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Abstract

We prove that Cr-smooth (r > 2) circle diffeomorphisms with a break, i.e.,
circle diffeomorphisms with a single singular point where the derivative has a jump
discontinuity, are generically, i.e., for almost all irrational rotation numbers, not
C1+ε-rigid, for any ε > 0. This result complements our recent proof, joint with
K. Khanin [12], that such maps are generically C1-rigid. It stands in remarkable
contrast to the result of J.-C. Yoccoz [22] that Cr-smooth circle diffeomorphisms are
generically Cr−1−κ-rigid, for any κ > 0.

1 Introduction

Rigidity theory of circle diffeomorphisms is a classic topic of dynamical systems. It
concerns smooth conjugacy of circle diffeomorphisms within the same topological con-
jugacy class. The first rigidity result is probably a local result due to Arnol’d [1] who
proved, using methods of Kolmogorov-Arnol’d-Moser theory, that any analytic circle dif-
feomorphism with a Diophantine rotation number ρ, sufficiently close to the rigid rotation
Rρ : x 7→ x + ρ mod 1, is analytically conjugate to Rρ. Arnol’d conjectured that the
closeness to the rigid rotation is not necessary for this claim to hold true. This conjecture,
which is a global version of the result of Arnol’d, was proved by Herman [8], almost two
decades later. Herman proved that any C∞- smooth (Cω) circle diffeomorphism with
a Diophantine rotation number ρ is C∞- smoothly (Cω) conjugated to the rotation Rρ.
The theory was further developed by Yoccoz [22] and implies that any two sufficiently
smooth circle diffeomorphisms with the same Diophantine rotation number are smoothly
conjugate to each other. The smoothness of the conjugacy depends on the Diophantine
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properties of the rotation number. In fact, a result of Yoccoz [22], improved by Katznel-
son and Ornstein [9], shows that for Cr-smooth (r ≥ 3) circle diffeomorphisms with a
Diophantine rotation number of class D(δ), the conjugacy is Cr−1−δ−ε-smooth, for any
ε > 0. Here, a map is said to be Cr-smooth if it has Hölder continuous [r]-th derivative
([r] = max{k ∈ Z : k ≤ r}) with Hölder exponent {r} = r − [r]. A number ρ is said
to be Diophantine of class D(δ), for some δ ≥ 0, if there is a constant C > 0 such that
for all p ∈ Z and q ∈ N, |ρ − p/q| > C/q2+δ. Since for δ > 0, Diophantine numbers of
class D(δ) form a set of full Lebesgue measure, the result of Yoccoz implies that, for any
κ > 0, and almost all irrational ρ ∈ (0, 1), Cr-smooth circle diffeomorphisms with rota-
tion number ρ are Cr−1−κ-rigid. On the other hand, smooth conjugacy is not guaranteed
for all irrational rotation numbers. Arnol’d even constructed examples of analytic circle
diffeomorphisms with the same Liouville (non-Diophantine) irrational rotation number
for which the conjugacy is essentially singular. These results are at the core of rigidity
theory of circle diffeomorphisms.

A natural question to ask is what are the rigidity properties of circle maps that fail
to be diffeomorphisms only at a single point. Over the last two decades great effort has
been put to understand rigidity of smooth circle diffeomorphisms with a single singular
point where the derivative vanishes (critical circle maps) or has a jump discontinuity (circle
diffeomorphisms/maps with a break). The main technical tool in the proofs of the rigidity
results has shown to be renormalization. Renormalizations of a circle homeomorphism T
form a sequence of appropriately rescaled increasing powers T qn of the map T , restricted
to a small interval around a (singular) point. Rigidity theory of analytic critical circle
maps is rather complete. The first result on convergence of renormalizations for critical
circle maps is due to De Faria and de Melo [7]. They proved that, for a set of zero
Lebesgue measure irrational numbers ρ, the renormalizations of any two analytic critical
circle maps with the same irrational rotation number and the same order of the critical
point approach each other exponentially fast. Here, the critical point xc is said to be of
order β > 1 if the derivative of the map at a point x near xc is of the order |x − xc|β−1.
This result was later extended to all irrational rotation numbers by Yampolsky [21]. De
Faria and de Melo [6] also proved that, for almost all irrational rotation numbers, the
conjugacy is C1+ε-smooth, for some ε > 0. Finally, for any ε > 0, they constructed
examples of C∞-smooth critical circle maps with the same irrational rotation number
and the same order of the critical point which are not C1+ε-smoothly conjugate to each
other. Khmelev and Yampolsky proved that for analytic critical circle maps with the
same irrational rotation number and the same order of the critical point the conjugacy is
always C1+ε-smooth at the critical point, for some ε > 0, suggesting that the analytic case
may be different. Avila [2], however, showed that, for any ε > 0, not even analytic critical
circle maps are C1+ε-rigid. Nevertheless, analytic critical circle maps are C1-rigid for all
irrational rotation numbers as was shown by Khanin and Teplinsky [14]. The rigidity
results of [6] and [14] would also hold true in the case of Cr-smooth (r ≥ 3) critical circle
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maps, provided one had the exponential convergence of renormalizations in that case. The
proof of the exponential convergence of renormalizations for non-analytic critical circle
maps is at present, however, a completely open problem.

For Cr-smooth (r > 2) circle maps with a break, the first result on the exponential
convergence of renormalizations, for a countable set of rotation numbers, is due to Khanin
and Khmelev [10]. The result was extended to a larger set of zero measure in [15]. The
full proof of the exponential convergence of renormalizations, for all irrational rotation
numbers, was obtained only recently [12]. In a joint work with Khanin [12], we proved
that renormalizations fn and f̃n of any two C2+α-smooth, α ∈ (0, 1), such maps Tρ and
T̃ρ, with the same irrational rotation number ρ and the same size of the break c 6= 1 (i.e.,
the square root of the ratio of the left and right derivatives at the break point) approach
each other (at least) exponentially fast (in the C2-topology): there exist λ ∈ (0, 1) and
C > 0 such that ‖fn − f̃n‖C2 ≤ Cλn. Together with our earlier result [13], this implies
that Cr-smooth (r > 2) circle maps with a break are generically C1-rigid: for almost
all irrational ρ, every two Cr-smooth circle maps with a break, with the same rotation
number ρ and the same size of the break c 6= 1, are C1-smoothly conjugate to each other.
We also proved that this result cannot be extended to all irrational rotation numbers.
In [11], we constructed examples of analytic circle maps with breaks of the same size
and the same irrational rotation number, for which no conjugacy is Lipschitz continuous.
These results are analogous to those in the case circle diffeomorphisms, although the set
of rotation numbers for which C1-rigidity holds is not Diophantine. The main result of
this paper stands in striking contrast to the case of circle diffeomorphisms and analytic
critical circle maps. We prove that circle maps with breaks are generically not C1+ε-rigid,
for any ε > 0. The main result of this paper can be summarized in the following theorem,
which can be considered an extension of Herman’s theory on the linearization of circle
diffeomorphisms. Here, S1 = R/Z.

Theorem 1.1 For any c ∈ R+\{1} and r > 2 there exists a set S ⊂ (0, 1)\Q of Lebesgue
measure 1 such that, for any ρ ∈ S: (i) for every two Cr-smooth circle diffeomorphisms
with a break Tρ and T̃ρ, with the same rotation number ρ and the same size of the break
c, there is a C1-smooth diffeomorphism h : S1 → S1 such that h−1 ◦ Tρ ◦ h = T̃ρ, and (ii)
for any ε > 0, there is a pair of Cr-smooth circle diffeomorphisms with a break T and T̃ ,
with the same rotation number ρ and the same size of the break c, such that the conjugacy
h is not C1+ε-smooth.

Remark 1 The only conjugacy between circle maps with breaks T and T̃ , which can be
C1-smooth, is the conjugacy that maps the break point of T into the break point of T̃ .
The conjugacy h mentioned in Theorem 1.1 is this particular conjugacy.

