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Abstract

We extend [BPK2] in order to study the linear response of free fermions
on the lattice within a (independently and identically distributed) random
potential to a macroscopic electric field that is time– and space–dependent.
We obtain the notion of a macroscopic AC–conductivity measure which only
results from the second principle of thermodynamics. The latter corresponds
here to the positivity of the heat production for cyclic processes on equilib-
rium states. Its Fourier transform is a continuous bounded function which is
naturally called (macroscopic) conductivity. We additionally derive Green–
Kubo relations involving time–correlations of bosonic fields coming from
current fluctuations in the system. This is reminiscent of non–commutative
central limit theorems.
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1 Introduction
Klein, Lenoble and Müller introduced in [KLM] the concept of a “conductivity
measure” µKLM for a system of non–interacting fermions subjected to a random
potential. They considered the Anderson tight–binding model in presence of a
time–dependent spatially homogeneous electric field E = Et that is adiabatically
switched on. Then they showed that the in–phase linear response current density
is, at any time t ∈ R, given by

J in
lin(t; E) =

∫
R
Êν eiνt µKLM(dν) , (1)

cf. [KLM, Eq. (2.14)]. Here, Ê is the Fourier transform of E and is compactly
supported. See also [BGKS] for further details on linear response theory of such
a model. The fermionic nature of charge carriers – electrons or holes in crystals –
was implemented by choosing the Fermi–Dirac distribution as the initial1 density

1This corresponds to t → −∞ in their approach.
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matrix of particles. A conductivity measure can be defined without the local-
ization assumption and at any positive temperature, see [KM]. Inspired by their
work, we propose here a notion of (macroscopic) conductivity measure based on
the second principle of thermodynamics which corresponds here to the positiv-
ity of the heat production for cyclic processes on equilibrium states. In fact, we
seek to get a rigorous microscopic description of the phenomenon of linear con-
ductivity from basic principles of thermodynamics (the second one) and quantum
mechanics, only.

The present paper belongs to a succession of works on Ohm and Joule’s laws
starting with [BPK1, BPK2]. Indeed, we mathematically define and analyze in
[BPK1] the heat production of the fermion system which is considered here. It is
a first preliminary step towards a mathematical description from thermal consid-
erations of transport properties of fermions in disordered media. Then, in [BPK2]
we derive Ohm and Joule’s laws at the microscopic scale. This second technical
step serves as a springboard to the results presented here. Note that in the second
paper so–called microscopic conductivity distributions are defined from micro-
scopic conductivity measures. The same construction can be done here to obtain
macroscopic conductivity distributions, whose real and imaginary parts satisfy
Kramers–Kronig relations. Such arguments are not performed in the present pa-
per because they are already explained in detail in [BPK2, Section 3.5]. The same
remark can be done for the derivation of Joule’s law in its original formulation
under macroscopic electric fields, see [BPK2, Section 4.5]. We present now the
mathematical framework we use and our results by only focusing on conductivity
measures and current fluctuations. For more details and additional information,
see Sections 2–4.

We consider the random two–parameter group {U(ω)
t,s }t≥s of unitary operators

on ℓ2(Zd) generated by the time–dependent Hamiltonian

∆
(A(t,·))
d + λVω ∈ B(ℓ2(Zd)) ,

where the parameter ω runs in a probability space and λVω is a random potential
with strength λ ∈ R+

0 (i.e., λ ≥ 0). Without electromagnetic potential, i.e., if
A ≡ 0, this Hamiltonian corresponds to the Anderson tight–binding model, just
as in [KLM, KM]. The vector potential A = A(t, x) ∈ C∞

0 (R × Rd;Rd) rep-
resents a time–dependent spatially inhomogeneous electromagnetic field which
is minimally coupled to (minus) the discrete Laplacian ∆d. We will use in the
following the Weyl (or temporal) gauge for the electromagnetic field. In contrast
with [KLM, KM], the electromagnetic field is supported in an arbitrarily large but
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bounded region of space and is switched off for times outside some finite interval
[t0, t1].

