‖(A⊗ I)x⊗ y‖ > ε ‖x‖ ‖y‖ for all x ∈ H and
y ∈ K , that is,

ε ‖x‖ ‖y‖ 6 ‖Ax⊗ y‖ = ‖Ax‖ ‖y‖ ,

whence ‖Ax‖ > ε ‖x‖ (choose any nonzero y , then cancel).
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(7) Proved in a paper by Arlen Brown and Carl Pearcy, Spectra of tensor
products of operators [Proc. Amer. Math. Soc. 17 (1966), 162–166; erratum,
ibid. 18 (1967), 1142; MR 32#6218]. ♦

Corollary 1. — If U ∈ L (H ) and V ∈ L (K ) are unitary then so
is U ⊗ V .

Proof. (U⊗V )*(U⊗V ) = (U*⊗V *)(U⊗V ) = U*U⊗V *V = I⊗I = I ,
and similarly (U ⊗ V )(U ⊗ V )* = I . ♦

Corollary 2. — If s 7→ Us ∈ L (H ) and t 7→ Vt ∈ L (K ) are
unitary representations of groups G and H , respectively, then the mapping
(s, t) 7→ Us ⊗ Vt is a unitary representation of the product group G×H .

Proof. The operators Us ⊗ Vt are unitary (Cor. 1), and

Us1s2
⊗ Vt1t2 = Us1

Us2
⊗ Vt1Vt2 = (Us1

⊗ Vt1)(Us2
⊗ Vt2) ;

since (s1, t1)(s2, t2) = (s1s2, t1t2) , this shows that (s, t) 7→ Us ⊗ Vt is a
homomorphism. ♦

Corollary 2′. — If s 7→ Us ∈ L (H ) and s 7→ Vs ∈ L (K ) are
unitary representations of the same group G , then so is s 7→ Us ⊗ Vs .

Proof. Restrict the mapping of Cor. 2 to the “diagonal subgroup” (iso-
morphic to G ), consisting of the pairs (s, s) of G × G . ♦

When G is a topological group, the unitary representations s 7→ Us ∈
L (H ) of particular interest are those that are continuous when L (H )
is equipped with the “strong operator topology”, that is, if the mapping
s 7→ Usx is continuous for each x ∈ H . (For a fuller description, see
for example Def. 68.4 on p. 294–or Exer. 40.24 on p. 172– of Lectures in
functional analysis and operator theory [Springer, 1974].) The following
lemma illustrates the heart of the matter:

Lemma. — If x→ x0 in H and y → y0 in K , then x⊗ y → x0 ⊗ y0
in H × K .

Proof. The idea is that if x is made near x0 and y is made near y0 ,
then x⊗ y will be near x0 ⊗ y0 . Given any ε > 0 , suppose ‖x − x0‖ 6 ε
and ‖y − y0‖ 6 ε . From x = (x − x0) + x0 we see that ‖x‖ 6 ε + ‖x0‖ .
The identity

x⊗ y − x0 ⊗ y0 = x⊗ (y − y0) + (x− x0) ⊗ y0 ,

yields the inequality

‖x⊗ y − x0 ⊗ y0‖ 6 ‖x⊗ (y − y0)‖ + ‖(x− x0) ⊗ y0‖

= ‖x‖ ‖y − y0‖ + ‖x− x0‖ ‖y0‖

6 (ε+ ‖x0‖)ε+ ε ‖y0‖ ,
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which gives rigorous form to the idea. In particular, if xn ∈ H and yn ∈
K are sequences such that ‖xn − x0‖ → 0 and ‖yn − y0‖ → 0 , then
‖xn‖ 6 ‖xn − x0‖ + ‖x0‖ shows that the sequence xn is bounded, whence

‖xn ⊗ yn − x0 ⊗ y0‖ 6 ‖xn‖ ‖yn − y0‖ + ‖xn − x0‖ ‖y0‖ → 0 ,

and so xn ⊗ yn → x0 ⊗ y0 . ♦

Corollary 3. — If s 7→ Us ∈ L (H ) and t 7→ Vt ∈ L (K ) are
strongly continuous unitary representations of topological groups G and H ,
respectively, then (s, t) 7→ Us ⊗ Vt ∈ L (H ⊗ K ) is a strongly continuous
unitary representation of the product topological group G×H .

Proof. If (s, t) → (s0, t0) (i.e., s→ s0 and t→ t0 ), then by the lemma

(Us ⊗ Vt)x⊗ y = Usx⊗ Vty → Us0
x⊗ Vt0y = (Us0

⊗ Vt0)x⊗ y .