Remark 2 The set S is the intersection of two sets, Srig for which C1-rigidity holds and
Snon for which C1+ε rigidity does not hold, for any ε > 0. The results of [12, 13] imply
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that, for any c ∈ R+\{1} and r > 2, there is a set Srig ⊂ (0, 1)\Q of Lebesgue measure 1
such that, for any ρ ∈ Srig and any two Cr-smooth circle diffeomorphisms with a break,
with the same rotation number ρ and the same size of the break c 6= 1, the conjugacy
h is a C1-smooth diffeomorphism. The set Srig of rotation numbers ρ ∈ (0, 1)\Q with
the continued fraction expansion ρ = [k1, k2, . . . ] can be characterized as follows. For a
given, λ1 ∈ (λ, 1), we define the set Srig to be the set of all such ρ for which there exists
a constant C1 > 0 such that kn ≤ C1λ

−n
1 for all n ∈ 2N, if c < 1, or for all n ∈ 2N − 1,

if c > 1. The difference between n odd and n even comes from the difference in the
behavior of the corresponding subsequences of renormalizations. A set Snon of numbers
ρ ∈ (0, 1)\Q, for which one can find two Cr-smooth circle diffeomorphisms with a break,
with the same rotation number ρ and the same size of the break c 6= 1, which are not
C1+ε-smoothly conjugate to each other, can be chosen as follows. We define Snon to be
the set of all such ρ with the property that, for every A ∈ N, there exists an (infinite)
subsequence σn ∈ 2N, if c < 1 or σn ∈ 2N− 1, if c > 1, such that kσn ≥ Aσn. We show in
Section 4 that this set has a full Lebesgue measure.

Remark 3 We actually prove a stronger statement than (ii). We prove that for any
ρ ∈ Snon and for any ε > 0, there is a pair of Cr-smooth circle diffeomorphisms with a
break T and T̃ , with the same rotation number ρ and the same size of the break c 6= 1,
such that the conjugacy h is not C1+ε-smooth at the break point.

We say that the conjugacy h : S1 → S1 is C1+ε-smooth at 0, if

h(x) = h′(0)x+O(|x|1+ε). (1.1)

Remark 4 Examples of circle diffeomorphisms with breaks which are C1- but not C1+ε-
smoothly conjugate to each other have previously been constructed in [5, 11, 20], using the
parabolic renormalization approach of Avila for critical circle maps [2]. Those examples
were constructed using the features of circle maps with a break which are similar to those of
critical circle maps (a parabolic “almost tangency” of a subsequence of renormalizations).
Those examples are exceptional and that approach cannot be used to prove Theorem 1.1.
The technical tools that we develop and apply in this paper exploit the features of circle
maps with breaks not shared by the critical circle maps. In particular, it is the strongly
unbounded geometry of circle maps with breaks which makes the circle maps with breaks
to be generically non-C1+ε-rigid, for any ε > 0.

We say that geometry of a circle map T is bounded if all neighboring intervals of
all dynamical partitions of a circle Pn (defined in the next section) are of comparable
length, i.e., if the ratios of lengths of these intervals are uniformly bounded (by positive
constants). If this is not the case, we say that the geometry is unbounded. The geometry of
dynamical partitions plays a major role in rigidity properties of circle maps. Critical circle
maps have bounded geometry. Both circle diffeomorphisms and circle maps with breaks
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are characterized by unbounded geometry. It is this unbounded geometry which is the
reason for the absence of robust rigidity, i.e., C1-rigidity of these maps for all irrational
rotation numbers. However, while, in the case of circle diffeomorphisms, the maximal
ratio of lengths of neighboring intervals of the dynamical partition Pn can increase at
most linearly with the corresponding partial quotient kn+1 of the rotation number ρ, it
can grow exponentially in the case of circle maps with a break. It is this difference that
ultimately causes the difference in the C1+ε-smoothness of conjugations: smooth circle
diffeomorphisms are generically C1+ε-rigid while, as we prove in this paper, circle maps
with a break are generically not such, for any ε > 0.

Remark 5 The proof of the part (ii) of Theorem 1.1 is based on the construction of two
Cr-smooth circle maps with a break T and T̃ , with the same irrational rotation number
ρ and the same size of the break, for which there is a subsequence (πn)n∈N such that the
corresponding renormalizations fπn and f̃πn have left derivatives at the break point which
are at least exponentially different in n. This is the statement of Lemma 5.6 below, which
implies that there exist C > 0 and µ ∈ (0, 1) such that ‖fπn − f̃πn‖C2 ≥ Cµπn , for all
n ∈ N, and, thus, in general, one cannot obtain faster than exponential convergence of
renormalizatons for such maps. In that sense, that the result of [12] is optimal.

At the end of this introduction let us mention the results for circle maps with breaks are
also relevant for understanding the properties of generalized interval exchange transforma-
tions, recently introduced by Marmi, Moussa and Yoccoz [18]. These transformations are
obtained by replacing continuous linear branches of an interval exchange transformation
by smooth homeomorphisms. Like an interval exchange transformation of two intervals
can be seen as a rigid rotation on a circle, a generalized interval exchange transformation
of two intervals is a circle map with two break points. As these two points lie on the same
orbit of the map, the map can be piece-wise smoothly conjugated to a circle map with
one point of break. Marmi, Moussa and Yoccoz considered the linearizable case of more
intervals [18], when there are no breaks of the derivatives. The special case of cyclic per-
mutations, which corresponds to circle maps with more points of break, but with product
of the sizes of breaks equal to 1, was considered by Cunha and Smania [3, 4]. In this case,
renormalizations approach piece-wise linear maps. In our situation, the renormalizations
are essentially non-linear. Theorem 1.1 summarizes currently the only generic rigidity
results in this case.

This paper is organized as follows. In the next section, we define dynamical partitions
of the circle and the renormalization operator. In Section 3, we prove some general
estimates concerning the geometry of the dynamical partitions, that should be useful in
other problems as well. In particular, we prove that the length of the longest element of
the dynamical partition Pn does not decrease faster than exponentially with n. In Section
4, we construct the set S of irrational numbers of full Lebesgue measure for which the
claim of Theorem 1.1 holds. In Section 5, we prove the main lemmas and our main result.
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2 Preliminaries

For every orientation-preserving homeomorphism T : S1 → S1 of the circle S1 = R/Z
there exists a (unique up to an additive integer constant) continuous and strictly increasing
function T : R→ R, called a lift of T , that satisfies T (x+ 1) = T (x) + 1, for every x ∈ R.
Poincaré showed that for every orientation-preserving homeomorphism T : S1 → S1 there
is a unique rotation number ρ, given by the limit ρ := lim

n→∞
T n(x)/n mod 1, where T is

any lift of T . Renormalizations of an orientation-preserving homeomorphism of a circle
T , with a rotation number ρ ∈ (0, 1) are defined using the continued fraction expansion

ρ =
1

k1 + 1
k2+ 1

k3+...

, (2.1)

that we also write as ρ = [k1, k2, k3, . . . ]. The sequence of integers (kn)n∈N, called partial
quotients, is infinite if and only if ρ is irrational. Every irrational ρ defines uniquely the
sequence of partial quotients. Conversely, every infinite sequence of partial quotients de-
fines uniquely an irrational number ρ as the limit of the sequence of rational convergents
pn/qn = [k1, k2, . . . , kn]. It is well-known that this sequence forms the sequence of best
rational approximates of an irrational ρ, i.e., there are no rational numbers with denom-
inators smaller or equal to qn, that are closer to ρ than pn/qn. The rational convergents
can also be defined recursively by pn = knpn−1 + pn−2 and qn = knqn−1 + qn−2, starting
with p0 = 0, q0 = 1, p−1 = 1, q−1 = 0.