The family {U(ω)
t,s }t≥s of unitary operators on ℓ2(Zd) induces a random two–

parameter group {τ (ω)t,s }t≥s of Bogoliubov automorphisms of a CAR algebra U
associated with (non–relativistic) fermions in the cubic lattice Zd. Indeed, the
canonical anti–commutation relations (CAR) encode the Pauli exclusion princi-
ple. The C∗–algebra U corresponds to a system of (possibly) infinitely many
fermions which is infinitely extended. As initial state of the system at time t0 ∈ R,
we take the unique KMS state on U related to the (autonomous) dynamics for
A ≡ 0 and inverse temperature β ∈ R+ (i.e., β > 0). We then analyze this
fermion system, which is subjected to a time–dependent electric field, for all times
t ∈ R. However, for the sake of simplicity, in this introduction we present our
main results only for times t ≥ t1 when the electromagnetic field is switched off.

The produced heat up to times t ≥ t1 is almost surely equal to

Q (t) =

∫
Rd

ddx

∫ t

t0

ds1

∫ s1

t0

ds2 σ(s1 − s2) ⟨EA(s2, x), EA(s1, x)⟩ ≥ 0 (2)

at leading order, basically up to terms of order O(|EA|3 + |∇xEA| |EA|). In-
deed, Q (t) is even constant for t ≥ t1, as, per definition of t1, EA(s, x) vanishes
whenever s ≥ t1. Here,

EA(t, x) := −∂tA(t, x) , t ∈ R, x ∈ Rd ,

and σ : R → R is a deterministic continuous bounded function that can be made
explicit. Compare Equation (2) with [BPK2, Theorem 4.1 (Q), Theorem 5.12
(p)] at times t ≥ t1. As in [KM], no localization assumption is made. Observe
that (minus) the time–derivative of the vector potential A is the electric field EA

because we use the Weyl gauge. Thus, by interpreting∫ s1

t0

σ(s1 − s2)EA(s2, x)ds2

as the current density at time s1 and space position x ∈ Rd, σ can be seen as the
conductivity of the system. Hence, (2) is the energy delivered by the electric field
to the system in the form predicted by Joule and Ohm’s laws.

This interpretation is justified in Section 3 for all s1 ≥ t0. Indeed, by Theorem
3.4, (39) and (71), σ is the linear response coefficient associated with the current

4



density Jlin induced by a spatially homogeneous time–dependent electric field E :

Jlin(t) =

∫ t

t0

σ (t− s) Es ds , t ≥ t0 . (3)

This equation is nothing but Ohm’s law (1) written in time space.
Moreover, in Section 3.3 we show that σ is a time correlation function of Bose

fields Φfl(it) of current fluctuations it at time t ∈ R:

σ (t) = −4 Im ϱfl

(
Φfl (i0) Φfl

(∫ |t|

0

isds

))
. (4)

In particular, (3)–(4) yield Green–Kubo relations. Here, the self–adjoint (un-
bounded field) operators Φfl(it) generate Weyl operators eiΦfl(it) of a CCR algebra
of normal current fluctuations with respect to (w.r.t.) the initial state. ϱfl is an
appropriate regular state of this CCR algebra and the right hand side (r.h.s.) of
(4) is thus well–defined. This is reminiscent of non–commutative central limit
theorems.

It follows from the total heat production (2) that∫ ∞

t0

ds1

∫ s1

t0

ds2 σ(s1 − s2)Es2Es1 ≥ 0 (5)

for any arbitrary smooth compactly supported function E ∈ C∞
0 (R;R) satisfying

the so–called AC–condition ∫
R
Etdt = 0 . (6)

This condition follows from the fact that E is the derivative of a smooth function
with compact support. Under the form (5)–(6), the positivity of the heat produc-
tion can be used together with the Bochner–Schwartz theorem [RS2, Theorem
IX.10] to obtain the existence of a positive measure µAC of at most polynomial
growth such that∫ ∞

t0

ds1

∫ s1

t0

ds2 σ(s1 − s2)Es2Es1 =
∫
R\{0}

|Êν |2 µAC(dν) (7)

for all E ∈ C∞
0 (R;R) obeying (6), with Ê being the Fourier transform of E .

The measure µAC is naturally named in–phase AC–conductivity measure of
the fermion system as |Êν |2µAC(dν) is the heat production due to the component
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of frequency ν of the electric field, in accordance with Joule’s law in the AC–
regime. Its properties will be studied in a subsequent paper. For instance, we will
show that µAC(R\{0}) > 0, at least for large temperatures T = β−1 and small
randomness λ > 0.

To conclude, our main assertions are Theorems 3.1 (charge transport coef-
ficients), 3.4 (Ohm’s law), 3.6 (Green–Kubo relations and current fluctuations),
4.1 (Joule’s law) and 4.3 (AC–conductivity measure). This paper is organized as
follows:

• In Section 2 we define our model and highlight the relations between our
approach and [KLM, KM].

