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Abstract

We investigate Gevrey asymptotics for solutions to nonlinear parameter depending Cauchy problems
with 27-periodic coefficients, for initial data living in a space of quasiperiodic functions. By means of the
Borel-Laplace summation procedure, we construct sectorial holomorphic solutions which are shown to
share the same formal power series as asymptotic expansion in the perturbation parameter. We observe a
small divisor phenomenon which emerges from the quasiperiodic nature of the solutions space and which
is the origin of the Gevrey type divergence of this formal series. Our result rests on the classical Ramis-
Sibuya theorem which asks to prove that the difference of any two neighboring constructed solutions
satisfies some exponential decay. This is done by an asymptotic study of a Dirichlet-like series whose
exponents are positive real numbers which accumulate to the origin.
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1 Introduction

We consider a family of nonlinear Cauchy problems of the form

(1) (€"(t20; + )™ + (—id, + 1)™)IT Xi(t, z, x, €)
= Z b(z,x, )5 (OF 0102 X, (L, 2, x, €)
k=(s,ko,k1,k2)€S
TS e m QX 2,3, )

1=(lo,l1)eN

*The author is partially supported by the project MTM2012-31439 of Ministerio de Ciencia e Innovacion,
Spain

tThe author is partially supported by the french ANR-10-JCJC 0105 project and the PHC Polonium 2013
project No. 28217SG.



for given initial data
(2) (DIX:)(t,2,0,€) =i j(t,z,6) , 0<i<v—1,0<j<S—1

where € is a complex parameter, S, 71, 72,73 are some positive integers, S is a finite subset of N4
and N is a finite subset of N? that fulfills the constraints (131). The coefficients b (z, z,€) of
the linear part and ¢;(z,x,€) of the nonlinear part are 2m-periodic Fourier series

k(2,2,€) Zbkgxe”ﬁ,clzxe Zcmxeuﬁ
B8=>0 B>0

in the variable z with coefficients by g(z, €), ¢; g(x, €) in O{x, €} (which denotes the Banach space
of bounded holomorphic functions in (x,€) on some small polydisc D(0, p) x D(0,€g) centered
at the origin in C? with supremum norm). We assume that all Fourier coefficients by g(z,€),
c1.8(x, €) have exponential decay in 5 (see (126), (127)). Hence, by(z,x,€) and ¢(z, z, €) define
bounded holomorphic functions on H, x D(0, p) x D(0,€y) where Hy = {z € C/|Im(z)| < p'}
is some strip of width 2p’ > 0.

The initial data are quasiperiodic in the variable z and are constructed as follows,

S 2t i)
=,00,--+3P1,]

(3) Eij(t,z,€) = B! B!

Bos--,81>0

where £ = 1 and &;,...,§ are real algebraic numbers (for some integer | > 1) such that
the family {1,&;,...,&} is Z-linearly independent and where the coefficients Z; 5, . 5, j(t,€) are
bounded holomorphic functions on T x &;, where T is a fixed open bounded sector centered at 0
and € = {&; }o<i<y—1 is a family of open bounded sectors centered at the origin and whose union
form a covering of V \ {0}, where V denotes some bounded neighborhood of 0. These functions
(3) are constructed in such a way that they define holomorphic functions on 7" x H, x & for
some 0 < p} < p'.

Recall that a function f : R — E (where E denotes some vector space) is said to be quasiperi-
odic with period w = (wq,...,w;) € R+, for some integer I > 1, if there exists a function
F : R*1 — E such that for all 0 < j < [, the partial function x; — F(x,...,%j,...,2)
is wj-periodic on R, for all fixed z; € R when k # j, which satisfies f(t) = F(¢t,...,t) (see
for instance [24] for a definition and properties of quasiperiodic functions). In particular, one
can check that the functions (3) are quasiperiodic with period w = (27,27 /&1, ...,27 /&) when
seeing as functions of the variable z.

Our main purpose is the construction of actual holomorphic functions X;(t, z,z,€) to the
problem (1), (2) on the domains 7 x H, x D(0,p1) x & for some small disc D(0, p1) C C and
the analysis of their asymptotic expansions as € tends to zero on &;, for all 0 < i < v — 1. More
precisely, we can state our main result as follows.

Main statement We take a set of directions d; € R, 0 < i <
0 <k <r9—1, which are assumed to satisfy moreover

2k+1
s Jor

7n—?’aurg(e) +arg(t) € (d; — 0,d; +0)

T2

foralle € &, allt € T, all0 < i <v—1, for some fixed 0 > w. We make the hypothesis that
the coefficients Z; g,....,.j(t,€) of the initial data (3) can be expressed as Laplace transforms

—_ _ 1 —7/(€"3/72¢)
Zi o, (1 €) = S /Ld‘ Vigo,...0.3 (T €)e dr



on T x & along the halfline Lg, = R+eﬁdi, where V; g, . 3,i(7,€) is a family of holomorphic
functions which share the exponential growth constraints (107) with respect to T, the uniform
bound estimates (114) and the analytic continuation property (130).

Then, in Proposition 12, we construct a family of holomorphic and bounded functions

exp(iz(Xj_o Bi&;))

(4) Xl(t7 Z, T, 6) = Z Xi,ﬂo,‘..,ﬂl (t,ﬂj‘7 6) ﬁ . ﬁ ]

Bor 5120 oo
which are quasiperiodic with period w = (27,27/&1,...,27w/&) in the variable z and which
solve the problem (1), (2) on the products T x Hy x D(0,p1) x &, where py > 0 satis-

fies the inequality (108) and for some small radius 0 < p; < p. Moreover, the differences

Xit1(t, z,x,€) — X;(t, z,x, €) satisfy the exponential decay (133) whose type depends on the con-

stants 1,712,173 and on the degree h + 1 any algebraic number field Q(§) containing &1, ... ,&;.
In Theorem 1, we show the existence of a formal series

N ek
(5) X(0) = 3 Hylt 205

whose coefficients Hy(t, z,z) belong to the Banach space of bounded holomorphic functions on
T x Hy x D(0, p1), which formally solves the equation (1) and is moreover the Gevrey asymptotic

expansion of order ’”}7;”2 of X; on &;. In other words, there exist two constants C, M > 0 such
that

N-1 k hry+r
€ 1 2
sup | X (t, 2z, x,€) — g Hk(t,z,x)—‘| <CMNN!" s |e|N
te€T 2€H 1 z€D(0,p1) P k!

for all N > 1, all € € &;.

Notice that the problem (1), (2) is singularly perturbed with irregular singularity (in the
sense of T. Mandai, [23]) with respect to t at t = 0 provided that ro > 1. It is of Kowalevski
type if 7o < r1 (meaning that the hypotheses of the classical Cauchy-Kowalevski theorem (see
for instance [15], p. 346-349) are fulfilled for the equation (1)) and of mixed type when ro and
r1 are equal.

In a recent work [19], we have considered singularly perturbed nonlinear Cauchy problems
of the form

(6) € (20,)™ (tzat)”@fui(t, z,€) = F(t,z,€,0,0)ui(t, z,€) + P(t, z,,u;(t, z,€))

which carry both a irregular singularity with respect to ¢ at ¢ = 0 and a Fuchsian singularity
(see [14] for a definition) with respect to z at z = 0, for given initial data

(7) (i) (t,0,€) = ¢ij(te) , 0<i<v—1,0<j<S—1,

where F' is some linear differential operator with polynomial coefficients and P some polynomial.
The initial data ¢;;(t,€) were assumed to be holomorphic on products 7 x &. Under suitable
constraints on the shape of the equation (6) and on the initial data (7), we have shown the
existence of a formal series ii(e) = >~ hx€e*/k! with coefficients hyj, belonging to the Banach
space F of bounded holomorphic functions on 7 x D(0,6) (for some § > 0) equipped with the
supremum norm, solution of (6), which is the Gevrey asymptotic expansion of order ”rﬂ of
actual holomorphic solutions u; of (6), (7) on &; as F—valued functions, for all 0 <i <wv — 1.
Compared to this former result [19], the singularity nature of the equation (1) does not come
from the divergence of the formal series. This divergence rather emerges from the quasiperiodic



structure of the solution space which produces a small divisor problem (as we will see below)
and its Gevrey type depends not only on the type of space of our initial data but also on the
shape of the equation (1). It is worth noticing that a similar phenomenon has been observed in
the paper [17] for the steady Swift-Hohenberg equation

(8) (L4 AY2U(x, 1) — pU (x, 1) + U (x, 1) = 0
where the authors have constructed formal series solutions

) Ulx, ) = Vi Y U (ou"

n>0

where the coefficients U™ (x) belong to some weighted Sobolev space H*(I') (for well chosen
real number s > 0) of quasiperiodic Fourier expansions in x € R? of the form

UM (x) =) Uye™>

where I" = {Z?Zl mjk;/(ma,...,mqg) € N} with k; = (cos(27r%),sin(27r%)) is a so-called
quasilattice in R? for some integer Q > 8. They have shown that this formal series (9) is actually
at most of Gevrey order 4/ (for a suitable integer [ depending on () as series in the Hilbert space
H*(T"). Their main purpose was actually to use this result in order to construct approximate
smooth quasiperiodic solutions of (8) up to an exponential small order by means of truncated
Laplace transforms.

In a more general setting, the Cauchy problem (1), (2) we consider in this work comes
within the framework of asymptotic analysis of solutions to differential equations or to partial
differential equations with periodic or quasiperiodic coefficients which is a domain of intense
research these last years.

In the category of differential equations most of the results concern nonlinear equations of
the form

K
> ar(€)dfu(t,e) = F(ult,e),t,¢)
k=0

where the forcing term F' contains periodic or quasiperiodic coefficients. These statements deal
with the construction of formal solutions u(t,€) = > ;"% u;(t)e! which are called Lindstedt series
in the literature. For convergence properties of these series, we quote the seminal work [11] and
the overview [12], for Borel resummation procedures applied more recently, we mention [13]. For
applications in KAM theory for nearly integrable finitely dimensional Hamiltonian systems, we
may refer to [2], [7].

In the context of partial differential equations, for existence results of quasiperiodic solutions
to general families of nonlinear PDE containing a small real parameter, we indicate [30] and for
the construction of periodic solutions to abstract second order nonlinear equations, we notice [29].
Concerning KAM theory results in the context of PDE such as small nonlinear perturbations of
wave equations or Schrédinger equations we mention the fundamental works [8], [18], [28].

Now, we explain our main result and the principal arguments needed in its proof. The
first step consists (as in [19]) of transforming the equation (1) by means of the linear map
T — T/€™/™ into an auxiliary regularly perturbed nonlinear equation (105). The drawback
of this transformation is the appearance of poles in the coefficients of this new equation with
respect to € at 0.



The approach we follow is the same as in our previous works [19], [20] and is based on a
Borel resummation procedure applied to formal expansions of the form

] ! <] I+1
PTeng= Y w0 b)) 2

B—(Borfrpron)ENIE2 Bol--- B! Br+1!
where Yﬁ(T, €) = >0 Xm,3(6)T™/m! are formal series in T', which formally solves the auxiliary
equation (105) for well chosen initial data (117). It is worth pointing out that this resumma-
tion method known as k—summability already enjoys a large success in the study of Gevrey
asymptotics for analytic solutions to linear and nonlinear differential equations with irregular
singularity, see for instance [1], [3], [5], [10], [22], [25], [26]. We show that the formal Borel
transform of Y (T, z, x, €) with respect to T' given by

) l N 141
V(T,z,x,e) = Z VB(T7 e)eXp(lZ(Zj:O Bi&j)) P

= (Borro s 1 )ENIH2 = Bol--- B! Bis1!

where V(7€) = > om0 Xm, (€)™ /(m!)?, formally solves a nonlinear convolution integro-differen-
tial Cauchy problem with rational coefficients in 7, holomorphic with respect to = near the origin
and with respect to z in some strip, and meromorphic in € with a pole at 0, see (121), (122).

For appropriate initial data satisfying the conditions (107), (130) and (114), we show (in
Proposition 9) that the formal series V(T, z,x,€) actually defines a holomorphic function V; on
the product U; x H,, x D(0, p1) x D(0,€0) \ {0}, for some 0 < py < p’, 0 < p1 < p and where U;
is some unbounded open sector with small aperture and with bisecting direction d; (as described
above in the main statement). The functions V; have exponential growth rate with respect to
(7, €) meaning that there exist two constants C, K > 0 such that

(10) sup |Vi(T,z,z,€)| < CeKITl/ el
ZElel 7xeD(O7p1)

for all T € U;, e € D(0,€0)\{0}. Moreover, we show that for all 8 = (o, ..., B, Bi+1) € N+2 the
formal series Vé (7, €) actually define holomorphic functions V; (7, €) on domains (U;UD(0, pg)) X
D(0,€0)\{0} where pg is a Riemann type sequence of the form R/(1+]|B|)"1/m2, for some constant

R > 0, which tends to 0 as | 3| = Zéﬁ) B; tends to infinity and share the same exponential growth
rate, namely that there exist constants C' > 0, K > 0, M > 0 with

+1
(11) sup  [Vig(re)| < CKZim0Pigyl. .. By, qleMIml/ld
zeHﬂ/1 ,2€D(0,p1) -

for all 7 € U;, € € D(0,¢€0) \ {0}. We point out that the occurence of a radius of convergence
shrinking to zero for the coefficients V; g near the origin of the Borel transform is due to the pres-
ence of a small divisor phenomenon in the convolution Cauchy problem (121), (122) mentioned
above. In our previous study [19], a similar outcome was caused by a leading term in the main
equation (6) containing a Fuchsian operator (z0,)"™. In this analysis, the denominators arise
from the function space where the solutions are found, especially from their Fourier exponents
sz) B;€; which may tend to zero but not faster than a Riemann type sequence as follows from
Lemma 5.

In order to get the estimates described above, we use a majorazing technique described in
Propositions 6, 7 and 8 which reduces the investigation for the bounds (11) to the study of a



Cauchy-Kowalevski type problem (83), (84) in several complex variables for which local analytic
solutions are found in Section 2.1, see Proposition 1. On the way we make use of estimates
in weighted Banach spaces introduced in Section 2.2, see Propositions 2, 3, 4 and Corollary 1,
which are very much alike those already seen in the work [19].