To define the renormalizations of an orientation-preserving homeomorphism of a circle
T , with an irrational rotation number ρ, we start with a marked point x0 ∈ S1, and
consider the marked trajectory xi = T ix0, with i ∈ N. The subsequence (xqn)n∈N indexed
by the denominators qn of the sequence of rational convergents of the rotation number ρ,
will be called the sequence of dynamical convergents. It follows from the simple arithmetic
properties of the rational convergents that the sequence of dynamical convergents (xqn)n∈N
for the rigid rotation Rρ has the property that its subsequence with n odd approaches
x0 from the left and the subsequence with n even approaches x0 from the right. Since
all circle homeomorphisms with the same irrational rotation number are combinatorially
equivalent, the order of the dynamical convergents of T is the same.

The intervals [xqn , x0], for n odd, and [x0, xqn ], for n even, will be denoted by ∆
(n)
0 (or

∆
(n)
0 (T ), if we need to emphasize which map T it is associated to) and called the n-th

renormalization segment associated to x0. The n-th renormalization segment associated
to xi will be denoted by ∆

(n)
i (or ∆

(n)
i (T )). We also have the following important property:

the only points of the orbit {xi : 0 < i ≤ qn+1} that belong to ∆
(n−1)
0 are {xqn−1+iqn : 0 ≤

i ≤ kn+1}.
Certain number of images of ∆

(n−1)
0 and ∆

(n)
0 , under the iterates of a map T with

rotation number ρ, cover the whole circle without overlapping beyond the end points and
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form the n-th dynamical partition of the circle

Pn := {T i∆(n−1)
0 : 0 ≤ i < qn} ∪ {T i∆(n)

0 : 0 ≤ i < qn−1}. (2.2)

The set of end points of the intervals of partition Pn will be denoted by Ξn. The inter-
vals ∆

(n−1)
0 and ∆

(n)
0 will be called the fundamental intervals of Pn. When necessary to

emphasize that Pn and Ξn are associated to a map T , they will be denoted by Pn(T ) and
Ξn(T ), respectively. We note that these sequences are finite if the rotation number of the
map is rational.

The n-th renormalization of an orientation-preserving homeomorphism T : S1 → S1,
with rotation number ρ, with respect to the marked point x0 ∈ S1, is a function fn :
[−1, 0] → R (or fn(T )) obtained from the restriction of T qn to ∆

(n−1)
0 , by rescaling the

coordinates. More precisely, if τn is the affine change of coordinates that maps xqn−1 to
−1 and x0 to 0, then

fn := τn ◦ T qn ◦ τ−1
n . (2.3)

Definition (2.3) is valid for all n ≥ 0 if and only if ρ is irrational; otherwise, n is less than
or equal to the length of the continued fraction expansion of ρ. If we identify x0 with
zero, then τn is exactly the multiplication by (−1)n/|∆(n−1)

0 |. Here, and in what follows,
|I| denotes the length of an interval I on a circle (the arc length, divided by 2π).

This paper concerns circle maps with a break, i.e., homeomorphisms of a circle for
which there exists a point xbr ∈ S1, such that T ∈ Cr(S1\{xbr}), T ′(x) is bounded from
below by a positive constant and the one-sided derivatives at xbr are such that the size of
the break

c :=

√
T ′−(xbr)

T ′+(xbr)
6= 1.

In the following, we only consider the renormalizations with the marked point x0 = xbr.
It was proved in [16] that the renormalizations of circle maps with a break approach

a particular family of fractional linear transformations. The sequence of renormalizations
(fn)n∈N0 , N0 = N ∪ {0}, of a Cr-smooth (r > 2) circle map T with a break of size
c ∈ R+\{1} converges to a sequence of fractional linear transformations Fn := Fan,bn,Mn,cn :
[−1, 0]→ R,

Fn(z) :=
an + (an + bnMn)z

1− (Mn − 1)z
, (2.4)

with

an :=
|∆(n)

0 |
|∆(n−1)

0 |
, bn :=

|∆(n−1)
0 | − |∆(n)

qn−1|
|∆(n−1)

0 |
, Mn = exp

qn−1∑
i=0

xi∫
xqn−1+i

T ′′(x)

2T ′(x)
dx

 . (2.5)

In fact, this convergence is uniform within certain families of maps that will be described
in the next section. The precise statements will be given below.
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3 General estimates

We start with a circle map T0 with a break of size c 6= 1 at xbr = 0 and the fixed point
T0(0) = 0 at the break point. We consider a one-parameter family TΩ := T0 + Ω, with
Ω ∈ [0, 1). For a set B ⊂ [0, 1), the set of parameters Ω such that the rotation number
ρ(TΩ) ∈ B is denoted by ρ−1(B). It is well-known that the rotation number ρ of a map
in this family is a continuous and non-decreasing function of the parameter Ω. Moreover,
for every irrational ρ, there is a unique parameter value Ωρ such that the map TΩρ has the
rotation number ρ. For every rational rotation number p/q ∈ Q, there is a mode-locking
interval [Ω

(L)
p/q,Ω

(R)
p/q ] of parameter values corresponding to p/q. If p/q has a sufficiently

long continued fraction expansion, then the following holds. When the parameter value
Ω is equal to Ω

(L)
p/q, in the case c > 1, or Ω

(R)
p/q , in the case 0 < c < 1, the map TΩ has a

single periodic orbit of the type (p, q) and the break point belongs to this periodic orbit,
i.e., a lift TΩ : R → R of TΩ satisfies T qΩ (0) = p. Let us denote that unique value of the
parameter Ω by Ωp/q. When the parameter value Ω equals the other end point (Ω(R)

p/q , in
the case c > 1; Ω

(L)
p/q, in the case 0 < c < 1), the map TΩ has a single periodic orbit of the

type (p, q), which is neutral. Obviously, the break point xbr does not belong to it. For all
other values of the parameter inside the mode-locking interval, the map has two periodic
orbits of type (p, q), one stable and one unstable [16].

The following clearly holds for any family of orientation-preserving circle homeomor-
phisms TΩ. To be specific, let TΩ be the lift of TΩ that satisfies TΩ(0) ∈ [0, 1).

Proposition 3.1 If ρ1 > ρ2, then T iΩρ1 (0) > T iΩρ2 (0), for every i ∈ N.

Proof. The claim follows by induction. If ρ1 > ρ2, then Ωρ1 > Ωρ2 and, thus, TΩρ1
(0) >

TΩρ2
(0). Assume that for some i ∈ N, we have T iΩρ1 (0) > T iΩρ2 (0). Then, since T0 is strictly

increasing, we have T i+1
Ωρ1

(0) > TΩρ2
(T iΩρ1 (0)) > T i+1

Ωρ2
(0). QED

Now, let us fix an irrational number ρ = [k1, k2, . . . ] ∈ (0, 1) and consider the sequence
pn/qn = [k1, . . . , kn], n ∈ N, of its convergents. The open interval with end points pn−1

qn−1
and

pn
qn

will be denoted by Bn. Clearly, ρ = ∩∞n=1Bn. To simplify the notation, let Ωn := Ωpn/qn .
We also define xi(Ωρ) := T iΩρ(0), xi(Ωn) := T iΩn(0). Let also Ii(Ωn) := [xi(Ωn), xi(Ωρ)], if
ρ > pn/qn (the end points of the interval should be exchanged Ii(Ωn) := [xi(Ωρ), xi(Ωn)],
if ρ < pn/qn). Finally, let ∆

(n)
0 (Ω) := ∆

(n)
0 (TΩ), Pn(Ω) := Pn(TΩ) and Ξn(Ω) := Ξn(TΩ).

Proposition 3.2 [T iΩρ(0)] = [T iΩn(0)], for i = 1, . . . , qn − 1.

Proof. To be specific, let us consider the case ρ > pn/qn. Assume that for some q < qn,
[T qΩρ(0)] 6= [T qΩn(0)]. Then, it follows from Proposition 3.1 that there exists Ω ∈ [Ωn,Ωρ],
such that T qΩ (0) = p. Therefore, TΩ has a periodic orbit of period q and, consequently, a
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rational rotation number p/q ∈ (pn/qn, ρ). This contradicts the assumption that pn/qn is
a rational convergent for ρ, due to the properties of the continued fractions. QED

As a corollary of Proposition 3.1 and Proposition 3.2, we obtain following statement.