Thus (s, t) → Us⊗Vt is strongly continuous on H �K . Our assertion will
follow from uniform boundedness of the Us ⊗ Vt (their norms are all equal
to 1 ) and the density of H �K in H ⊗K (“Banach-Steinhaus principle”):

Let (s, t) → (s0, t0) . Given w ∈ H ⊗K , we will show that Us⊗Vtw →
Us0

⊗ Vt0w . Choose a sequence wn ∈ H � K with ‖wn − w‖ → 0 . Then

‖Us ⊗ Vtw − Us0
⊗ Vt0w‖ 6 ‖Us ⊗ Vtw − Us ⊗ Vtwn‖

+ ‖Us ⊗ Vtwn − Us0
⊗ Vt0wn‖

+ ‖Us0
⊗ Vt0wn − Us0

⊗ Vt0w‖

= ‖w − wn‖

+ ‖Us ⊗ Vtwn − Us0
⊗ Vt0wn‖

+ ‖wn − w‖ .

Given ε > 0 , choose an n such that ‖wn − w‖ < ε/3 . For this n , letting
(s, t) → (s0, t0) we have ‖Us ⊗ Vtwn − Us0

⊗ Vt0wn‖ → 0 (by the first
paragraph of the proof); hence this term can be made < ε/3 for (s, t)
sufficiently near (s0, t0) , and then

‖Us ⊗ Vtw − Us0
⊗ Vt0w‖ < ε/3 + ε/3 + ε/3 = ε . ♦

Corollary 3′. — If s 7→ Us ∈ L (H ) and s 7→ Vs ∈ L (K ) are
strongly continuous unitary representations of the same topological group G ,
then so is s 7→ Us ⊗ Vs .

Remark. — In Cor. 3′ (or Cor. 2′) suppose T ∈ T = H ⊗ K (see
Lemma 7) is a “fixed vector” for the representation s 7→ Us ⊗ Vs . Then
T = (Us ⊗ Vs)T = UsTVs* for all s ∈ G , thus UsT = TVs for all s . Such
operators T are called “intertwining operators” for the two representations.
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Reflections. The foregoing is drawn (and polished somewhat) from a
set of lecture notes prepared for a 1958 Mathematics/Physics seminar on
von Neumann algebras at the University of Iowa (Iowa City), organized by
Professor of Physics Joseph Jauch and myself, not long before his return to
Switzerland. It is the first of five chapters, the others being The M = M ′′

theorem, Equivalence of projections, Finite projections, and Trace in a factor
of Type II1 .

I do not recall how I came to choose the definition of the tensor product
of two Hilbert spaces (§1, Def. 1, §2, Def. 2) with its reliance on conjugate-
linear mappings, assuring that (x, y) 7→ x ⊗ y is linear in both x and y
(§2, Lemma 9).

Another procedure is to commence with the algebraic tensor product
of the two Hilbert spaces, equip it with an inner product that makes it
a pre-Hilbert space, and pass to the completion (cf. Jacques Dixmier, Les
algèbres d’opérateurs dans l’espace Hilbertien (Algèbres de von Neumann),
2nd. edn., Gauthiers-Villars, 1969, Ch. I, §2, No. 3, p.21 ff ); but the algebraic
tensor product of vector spaces is a demanding pre-requisite (cf. N. Bourbaki,
Algebra I, Hermann/Addison-Wesley, 1974, Ch. III, §3, No. 1, Def. 1, p. 243).

The novelty of the present exposition is that it circumvents the algebraic
tensor product by exploiting the (conjugate) self-duality of Hilbert space. A
closely related approach is via the algebra of operators of Hilbert-Schmidt
class, equipped with a Hilbert space structure (see Lemma 7 above and the
paper of Brown and Pearcy referred to in the proof of Theorem 4). The
Hilbert space Lhs(H ,K ) of Hilbert-Schmidt operators T : H → K is
constructed in Exer. 11 on p. 136 of Introduction to Hilbert space (but no
connection is made there with the concept of tensor product). For T ∈
Lc(K ,H ) , the definition of T# ∈ Lc(H ,K ) and its association with a
matrix is a variation on the adjoint T* ∈ L (H ,K ) defined in the cited
Exer. 11: for x ∈ H and y ∈ K , their relation is expresed by

(T#x|y) = (Ty|x) = (y|T*x) = (T*x|y) .

The relation shows explicitly that, whereas the mapping T 7→ T* is conjugate-
linear, the mapping T 7→ T# is linear. Thus, the mapping T* is linear,
but the mapping T 7→ T* is conjugate-linear, whereas the mapping T# is
conjugate-linear but the mapping T 7→ T# is linear.

The paper of Brown and Pearcy is concerned with the algebra of opera-
tors L (H ) , hence restricts attention to the Hilbert space Lhs(H ) , which
is an ideal of the algebra L (H ) , so that mappings of the form T 7→ ATB*
(

T ∈ Lhs(H ) , A ∈ L (H ) , B ∈ L (H )
)

may be viewed as operators on
the Hilbert space Lhs (H ).

S. K. Berberian (10-20-2013)
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