In the next step, for given suitable initial data (106) satisfying (111), we construct actual
solutions

, !
expltz - 05&; Bi+1
(12) Yi(T,z,x,€) = E Yip(T.e€) p( ﬁ('E]_; 'Byfy)):; |
é:(1801'~"ﬂl’ﬂl+1)€Nl+2 0- I I+1:

of the equation (105), where each function Y; g(T',€) can be written as a Laplace transform of

the function V; g(7, €) with respect to 7 along a halfline L., = Rye?V=11 ¢ U; U {0}. For each
€ € &, the function T Yi,g (T, €) is bounded and holomorphic on a sector U; . with aperture

larger than 7, with bisecting direction ~; and with radius A’ \6\7'3/ "2 for some constant A’ > 0. In
Proposition 11, we show that the function Y; itself turns out to define a holomorphic function
on Ui x Hy x D(0, p1) for some 0 < p1 < p and where p} > 0 satisfies (108).

We observe that, for all 0 < i < v — 1, the functions X; defined as

Xi(t,z,x,€) = l@(er?’/rzt, Z,T,€)

actually solve our initial Cauchy problem (1), (2) on the products 7 x H,; x D(0, p1) x&; and bear
the representation (4) as a quasiperiodic function whose Fourier coefficients decay exponentially
in 8. It is worthy to mention that spaces of quasiperiodic Fourier series with exponential decay
were also recently used in the paper [9] in order to find global in time and quasiperiodic in space
solutions to the KdV equation.

In Proposition 12, we show moreover that the difference of two neighboring solutions X,
and X; has exponentially small bounds of order hr’"ir , uniformly in (¢, 2 ac) as € tends to 0
on &1 NE&;. We observe that for each § € N*2 the difference X4 8~ Xip for the Fourier
coefficients has exponential decay of order r3 /72 but its type is proportional to pp and therefore
tends to 0 as 8 tends to infinity. This small denominator phenomenon is the reason of the
decreasement of the order r3/75 to As in our previous study [19], the bulk of the proof

r3
hri+re*
rests on a thorough estimation of a Dirichlet like series of the form Y, e /()% gk for
0 <a<1and a,r > 0 with € > 0 small. This kind of series appears in the context of almost
periodic functions introduced by H. Bohr, see for instance the textbook [4]. These estimates
(133) are crucial in order to apply a cohomological criterion known in the litterature as the
Ramis-Sibuya theorem (Theorem (RS)) which leads to the main result of this paper namely
the existence of a formal series
t 2,1, €) ZH B

k>0

with coefficients Hj, in the Banach space of holomorphic and bounded functions on 7" x H, X
D(0, p1), which formally solves the equation (1) and which is, moreover, the Gevrey asymptotic
expansion of order h”r% of the functions X; on &;, for all 0 < <wv — 1.

The layout of the paper reads as follows.

Section 2.1 is dedicated to the study of a version of the Cauchy Kowalevski theorem for nonlinear
PDEs in analytic spaces of functions with precise control on the domain of existence of their
solutions in term of norm estimates of the initial data. In Section 2.2 we establish some continuity
properties of several integro-differential and multiplication operators acting on weighted Banach



spaces of holomorphic functions. These results are applied in Section 2.3 when looking for global
solutions with growth constraint at infinity for a parameter depending nonlinear convolution
differential Cauchy problem with singular coefficients.

We recall briefly the classical theory concerning the Borel-Laplace transform and we show
some commutation formulas with multiplication and integro-differential operators in Section
3.1, then we center our attention on finding solutions of an auxiliary nonlinear Cauchy problem
obtained by the linear change of variable T+~ T'/¢" from our main Cauchy problem in Section
3.2. The link between this Cauchy problem and the one solved in Section 2.3 is performed by
means of Borel-Laplace transforms on the corresponding solutions.

In Section 4.1, we construct actual holomorphic solutions X;, 0 < ¢ < v — 1 of our initial
problem and we show exponential decay of the difference of any two of these solutions with
respect to € on the intersection of their domain of definition, uniformly in the other variables.
Finally, in Section 4.2, we conclude with the main result of the work, that is the existence of
a formal power series with coefficients in an appropriate Banach space, which asymptotically
represents the functions X; with a precise control on the Gevrey order on the sectors &;, for all
0<i<v-—1.

2 A Global Cauchy problem in holomorphic and quasiperiodic
function spaces

2.1 A Cauchy Kowalevski theorem in several variables

In this section, we recall the well known Cauchy Kowaleski theorem in some spaces of analytic
functions for which the size of the domain of existence of the solution can be controlled in term
of some supremum norm of the initial data.

The next Banach spaces are natural extensions to the several variables case of the spaces
used in [21].

Definition 1 Let | > 1 be some integer. Let Zy,...,Z;, X > 0 be positive real numbers. We
denote G(Zy, ..., Z;, X) the space of formal series

Zgo .. ZIBZXBZH
u
2 Bol - BilBra!

(13) U(Zo,.... 2, X) = >
B=(Bo,--,B1:,B14+1)ENH?2

that belong to C[[Zo, ..., Z;, X]| such that
Zgo .. ZlﬁlXﬁlH

10Zo; - 21 X\ 2o....2.5%) = > Jus| TF1 g
B=(Bo;-.-.B1,8141) ENH2 (ij(] /B])

is finite. One can show that G(Zy,...,Z;, X) equipped with the norm -l Zo,....z,,%) are Banach
spaces.

In the next two lemmas we show continuity properties for some linear integro-differential
operators acting on the aforementioned Banach spaces.

Lemma 1 Let hg,...,h;, hi+1 € N with

l
(14) hit1 > Zhj.
=0



Then, for any given Zy,...,Z;, X > 0, the operator 828 x ~8§§8;(h’“ 1s a bounded linear map
from G(Zy, ..., Z;, X) into itself. Moreover,

h; o—h
(15) (107 9705 "' U(Zo,-... 2. X )HZ 7

IN

N
"Zz XM |U(Zo, - 20 X )| 2,205
for allU(Zy,...,7Z1,X) € G(Zo,..., 21, X).

Proof Let U(Zy,...,2;,X) € G(Zy,...,Z;,X) of the form (13). By definition, we can write

h; o—h
(16) (|05 -+ 030" U (Zos - - Z1, X) 2. 20.%)

l . . —
_ oy ((zjzoﬁj &;J?;l men  pn Zl_thth>
J

Boy-->B1,8141>0

|lU,30+h0 ----- 5l+hl76l+1_hl+1‘ Zé?g—i—ho o Zlﬁl+th’8l+1_hl+l
(2"j=0Bj + hj + Biyr — huy)!

Since (14), we know that

(X0 B+ hj + Bt — huga)! -
(Zl—‘d /Bj) =

for all Bo, ho, ..., B, hiy Bi+1, his1 > 0. The estimates (15) follows. O

(17)

Lemma 2 Let hg,...,h;,hi+1 € N. Let, for all 0 < 5 <1, 0< Z} < ZJQ and 0 < X' < X0 be
positive real numbers. Then, there exists Co > 0 (depending on hg,. .. ,hl+1,X0,X1,Z]Q, Z} for
0 <j <) such that

h
(18) Hagg"'agia){l+lU(Z07"'>Z17X)H(Zé,.‘.,2l1,)21)
< Co(Zy) M- (Z)) M) T U (Zo, - Z, X 29

-------

for all U(Zy,..., 2, X) € G(ZY,...,Z0,X9).

Proof Let U(Zy,...,Z;,X) € G(Z§,...,Z?,X°) be of the form (13). By definition, we can
write

h
(19) |0 - OP U (Zo, -, Z1, X)| 22

0" 7Zle1)

-y e l;*’”*l‘ X (Z3) 0 (2 (XY e
Boveipinz0  (2ujeo B+ 1y)!

. ((Zl+1 ,8J+h)
(550 8)!

% ( 6)/50+h0 (le)ﬁl+hz (X1)51+1+hz+1>



Now, we take some real number 0 < § < 1 such that Z; < (52]0 forall 0 < j <1l and X' < §X0.
We get the estimates

(Zl-l-l BJ + h; ) )BO"FhO '

(20) ~=5 (Z3)7¥10 - ()P (X1t
(X550 B5)!
I+1 I+1
. N hy) s(2EEL B+ 325G By) ( 70VBot+ho L 770\Bitha ( 0N Brg 1 +Hhis
<(Q_Bi+ ) hy) 0 (Zp) (Zy)(X7)
for all By, ho, - .-, B, by Bi+1, hi+1 = 0. Since 0 < § < 1, we know that for any real number a > 0,

there exists Ks, > 0 depending on a, d such that

sup(n + a)*0" " < K 4.
n>0

Hence, we get a constant C > 0 depending on hj, 0 < j <1+ 1 and 0 with

I+1 I+1
(Z B8+ Z hj)(Z?;B hj)(;(Z“r1 +X5 Ry )(Zg)ﬂo+ho . (ZZO)Berhz (X0)51+1+hl+1

< 02(28)504-’10 . (Zlo)ﬁﬁ-hz (X0)51+1+hl+1

for all Bo, ho, ..., 01, ki, Bir1, hie1 > 0. As a result, gathering (19), (20) and (21), we get the
lemma. O

Lemma 3 Let Ul(ZO,_. - 71, X),Us(Zg,...,21,X) € G(Zy,...,7;,X). Then, the product UyUs
belongs to G(Zo, ..., Z;, X). Moreover, we have

(22) |[Uh(Zo, ... 21, X)U2(Zos - - -, Z1, X)) 20,20, %) <
HU1(207 SR ZlvX)||(ZO,...,ZZ,X)HU2(Z07 K Zle)||(Zo7...,Zl,X)'

In other words, the space G(Zy, ..., 7, X) is a Banach algebra.

Proof Let

Z ZBO Zlﬁl X Bit1

Ui(Zo, ..., 2, X) = uf Bol - BilBrey!

Bose-B1,8141>0

belonging to G(Zy, ..., Z;, X) for j = 1,2. By definition, we can write

(23) ||Ul(207-"aZle)UQ(Z0>"'7Zl7 )||(ZO ZZ,X)

HlJrl
< > X o o g )
- l+1 BlHH’l ﬁQ[ (Zl+1 /8]) (ﬁoym:ﬁl »Bl+1) (,BO,...,,BZ 7ﬁl+1)

B0se-B1,81412>0 ,8;+ﬁ]2~:ﬁj;0§j§l+l

X Zgo - ZIBZX'BZH
. . . . Zl_‘H B; 1+1 . . .
Besides, using the identity (1+z)=s=0" =TT, (1 + )% and the binomial formula, we get that

W (S

(24) Hl+1 ﬁl'HH_l 62' — (Zl—l-l B ) (Zl—l—l 52)
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for all integers f3;, ﬂ]l, 6]2 > 0 such that 3; = le- —1—6]2, for 0 < j <1+ 1. Therefore, the inequality
(22) follows from (23) and (24). O

In the next proposition, we state a version of the Cauchy Kowalevski theorem.

Proposition 1 Let Dy (resp. D) be a finite subset of N*2 (resp. N*1) and let S > 1 be an
integer such that for all (ko,...,ki+1) € D1 and all (po,...,p;) € D2, we have

I+1 !
(25) S>ky1 , S= ij , 82> ij
=0 =0

Let D3 be a finite subset of N\ {0,1}. Let M°, Xo > 0 be given real numbers and let ZJQ > MY,
0 < j <1 be real numbers. Let

d(ko,...,kl+1)(Z07 e ZZ,X) € G(Zg, ey ZZO,XO) , f(po,...,pl)(Z07 .. .,Zl) € G(Zg, ey Z?,XO),
em(Zo,..., 21, X) € G(Z8,...,20,X°)

for all (ko,...,ki11) € D1, all (po,...,p1) € Dy and all m € D3. For all0 < j < S —1, we also
choose 0i(Zo,...,2;) € G(ZY,.. .,ZlO,XO).
We consider the following Cauchy problem

(26) O3U(Z,..., 21, X) = 3 de(Zo, ..., 21, X)0 - 0RO U(Z, ..., 21, X)
k=(ko,....ki,k141)€D1

+ Y Bl Zey )R B em(Zos .. 2, X)(U (Lo, 21, X))

p=(po,---,p1)E€D2 meDs
for given initial data
(27) (@ U)(Zo, -, 71,0) = 0 (Zo, .., Z1) , 0<j<S—1.

Then, for given real numbers Z} > 0,0 < j <1, with M° < Z; < ZJQ, one can choose
0< X! < X% andé >0 (which depend on Z} for 0 < 5 <1, on ||dg(Zo, .. .,Zl,X)|](Zo7_”72107XO)
for k€ Dy, on ||fp(Zo, -, Z)ll(z...20 x0) Jor p € Dy and on |lem(Zo, - .., Z1, X)|l(z9..... 20 x0)
for m € D3) such that if

(28) i (Zo, ... Z)ll(z9,..20 0y <6, 0<j<S5—1,

then the problem (26), (27) has a unique solution U(_Zo,_.. ) ,_Zl,_X) €eG(Z,..., le,Xl). More-
over, there exists a constant Cs > 0, depending on XO,Xl,ZJQ7 ZJ1 for0<j<I, on

ldk(Zo, - .-, Z1, X)ll(z0,....20 x0) for k € D1, on ||fp(Zo, ..., Z)l|(z,..20 x0) for p € Da and on
lem(Zo, - - Z1, X))l (z0... 20 0y for m € Dy, such that

(29) U (Zo.... 20X\ zy,...20.51) < 6C.