Proposition 3.3 If ρ > pn/qn, then T iΩρ(0) > T iΩn(0), for i = 1, . . . , qn−1. If ρ < pn/qn,
then T iΩρ(0) < T iΩn(0), for i = 1, . . . , qn − 1.

We can now prove the following claim.

Proposition 3.4 Ii(Ωn) ∩ Ij(Ωn) = ∅, for i, j = 1, . . . , qn such that i 6= j.

Proof. Since Iqn(Ωn) = ∆
(n)
0 (Ωρ) ⊂ ∆

(n−1)
qn (Ωρ), the intervals T−iΩρ

(Iqn(Ωn)) ⊂ ∆
(n−1)
qn−i (Ωρ),

for i = 0, . . . , qn − 1, are proper subsets of different intervals of partition Pn(TΩρ), and
they do not overlap, even at the end points. Notice now that, due to Proposition 3.3, the
same is true for the intervals Iqn−i(Ωn) ⊂ T−iΩρ

(Iqn(Ωn)). QED

Since for circle maps with a break V := VarS1 lnT ′Ω < ∞, all maps TΩ with rotation
numbers in the closed interval with end points ρ and pn/qn, satisfy | ln(T qnΩ )′(x)| ≤ V , for
all x ∈ S1, by the Denjoy’s lemma [19]. Therefore, we have the uniform bound

| ln (fn(Ω))′ (x)| ≤ V, (3.1)

for all x ∈ [−1, 0]. Here, fn(Ω) := fn(TΩ).

Proposition 3.5 Ii(Ωn) ⊂ ∆
(n−1)
i (Ωρ) and there exists C1 ≥ 1 such that |Ii(Ωn)| ≤

C1an|∆(n−1)
i (Ωρ)|, for all i = 1, . . . , qn.

Proof. Clearly Iqn(Ωn) = ∆
(n)
0 (Ωρ) ⊂ ∆

(n−1)
qn (Ωρ). Since it follows from (3.1) that

|∆(n−1)
qn (Ωρ)| ≥ e−V |∆(n−1)

0 (Ωρ)|, we have |Iqn(Ωn)| ≤ eV an|∆(n−1)
qn (Ωρ)|. It follows from

Proposition 3.3 that, for j = 1, . . . , qn − 1, Ii(Ωn) ⊂ ∆
(n−1)
i (Ωn), and for some ζj, ξj ∈

∆
(n−1)
j (Ωρ), we have

|Ij(Ωn)|
|∆(n−1)

j (Ωρ)|
≤
|T−1

Ωρ
(Ij+1(Ωn))|

|T−1
Ωρ

(∆
(n−1)
j+1 (Ωρ))|

=
|Ij+1(Ωn)|
|∆(n−1)

j+1 (Ωρ)|

T ′Ωρ(ζj)

T ′Ωρ(ξj)
. (3.2)

Therefore, we obtain the estimate

|Ij(Ωn)|
|∆(n−1)

j (Ωρ)|
≤ |Ij+1(Ωn)|
|∆(n−1)

j+1 (Ωρ)|

(
1 +

maxx∈[0,1] T
′′
Ωρ

(x)

minx∈[0,1] T ′Ωρ(x)
|∆(n−1)

j (Ωρ)|

)
. (3.3)



10 Generic rigidity for circle diffeomorphisms with breaks

By iterating the latter inequality, we find

|Ij(Ωn)|
|∆(n−1)

j (Ωρ)|
≤ |Iqn(Ωn)|
|∆(n−1)

qn (Ωρ)|

qn−1∏
i=j

(
1 +

maxx∈[0,1] T
′′
Ωρ

(x)

minx∈[0,1] T ′Ωρ(x)
|∆(n−1)

i (Ωρ)|

)
. (3.4)

Since,
∑qn−1

i=1 |∆
(n−1)
i (Ωρ)| ≤ 1, we find

|Ij(Ωn)| ≤ exp

(
V +

maxx∈[0,1] T
′′
Ωρ

(x)

minx∈[0,1] T
′
Ωρ

(x)

)
an|∆(n−1)

j (Ωρ)|. (3.5)

QED

Since
∑qn−1

j=0 |∆
(n−1)
j (Ωn)| ≤ 1, from Proposition 3.5, we immediately obtain

Corollary 3.6
∑qn

i=1 |Ii(Ωn)| ≤ C1an.

Proof.
∑qn

i=1 |Ii(Ωn)| ≤
∑qn−1

i=1 C1an|∆(n−1)
i (Ωρ)|+ an|∆(n−1)

0 (Ωρ)| ≤ C1an. QED

It was shown in [19] that the length of the longest element of the dynamical partition
Pn of a circle map T decreases at least exponentially with n. Here, we prove that, for
circle maps with a break, this estimate is optimal, i.e., that the length of the longest
element of the dynamical partition Pn decreases at most exponentially fast with n. We
denote the longest of the intervals ∆

(n−1)
i , for i = 0, . . . , qn−1, of the dynamical partition

Pn (defined with the marked point x0 = xbr = 0) by ∆
(n−1)
max . It follows from [19] that

|∆(n−1)
max | ≤ const λn, where λ := (1 + e−V )−1/2. To prove that |∆(n−1)

max | decreases at most
exponentially fast with n, we will need the following result of Khanin and Vul [16].

Proposition 3.7 For every C2+α-smooth circle map T0 with a break of size c 6= 1 at
the fixed point, there is C > 0 such that, for all irrational ρ ∈ (0, 1), all n ∈ N and all
Ω ∈ ρ−1(Bn)

(B) ‖fn(Ω)− Fn(Ω)‖C2 ≤ Cλαn,
(C) |an + bnMn − cn| ≤ Canλ

αn,
(D) |Mn+1 − cn+1(1 + an+1an(Mn − 1))| ≤ Can+1anλ

αn.
where cn := c(−1)n. Here, we denote by Fn(Ω) the map Fn with parameters an, bn and Mn

associated to TΩ.

It is easy to see that the following holds.

Proposition 3.8 exp
(
−maxx∈[0,1] T

′′(x)

2 minx∈[0,1] T
′(x)

)
≤Mn ≤ exp

(
maxx∈[0,1] T

′′(x)

2 minx∈[0,1] T
′(x)

)
.
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Proposition 3.9 There exists δ > 0 such that anan+1 < 1 − δ, for sufficiently large
n ∈ N.

Proof. The estimate (C) implies that an ≤ cn−bnMn+Canλαn. If anan+1 ≥ 1− δ̄, δ̄ > 0,
for some n, then an ≤ cn − (1 − δ)Mn + Canλαn. It follows from Proposition 3.8 that
an+1an < 1 − δ, uniformly in n, if δ has been chosen small enough and n is sufficiently
large. QED

Proposition 3.10 There exists δ′ > 0 such that Mn−1
cn−1

> δ′, for sufficiently large n ∈ N.

Proof. The estimate (D) leads to the following recursion relation

Mn+2 − 1

cn+2 − 1
= 1− an+2an+1 + an+2an+1an+1an

Mn − 1

cn − 1
+O(λαn). (3.6)

Taking into account Proposition 3.9, this recursion relation implies that, for sufficiently
large n, the left hand side of (3.6) is bounded from below by a positive constant. QED

Estimate (B), Proposition 3.8, Proposition 3.10 and imply

Proposition 3.11 For all irrational ρ ∈ (0, 1) and sufficiently large n, f ′′n(z) is bounded,
bounded away from zero (uniformly in n and Ω ∈ ρ−1(Bn)) on [−1, 0] and negative if
cn < 1 and positive if cn > 1.

Proposition 3.12 There is ε > 0 such that if cn > 1 then an > ε, for sufficiently large
n.