Proof We put

S—1 X
w(Zo, ..., 21, X) = Z@j(z()a"wzl)?
=0 '
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and we consider the map A : C[[Zy, ..., Z;, X]] = C[[Zy,. .., Z;, X]] defined as

A(H(Zo,..., 2, X)) = 3 d(Zo, ... 21, X)O5 - OO O H (Zy, ..., 2, X)
E:(ko,...,kl,kl+1)ep1
+ > di(Zo, ..., 21, X)05 - 0RO w(Zo, ..., 2, X)

k=(ko,....ki,k141)€D1

+ Z fp(Z077Zl)azZ)%a§ll(Z em(Z07"'7ZlaX)

p=(po,-..,p1)€D2 meDs
x (055 H(Zo, ..., Z1, X) +w(Zo, ..., Z, X))™)

Lemma 4 Let Z} >0, 0<j <lI, be real numbers such that M° < Z} < Z]Q. Then, there exist
§ >0, a real number 0 < X' < X° and a constant Ky > 0 (depending on Z; for 0 <35 <1, on
Hdk(ZOa e ZZ,X)H(Z(())““’ZZO’XO) fO?“ k € Dl, on HfB<Z0’ .. .,ZI)H(ZSW’ZZO’XO) fO”I“ p € Dy and on
llem (Zo, - - .7Zl’X)H(Z(())’.“’ZZO7XO) for m € D3), such that if one puts R = K40,

i) we have

(30) A(BR) C Bgr

where B, is the closed ball of radius R, centered at 0 in G(Z§,.. ., le, X1,
ii) For all H, Hy € Bp,

1
(31) 1A(HL) = A(H2)l|(z.... 20, %) < SlHL = Hallzg,.. 20 50

Proof We first show i). We fix Z; >0, 0 < j <1, be real numbers such that M° < Z} < ZJQ.
We also consider 0 > 0 for which (28) holds. Let R > 0 be of the form R = K4§ for some
constant K4 > 0. We take H € Br where Bp is the closed ball of radius R, centered at 0 in
G(Z4,. .., le, X1) for some real number 0 < X! < X, From Lemma 1 and Lemma 3, we get

kip1—S
(32) ldx(Zo, ..., 21, X)050 -+ 0 O™ H(Zo, -, 2, X)|z,...20.5)
< |lde(Zos -+ Z1, X (za,...20 %1y (Zg) ™0 - (Z)) TR (X )5
X ||H(Zoy -, 20 X)|lz1...zp %1y < NNde(Zos -+ 20, X 23,20, 50 (Zg) 0 - (Z1) 70
x (X1)S—hnR,

Now, from Lemma 2 and Lemma 3, we get a constant Cy > 0 (depending on ko,...,k,
XO,Xl,ZJQ,Z}, for 0 < j <) with

X4
(33) ||dE(Zo,~~-»Zl>X)(a§%“'a?l@j)(zoa--~7Zl)?‘|(25,...,2l1,5(1)
Xq ~71\—ko ~71\—k;
SHdE(Zo,--~,ZuX)I!(201,...,211,)21)H?H(zg,...,zg,)@)@( 0) " (Z))

Xq
X |lei(Zo,- - ZD)ll(z9.... 20 x0) < |ldk(Zo, - -,Zz,X)H<Zg,...,2p,fco>\IFH(Zg,...,ZLO,Xo)

x Ca(Zg) ™0 (Z}) 76

forall 0 < j,g < S —1.
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Using Leibniz formula, we deduce from Lemma 3, that

(34) [fo(Z0, -, Zp)0y, - 0% (em(Z0, - - -, Z1, X)
< (O H(Zo, ..., 20, X) + w(Zo, ..., 21, X))™ ) ez

02X
S Bl
S Phj=ph,0<h<l S STRESASITI
X Hagz’o : "a?l’oem(zo» w2 Xz Lz x
X (0 - 057) (RS H (Zos o, 21 X) + w(Zo, o, 2 X)) iz 2t )

By Lemma 2, one also gets a constant Cy1 > 0 (depending on pgg, ... ,pl,o,XO,)_{l,ZJQ, Z} for
0 <j <) with
(35) 100 - 05 en(Zo, - Z1, X232 5

< Caa(Zg) 700 - (Z) 770 lem(Zos - -5 21, X)) | 20

0" 7Z0’X0)

By Lemma 1, one finds

(36) ([0 - 05 05 H (Zoy -, Z1, X ) 20,20 1)
< (Zg) 7P -+ (Z]) P (XN H (2o, - 21, X

Due to Lemma 2, we get a constant Cy2 > 0 (depending on p07j,...,le,X’O,X’l,Z%,Z}n for
0 <m <) such that

(37) 10 - g w(Zo, ... Z1, X)ll (2

...... ZLX1)
S—1
. X4
0507 - ’a%JSDq(ZOa”-aZl)||(201,...,2l1,)_<1)H?H(ZO, 21X
q:
S—1
71\ —po,; 71\ —pi; X1
< Caz ) (Zo) ™7 (Z)) Pillpg(Zo, -, )H(ZO, 20 XO)H H(ZO, ,Z0,X0)
q=0
S—1
< Can (2™ (2D M0l g
q=0

Now, we can choose 0 < X' < X ¢ > 0 and the constant K4 > 0 (recall that R = K,4§) in
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such a way that

(38) > 1di(Zo, -+ Z1, Xl 20.,....20,%0)(Z3) 0 - (Z))7F
E:(ko,...,kl+1)€'D1
S—1
Xq
X (X )S kl+1K4(5+ZH 29,..,29 XO)C4(5
q=0

...l
N Z Z Z po!---p! pr(Zo, e )] (29....,20,X0)

11
p=(po;...,p1)€D2 mED3 337" pp, j=pp,0<h<l 0<j<m,0<h<IPh.j
X 04.1(26)—130,0 - (le)_pl’OHEm(ZO» RRRNVAR X)||(287--~7Z?,X0)
x I ((Z&)—po,j (2P (XY K6

S—1
+Cua (B (B O gy ) < K
q=0

Hence, gathering (32), (33), (34), (35), (36), (37) and (38) yields the inclusion (30).

We turn to the proof of ii). As above, we fix Z; > 0, 0 < j <, be real numbers such
that M? < Z} < ZJQ. We also consider § > 0 for which (28) holds. Let R > 0 be of the form
R = K40 for some constant K4 > 0. We take Hy, Hy € Br where Bp is the closed ball of radius
R, centered at 0 in G(Z&, ce le, X1 for some real number 0 < X! < X°. From Lemma 1 and
Lemma 3, we get that

(39) ldx(Zo, ., 21, X)O% -+ DG O~ (Ha(Zo, - 20, X) = Hi(Zo, -, 20, X)) ||z 20 <)
< |ldi(Zos -, 21, X ) (za,...20 %1y (Zo) ™0 - (Z)) R (X ) m

< ||Ha(Zo, .., 20, X) = Hy(Zo, ..., Z, Xz 20 <)
<Ndi(Zos -+ Z1, Xl z0,....20,%0)(Z5) 0 - (Z)) R (XH) > he

02
X | HQ(Z(Ja'--leaX) _Hl(Z07"'aZl, )H (Z},..2} X1

Using the identity 0™ —a™ = (b—a) > o= 01 a®b™ 175 for any complex numbers a,b and any
integer m > 2, we can write

(40) (0% H1(Zo, ..., Z1, X) +w(Zo, ..., Z1, X))™
_a)_(SH2(ZO>"'7Zl7X)+w(ZO>"'7Zl> )) ( SHl 8)_(SH2)

m—1
X Z SHQ + w (a)_(SHl + w)m,1,5

s=
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Using Leibniz formula, we deduce from Lemma 3 that

1) [1fp(Z0,..., 2)D% -+ 0 (em(Zo, - -, Z1, X) (0" Hy — 05" Hy)

m—1
x (D (0% Ha +w)* (05" Hi +w)™ ™ )|z, .20 %)
s=0
po!---pi!
< > (2o, 20|z, 20 x0)

H0< ) < ]
Z?:O Ph,j =pn,0<h<I

< |00 - 0y em(Zoy -y 21, X )z, zp 0y X O - 05 (03P Hy = 05 Ho) | 2120 5
m—1

x ||og® -+ 02 (D (0% Ha + w)* (0 Hy + w)" ) z1 73 51)
s=0

By Lemma 2, one also gets a constant Cy 3 > 0 (depending on pgo,... ,pl70,XO,X1,Zg, Zjl for
0 <j<l) with

(42) (|00 O en(Zo,- s 20, Xz, 21 0
< Cu3(Zg) 70 - (Z]) ™0 lem(Zos - -, 21, X)||(23....,20,%0)
By Lemma 1, one finds
(43) (|0 - 07 (05" Hy = 0 Ho)ll 2, 20 5
< (Zg) ™ot (Z1) ™ (XYS| | Hy — Hall oz, 20 50
Using again Leibniz formula and Lemma 3, we can write

(44) [|95" - 052 (05" Ha + w)*(0x " Hi + w)™ ' )| 21 20 x1)

1... |
< Z Po,2- DPi2-

<, |
_ <j<m—1,0<h<iPh2,j*
S Pho2,=ph,2,0<h<I

2.5 0,7 -S _ .
X Iy || (927 - 0 ) (0% Ha + w)| 21 20 x)
— 5 ,v 7’. _S
x 107, -+ 9°7) (0x" Hh +twllz,..z x1)

By Lemma 1 and Lemma 2, one finds a constant Cy 4 > 0 (depending on pg 2 j, - . - ,pl727j,X0, Xt
ZJQ,Z; for 0 < 5 <) such that

(45) ([ - 0 ) O He + 0|z, 20 ) < (Zg) P02 - (Z]) 729 (X1)R
S—1
i ] _ X4
+Caa ) (Z) 7P (Z)) 2ol rllzg...zp.x0)
q=0 '

forr=1,2.
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In the following, we choose 0 < X' < XY in order that

(46) > 1di(Zos -+ Z1, Xl 20,....20,%0)(Zg) 0 - (Z)) T (XT) S hen
k=(ko,..-.ki111)€D1

po'---pi!
+ Y > > (2o, 20l (29.... 20, %0)

Mo<j<2,0<h<iPh,j!
p=(p0,--sp1)€D2 MED T2y, i—pj, 0<h<l oo

x Cu3(Zg) 700 - (Z1) ™0 lem(Zoy - s Z, Xl 29,20 %0y X (Zg) 770t - (Z]) 7P (X )P

m—1

% Z Z p0,2!"'Pl,2!

<, A
— _ <j<m—1,0<h<IPh2,5*
s=0 S Phi2 =P 2, 0<h<I

XTI ((Z3) 77000 - (277123 (K1) Ko

S—1 B ~ X4
+Caa Y (Zg) P02 - (Zzl)_pl’z’j5||?||(Z§,...,Z?,X0))
q=0 '

X L (Zg) o2 - (Z)) 7P (K1) Kb

N =

- 71\—po,2,; 71\ —pi,2,5 X4
+Cyy Z( 0) PRI (Zy) P26 H?H(Zg,...,Z?,XO)) <
q=0 ’

Taking into account all the inequalities (39), (40), (41), (42), (43), (44) and (45) under the
constraint (46), we deduce (31).

Finally, for fixed real numbers Z; > 0,0 < j <1, such that M° < Z} < ZJQ, we choose
0 < X! < X% § >0 and the constant K; > 0 (recall that R = K4J) in such a way that both
constraints (38) and (46) hold. For these constants, the map A satisfies both (30) and (31). O

We are in position to give the proof of Proposition 1. Let Z} > 0, 0 < j <, be real numbers
such that M < Z} < Z]Q, we choose 0 < X' < X%, § > 0 and the constant K4 > 0 as in Lemma
4. We have put R = K.

From the fact that G(Z},...,Z}, X') equipped with the norm ||'”(Z(},...,Z},X1) is a Banach
space, the closed ball (Bg,d) for the metric d(z,y) = ||y — 37|](Zé7_._7zl175(1) is a complete metric
space. From Lemma 4, the map A is a contraction from (Bg,d) into itself. From the classical
fixed point theorem, we deduce that there exists a unique H¢(Zo,...,Z;,X) € Bpg such that
A(Hy) = Hy.

By construction and taking into account Lemma 1, the formal series

Ui(Zo, ..., Z1, X) = 05 Hy(Zo, - .., Z1, X) +w(Zo, -, Z1, X)

is a solution of the problem (26), (27). Moreover, Us(Zy, ..., 2, X) € G(Z},...,Z},X') and
B S—1 Xj
1Us(Zo, -, 21 X z3,... 20,51y < S((X)TKy + > ||7H(Z§,...,Z?,XO))
=0

which yields (29). O
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2.2 Weighted Banach spaces of holomorphic functions on sectors

We denote D(0,r) the open disc centered at 0 with radius » > 0 in C. Let ¢y > 0 a real number
and let Sy be an unbounded sector in direction d € R centered at 0 in C. By convention, these
sectors do not contain the origin in C. For any open set D C C, we denote O(D) the vector space
of holomorphic functions on D. Let [ > 1 be an integer. For all tuples 3 = (B, ..., fi41) € NIT2,
let pg > 0 be positive real numbers such that pg < pg if |3'| > | B| (where by definition

18] = Zéilo ;). We define Q3 = D(0, pg) U Sg.

Definition 2 Let b > 1 a real number and let ry(3) = ZLE:'O 1/(n+1)° for all tuples B € N'*2.

Let € € D(0,€0) \ {0} and r,0 > 0 be real numbers. We denote by Eg 5y, the vector space of
all functions v € O(Sg) such that -

s

o)y = sup 1o+ ) exp (= Toru(@)ir])

TGQB

s finite.

Remark: These norms are appropriate modifications of the norms defined in [19], [20].
In the next proposition, we study some parameter depending linear operators acting on the

spaces Egﬁgmgﬂ.

Proposition 2 Let s1,kg > 0 be integers. Let B = (Bo,...,B14+1) € Ni+2, é = (BO, e 7Bl+1) €

N2, Under the assumption that |§| > |B], the operator 751077 defines a bounded linear map
from Egcor0, into EB,F-,U,T,QB’ for all e € D(0,€p) \ {0}. Moreover, one has

(A7) (17075 Va(T,Ollp e omn, < 1IVa(T €l

é’E»U7T’Q£

-1 -1
r(satko) [ (3] 4 1)bls+ho) (s1 + ko)e™ g ko + (|B] + 1)MertRot2) (s1 +1€o +2)e 51+k0+2>
e (“' T TR T

for all VQ(T, €) € E@E’U,T,QE.

Proof The proof follows the same lines of arguments as Lemma 1 from [20]. By construction of
the operator 97 %0, one can write

1 1
(48) T518;kOV§(T> €) = F51+ko /O . /0 Vﬁ(hk’o < hiT,€)

By -+ - hiT|? o eXP(%Tb(B”hk - hyT|)
X (1+|ko|6|2r1’)exp(_wrb(ﬂ)’hko'“th‘) | | — 0

where My, (hi,...,hyy—1) is a monic monomial for ky > 2, while M; = 1, for all 7 € Q3. We
deduce that B
ks

2r>exp<—§rb<§>|7|>

(49) |7-813T_k0Vé(7-, e)|(1+ ]
s1+ko ‘T|2 g P
< TPV (T, )l ey (1 + 7|€|27») exp(— o (ro(B) — m6(8))I7])
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for all 7 € Q 5 C Q5. By definition of r;, one has

[E]

) 1 1B - 18]
50 r - = E SN
o DD 2 G T Ay

Now, we recall the classical estimates: for all integers mq,mg > 0,

(51) supzxte” M = (@)mle_m1
x>0 ma

holds. Using (51), we deduce that

s1+ko+2 ﬂ‘ ‘/B|
59 s1+ko ‘T| + « ’
N LI
_ ~1
r(si+ko) [ (1B] 4 1)bls1+ho) (s1 + ko)e™ otk + (|B] + 1)bls1HRo+2) (s1 +f<¢o +2)e sl+k0+2>
. (“’ T R - T
Taking into account (49), (50) and (52), we get (47). O

In the next proposition, we study the convolution product of functions in the spaces Eg ¢ 5.5

Proposition 3 Let 8! = (8},...,8},) € N*2 and * = (83,...,B87,,) € N*2. Let B € N'*+2
such that |8 > |B* +|B8°%|. Then, for any Vii(7,€) € Ep Via(7,€) € Epp the
convolution product Vi (7, €)* Vg2 (7, €) belongs to Eg ¢ or,, for all e € D(0,¢)\{0}. Moreover,
there exists a universal constant Cs > 0 such that

76’0.77'7(251 ’ 76a07r7Q[32 ’

53 ||/ Vﬁl VBQ(S 6)d8‘|660-7~96 S C5| | HVB:l(T 6)||5160'7‘Q IHVBZ(T 6)||B2767077‘79E2

fOT all V,Bl (7_, 6) (S Eﬁl Vﬁ2 (7—, 6) € E62

367U7T=Q[31 ’ 7670—77‘79[32 :

Proof We mimic the proof of Lemma 3 in [20]. One can write

|7 — s

/()Vﬁl(f—s,e)VBQ(s,e)ds:/o Vai (1 —s,€)(1+ P, ) exp(— H’” ro(8Y)|7T = sl)

5|2 exp(F (ro(BH)|7 — 5| +14(8%)]5]))
X Via(s,€)(1+ ’L’Zr)exp( Wrb(62)| R T s
B (1 + [e[Z )(1 + e ‘27‘)
for all 7 € Qé C 951 N Qﬂz. We deduce that
(54) ‘/0 Vgl (T — 375)V§2(375)d3| < val(ﬂ e)Hgl,e,a,r,%l HV,32(73 E)HEZ,G,U,T,QBQ
) / [l exp( T (rp(81) (1 = h) + 74(8*)h) "
0 (14 ZRa-na+ EEn2)



18

for all 7 € Qg. Since 1y is increasing, one has

rp(BY)(1 — h) + 1p(8%)h < 13(B).

Therefore,

(55) (1+ || || ) exp(—

al]
o g [ TR ),

(

(14 G (L= )1+ 5h?)
(+|T\2

i

1 1 |E r)”r‘
<),
o (1+

|2
- 1?1+ [Thn)
for all 7 € Q. Now, from [6], we know that there exists a universal constant Cs > 0 such that

J(el"l7]s lel)

lel”

~ ah = J (|71, |¢))
‘6‘27“

for all 7 € C, ¢ € C*. We deduce that

J(I7l, [e]) J(lel"I7]sle) _
= sup < Cs

56 sup
0 T IR R
for all e € C*. Finally, gathering (54), (55) and (56) yields the estimates (53). O

Corollary 1 Let lg > 0 be an integer. The operator GT_ZO defines a bounded linear map from
Eé,e,o‘,r,ﬂé into itself, for all ¢ € D(0,€¢p) \ {0}. Moreover, there exists a constant Cg > 0
(depending on ly, o) such that

(57) 105 Va(r,6)l|comney < Colel®lIVa(r,6)l|aconas

for all V(7. €) € Eg co,r0y-
Proof We carry out a similar proof as in Corollary 1 from [20]. We denote by x¢ the function
equal to 1 on C. By definition, we put XE{:I = xc and X{’él means the convolution product of

xc, | — 1 times for [ > 2. By definition, we can write 0;°0Vj(7,¢) = (xc(7))*" * Vs(7,¢€). From
Proposition 3, there exists a (universal) constant C5 > 0 such that

(58) 107°V5 (7, )l|(8.cor.05) < C3lel ™ IIXC (G 0 gm0 VBT O B.0:m25)

where 0 = (0,...,0) € N2, By Definition 2 and using the formula (51), we have that

|72 2e~1
(59) HXC(T)||(Q,€,O',7‘,QQ) = Sélp (1 + | | )exp ‘ ‘7« |T| <1+ ( P )2
T 0
From the estimates (58) and (59), we get the inequality (57). O

The next proposition involves bound estimates for multiplication operators of bounded holo-
morphic functions.
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Proposition 4 Let a(7,€) be a holomorphic function on Qox D(0,e0)\{0} Such that there exists a
constant M > 0 with Sup (- eeqy,, (0} la(T,€)] < M. Then, the multiplication by a(T,€) is
a bounded linear operator from Egcqrq, into itself, for all € € D(0,e0) \ {0}. Moreover, the

mnequality
(60) la(7, e)Va(T,€)l|g.eor0s < MIVE(T,6)llgcorny

holds for all Vg(7,€) € Egcoray-

Proof The proof is a direct consequence of the definition 2 for the norm |[|.||g.c o.r04- O

2.3 A global Cauchy problem

We keep the same notations as in the previous section. In the following, we introduce some
definitions. Let A4; be a finite subset of N3 and let Ay be a finite subset of N2. Let [ > 1 be an
integer.

For all (ko,k1,k2) € A1, we denote by I(, 1, x,) @ finite subset of N2, For all (ko, k1, k2) €
Ay, all (s1,82) € Lk ki ko), all integers By, Bi11 > 0, we denote as, s ko.k1 ka,B0,84: (T €) SOme
holomorphic function on €y x D(0,€p) which satisfies the estimates : there exist constants
P, p/ > 0, Osy,50,kok1,ka = 0 with

/

1

6_’0
(61) sup |a81752,k0,k1,k2750,ﬁ1+1(7-7 6)| < a81782,k0,k1,k2( 9 )BO(?)BlHﬂO!ﬁZ—H!
(1,6)€Q0xD(0,e0) P
For all (ko, k1, k2) € Ay, we consider the series
3 et2Bo B+
(ko k1,k2) (T, z,x, 6) = Z Z Qs1,s2,ko,k1,k2,80,81+1 (7—7 6)7_816 * W 514—1'

(81,52)€ (kg ky ko) B020,814120

which define holomorphic functions on g x H, x D(0, p) x D(0,¢€p) \ {0}, where H, is defined
as the following strip in C
Hy ={z e C/[Im(z)| < p'}.

For all (lo,l1) € A2, we denote by Ji,;,) a finite subset of N. For all m1 € Jy, ;,), all integers
Bo, Biy1 > 0, we denote v, 1.1,,80,6,4, (T, €) some bounded holomorphic function on Qo x D(0, €o)
with the following estimates : there exists a constant a,,, ;,;, > 0 such that

e r 1
(62) sup |O‘m1,lo,l1ﬁo7/31+1 (r,e)] < am1,lo,l1(T)ﬁo(?)ﬂlﬂﬁo!ﬁl—&-l!
(1,6)€QoxD(0,¢e0) P

for all By, 841 > 0.
For all (ly,l1) € Az, we consider the series

etzBo B

Q(lo,11) (1,2,2,€) = Z Z Qmy,lo,l1,80,8141 (T,e)e™ Bo! Biy1!

m1€J.11) B020,81412>0

which define holomorphic functions on Qg x H, x D(0, p) x D(0,€) \ {0}.
Let I > 1 be an integer and let £y = 1 and &;,...,& be real algebraic numbers such that
the family {1,&1,...,&} is Z-linearly independent (this means that each ; is a real root of a



20

polynomial P; € Z[X]| and if there exist integers ko,...,k; € Z such that ko + Zé’:l k;&; =0,
then k; = 0 for 0 < j <1). Due to the classical primitive element theorem of Artin, we consider
an algebraic number field K = Q(§) containing the numbers ¢;, 1 < j <1 and we denote h+1 > 1
its degree (that is the dimension of the vector space Q(§) over Q). The following lemma is a
direct consequence of Theorem 11 in [27].

Lemma 5 There exists a constant C¢, ¢ > 0 (depending on &i,...,&) such that for any
k= (ko,..., k) € Z1\ {0}, the inequality

Cer,..t Ce,..c
63 ko - ki& 4 k&l > 156l > 1,60
o ol = (max_q [k;)" ~ (kol + ... + [Ka])"

holds.

Example: Let  be an algebraic number. Assume that the degree of Q(¢) is h + 1. Then, the
algebraic numbers {1,¢,...,&"} are Z-linearly independent and the inequality (63) above holds
for & = ¢7,0 < j < h. In that case, one recovers Lemma 2.1 of [17].

Let S,r1,79 > 1 be integers. We put

(64) ps = CL™ [(2(Bo + 1+ Br + -+ Brya)"/™2)
for all 8 = (Bo,---,B111) € N*+2. We consider an unbounded sector S; C C centered at 0 such
that
2k +1
(65) arg(T) # s L 0<k<ry—1,

T2

for all 7 € S4. As in the previous section, we put Q3 = D(0,pg) U Sy. Forall 0 < j < S —1, we
choose a set of functions Vig, . g, (7, €) € E(ﬁo,m’ﬁl;)7670,7"79% -Tﬁz B for all By, ..., 0 > 0 and we
consider the formal series

exp(iz(Zézo Bi&;))

(66) V}(Ta z,€) = Z VY(ﬂO)'“:ﬂl)j) (7,¢€) Bol - !
B0 510 e
foral0<j <S5 —1.
We consider the following Cauchy problem
(67)
(7" + (=10, + 1)”)85‘/(7', 2,T,€) = Z T O 6)8;k08§18];2V(T, 2,1, €)

(ko,k1,k2)€ A1

+ Z Q(lo’l1)<7,Z,Z’,G)a;l()(V(T,Z,x,6))*l1
(lo)l1)€A2,11>2

where V*! =V and V*1, [} > 2, stands for the convolution product of V applied I; — 1 times
with respect to 7, for given initial conditions

(68) (DIV)(1,2,0,€) = Vj(T,2,¢) , 0<j<S—1.

In the sequel, we will need the next lemma.



Lemma 6 There ezists a constant C7 > 0 (depending on 11,72,Cs¢, ¢, Sq) such that

l

1
6 < C7(1+ E Bt
(69) T+ (L4 Y0 B " =0 g

for all 7 € Qp, . 5.8 1+5), forall 3; 20, 0<j <I+1

Proof We put A =1+ Zé‘:o Bj&;. The following partial fraction decomposition

ro—1 Ak

1
(70) A = S
Tr2 4 AT — \A|7“1/T2em -

holds, where
i 2RV (rp—1)
le 2

for all 0 < k <ry — 1. Now, there exists some constant Cs > 0 (depending on S;) such that

l i 2ktl l
(71) =1+ 3" Bigr/mee™ | > Cel1+ Y g

j=0 7=0

for all 7 € Qg,,....3,,8,1+5)- Indeed, from (63), we know that

l Cgl/r2€ gl/r2£
(72) 11+ 5.€.|r1/rz > 1,61 S -7
2 2 e e T U b+ Sp

for all B; >0,0<j <Il+1. Let 7€ D(0,pg,....5,8..+5))- From (72), we can write
h l
0
7= e+ Zoﬁgfﬂ”/”
]:

for some 0 < h <1 and € € [0,27). Therefore,

L !

i 2kl h . k41

(73) |T — ‘1 + E 6j§j’r1/mez T ’ — |1 + § :Bj£j|r1/r2|§eza e ‘
Jj=0 j=0

21

l
1
= +Z Oﬂjfj!”/”-
]:

Now, let 7 € Sy. For all k € {0,...,79 — 1}, we can write

l
. 2k+1
r=sll4 D Big e T
=0
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where s > 0 and s, € R. By contruction of Sy, we have that e**r # 1 for all k € {0,... 79 — 1}.
As a result, there exists a constant Cy > 0 (depending on Sy) with |se®*s — 1| > Cy, for all s > 0.
Hence,

l l
(14) |7 =1+ Y BT = 1+ 3 g s -
J=0 J=0
l
> Coll+ > g,/

j=0
As a consequence, we get that (71) holds. On the other hand, from (63), we get that

L1+ 8)™

(75) _ Ut
| A" Cel.oe
for all B; > 0,0 < j <I. Gathering (70), (71) and (75), we deduce that
!
(76) : < < (L) B)"™
= |A’T1/r2€7‘ﬂ%’ raCs| A" ™ raCsCyl o, jz;) /
for all 0 < k <r9 — 1. The lemma follows. O

In the next proposition, we construct formal series solutions of (67), (68).
Proposition 5 Under the assumption that
(77) S > ko
for all (ko, k1, ko) € Ay, there exists a formal series

exp(iz(Y)—y Bj€;)) wfiri
Bo! -+ B! Bry1!