Proof. If an is close to zero, then f ′n(0) is close to F ′n(0) = an + bnMn + (Mn − 1)an
which is close to cn > 1. Since, for sufficiently large n, the second derivative f ′′n(z) is close
to F ′′n (z) = 2(Mn − 1) (an+bnMn)+(Mn−1)an

(1+(1−Mn)z)3 , which is bounded by Proposition 3.8, there is
a point z? ∈ (−1, 0), such that fn(z?) = z?. This contradicts the fact that the rotation
number of TΩ is not pn/qn. The claim follows. QED

Let
F̄n(z) :=

an + cnz

1− vnz
, vn :=

cn − an − bn
bn

. (3.7)

Corollary 3.13 Under the assumptions of Proposition 3.7, if cn < 1, we have

‖fn(Ω)− F̄n(Ω)‖C2 ≤ C̄λαn. (3.8)

Proof. It follows from property (C) of Proposition 3.7 that

|bn(Mn − vn − 1))| ≤ Canλ
αn. (3.9)

Since bn ≥ anan+1, the claim follows. QED
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Proposition 3.14 For every Cr-smooth (r > 2) circle map T0 with a break of size c 6= 1
at the fixed point, there exist γ > 0 and N ∈ N such that, for all irrational ρ ∈ (0, 1), all
n ≥ N and all Ω ∈ ρ−1(Bn), |∆(n)

max(Ω)| > γ|∆(n−1)
max (Ω)|.

Proof. We will prove first that there exist constants C2 > 0 and N ∈ N such that,
for n ≥ N , there exists 0 ≤ j < kn+1 and an element ∆

(n)
qn−1+jqn

(Ω) ⊂ ∆
(n−1)
0 (Ω) of

partition Pn+1(Ω) satisfying |∆(n)
qn−1+jqn

(Ω)|/|∆(n−1)
0 (Ω)| > C2. If an > ε, then, since

∆
(n)
qn−1(Ω) = T

qn−1

Ω (∆
(n)
0 (Ω)), this inequality holds for j = 0 with C2 = e−V ε. If an ≤ ε,

due to Proposition 3.12, it suffices to consider the case cn < 1 only. Then bn ≥ 1 − εeV
and cn − ε < vn + 1 ≤ cn/(1 − εeV ). We note that parameters an, bn and vn in this
proof are associated to the map TΩ. If ε > 0 has been chosen such that εeV < 1/2, then
cn − 1 − ε < vn ≤ cn − 1 + 2cnεe

V . These estimates show that, if ε > 0 has been chosen
small enough, (F̄n(Ω))′(−1) = cn+anvn

(1+vn)2 and (F̄n(Ω))′(0) = cn+anvn are uniformly (in both
n and Ω) close to c−1

n and cn, respectively, and that (F̄n(Ω))′′(z) = 2vn
cn+anvn
(1−vnz)3 is uniformly

bounded on [−1, 0] and negative. Proposition 3.7 then implies that there exist C3 > 0,
C4 > 1 and N ∈ N such that |(fn(Ω))′(−1) − c−1

n | < C3ε, |(fn(Ω))′(0) − cn| < C3ε and
−C4 < (fn(Ω))′′(z) < −C−1

4 , for n ≥ N . Using the above estimates on (fn(Ω))′(−1) and
(fn(Ω))′′(z), we find that there is ε > 0 such that (fn(Ω))′(z) > c−1

n − C3ε − 3C4ε > 1
for z ∈ [−1,−1 + 3ε]. This implies that fn(Ω)(−1 + ε) > −1 + c−1

n ε − C3ε
2 − 3C4ε

2,
and thus fn(Ω)(−1 + ε) + 1 − ε > (c−1

n − 1)ε − C3ε
2 − 3C4ε

2 > 1
2
(c−1
n − 1)ε, if ε > 0

is small enough. If there is 0 ≤ j < kn+1 such that (fn(Ω))j(−1) ∈ [−1 + ε,−1 + 2ε]

and (fn(Ω))j+1(−1) ∈ [−1 + ε,−1 + 3ε], then |∆(n)
qn−1+jqn

(Ω)|/|∆(n−1)
0 (Ω)| > 1

2
(c−1
n − 1)ε.

If this is not the case, then either there is not j satisfying 0 ≤ j < kn+1, such that
(fn(Ω))j(−1) ∈ [−1+ ε,−1+2ε] or there is such j but (fn(Ω))j+1(−1) ∈ [−1+ ε,−1+3ε].
In the first case, let j be the maximal of all 0 ≤ i < kn+1, such that (fn(Ω))i(−1) < −1+ε.
Since (fn(Ω))j+1(−1) > −1 + 2ε, |∆(n)

qn−1+jqn
(Ω)|/|∆(n−1)

0 (Ω)| > ε. In the second case, the
same inequality holds since (fn(Ω))j+1(−1) > −1 + 3ε. This proves the claim from the
beginning of this proof.

The claim of the proposition now follows from the fact that the distortion of the ratio
of lengths D(J1,J2;T kΩ) :=

|TkΩ(J2)|
|TkΩ(J1)|

|J1|
|J2| of any two intervals J1,J2 ⊂ ∆

(n−1)
0 (Ω) under the

action of T kΩ, for k = 1, . . . , qn − 1, is bounded by

D(J1,J2;T kΩ) ≤ exp

(
maxx∈[0,1] T

′′(x)

minx∈[0,1] T ′(x)

k−1∑
i=0

|T iΩ(∆
(n−1)
0 (Ω))|

)
. (3.10)

Since the intervals ∆
(n−1)
i (Ω) = T iΩ(∆

(n−1)
0 (Ω)), for i = 0, 1, . . . , qn − 1, belong to the

same partition Pn(Ω), this distortion is uniformly bounded. It follows that ∆
(n−1)
max (Ω), for

n ≥ N , contains, as a subset, an element of partition Pn+1(Ω) whose length is bounded
from below by C2|∆(n−1)

max (Ω)|/ exp(
maxx∈[0,1] T

′′(x)

minx∈[0,1] T
′(x)

). QED
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Corollary 3.15 For every Cr-smooth (r > 2) circle map T0 with a break of size c 6= 1 at
a fixed point, there exist γ > 0 and, for all irrational ρ ∈ (0, 1), a constant K0 > 0 such
that, for all n ∈ N, |∆(n−1)

max (Ωρ)| > K0γ
n−1.

4 The set of rotation numbers

In this section, we define a set S ⊂ (0, 1)\Q of Lebesgue measure 1, for which Theo-
rem 1.1 holds.

Proposition 4.1 For any A ∈ R+, there are sets S
(o)
A , S

(e)
A ⊂ (0, 1)\Q of Lebesgue

measure 1, such that the following holds. For every ρ ∈ S
(o)
A , there is a subsequence

σ
(o)
n ∈ 2N− 1, n ∈ N, such that k

σ
(o)
n
≥ Aσ

(o)
n . For every ρ ∈ S(e)

A , there is a subsequence

σ
(e)
n ∈ 2N, n ∈ N, such that k

σ
(e)
n
≥ Aσ

(e)
n .