(78) V(r,z @€ = > Vs(Ts€)
B=(Bo,..-,Bi+1)ENI2

solution of (67), (68), where the coefficients T — V(7€) belong to the space O(Sg) for all
Be N*2 and satisfy the following recursion formula

l
ViBo,...1,6141+5) (T: €)
(19) (7724 (14 3B~ e = YT 2 2
=0 : SPIHL (ko,k1,k2)€AL (51,82) €l (kg ky k) BE+BE=Po
Bl B =B
—k l
a81752,k07k1,k27/35ﬁ11+1(T’ ) S1¢—82 o; O(V(ﬂg’ﬁl7””’8”’8l2+1+k2)(T’ 6))ik1 (ﬁz + Zﬁf)kl
BB BB BT =1
(1,€)e”™

+ Z Z Z amlylollﬁalﬁﬂ_ll

—l15—1,

(lo,l1)EA2,11>2 meJ(loyll) 561+68+"-+6(l)1_1:ﬁo ﬁO -/8l+1.
BO+.. 4B T =p;,1<5<1

_ I1—1
ﬂl+11+610+1+‘”+'8li1 =Bi+1

1
8 a'r O(‘/(Bg,...,ﬁ&l)(ﬂ 6) Kook V(,Bél’l,...,ﬁllﬁl)(ﬂ 6))

11 —1y7l+1 m|
bl gl

for all Bo, ..., Biy1 2 0, all T € g, . 5.6, +5): All € € D(0,¢p) \ {0}.
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Proof By hypothesis, we know in particular that V(g . s, ;)(7,€) belongs to O(Qg,. .. 5,)) for
any fo,...,0 > 0,all 0 < j < S —1,all e € D(0,e) \ {0}. Since Qg C Qg when |5'| > |f]
and using Lemma 6, one gets that the functions 7 — Vj(7,€) which are defined by the recursion
(79) actually belong to O(€g) for any 8 € N'*2 for all € € D(0,¢€p) \ {0}. Direct computation
by identification of the powe;s of €%, ..., €& and the powers of z shows that the formal series
(78) is solution of (67), (68), if its coefficients V3(7, €) satisfy the recursion (79). O

In the next proposition, we state norm inequalities for the sequence V.

Proposition 6 We consider the sequence of functions Vg(7,€) defined by the recursion (79) for
given initial data Vg, . g, (T, €) defined above for all Bo,...,5 >0, 0<j < S —1. Then, for
all B € N2, all e € D(0,€) \ {0}, the function T — Vs(7,¢€) belongs to Egcora,. We put
wg(€) = [|V(T, €)l|gcorq, for all B € N*2 qll e € D(0,¢0) \ {0}. Then, the sequence wg(€)
satisfies the following estimates. There exist constants Cig > 0 (depending on r1,72,C¢, ¢, Sq)
and C11 > 0 (depending on o) such that

l

(80) w(507---751751+1+5)(6) < Z Z Cro(1 + Z/Bj)hrl

l...3! |
Bol -+ Bt (ko k1,k2) €A1 (51,52)€ (1 k7 ko) Jj=0
» Z Ashsz,ko,khkzyﬁ(l),ﬁllﬂ y w(ﬁgﬁh..-,ﬁzﬁfHJrkz)(6) |€|T(sl+k0)782
1131 2 2
Bi+B2=Fo /80!514_1! ﬁolﬁl! T BZ!BH_l!
5}+1+512+1:51+1
I+1 1 I+1 .
+ ko)e (s1+ ko +2)e
% 49 b(s1+ko) (31 s1+ko RS b(s1+ko+2) s1+ko+2
(;05” ) Com =t +(]Z_;BJ+ ) o5 g
l
xBo+ Y Bl + Y] >
J=1 (lol1)€A2,11>2m1€d (1)
l B 1 o1 e tw, g j (6)
ma,lo,l1,8) .06 —1)— J=0 (5]7"'76] )
CIO(1+Z Bj)hrlx Z 671'631 : I+1 XCﬁ’G’T(lO—Hl 1)—my Hll_l j(: l+jl :
7=0 By B3+ 485 =0 0 j=0 Aol B!
BY+.. 4B =p;,1<5<1
B B0 B =B
forall B; >0,0<j<I1+1, alle € D(0,¢) \ {0}, where
Asl,sz,ko,k1,k2,f3éﬁll+1 = (776)6995%1:()0,60)\{0} |as1,smko,h,kz,ﬁé,ﬁhl (T’ €)|’
Bml,lo,h,ﬁgl,ﬂ;ﬁ - sup |O‘m1,lo,11,551,ﬁl111 (7, €)]-

(7,€)€QoxD(0,e0)\{0}

Proof We apply the norm ‘H|(ﬁov---ﬁz,5z+1+5),6,0m9(50 B +s) OB the left and right hand side

of the equality (79) and use Propositions 2, 3, 4, Lemma 6 and Corollary 1 in order to majorize
the right hand side. Indeed, using Propositions 2, 3, 4, Corollary 1, Lemma 6 and the estimates

l l
(B3 + > Bil&iD™ < (Bo+ Y Bil&D™

j=1 j=1
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we get a constant C7 > 0 (depending on 1,12, C¢,, ¢, 54) such that

(81) || 1 Us1,s0,ko0,k1.k2,85,8, 4 (7,€) 5152
2 4 (14 3 Big)m Bo! B!
ko (V 2 2 )(7‘ 6) l !
Ba BLs-- BB HR2 /N ST k h
N B8 + D B o prpriars) < Cr(1+Y_ 8"
BB AR 2 2
RO, WO BN, U LG R
53!@1“! ﬁg!ﬁl! T BZ!IB12+1!
+1 1 I+1 _1
+ ko)e (s1+ ko +2)e
19 b(s1+ko) (Sl s1+ko Y b(s1+ko+2) s1+ko+2

l
x (Bo+ > Bilgi)M

j=1

and using the propositions 3, 4 and corollary 1, we obtain a universal constant C5 > 0 and some
constants Cg > 0 (depending on Iy, o) and C7 > 0 (depending on r1,72,C¢, . ¢, Sq) such that

—m
(82) || 1 amhlo,lhﬁo_lﬂ;ll (7, €)e
l —1y5—1
T2+ (1+ 30500 B56) Bo 1B
87?l0(V68r“7B10+1(T’ 6) k- xV (1)1717...7Blz}£1(7', 6)) H
X
1 —1y7l+1 (BO,~~-,Blﬁl+1+S)
1L, ol 2o 57!
! B -1 p—1 hilw j j €
oyl , _ 1y =0 2 s J
< Cr(1+ Y ) s GOl sty
7=0 BO 'ﬁl-‘rl' Hj—(] 0!' +1
O
We define the following formal series
ZOBO X B+
Asy 59,k ,k1,k2 (Z0, X) = Z AS1752J€0J€1J€27,30751+1 wﬂ’
Bo,Bi+12>0 L
Zg() X Bi41
B iots (Z0, X) = ) Bm17107l17ﬁ0751+1mm

Bo,B1+1>0
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We consider the following Cauchy problem

!
(83) ORU(Zo,.... 21, X, 6) = > > Cio(1+ Y Zj07,)"

(ko,k1,k2)€ AL (51752)€I(k0,k1,k2) 7=0

(81 + ki())e_l

l
s1+ko 7.0, + X b(s1+ko)
(S — k) ) (Z ]3ZJ+ ox +9)

J=0

(

((81 + ko +2)e !
o(S — k)

l
)31+ko+2(z ch‘)zj 1+ X0y + S)b(81+ko+2)
=0

l
X (Z |£j|ZJ'aZj)k1 (66(81+k0)_S2A81782,k07k1J€2 (Z0> X)(agg(zU)(ZUa s 21, X, 6))
j=0

!
> D Cu(i+) Zog)™"
=0

(lo,l1)€A2,l1>2m1€J (1 11)

X 66(l0+l171)7m1 Cillel,lo,ll (Z07 X)(U(Z()v DRI Zl7 X7 6))11

for given initial data

) Zgo LB
(84) (%U)(Zo,- .-, 21,0,€) = Z wﬁo,...,ﬁl,j(ﬁ)ﬁ , 0<5<S5-1
B0>0,...,6:>0 o
for all e € D(0, ) \ {0}.
Proposition 7 Under the assumption that
(85) S > ko + b(51 + ko + 2)

for all (ko, k1, k2) € A1, all (s1,52) € Ly iy ko), there exists a formal series

Zﬁ() . Z/BZX51+1
(86) U(Zo, ..., 21, X, €) = Z Us(€) gv...glvg !
B=(Bo,---Pr+1)ENH2 o S
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solution of (85), (84), where the coefficients Ug(e) satisfy the following recursion

UlBo,.u,Ba+5) (€) S
e AR AR . Cul+) B
(ko k1,k2)€AL (s1,52) €L (kg k1 ko) Jj=0
. Asvsado ko s, U (62,B1,-80,82, 1 +2) (€) er(erho) s
1131 2 2
55+5§=50 ﬂO!/BH_l! ﬁolﬂll o '/Bl!ﬁH_l!
Bll+1+ﬁl2+1:/8l+l
141 _1 I+1 1
+ ko)e (s1+ ko + 2)e
x RS b(s1+ko) (51 s1+ko 4+ S b(s1+ko+2) s1+ko+2
l
k
< (Bo+ Y Bl + Y >
Jj=1 (lo,l1)€A2,l1>2m1€J14 14
- B ot 85 674
010(1+Z/8]) X Z Bfllﬁfl!
=0 By +B3+..+B51 T =Bo 0

B+ +B =5 1<5<

_ 11—

Bl+11+610+1+-~+/81i11:ﬂl+1

1—1

I’ U, ; i (€
j=0 Ugai. .1 (€

Li—-1gj J
Hjlzo 50!"'51“!

11 r(l0+l1—1)—m1
x C1l€

forall B; >0,0<j <041, alle € D(0,¢) \ {0}.
Proposition 8 Under the assumption (85) with the additional condition that
(88) 7“(81 + ko) > 82 T(lo + 11 — 1) >m; , 1> 2,

fOT’ all (ko,kl,kg) (S Al, all (81,82) (S I(ko,khkz)? all (lo,ll) S Ag,ll > 2 and mi € ']107[1’ the
following inequalities

(89) ws(e) < Up(e)

hold for all B € N2 all e € D(0,€) \ {0}.

Proof By the assumption (84), we know that

U(o,....5,0) (€) = W(go,....8,5) (€)

forall 0 < j < S —1,all (B,...,53) € N*tt and all € € D(0,¢) \ {0}. Therefore, we get our
result by using induction from the inequalities (80) and the equalities (87). O

In the next proposition we give sufficient conditions for the formal series solutions of the
Cauchy problem (67), (68) in order to define actual holomorphic functions with exponential
bound estimates.

Proposition 9 We make the assumption that (88) holds. We also assume that

(90) S>b(81+k‘0+2)+k‘2 , SZhT1+b(81+/€0+2)+k1+k}2
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fOT all (k‘o, ]€1, kQ) (S Al, all (81, 82) S I(ko,k’hkz)'
We choose two real numbers py, M° > 0 such that

(91) M® > 2(1+2) exp(p max |¢])
]:
and we take X% > 0 and Z]Q > MO, for 0 < j <1. We assume that the formal series

Zﬁo Z/D’l
(pj(ZO, .. .,Zl,e) = Z w(ﬁoy---,ﬁl»j)( ) Bol -~ B! , 05585 —1,
Bos--+,81>0

belong to G(Z3, ..., 2, X°) for all e € D(0,€0) \ {0} and that there exists a constant C,; such
that SuPcecp(0,e0)\ {0} |‘90j||(287.,,,2?7)‘<0) < Cy;. As a consequence, the formal series (66) define
holomorphic functions Vj(7,z,€) on a the product Sq x Hy x D(0,€0) \ {0} and satisfy the
following estimates : there exists a constant C12 > 0 (depending on C,,,1) such that
" g
) ()l
for all (,z,€) € Sax Hy x D(0,€) \ {0}, all 0 < j <5 —1.

Then, there exists 6 > 0 (depending on MO,Z]Q, 15| for 0 < j <1, Xo,m,rg,C'&w,gl, Sa,h, o,
b7 S7AS1752,/€0,]€1,/€2(Z07 ) fOT’ (k07k17k2) € Al and (SlaSQ) € I(k:o k1,k2) and Bm1,lo7l1 (ZOaX) fOT’
(lo,1h) € A2, m1 € Jy, 1)) such that if one assumes moreover that

(92) H/j(T,Z,ﬁ)’ < 012(1+

(93) o5 (Zor- - 20l zg. 050y < 6 0<G <81,

for all e € D(0,¢€p) \ {0}, the formal series (78), solution of (67), (68), defines a holomorphic
function V (7,2, 2,€) on the product Sq x H, x D(0,p1) x D(0,€) \ {0}, for some p1 > 0 and
carries the next bound estimates : there exists a constant C13 > 0 (depending on the same as
for & given above) with

7”1 o
(94) V7, 2,2, €)] < Ciz(1+ ’6|2,,) eXp(WC(bNTD

for all (1,z,x,€) € Sq x Hy x D(0,p1) x D(0,¢€) \ {0}

Proof Since p;(Z, ..., Z,€) belongs to G(Z, ..., Zlo, X0), we get a constant C14 > 0 (depend-
ing on C,,) such that

l

1 1
(95) 1Vigo......0) (T ll(Bo...81.0) .o Qg S 014(2—8)50-- (ZO)BZ(Z By)!
q=0
for all By,..., 3 >0,all 0 <j < S — 1. From the multinomial formula, we know that
l
l
(96) (Z B! < (I + 1)Xa=0fagyl... g1
q=0

for all By, ..., 3 > 0. Therefore, from (95), we deduce that

‘ 2

!
TI®  _ o . [+ 1 5
O Vi1 < Cuall + 1) expl (3 By + DI ) Zoeo ol 1

-----
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for all Bo,..., 5 >0,0<j<S—1,all 7€ Qg . g, and all e € D(0,6) \ {0}. From the
assumption (91), we deduce that the formal series (66) defines a holomorphic function Vj(r, 2, €)
on the product Sy x H, x D(0,6) \ {0} and satisfies

7_2
(98) V(1201 < Cualt + (T ) expl( Tl

I+ 1) exp(p; maxt_
x et

I+1 ’T‘Z -1 g
<2701+ IGTQT) eXp(wC(b)\TD

for all (7,2,€) € Sg x Hy x D(0,60) \ {0}, all 0 <j <5 —1.

Under the assumptions (88), (90) together with (93), we see that the hypotheses of Propo-
sition 1 are fulfilled for the Cauchy problem (83), (84). Therefore, we deduce that the for-
mal solution U(Zy, ..., Z;, X, €) of (83), (84) constructed in Proposition 7 belongs to the space
G(ZL,. .., le,Xl) for some 0 < X' < XY and for some Z; > MY, Moreover, we get a constant
C15 > 0 (depending on Z]Q, Z},|§j| for 0<j <1, X% ri,r2,Ce . &, Sah, 0,0, 9,

Asl,SQ,ko,kl,kg (Zo, X) for (ko, k1, /62) € A; and (81, 82) € I(k07k17k2) and Em17107l1(Z0, X) for (l(), ll) S
Az, m1 € Jy, 1)) such that

||U(Z0) RN Zl) X’ ‘5)||(Zé,...,211) < 6C15

for all € € D(0,¢p) \ {0}. In particular, we deduce that

I+1
1 1 1
(99) Uit €) < BChs( ) - () ) ()
7=0
for all fSy,...,B1+1 > 0. Gathering (89) and (99) yields
100 Vi < oC 1 Bo 1 Bi 1 Br+1 = Y
(100) IVa(7; )llg.eomas < 15(75) - (Zl) (%) OBy
§=0

for all B3 = (Bo,...,Bi41) € N/*2, Again by the multinomial formula, we have that

+1

(3B < (14 2) 0P Byl B!

§=0
for all Bo, ..., B1+1 > 0. Hence, from (100), we get that

[+250 5 142

T B ) ™70 () ol B

2
(101) [Va(r,6)] <C15(1 + |‘;|2T)_1 exp(
for all Bo,...,B41 >0, all 7 € Qp, all € € D(0,¢p) \ {0}. We deduce that the formal series (78)

defines a holomorphic function V(7, z, z, €) on the product Sqx H,, x D(0, 2()12)) x D(0,¢e)\ {0}
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and satisfies

2
(102) V(7,226 < 8C15(1+ “ "29 exp( T¢I

oy (el mad )

Biv1
MO )

l .
JEse i

(I +2)|z]
X1

Bose-B14120

< 2426C5(1 + ’Z’%)fl exp(=C (b))

for all (7, 2,7,€) € Sg x Hy x D(0, 5i55) x D(0,60) \ {0} O

3 Analytic solutions in a complex parameter of a singular Cauchy
problem

3.1 Laplace transform and asymptotic expansions
We recall the definition of Borel summability of formal series with coefficients in a Banach space,

see [1].

Definition 3 A formal series

with coefficients in a Banach space (E, HHE) is said to be 1—summable with respect to t in the
direction d € [0, 2m) if

i) there exists p € Ry such that the following formal series, called formal Borel transform of

X of order 1
J

< E[[r]],

[\

BX)(r) =Y (],)

7=0
is absolutely convergent for |T| < p,

ii) there exists § > 0 such that the series B(X)(T) can be analytically continued with respect
to T in a sector Sg5 = {1 € C* : |d — arg(7)| < d}. Moreover, there exist C > 0, and K > 0
such that
1B(X)(7)|le < CeXIT!

forall T € Sg;.

If this is so, the vector valued Laplace transform of order 1 of B(X)(7) in the direction d is
defined by

LYBX)E) =t | BX)(r)e " Ndr,

Ly

along a half-line L, = R e C Sa,s U {0}, where v depends on t and is chosen in such a way
that cos(y — arg(t)) > 61 > 0, for some fixed ¢;, for all ¢ in any sector

Saor={tcC" :|t|] <R , |d—arg(t)] <6/2},
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where 7 < § < m+26 and 0 < R < 6, /K. The function £4(B(X))(t) is called the 1—sum of the
formal series X (t) in the direction d and defines a holomorphic bounded function on the sector
Sa,0,r- Moreover, it has the formal series X (t) as Gevrey asymptotic expansion of order 1 with
respect to t on Sy¢ r. This means that for all 61 < 0, there exist C, M > 0 such that

n—1

% a n n
I£4BE))) =) ﬁtp||E < CM"nl|t]

p=0
foralln >1,allt € Sqg, R

In the next proposition, we give some well known identities for the Borel transform that will
be useful in the sequel.

Proposition 10 Let X (t) = > >0 ant™/n! and Gt) = > n>0 bnt™/n! be formal series in E[[t]].
We have the following equalities as formal series in E[[7]]:

(102 +0;)(B(X)(1)) = B(&:X (1)) (1), 07 (B(X))(7) = B(tX (t))(7),
B(X) () = B((t29, + t) X (t))(1), / (BX)(1 — s)(BG)(s)ds = B(tX

0

()G (D)(7).

Proof By a direct computation, we have the following expansions from which the proposition
10 follows.

Zan+1 7'8 +a Zan+1 A(t) = Znan—lga

n>0 n>0 n>1
8; Znan 1 t@t—l-t Zn A 1 T Zn G 1
n>1 n>1 n>1
. A n! AL SN N n! "
OGO =3 Y b / (BX)(r—5)(BE)(s)ds = 32 Y malbmw
n>1 l4m=n—1 © 0 n>1 l4m=n—1 :

a

3.2 Analytic solutions of some singular Cauchy problem

Let S,71,72 > 1 be integers. Let S be a finite subset of N*, A/ be a finite subset of N2. For all
(s, ko, k1, k) € S, all integers Bo, Bi41 > 0, we denote b kg &, k2,80,6,,, (€) Some holomorphic func-
tion on D(0, €p) which satisfies the next estimates : there exist constants p, p’ > 0, b s.kok1,ke > 0
with
e Bo 1 Bi+1 3,1 !
(103) sup ‘bs,k07k1,k27507ﬁl+1<6)‘ < b kg e ez ()70 (52)7 Bo! B!
EED(O,E()) 2 2p

for all By, B+1 > 0. Likewise, for all (lp,l;) € N, all integers Sy, S;-1 > 0, we denote
Clo,ly ,Bo,B141 (€) some holomorphic function on D(0, €g) with the following estimates : there exist
a constant ¢, ;, > 0 with

/

e P By L
(104) sup ‘Cl07llvﬂ07ﬁl+1 (€)| < clo,h(T) (7

)P+1 81841
e€D(0,e0) 2p
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for all By, Bi41 > 0.
For all (s, ko, k1,k2) € S and all (ly,l1) € N, we consider the series

et2B0 pBi+1
bs ko Jer ko (z,z,€) = Z bs,ko,kl,kz,b’o,/ﬁz“ (6)WW’
Bo:Bi1+1=0 o
et#Bo Pt
Clo,l1 (2,17,6) = Z clo’ll’ﬂ()’ﬁH_l (E)W BH—I'

Bo,Bi1+1>0
which define bounded holomorphic functions on H, x D(0, p) x D(0, €).

We consider the following singular Cauchy problem

(105) (7?07 +T)"* + (=id: + 1)™)82 Yy, Do 0y (T 2: 2, €)

= Z bs,ko,kl,kg (Z, Z, G)ET(kois)TS (6;‘10 8518];2 YUd,D(O,eo)\{O})(T7 Z,T, 6)
(s,ko,kl,kg)es

- Z Clo,l1 (27 €, €>€_r(l0+l1_l)TlO+ll_1 (YUd,D(O,fo)\{O} (T’ % T €)>l1
(lo,ll)e./\/

for given initial data

(106) (021, p(0.cof03) (T 2,0,€) = Yir, po.conjorj(Tr2z,€) , 0<j<S—1.
The initial conditions are constructed as follows: Let Uz be an unbounded sector such that

2k +1
r2

arg(r) #

™

forall 0 < k < ry—1,all 7 € Us. Forall 0 < j < §—1, all (by,...,0) € N et
VUa(Bo,...3.5) (T, €) be a function such that

(107) VUas(Bo813) (T2 €) € EBo.....81.5),e0mDOpisy 5y, U

for all e € D(0,€) \ {0}.
We choose two real numbers p}, M > 0 such that

l
(108) M > 2(I + 2) exp(ph max [¢])

and we take X° > 0 and ZJQ > M D, for all 0 < j <. We make the assumption that the formal
series
(109)
ZgO . Zl”Bl
(PdJ(ZOa cey Zla 6) = Z ’|VU47(507---,517j) (’7’, 6)||(,30,--.,51,j),e,a,r,D(O,p(ﬂO YYYY ﬂl,j))UUdﬁ
Bo,--,31>0 Bo! B!

belongs to the Banach space G(Z0, ..., 20, X°) for all € € D(0, ¢)\ {0}, all 0 < j < S—1. More-
over, we assume that there exists a constant C,, ; > 0 such that supcc p(o,¢)\fo} |14,
Coy -

Let

|(29.....20 x0) <

Xm7(6 7"'76 ?.])(6) m
VUdv(BOr-'vBl?j)(T’ 6) - Z WT
m>0
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be its Taylor expansion with respect to 7 on D(0, p(g,,.. 3,5)), for all e € D(0,¢) \ {0}. We
consider the formal series

(110) Vg, (Toe) = Y
m>0

for all e € D(0,€p) \ {0}. For all (Bo,...,H,7) we define Yy, p(o.eo)\{0},(8o,....8,,5) (1> €) as the
I—sumof Y(g, 3, ;)(T),€) in the direction d. From the fact that 7+ Vi, (s,.....3,5) (7, €) belongs to

E (80,8100 D(0.psy, .. 51,500 1T all € € D(0, €0)\ {0}, we get that Yr, p(o,e)\{0},(80.....8.5) (T €)
defines a holomorphic function for all T' € Uy g -, all € € D(0,€0) \ {0}, where

Usoner ={T €C:[T| < Bl , |d—arg(T)| < 0/2},

for some 6 > 7 and some constant h > 0 (independent of € and fy, ..., 5), forall 0 < 7 < S —1.
The initial data are defined as the formal series

(111) Yy, p(0,co)\f0},5 (T 2, €)

Tm
m!

. l
exp(iz()_;—o Bj&;)) .
= Z YUd7D(07€0)\{0}:(»30,~~-,517]')(T’ €) Bo! - J 3! , 0<j<85-1,
Bo,---,81>0 ' ’
which actually define holomorphic functions on the domain Ugg pjepr X Hpy X D(0,¢p) \ {0}.
Indeed from the hypotheses (108), (109) and the multinomial formula (96), following the first
part of the proof of Proposition 9, we get that there exists a constant Cig > 0 such that

. l
o Bi&;
(112) | > VUd,wo,...,m,j)(T’e)exp<Z;(()!Z--J-;z!Jm'

Bos---B1>0
T 2 _ g
< Cul+ L) el o))
(1+ 1) exp(ph maxt_o &1) s
Bos---8120
2
< 2L Cg(1 + ,'Z,Lﬂl exp(&ﬁ(b)h])

for all 7 € Uy, 2 € Hy and € € D(0, ) \ {0}.
We get the following result.

Proposition 11 Let the initial data constructed as above. We make the following assumptions.

For all (s, ko, k1,k2) €S, all (lo,11) € N, we have that

(113) s >2ky , S>ks , S>b(s—ko+2)+ks , S>hri+b(s—ko+2)+ki+ks , 1 >2.
Then, there exists a constant I > 0 (independent of €) such that if one assumes that

(114) lpai(Zos-- -, Zi,)ll(z9,...20 x0y <1

where @q ; is defined in (109), for all e € D(0,€) \ {0}, the problem (105), (106) has a solution

(115) Yy, p(0,co)\{0} (T 2, @, €)

v T exp(z’z(zzzo Bi&;)) aPrr
- Z Ud,D(Oyéo)\{O},(ﬁo,u-,ﬁz751+1)( €) B! B! B!
Bos--B1,81+120 +
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which defines a bounded holomorphic function on Ug g pr|er X H, x D(0, p1) for some h' > 0 and
p1 >0, for all e € D(0,€0) \{0}. Moreover, each function Yy, p(0,co)\{0},(Bo,....50,8051) (1> €) can be
written as a Laplace transform of order 1 in the direction d of a function T — VUd7(507__7ﬁl”3l+1)(7', €)
which is holomorphic on D(0, p([gow’glﬁlﬂ)) UUyg and satisfies the estimates: there exist two con-
stants C17 > 0, K17 > 0 (both independent of €) such that

g l

l+2 5 .
(116) Vs (Bo,sBrBin) (T €)] < Chz eXP(fC(bﬂTD(W)ZFO fi K Bl - - B!

lel”

forall 7 € D(0, pg,,...3,.,8,,1)) Y Ua and e € D(0, o) \ {0}.

Proof One considers a formal series

=l
. . exp(iz(D_;_g Bj&j)) aPi+t
V(T z,2,¢) = Z Y(ﬁo ----- Bzﬁzﬂ)(T’ €) Bol--- ! Brat!
0- - l+1.

Bos--B1,8141>0

solution of the equation (105), with initial data

(117)  (BIY)(T, 2,0,¢€) = Y;(T, 2, €)

- exp(iz(35_o B;&))) 4
= D Ya.sn(Te) i ?-Bz! , 0<j<S—1,
Bo,.->1>0 :

for all e € D(0,¢) \ {0} where Y(Bo,...,ﬁl,j)(T’ €) are defined in (110). We consider the formal
Borel transform of Y (T, z, z, €) of order 1 with respect to T denoted by
. Z . exp(iz(ZézO Bi&;)) xbr

V(rz,z,¢) = V(ﬁo Bi:Biy1) (T,¢€
b ... 3] |
Bos--»B1:B1412>0 Bol--- B! Biya!

where, by construction, ‘7(507”.7 B1,8141) (75 €) is the Borel transform of order 1 with respect to 7" of
the formal series 17(/307”.7517ﬂl+1)(T, €), for all e € D(0,¢) \ {0}.

From the identities of Proposition 10, we get that V(T, z, x, €) satisfies the following singular
Cauchy problem

(118) (772 4 (—id. + 1))V (1, 2, , €) =
D bekokika (2,7, )TN (702 4 0 OE OV (7, 2,3, )
(S,ko,k’l,kz)es
+ (2, , 6)67T(lo+l171)8;10 (V(T, Z, 1, 6))*11
(lo,ll)GN

with initial data

PPN

(119)  (@V)(r.2.0,) = > Vigy.5(T6)
Bos...,01=>0

exp(iz(Zé-zo Bi&;))

/BO!"'ﬁl! ) 0§]§5_17

where V3, . 5,7)(7,€) are defined in (107), for all € € D(0,€p) \ {0}. In the following, we rewrite
the equation (118) using the two following technical lemma. Their proofs can be found in [20],
Lemma 5 and Lemma 6. Therefore we omit them.
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Lemma 7 For all kg > 1, there exist constants ag, € N, ko < k < 2ko, such that

2ko
(120) (102 + 0:)u(r) = Y arp 0O u(r)
k=ko

for all holomorphic functions u:  — C on an open set Q) C C.