Proof. We will prove the second claim. The proof of the first claim is analogous. Let
Em,n ⊂ [0, 1] be the set of irrational ρ ∈ (0, 1) for which km ≥ An and let En := En,n. Since
the Gauss measure is an invariant measure for the Gauss transformation G : x 7→

{
1
x

}
,

µ(En) = µ(E1,n) =
1

ln 2

1/An∫
0

1

1 + x
dx =

1

ln 2
ln

(
1 +

1

An

)
. (4.1)

Since the sets E2n are independent and
∞∑
n=1

µ(E2n) = 1
ln 2

∞∑
n=1

ln
(
1 + 1

2An

)
� 1

ln 2

∞∑
n=1

1
2An

which diverges, by Borel-Cantelli lemma, the measure of the set of irrational numbers in
(0, 1) that belong to E2n for infinitely many n is

µ(lim sup
n→∞

E2n) = P

(
∞⋂
n=1

n⋃
k=1

E2k

)
= 1. (4.2)

In other words, the event that E2n occur for infinitely many n occurs µ-almost surely.
Since Lebesgue measure and Gauss measure are equivalent, this implies that such an
event occurs for Lebesgue almost all irrational numbers in (0, 1). QED

Proposition 4.2 There are sets S(o), S(e) ⊂ (0, 1)\Q of Lebesgue measure 1, such that
the following holds. For every ρ ∈ S(o) and every A ∈ N, there exists a subsequence
σ

(o)
n ∈ 2N− 1, n ∈ N, such that k

σ
(o)
n
≥ Aσ

(o)
n . For every ρ ∈ S(e) and every A ∈ N, there

exists a subsequence σ(e)
n ∈ 2N, n ∈ N, such that k

σ
(e)
n
≥ Aσ

(e)
n .
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Proof. We will prove the second claim. The proof of the first claim is analogous. Let
S(e) =

⋂
A∈N S

(e)
A . For every ρ ∈ S(e) and every A ∈ N, by Proposition 4.1, there exists

a subsequence σ(e)
n ∈ 2N, n ∈ N, such that k

σ
(e)
n
≥ Aσ

(e)
n . Moreover, the Lebesgue

measure ` of the complement `(S(e)C) = `(
⋃
A∈N S

(e)
A

C
) ≤

∑
A∈N `(S

(e)
A

C
) = 0 and, thus,

`(S(e)) = 1− `(S(e)C) = 1. QED

We define the set Snon as follows. If c < 1, then Snon := S(o); if c > 1, then Snon := S(e).
The set S, for which Theorem 1.1 holds, is defined as S := Srig∩Snon, where Srig is the set
introduced in Remark 2. Since both Srig and Snon have full Lebesgue measure in (0, 1),
so does S.

5 Proof of the main theorem

In the following, for a given ρ ∈ Snon and A ∈ N, σn is the sequence σ(o)
n , if c < 1, or

the sequence σ(e)
n , if c > 1, whose existence is guaranteed by Proposition 4.2.

Proposition 5.1 For every ε0 > 0, there exist N0, A0 ∈ N and C5 > 0 such that if
n ≥ N0, kn+1 ≥ A0 and cn < 1 then an ≤ C5(cn + ε0)

1
2
kn+1.

Proof. If kn+1 ≥ A0 then, since f jn(−1) ∈ [−1, 0), for 0 ≤ j ≤ kn+1, there must
be a point z? ∈ [−1, 0] such that fn(z?) − z? < A−1

0 . Proposition 3.11 then implies
that min{1 − bn, an} = min{fn(−1) + 1, fn(0)} = minz∈[−1,0] fn(z) − z < A−1

0 . Since,
1 − bn ≥ ane

−V , it follows that an < A−1
0 eV . As in the proof of Proposition 3.15, one

can show that for every ε0 > 0 there exist N0, A0 ∈ N such that |f ′n(−1) − c−1
n | < ε0/2

and |f ′n(0)− cn| < ε0/2, for n ≥ N0. Also, due to Proposition 3.11, there exist ε1, ε2 > 0
such that |f ′n(z)− (cn + ε0)−1| < ε1 for z ∈ [−1,−1 + ε2] and |f ′n(z)− (cn + ε0)| < ε1 for
z ∈ [−ε2, 0]. Furthermore, the total number of elements of the set {f jn(−1) : 1 ≤ j ≤ kn+1}
outside of these two intervals is bounded. Since by the Denjoy estimate (3.1) the intervals
∆

(n)
qn−1 and ∆

(n)
qn+1 are of the same order, we obtain an ≤ C5(cn + ε0)

1
2
kn+1 , for some C5 > 0.

QED

Proposition 5.2 For every Cr-smooth (r > 2) circle map T0 with a break of size c 6= 1
at the fixed point, there exist γ1 > 0, N1, A1 ∈ N and, for every ρ ∈ Snon, a constant
K1 > 0 such that, for every A ≥ A1 and every n ≥ N1, the following holds. There exists
0 < jn < qσn−1,

|∆(σn−2)
jn−qσn−2

(Ωσn−1)|, |∆(σn−2)
jn

(Ωσn−1)| > K1γ
σn
1 (5.1)

and
n−1⋃
m=1

Ξσm−1(Ωσm−1)
⋂(

∆
(σn−2)
jn−qσn−2

(Ωσn−1)
⋃

∆
(σn−2)
jn

(Ωσn−1)
)

= ∅. (5.2)
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Proof. By Corollary 3.15, for every ρ ∈ (0, 1)\Q there exists an interval ∆
(σn−2)
max (Ωρ) of

partition Pσn−1(Ωρ) and a constant K0 > 0 such that |∆(σn−2)
max (Ωρ)| > K0γ

σn−2. It follows
from Proposition 3.5, that |∆(σn−2)

max (Ωσn−1)| > (1 − 2C1aσn−1)K0γ
σn−2. Proposition 5.1

then implies that for some N1, A1 ∈ N, n ≥ N1 and kσn ≥ Aσn ≥ A1σn, aσn−1 < (4C1)−1.
The interval ∆

(σn−2)
max (Ωσn−1) belongs to an interval ∆

(σn−1−2)
i (Ωσn−1), for some 0 ≤

i < qσn−1−1, of partition Pσn−1−1(Ωσn−1) and, for all m < n − 1, an interval of partition
Pσm−1(Ωσn−1). It follows from Proposition 3.5 and Proposition 5.1 that, if N1 and A1 have
been chosen large enough, for all m < n, at most one of the points in Ξσm−1(Ωσm−1) be-
longs to ∆

(σn−1−2)
i (Ωσn−1). Since the number of intervals of partition Pσn−1(Ωσn−1) inside

∆
(σn−1−2)
i (Ωσn−1) is larger than or equal to kσn ≥ Aσn and since the neighboring intervals

of partition Pσn−1(Ωσn−1) are mapped one into another by the map T qσn−2

Ωσn−1
, it follows from

the Denjoy estimate (3.1) that, if N1 and A1 have been chosen large enough, there exists
0 < jn < qσn−1 and neighboring elements of partition Pσn−1(Ωσn−1), ∆

(σn−2)
jn−qσn−2

(Ωσn−1)

and ∆
(σn−2)
jn

(Ωσn−1) of length larger than 1
2
K0γ

σn−2e−(2n−1)V , that contain no points in
Ξσm−1(Ωσm−1), for any m = 1, . . . , n − 1. Since σn ≥ 2n − 1, the claim follows with
γ1 = γe−V and K1 = 2−1K0γ

−2. QED

In the following, we will identify the points on S1 as the corresponding points in the
interval [0, 1].

Proposition 5.3 For every Cr-smooth (r > 2) circle map T0 with a break of size c 6= 1
at the fixed point, there exist γ1 > 0, N1, A1 ∈ N and, for every ρ ∈ S, a constant K2 > 0
such that, for every A ≥ A1, the following holds. There is a sequence of Cr-smooth
functions φn : [0, 1]→ R satisfying the following conditions for n ≥ N1:

(i) φn(xim(Ωσm−1)) = 0, for m = N1, . . . , n+ 1 and 0 ≤ im < qσm−1,
(ii) φ′n(xim(Ωσm−1)) = 0, for m = N1, . . . , n + 1 and 0 < im < qσm−1 such that
in+1 6= jn+1,

(iii) φ′n(xjn+1(Ωσn+1−1)) = 1,
(iv) (φn)′−(1) = c2(φn)′+(0) > 0,
(v) ‖φn‖Cr ≤ K2γ

−(r−1)σn+1

1 .
Here jn+1 < qσn+1 is a natural number whose existence is guaranteed by Proposition 5.2.

Proof. To fix the orientation, we will prove the claim in the case c < 1 only. Proposi-
tion 5.2 guarantees that there exist γ1 > 0, N1, A1 ∈ N and, for every ρ ∈ Snon, a constant
K1 > 0 such that, for every A ≥ A1 and n ≥ N1, there is 0 < jn < qσn and elements
∆

(σn−2)
jn−qσn−2

(Ωσn−1), ∆
(σn−2)
jn

(Ωσn−1) of partition Pσn−1(Ωσn−1) satisfying (5.1) and (5.2). We
define φn piecewise as follows. For x ∈ ∆−∪∆+, where ∆− = ∆

(σn+1−2)
jn+1−qσn+1−2

(Ωσn+1−1) and
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∆+ = ∆
(σn+1−2)
jn+1

(Ωσn+1−1), we define

φn(x) :=
1

|∆−|r+1|∆+|r+1
(x− χ)|x− χ−|r+1|x− χ+|r+1, (5.3)

where χ = xjn+1(Ωσn+1−1), χ− = xjn+1−qσn+1−2(Ωσn+1−1), χ+ = xjn+1+qσn+1−2(Ωσn+1−1). For
x ∈ ∆L, where ∆L = ∆

(σn+1−2)
qσn+1−1−qσn+1−2

(Ωσn+1−1), we define

φn(x) :=
c2δ

|∆L|r+1
(x− 1)|x− χL|r+1, (5.4)

where χL = xqσn+1−1−qσn+1−2 and δ > 0 some sufficiently small constant. For x ∈ ∆R,
where ∆R = ∆

(σn+1−2)
0 (Ωσn+1−1) , we define

φn(x) :=
δ

|∆R|r+1
x|x− χR|r+1, (5.5)

where χR = xqσn+1−2 . For x ∈ [0, 1]\(∆R ∪ ∆− ∪ ∆+ ∪ ∆L), we define φn(x) := 0. It is
easy to see that φn is Cr-smooth on [0, 1]. It follows from the definition of φn and the
condition (5.2) that the conditions (i), (ii) and (iii) and (iv) are satisfied. Condition (5.1),
together with the fact that the intervals ∆− and ∆+ are of the same order due to the
Denjoy estimate (3.1), implies that the condition (v) is satisfied as well, for some K2 > 0
(depending on r and ρ). QED

Lemma 5.4 For every Cr-smooth (r > 2) circle map T0 with a break of size c 6= 1 at the
fixed point, there exist µ ∈ (0, 1) and N1, A1 ∈ N such that the following holds. For every
ρ ∈ Snon, there exists a constant K > 0 and for every A ≥ A1, there exists a Cr-smooth
circle map T̃0 with a break of size c at the fixed point such that, for every n ≥ N1,∣∣∣∣(T qσn−1

Ωσn−1

)′
+

(0)−
(
T̃
qσn−1

Ω̃σn−1

)′
+

(0)

∣∣∣∣ ≥ Kµσn . (5.6)

Proof. Proposition 5.3 guarantees that there exist γ1 > 0, N1, A1 ∈ N and, for every
ρ ∈ Snon, a constant K2 > 0 such that, for every A ≥ A1 there is a sequence σn and a
sequence of Cr-smooth functions φn : [0, 1] → R, n ≥ N1, satisfying conditions (i), (ii),
(iii), (iv) and (v).

Let T0 be given and let T [N1]
0 = T0. We will construct the map T̃0 as a limit of the

sequence of Cr-smooth maps T [n]
0 , with a break of size c at the fixed point, that satisfy

the condition (5.6), with n = m, for N1 ≤ m ≤ n.
In order to simplify the notation, the parameter values Ωm, associated to the map

T
[n]
0 , will be denoted by Ω

[n]
m . We also define T [n]

m := T
[n]

Ω
[n]
m

and the corresponding orbit
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x
[n]
i (Ω

[n]
m ) := (T

[n]
m )i(0). If the condition (5.6), with n = m, is satisfied for T̃0 = T

[n]
0 and

N1 ≤ m ≤ n + 1, then T
[n+1]
0 = T

[n]
0 and εn = 0. Otherwise, let T [n+1]

0 = T
[n]
0 + εnφn,

where εn = ε0µ
σn+1 , where µ ∈ (0, 1) will be chosen below.

Condition (i) of Proposition 5.3 guarantees that T [n]
0 defines a circle map with a fixed

point at 0 and condition (iv) guarantees that the size of the break at 0 is c. If µ > 0 is cho-
sen such that µ < γr−1

1 , it follows from condition (v) that ‖εnφn‖Cr ≤ ε0K2(µγ
−(r−1)
1 )σn+1

and, consequently, ‖
∑n

k=m εkφk‖Cr ≤ ε0K2(1 − µγ
−(r−1)
1 )−1. If ε0 > 0 has been chosen

small enough, then for all n ≥ N1, ‖T [n]
0 ‖Cr is uniformly (order of ε0) close to ‖T0‖Cr .

The sequence of functions T [n]
0 converges uniformly to a Cr- smooth function T̃0 with the

same property.
By construction (condition (i)), Ω

[n+1]
σm−1 = Ω

[n]
σm−1 and x[n+1]

i (Ω
[n+1]
σm−1) = x

[n]
i (Ω

[n]
σm−1), for

N1 ≤ m ≤ n+ 1. Therefore, we have((
T

[n+1]
σm−1

)qσm−1
)′

+
(0) =

qσm−1−1∏
i=0

(T
[n]
0 + εnφn)′+(x

[n]
i (Ω

[n]
σm−1)). (5.7)

It follows from (5.7) and condition (ii) of Proposition 5.3 that
((
T

[n+1]
σm−1

)qσm−1
)′

+
(0) =((

T
[n]
σm−1

)qσm−1
)′

+
(0), for N1 ≤ m ≤ n. Therefore, if T̃0 = T

[n]
0 satisfies the condition

(5.6), with n = m, for N1 ≤ m ≤ n, so does T̃0 = T
[n+1]
0 . Conditions (ii) and (iii) of

Proposition 5.3, together with (5.7), imply that((
T

[n+1]
σn+1−1

)qσn+1−1
)′

+
(0) =

((
T

[n]
σn+1−1

)qσn+1−1
)′

+
(0)

(
1 + εn(

T
[n]
0

)′
(x

[n]
jn+1

(Ω
[n]
σn+1−1))

+
εn(φn)′+(0)(
T

[n]
0

)′
+

(0)
+

ε2n(φn)′+(0)(
T

[n]
0

)′
(x

[n]
jn+1

(Ω
[n]
σn+1

))
(
T

[n]
0

)′
+

(0)

)
. (5.8)

Since the derivative of T [n]
0 is uniformly (order of ε0) close to the derivative of T0 (both

pointwise and in n), which is bounded away from zero, (T
[n]
0 )′(x) is uniformly (both in

x and in n) bounded away from zero. Furthermore, VarS1 ln(T
[n]
0 )′ is uniformly (in n)

close to V , and by the Denjoy lemma (3.1), | ln(T
[n]
σk−1)qσk−1| ≤ Vn, where Vn is uniformly

(in n) close to V . The equality (5.8), therefore, implies that the condition (5.6) is also
satisfied for n + 1 instead of n, if K is small enough, for T̃0 = T

[n+1]
0 . The limiting map

T̃0 = lim
n→∞

T
[n]
0 , therefore, satisfies (5.6) for all n ≥ N1. QED

Lemma 5.5 For every Cr-smooth (r > 2) circle map T0 with a break of size c 6= 1 at the
fixed point, there exists C6 > 0, such that, for all irrational ρ ∈ (0, 1), and all n ∈ N,

|(fn(Ωρ))
′
−(0)− (fn(Ωn))′−(0)| ≤ C6an. (5.9)
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Proof. It follows from the definition of the renormalizations (2.3) that

(fn(Ωρ))
′
−(0)− (fn(Ωn))′−(0) =

qn−1∏
i=0

(T0)′−(xi(Ωρ))−
qn−1∏
i=0

(T0)′−(xi(Ωn)). (5.10)