Lemma 8 Let a,b,c > 0 be positive integers such that a > b anda > c. Weputé=a+b—c.
Then, for all holomorphic functions u : Q@ — C, the function 07%(7°0%u(7)) can be written in
the form

r(tu(r) = S ayr’ o u(r)
(¥ )eOs
where Oy is a finite subset of 72 such that for all (b',c') € Os, ¥ —c =68, >0, ¢ <0, and
Qpt ot € L.

Using the latter Lemma 7 and Lemma 8 together with the assumption (113), we can rewrite
the equation (118) in the form

(121) (772 4 (=id. + )™V (1, 2,2, €) =

_ VN ~
> bakekik(zz e N 0P M ORV (1, 2,2, €))
(s’kO:klakQ)ES (T/,p/)e(9571€0
—r(log+11—1) 9—I1o (Y l
+ Clo .y (2,2, €)€ rloth )OT (V(r,z,x,€))™
(lo7l1)€N

where O,_y, is a finite subset of N? such that for all (,p') € Os_g,, we have v’ +p' = s — kg
and ;s € Z, for the given initial data

exp(iz(35_ B;¢5))

(122)  (2V)(7,20,)= > Vg, 55T Byl B ’

Bos---,812>0

From the assumption (113), we deduce that the assumptions (88) and (90) of Proposition
9 are fulfilled for the equation (121). Hence, from Proposition 9, we deduce the existence of a
constant I > 0 (independent of €) such that if the inequality (114) holds, then the formal series
V (7, 2,2, €) solution of (121), (122) defines a holomorphic function Vi, (7, z, z, €) on the product
Ui x Hy x D(0,p1) x D(0,€0) \ {0} which satisfies the next bound estimates : there exists a
constant C1g > 0 such that

7 -1 o

(123) Vo, (1,2,2,€)| < Cig(1+ MTT) exp(—=C(b)|])

lel”

for all (7, z,2,€) € Uy x Hy x D(0, p1) x D(0,€) \ {0}. Moreover, from the proof of Proposition

9 (especially the formula (101)), we also get that each formal series V(Bo,.-., B1.3is1) (T €) defines a
holomorphic function Vi, (3,.....3,,8..1)(7,€) on (Ug U D(0, p(a,.... 5,, 1)) % D(0,€0) \ {0} with the
following estimates : there exist two constants Cig > 0, K19 > 0 such that

(124) |VUd,(B0,...,ﬁl,ﬁl+1)(T? €)|

o l

[+2 ,
< ICh9 exp( (Do, -, BT (5 ) =0 P K Bl !

€l
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for all 7 € D(0, p(g.....3,,,)) U4 and € € D(0, €9) \{0}. From (124), we get that each formal series

}7(/307_._75175l+1)(T, €) is 1-summable with respect to T' is the direction d and its 1—sum denoted by
YUd,D(O,EO)\{O},(BO,..-,ﬁz,ﬁlﬂ)(T’ €) can be written as Laplace transform of order 1 in the direction
d of the function 7 +— Vi, (8,.....8,,8,,.) (7> €). Moreover, again by (124), we deduce that the series

(125) Yy, p(o,con\{0}(T> 2, €)

B v . exp(iz(Y_o Bi&;)) afin
- Z UdvD(Uﬁo)\{0}7(507---7511@“)( '€ Bol -+ B! Briqg!
Bos---B1,B1+1=>0 +

defines a bounded holomorphic function on Uy g pjer X H X D(0, p1) for some b’ > 0 and p; > 0,
for all e € D(0,¢0) \ {0}. Finally, from the algebraic properties of the k—summation procedure,
see [1] Section 6.3, since Y (T, z, z, €) formally solves (105), we deduce that Y., 00,e0\{0} (T 2, T, €)
is an actual solution of the Cauchy problem (105), (106). O

4 Formal series solutions and Gevrey asymptotic expansion in
a complex parameter for the main Cauchy problem

4.1 Analytic solutions in a complex parameter for the main Cauchy problem

We recall the definition of a good covering.

Definition 4 Let v > 2 be an integer. For all 0 < i < v — 1, we consider an open sector &;
with vertex at 0 and with radius eg. We assume that these sectors are three by three disjoint and
that Ex1 NE # 0, for all 0 < i < v — 1, where by convention we define &, = &. Moreover,
we assume that Up<i<y—1& = U \ {0} where U is some neighborhood of 0 in C. Such a set of
sectors {&; to<i<y—1 1s called a good covering in C*.

Definition 5 Let {&; }o<i<y—1 be a good covering in C*. Let r > 0 be a positive real number
and ro > 1 be some integer. Let T be an open sector with vertex at 0 with radius r+ > 0. We
consider the following family of open sectors

Ud; 0.errr = {teC*: |t| < err , |di —arg(t)] < 6/2}

where d; ER, 0 <1 <v—1 and 0 > 7, which satisfy the following properties:

1) For all0 <i<wv—1,d; # 72 for all0 <k <ry— 1.
2) Forall0<i<v—1,allt €T, all e €&, we have that €'t € Ud, 0,57 -

Under the above settings, we say that the family {{Udi79755rT}0§¢§y_1, T} is associated to the
good covering {&; }o<i<y—1-

Let S > 1 be an integer. Let S be a finite subset of N*, A/ be a finite subset of N2.

As in the previous section, for all (s, ko, k1,ke) € S, all integers By, f1+1 > 0, we denote
bs ko, k1,k2,80,8141 (€) some holomorphic function on D(0,€p) which satisfies the next estimates :
there exist constants p, p’ > 0, b ko,ki ke > 0 With

e

1
(126) sSup ‘bs,ko,khkmﬁoﬁlﬂ(e)‘ < bs,ko,kl,ka( )60(7)'8”1/60!/&4-1!
e€D(0,e0) 2 2p



36

for all By, B+1 > 0. Likewise, for all (lp,l1) € N, all integers Sy, 51 > 0, we denote
Clo,l1,80,81.1 (€) some holomorphic function on D(0, €g) with the following estimates : there exist
a constant ¢, ;, > 0 with

e
(127) sup ‘Clo,llﬂoﬁzﬂ (6)| < c10,11( 9
EGD((]’EU)

) (50 ol

for all By, Bi4+1 > 0.
For all (s, ko, k1,k2) € S and all (ly,l1) € N, we consider the series

67:250 x6l+l
Dssko o ko (2,2, €) = Z b57k07k17k2,,80,ﬁl+1 (E)Wm’
Bo,B1+1>0 *OPLE
et2B0 B+
Cl()yll (Z,x,€) = Z Cl07l17B07Bl+1 (G)WBLF]-I

Bo:B1+1>0

which define bounded holomorphic functions on H, x D(0, p) x D(0, ). Let {&}o<i<y—1 be a
good covering in C* and let 71, 79,73 > 1 be three integers. We put r = r3/rs.
For all 0 < ¢ < v — 1, we consider the following Cauchy problem

(128) ("3 (t20; + )" + (—id. + 1)™)3° Xy(t, 2, z, €)
- Z bs ko k1 k2 (2,2, e)ts(atkoafla]:?Xi)(t: 2,7,¢€)
(s,ko,k1,k2)€S
+ Y gz QT (X (2, 2,0
(lo,lh)eN

for given initial data
(129) (2X;)(t,2,0,€) = Zi j(t,z,6) , 0<j<S—1

where the functions Z; ; are constructed as follows. We consider a family of sectors
{{Udi,g,egw}og@_l,”r} associated to the good covering {&;}o<i<y—1. Forall 0 <i <wv —1, let
Ug, be an unbounded open sector centered at 0, with bisecting direction d; and with aperture
n; > 0 — . We choose 6 and n; in such a way that

2k +1
T2

arg(t) # ™

forall Te Uy, all0<i<v—-1,al0<Ek<ry—1 Forall0<i<v—1,all0<57< 51, we
define
=it z,€) = YUdi,D(O,eo)\{O},j(ertv z,€)
where YUdi,D(O,eo)\{O},j(Ta z,€) is given by the expression (111) and constructed as in the begin-
ning of Section 3.2 with the help of a family of functions Vi, (s,...5,.5) (7€), for (Bo,...,8) €
NHL, 0 < j < S — 1, satisfying (107). 1
We make the additional assumption that for all (Bo,...,3) € NIt1, 0 < j < S — 1, there

exists a holomorphic function 7+ Vg, . 3, (7,€) on D(0, p(g,...5,,)) for all e € D(0,¢0) \ {0}
such that

(130) VUa,(Boses) (T2 €) = Vigo,.1,5) (T5 €)



37

foral0<i<v—1,all0<j<S—1all 7€ D(0,pg,,..3,,)) all € € D(0,€0) \ {0}.
Moreover, we assume that the series ¢gq, ;(Zo, .. ., Zi, €) defined in (109) belong to the Banach
space G(Z,...,Z),XY) for all € € D(0,¢) \ {0} where X° > 0 and ZJQ, 0 < j <1, are chosen
in such a way that ZJQ > MO for M° > 0 that fulfills the inequality (108) for some real number
Py > 0.
By construction, Z; j(t, z, €) defines a holomorphic function on 7 x H PR Ei,forall 0 <i<
v—1,all 0 < j <85 —1, for well chosen radius rr > 0 and aperture 6.

Proposition 12 Let the initial data (129) constructed as above. We make the following as-
sumptions: for all (s, ko, k1,ke) € S, all (lp,11) € N, we have that

(131) s>2ky , S>>k, S>b(8—k‘0+2)+/€2 , SZth—l—b(S—ko—i-Q)—i-kl—l-kz , > 2.
Then, there exists a constant I > 0 (independent of €) such that if one assumes that
(132) lpd,j(Zos-- - Zi)ll(z9....20. 50y <1

forall0 < i <wv—1, foralle € D(0,e0)\{0}, the problem (128), (129) has a solution X;(t, z,x, €)
which is holomorphic and bounded on (T N D(0,h')) x Hy x D(0,p1) x &, for some p1 > 0.
Moreover, there exist constants Koz, Moz > 0 and 0 < h” < h' such that

Mos

(133) sup | Xiv1(t, 2, ,€) — Xi(t, 2, 7,€)| < Ko eXP(—W)

tETﬁD(O,h”),zEHp/I ,z€D(0,p1)

foralle € &1 NE;, all0 < i <v—1, (where by convention X, = Xg), provided that ey > 0 is
small enough.

Proof For all 0 < i < v — 1, we consider the singular Cauchy problem (105) with initial data

(134) (D2Y0,, Do 0))(T:2:0,€) = Yu, Doeon(oy(Tr2€) , 0<j<S—1.

Bearing in mind the hypothesis (131) and the assumption (132), we see that the assumptions
of the proposition 11 are all fulfilled for the problem (105), (134), which therefore, possesses a
solution (7', z,x) YUdi7D(o7€0)\{o}(T,z,x,e), holomorphic and bounded on Uy, g pr|cjr X Hy X
D(0, p1) for some h' > 0 and p; > 0, for all e € D(0,¢) \ {0}. Now, we put

X (ta Z,Z, 6) = YUdi,D(O,eo)\{O}(ETtv Z,Z, 6)

which defines a holomorphic and bounded function on (7N D(0,4")) x H, x D(0, p1) x &;, for
all 0 < i < v —1, by construction of 7 and &; in Definition 5. Since YUdi,D(O,eo)\{O}(T7 Z,T,€)
solves the problem (105), (134), one can check that X;(t, z, z, €) solves the problem (128), (129)
on (T ND(0,h")) x Hy x D(0,p1) x &, forall 0 <i <v—1.

In the next step of the proof, we show the estimates (133). Let 0 < i < v — 1. Using
Proposition 11, we can write the function X, (¢, z, x, €) as follows:

. l
eXP(ZZ(ijo B;&5)) aPi
Xiltzmg= D, Xigesn I g g g

Bos--B1,814+1>0 +

where 1
Xi’(ﬁ(]’...ﬁul)(t? 6) - ﬁ /L VUdiv(Bo ,,,,, Br41) (Ta €)€7ﬁd7
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with integration path L., = RoeV=1 ¢ Uq, and such that 7 — Vy, . BZ_H)(T, €) are holo-
morphic functions on D(0, p(a,.... 3,,,)) U Ug;, for all e € D(0,¢€) \ {0} and satisfy the estimates:
there exist constants Cog, Koo > 0, which satisfies p1 K99 < 1, with

o l+2

-
(135) Vs, (B0rB1,8101) (T €)] < Cp exp( el C(b)\TD(W)ZFo b Kzﬁtl)ﬂﬁol o Brg!

for all 7 € D(0, p(g,,....8,,8,.1)) UUa, and € € D(0,€0) \{0}. Moreover, from the assumption (130),
we deduce with the help of the recusion (79), which is satisfied for the coefficients of the formal
solution V(T, 2, z,€) of the problem (121), (122), that for all (8o, ..., B, Bi+1) € N*2, there exists
a holomorphic function 7+ Vg, . 3,5, ,)(7:€) on D(0,p(g,... 5.5,,)) for all e € D(0,¢€) \ {0}
such that

(136) VUdi,(ﬁo,mﬂzﬂHQ(T’ €) = V(ﬂo,~~~ﬁlﬂl+1)(7—’ €)
for all 7 € D(0, p(g,,....,,8.1))> all € € D(0,€0) \ {0}, all 0 <7 <v —1.
We show the following

Lemma 9 There exist constants 0 < h” < h', Co1, Ko1, Moy > 0 (independent of €), which
satisfies p1 K21 < 1, such that

(137) sup | X1, (8o, B0) (B €©) = Xi (8o, i) (5 €]
t€TND(0,h")

2 I ) — M. 2B Brg1)
< Cal—75 )ZFOBJKgiHﬁO!“'ﬁlH!G N

for all e € &1 NE&, all 0 < i < v—1, all (Bo,...,R4+1) € NF2 (where by convention
X, (BoyBrin) = XO,(,307~-~”31+1))'

Proof From the fact that the function 7 — Vg, . 3,5, (7 €)e” 7% is holomorphic on
D(0, p(ay.....5,,8.1))» for all € € D(0, €p), we deduce that its integral along the union of a segment

starting from 0 to (p(ﬂo’m’glﬂ)/Q)eﬁW“, an arc of circle with radius p(g,, .. g, ,)/2 connecting
(p(ﬂ0,~~.,ﬁz+1)/2)e\/?1%+l and (p(507...’51+1)/2)e\/_717i and a segment starting from

(P(ﬂo,...,ﬁz+1)/2)€ﬁ% to the origin, is vanishing. Therefore, using the property (136), we can
write, for all (Bo, ..., 0, Bir1) € N2,

(138) Xt (Bo,Bran) (8 €) = Xi(80,...813) (£ €)
! —
- E I _ VUdi+17(ﬁ0»~v-nBl+1)(T7 €)e” idr

_/L VUdi7(ﬁoy-~~7ﬁl+1)(Tﬂ €)e” Tidr
P(BoseiBryy) /2T

V(ﬂo,‘..,ﬁlﬂ) (T, e)eJth>

.....

where

,,,,,

e\/jl%'

,,,,,
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and C(p(gy,....31:1)/ 2> Vis Vi+1) is an arc of circle centered at 0 with radius p(g,, . /2 connecting

7:81+1)
(p(ﬁo,._.ﬁHl)/Z)e‘/jW and (p(507---761+1)/2)6\/j1’w+1 for a well chosen orientation.

First, we give estimates for
1 —F
5L = |E . _ VUdi+17(507---,5z+1)(7—’ 6)6 ¢ th|‘

By construction, the direction 7;4+1 (which depends on €"t) is chosen in such a way that cos(y;4+1—
arg(e't)) > o1 forall e € £;11NE;, allt € TND(0, k'), for some fixed 6; > 0. From the estimates
(135), we deduce that

e oe(b)
(139) I < ‘rlt’/ C2o(l]‘~w‘2)zj oﬁaKﬁzﬂﬁO Bryrle T hy= 1y cos(yi1—arg(e” ) dh
¢ P(Bos-sBry1) /2
1 1+2 1 4 +00 clh
< |7‘t‘020(]\40)Z]_OﬁngéJrlﬁO!"'BH—l!/ ( ¢(b)— \tl) <™ dh,
‘ P(Bgs--es BH_l)/Q
142 3 1 (B o)) o)
=C 25 —oBi i+ ! O ol
20( MO) i= Bol - Bit1 5= oc ]
C 1+2 . _oy 2P0 Pig)
- 620(7)2 =01 KOG Bl Braale 20elTh

for all t € TN D(0,h') with [t| < (61 — d2)/0((b), for some 0 < d2 < §; and for all € € E;11 NE;.

Now, we provide estimates for

n=i Vil i) (7. 0 e,

L .
P(Bgseees Bz+1)/27%

By construction, the direction 7; (wich depends on €"t) is chosen in such a way that cos(y; —
arg(e't)) > 01 for all e € &1 N &, all t € TN D(0,h'), for some fixed d; > 0. Again, from the
estimates (135), we deduce as above that

(140) f2 = E(io)zézoﬁj—’(géﬂﬁol“'5l+1!€762W

for all t € TN D(0,h') with [t| < (61 — d2)/0((b), for some 0 < d2 < §; and for all € € E;11 NE;.

Finally, we give upper bounds for

Vv(f807~'~w81+1) (7_7 e)e_ﬁd’l".

.....

Due to (135) and bearing in mind the property (136), we deduce that

Ve 142

(Mo )Z] OﬁjK'Bl“ﬁo Bry1!

) g < gl |
ert] rtr

a((b) P(Bos---s Bi4+1) _p(ﬁo ----- 5[+1> cos(@—arg(e"t)) p(/BO

(e

X e Il 2 e [eTt] %H)dﬂ‘
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By construction, the circle C(p(g,,....5,,,)/2: Vi, Vi+1) is chosen in order that cos(6 —arg(e"t)) > &1
for all 0 € [vi,vit1] (if vi < vit1), for all 8 € [viy1,vi] (if vit1 < ), for every t € T N D(0, 1),
e € 41 NE;. From (141), we get that

42 B P(BoyBip1) 1 ( _Ug(b))M
142) I+ < |, C St B l+1 ! s Bit1 i P
(142) Iy < Pis1 = 7ilCo0 (5 75) == Koo ol -+ B > el
P(Bos---s B ) 5o P(Bgs---» B )
< |yit1 — %\020(1;[2)21 01 Kbt Bol -+ B 7p(60’2’ﬁl+1) ‘ ! N B S S v
< o7

for all t € TN D(0,h') with [t| < (61 — d2)/0((b), for some 0 < d2 < §; and for all € € E;11 NE;.
Regarding the inequality (51), we deduce from (142) that

—1|A. A P(Bos-- Br+1)
2e 7 i1 — Vil CQD(ZJZ 2)2; 0 Bj KBZHBO 6l+1!67%%

14 I
(143) 3 5

IN

for all t € TN D(0,h') with [t| < (61 — d2)/0((b), for some 0 < d2 < §; and for all € € £;11 NE;.

Finally, gathering the decomposition (138) and the estimates (139), (140), (143), we get the
inequality (137). O

From Lemma 9 and taking into account the assumption (108), we can write

(144) sup | Xit1(t, z,x,€) — X;(t, 2, x, €)|
tETﬂD(O,h”),ZEHp/l ,z€D(0,p1)

P(Bo,---B141) (l + 2)€p’1(max§.:0 1€51)

Moy —20 Pl L )
< Z Chpe M2t [ ( =70 )Z,:o Bj (p1K21)5l+1
Bos-B81,614+1>0
_ P(Bos-+B141) 1+1
< 021 Z e Mo lel” (max{lem’ 2})2] 0Bj
Bos--»B81,814+1>0

forall e € &1 NE;, all 0 < ¢ < v — 1. Moreover, we recall that for all integers I > 1, k > 0,

I+1

(145) Card{ (..., ) € N2/ 305 = ) = T -

where Pj(k) = (k+1+1)(k+1) --- (k+1) is a polynomial of degree [+ 1 in . From the definition
(64) and with the help of (145), we get two constants Ca2 > 0 and 0 < Ko < 1 such that

- P B0y Bry1) 1
(146) o >0 T (max{pn Ko, 5 )2
Boy->P1,814+1>0
/T2
Pi(k) Cgll e 1
< C — M. re++5S1 K L\
< Oy ,Z;) 1) exp( 212(1 n H)hrl/mkv)(max{pl 21, 2})
r1/T2
< Caz ) exp(—Ma Sl ) (K22)"

= 21+ k)72 e

foralle € £;11NE;, all 0 <i<v—1. Now, we recall the following lemma from [19].
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Lemma 10 Let 0 <a <1 and o> 0. There exist K, M >0 and 6 > 0 such that

1 1 1
Ze FFDT e gl < K exp (—ME_T'H)
k>0

for all € € (0,4].

From Lemma 10 applied to the inequality (146) and from (144), we deduce that the estimates
(133) hold, if €p is chosen small enough. O

4.2 Existence of formal power series solutions in the complex parameter for
the main Cauchy problem

This subsection is devoted to explain the main result of this work. Namely, we will establish
the existence of a formal power series

X(t,z,@,€) =Y Hy(t,z,2) € O((T ND(0,1")) x Hy x D(0, p1))[[e]]
k>0

which solves formally the equation (128) and is constructed in such a way that the actual
solutions X;(t, z, x, €) of the problem (128), (129) all have X as asymptotic expansion of Gevrey
order hrlrijr? on & (as formal series and functions with coefficients and values in the Banach
space O((T ND(0,h")) x Hy x D(0, p1)) equipped with the supremum norm) (see Definition 6
below), for all 0 <i <wv — 1.

The proof makes use a Banach valued version of cohomological criterion for Gevrey asymp-
totic expansion of sectorial holomorphic functions known in the litterature as the Ramis-Sibuya
theorem. For a reference, we refer to [1], Section 7.4 Proposition 18 and [16], Lemma XI-2-6.

Definition 6 Let (E,||-||z) be a complex Banach space over C. One considers a formal series
Gle) = Y >0 Gn€™ where the coefficients Gy, belong to E and a holomorphic function G : € — E
on an open bounded sector £ with vertex at 0. Let s > 0 be a positive real number. One says that
G admits G as its asymptotic expansion of Gevrey order s on E if for every proper and bounded
subsector T of £, there exist two constants K, M > 0 such that for all N > 1, one has

N—-1
1G(e) = > Gue™|lg < KMNN1=[e[V
n=0

foralleeT.

Theorem (RS) Let (E,|-||g) be a complex Banach space over C. Let {&;}o<i<v—1 be a good
covering in C*. For every 0 < i < v —1, let G; be a holomorphic function from &; into E, and
let the cocycle Ai(e) := Giy1(€) — Gi(€) be a holomorphic function from Z; := & N &1 into E
(with the convention that £, = & and G, = Gy). We assume that:

1. Gi(e) is bounded as € € &; tends to 0, for every 0 < i <wv —1,

2. A; has an exponential decreasing of order s > 0 on Z;, for every 0 < i < v — 1, meaning
there exist C;, A; > 0 such that

Ag

(147) Ai(e)|lg < Cie 1977

for everye € Z; and 0 <i<v—1.
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Then, there exists a formal power series G(e) € E[[¢]] such that G;(€) admits G(e) as its asymp-
totic expansion of Gevrey order s on &;, for every 0 <i <y —1.

We now state the main result of our paper.

Theorem 1 Let us assume that the conditions (131) hold. For all0 <i<v—1,0<j<S5-1,
we also assume that for the functions Z; ;(t,z,€) constructed in (129) the inequalities (132) are
fulfilled for some constant I > 0 given in Proposition 12. Let

E = O((T N D(0,")) x Hy x D(0,p1))

be the Banach space of holomorphic and bounded functions on (T N D(0,h")) x Hy x D(0, p1)
equipped with the supremum norm, where h" p},p1 are the constants appearing in Proposition
12.

Then, there exists a formal series

X(t,z,x,€) ZHktzx € E[[e]]
k>0

which formally solves the equation

(148) (€3 (120, + )" + (—id. + 1)) X (t, 2, x, €)

- Z bs ko k1 ks (Zax?6)t8(8508§18§2)2(t737xa6)
(s,ko,k1,k2)€S

+ Z CloJl(Z,$,€)tlo+l1_1(X(t,Z,CL‘,E))h
(lo,ll)e./\/

and 1is the Gevrey asymptotic expansion of order }”";7;”’2 of the E—valued function ¢ € &
Xi(t, z,x,€), solution of the problem (128), (129) constructed in Proposition 12, for all 0 <i <
v—1.

Proof We consider the functions X;(¢,z,z,¢), 0 < i < v — 1 constructed in Proposition 12.
For all 0 < i < v — 1, we define G;(¢) := (t,2,z) — X;(t, z,z,€), which is, by construction, a
bounded holomorphic function from &; into the Banach space E of holomorphic and bounded
functions on (7N .D(0, ")) x H, x D(0, p1) equipped with the supremum norm, where A", p,p1
are constants appearing in Proposition 12. Bearing in mind the estimates (133), we deduce that
the cocycle A;(e) = Giy1(e) — Gi(e) fulfills estimates of the form (147) on Z; = &1 NE;, where
5§ = }”";7:”, for all 0 < i < v — 1. According to Theorem (RS) stated above, we deduce the

existence of a formal series G(e) € E[[e]] which is the Gevrey asymptotic expansion of order
h”Ti;H"Q of G;(€) on &;, for all 0 <i < v — 1. Let us define

(149) Gle) = X(t, z,z,€) ZHktzac—
k>0

It only remains to show that X is a formal solution of the equation (148). From the fact that
G;(€) admits G(e) as its asymptotic expansion at 0 on &;, one gets

(150) lim sup 0L X (t, 2,2, €) — Hy(t, z,2)| = 0
€0c€8 teTND(0,h"),2€H 1,2€D(0,p1)
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forall [ >0, all 0 < i < v — 1. Now, we choose an integer i € {0,...,v — 1}. By construction,
the function X;(¢, z, z, €) solves the equation (128). We differentiate it [ times with respect to e.
By means of Leibniz’s rule, we get that 0'X;(t, z, z, €) satisfies the identity

(151 h'h SO () (820, + )2 07012 X, (L, 2, m, €) + (—id + 1) 070Xt 2, 2, €)
1142
h1+ho=l

k
= 2 P hllhl O b o ko o (25, €) (O O 02002 X,) (1, 2, , €))
(57k07k‘1,k2)€3 hi1+ho=l

- ! .
+ Z tlo+l1 1 Z Waﬁhoclmll(z’x’E)Hé'l:l(ae]Xi>(t,z,x,e)
(lo,l1)eN hothi+thy, =1 0 1!

for all I > 1, all (t,2,7,€) € (T N D(0,h")) x Hy x D(0,p1) x &. We let € tend to 0 in the
equality (151) and with the help of (150), we get the following recursions

Hy(t
(152) (—id. + 1) 93 l(zv”)

- Y Ay etebn)Cn0) oo ol iz,

- hyl I
(s,ko,k1,k2)€S  hitho=l

+ Z th‘Hl—l Z (82‘%10711)(,2,33,0) Hll th (t,z,x)

ho! J=1 h;!
(lo,1)EN ho+hi+thi, =1 0 J

for all 0 <1 <rg, all (t,z,2) € (TN D(0,h")) x Hy x D(0,p1), and

H_,(t H(t
(153) (120, +tyzos bz L p | qynps il 2n)
(l ’r‘3)! {!
= Z t3( Z (8?1b3’k0’k17k2)<z7 z,0) 850651852}1’12 (t, 2, .7)))
! o

(s,ko,k1,k2)€ES  hit+ha=l

ho Hy (t,z,x)
lo+i1—1 (85 Clo,l1)(zvx70) 1 hj\ts <,
+ Z t Z ho! Hj:l hl
(lo,l1)eN h0+h1+...+h11=l J
for every I > r3 and all (t,z,2) € (T N D(0,h")) x Hy x D(0,p1). Since the functions
bs ko k1 ko (2,2, €) and ¢y, 1, (2, @, €) are analytic with respect to e near the origin in C, we get
that

(8?1)8,]6 Jk1,k )(Z,J},O) (6?61 )0 )(Z7$70)
(154) bs’koykth(Z,x, 6) = Z 0 1h!2 " ) Clo,ll(zvxae) = Z : lh' e

h>0 h>0
for all (s,ko,k1,k2) € S, (lo,l1) € N and all (z,2,¢) € Hy x D(0,p1) x D(0,¢p). Finally,
gathering the recursions (152), (153) and the expansions (154), one can see that the formal
series (149) solves the equation (148). O
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