It follows from the mean value theorem and Proposition 3.5 that, for 1 ≤ i < qn,

|T ′0(xi(Ωρ))− T ′0(xi(Ωn)| = |T ′′0 (ξi)||Ii(Ωn)| ≤ max
x∈[0,1]

|T ′′0 (x)|C1an|∆(n−1)
i (Ωρ)|, (5.11)

where ξi ∈ Ii(Ωn). Therefore, we have

|(fn(Ωρ))
′
−(0)− (fn(Ωn))′−(0)| ≤

≤
qn−1∏
i=0

(T0)′−(xi(Ωρ))

exp

qn−1∑
i=0

max
x∈[0,1]

|T ′′0 (x)|

min
x∈[0,1]

T ′0(x)
C1an|∆(n−1)

i (Ωρ)|

− 1

 . (5.12)

Using the Denjoy estimate (3.1) and the fact that the intervals ∆
(n−1)
i (Ωρ), for 0 ≤ i < qn

belong to the same partition Pn(Ωρ), we obtain

|(fn(Ωρ))
′
−(0)− (fn(Ωn))′−(0)| ≤

exp

 max
x∈[0,1]

|T ′′0 (x)|

min
x∈[0,1]

T ′0(x)
C1an

− 1

 eV . (5.13)

Since ∆
(n)
0 (Ωρ) ⊂ ∆

(n−1)
qn (Ωρ) = T qnΩρ

(∆
(n−1)
0 (Ωρ)), one has an ≤ eV and, thus,

|(fn(Ωρ))
′
−(0)− (fn(Ωn))′−(0)| ≤

max
x∈[0,1]

|T ′′0 (x)|

min
x∈[0,1]

T ′0(x)
C1 exp

V +

max
x∈[0,1]

|T ′′0 (x)|

min
x∈[0,1]

T ′0(x)
C1e

V

 an.

(5.14)
The claim follows. QED

Lemma 5.6 For every Cr-smooth (r > 2) circle map T0 with a break of size c 6= 1 at the
fixed point, there exist µ ∈ (0, 1) and N2, A2 ∈ N such that the following holds. For every
ρ ∈ Snon, there exists a constant K3 > 0 and for every A ≥ A2, there exists a Cr-smooth
circle map T̃0 with a break of size c at the fixed point such that, for every n ≥ N2,∣∣∣(fσn−1(Ωρ))

′
− (0)− (f̃σn−1(Ω̃ρ))

′
−(0)

∣∣∣ ≥ K3µ
σn . (5.15)

Proof. It follows from Lemma 5.4 and Lemma 5.5 that there exist µ ∈ (0, 1) and constants
N1, A1 ∈ N and, for every ρ ∈ Snon, a constant K > 0 such that, for A ≥ A1, there exist
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a sequence σn (associated to ρ and A), a Cr-smooth circle map T̃0 with a break of size c
at the fixed point and a constant K4 > 0 such that, for n ≥ N1,∣∣∣(fσn−1(Ωρ))

′
− (0)− (f̃σn−1(Ω̃ρ))

′
−(0)

∣∣∣ ≥ K min{c2, c−2}µσn −K4(aσn−1 + ãσn−1) . (5.16)

By Proposition 5.1, for every ε0 > 0, there is a constant K5 > 0 such that, for
kσn ≥ Aσn, we have aσn−1, ãσn−1 ≤ K5(min{c, c−1}+ ε0)

1
2
kσn . If A ≥ A2 ≥ A1 and A2 has

been chosen such that
(min{c, c−1}+ ε0)

1
2
A2 < µ, (5.17)

there exists K3 > 0 and N2 ≥ N1 such that (5.15) holds for n ≥ N2. QED

Lemma 5.7 If T and T̃ are two Cr-smooth (r > 2) circle maps with breaks of size c at
0, with the same irrational rotation number ρ, which are conjugate to each other via a
C1-smooth diffeomorphism h which is C1+ε-smooth at 0, then there is a constant K6 > 0
such that

|(fn)′−(0)− (f̃n)′−(0)| ≤ K6a
ε
n. (5.18)

Proof. Since h is C1+ε at zero, for every x ∈ S1, (1.1) holds. Applying this identity to
the end points of intervals ∆

(n)
qn+1 and ∆

(n)
qn+1−qn associated to T , we find

|∆̃(n)
qn+1
| = |h′(0)||∆(n)

qn+1
|+O(|∆(n)

qn+1
|1+ε),

|∆̃(n)
qn+1−qn| = |h

′(0)||∆(n)
qn+1−qn|+O((|∆(n)

qn+1−qn|+ |∆
(n)
qn+1
|)1+ε).

(5.19)

Using the fact that ∆
(n)
qn+1 = T qn(∆

(n)
qn+1−qn) = T qn+1(∆

(n)
0 ) and the Denjoy estimate (3.1),

we find |∆(n)
qn+1| ≤ eV |∆(n)

0 | and e−V |∆
(n)
qn+1−qn| ≤ |∆

(n)
qn+1| ≤ eV |∆(n)

qn+1−qn|, and thus

|∆̃(n)
qn+1|

|∆(n)
qn+1 |

= |h′(0)|+ eεVO(|∆(n)
0 |ε) (5.20)

and
|∆̃(n)

qn+1−qn|
|∆(n)

qn+1−qn|
= |h′(0)|+ (1 + eV )1+εeεVO(|∆(n)

0 |ε). (5.21)

Dividing (5.20) by (5.21), we find that, for some constant K7 > 0,∣∣∣∣∣(T̃ qn)′(ζ̃)

(T qn)′(ζ)
− 1

∣∣∣∣∣ ≤ K7|∆(n)
0 |ε, (5.22)

for some ζ ∈ ∆
(n)
qn+1−qn and ζ̃ ∈ ∆̃

(n)
qn+1−qn . Since f

′′
n and f̃ ′′n are bounded by Proposition 3.11,

we obtain
|(fn)′−(0)− (f̃n)′−(0)| ≤ K8an +K7a

ε
n|∆

(n−1)
0 |ε, (5.23)
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for some K8 > 0. The claim follows. QED

Proof of Theorem 1.1. Part (i) of the claim holds for the set S defined in Section 4, as
follows from the results of [12] and [13] and the fact that Snon is of full Lebesgue measure.
To prove part (ii), let ε > 0. Let T0 be a Cr-smooth (r > 2) circle map with a break
of size c 6= 1 at the fixed point 0 and let N2, A2 ∈ N be constants whose existence is
guaranteed by Lemma 5.6. By the same lemma, there exist a constant µ ∈ (0, 1) and, for
every ρ ∈ S a constant K3 > 0 such that the following holds. For every A ≥ A2, there
exist a sequence σn and a circle map T̃0 with a break of size c at the fixed point 0 such
that the renormalizations of the corresponding maps T = T0 + Ωρ and T̃ = T̃0 + Ω̃ρ, with
rotation number ρ, satisfy (5.15), for n ≥ N2.

By part (i) of the claim, T and T̃ are C1-smoothly conjugate to each other via a
diffeomorphism h which satisfies h(0) = 0. Assume that h is C1+ε-smooth at 0. By
Lemma 5.7, there exists K6 > 0 such that,∣∣∣(fσn−1(Ωρ))

′
− (0)− (f̃σn−1(Ω̃ρ))

′
−(0)

∣∣∣ ≤ K6a
ε
σn−1 . (5.24)

This inequality, (5.15) and Proposition 5.1 imply that, for ε0 > 0 and some K9 > 0,

K3µ
σn ≤ K6a

ε
σn−1 ≤ K9(min{c, c−1}+ ε0)

1
2
εAσn . (5.25)

If A ≥ A3 and ε0 > 0 and A3 ≥ A2 have been chosen such that

(min{c, c−1}+ ε0)
1
2
εA3 < µ, (5.26)

for sufficiently large n, this leads to a contradiction. This proves part (ii) of the claim.
QED
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