• We define in Section 3 a CCR algebra of fluctuations intimately related to
Ohm’s law.

• Section 4 states Joule’s law from which we deduce the existence of the
(macroscopic) AC–conductivity measure.

• Section 5 gathers technical proofs on which Sections 3–4 are based. The
arguments strongly use the results of [BPK1, BPK2].

Notation 1.1 (Generic constants)
To simplify notation, we denote by D any generic positive and finite constant.
These constants do not need to be the same from one statement to another.

2 Setup of the Problem
Up to the probability space, the mathematical setting of our study, including no-
tation, is taken from [BPK1, BPK2]. For the reader’s convenience and complete-
ness, we now briefly recall it and highlight the relations to the mathematical frame-
work of [KLM]. For further details we refer to [BPK1, BPK2].

2.1 Anderson Tight–Binding Model
The d–dimensional cubic lattice L := Zd (d ∈ N) represents the crystal and we
define Pf (L) ⊂ 2L to be the set of all finite subsets of L.

Disorder in the crystal is modeled by a random potential coming from a prob-
ability space (Ω,AΩ, aΩ) defined as follows: Let Ω := [−1, 1]L and Ωx, x ∈ L,
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be an arbitrary element of the Borel σ–algebra of the interval [−1, 1] w.r.t. the
usual metric topology. Then, AΩ is the σ–algebra generated by the cylinder sets∏

x∈L Ωx, where Ωx = [−1, 1] for all but finitely many x ∈ L. The measure aΩ is
the product measure

aΩ

(∏
x∈L

Ωx

)
:=
∏
x∈L

a0(Ωx) , (8)

where a0 is any fixed probability measure on the interval [−1, 1]. In other words,
the random variables are independently and identically distributed (i.i.d.). We
denote by E[ · ] the expectation value associated with aΩ. Note that the i.i.d.
property of the random variables is not essential for our results. We could take any
ergodic ensemble instead. In fact, the i.i.d. property is mainly used to simplify the
arguments of Section 4.3.

For any realization ω ∈ Ω, Vω ∈ B(ℓ2(L)) is the self–adjoint multiplication
operator with the function ω : L → [−1, 1]. Then, we consider the Anderson
tight–binding Hamiltonian (∆d + λVω) acting on the Hilbert space ℓ2(L), where
∆d ∈ B(ℓ2(L)) is (up to a minus sign) the usual d–dimensional discrete Laplacian
defined by

[∆d(ψ)](x) := 2dψ(x)−
∑

z∈L, |z|=1

ψ(x+ z) , x ∈ L, ψ ∈ ℓ2(L) . (9)

Note that we could add some constant (chemical) potential to the discrete Lapla-
cian without changing our proofs. We will use in particular the random unitary
group {U(ω,λ)

t }t∈R generated by the Hamiltonians (∆d + λVω) for ω ∈ Ω and
λ ∈ R+

0 :

U
(ω,λ)
t := exp(−it(∆d + λVω)) ∈ B(ℓ2(L)) , t ∈ R . (10)

This group defines our free one–particle dynamics, like in [KLM].

2.2 Coupling to Electromagnetic Fields
The electromagnetic potential is defined by a compactly supported potential

A ∈ C∞
0 =

∪
l∈R+

C∞
0 (R× [−l, l]d ; (Rd)∗) .

Here, (Rd)∗ is the set of one–forms2 on Rd that take values in R and A(t, x) ≡ 0
whenever x /∈ [−l, l]d and A ∈ C∞

0 (R× [−l, l]d ; (Rd)∗). Using any orthonormal
2In a strict sense, one should take the dual space of the tangent spaces T (Rd)x, x ∈ Rd.
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basis {ek}dk=1 of the Euclidian space Rd, we define the scalar product between two
fields E(1,2) ∈ (Rd)∗ as usual by

⟨
E(1), E(2)

⟩
:=

d∑
k=1

E(1) (ek)E
(2) (ek) . (11)

Since A ∈ C∞
0 , A(t, x) = 0 for all t ≤ t0, where t0 ∈ R is some initial time. We

use the Weyl gauge for the electromagnetic field and as a consequence,

EA(t, x) := −∂tA(t, x) , t ∈ R, x ∈ Rd , (12)

is the electric field associated with A.

Remark 2.1 To simplify notation, we identify in the sequel (Rd)∗ with Rd via the
canonical scalar product of Rd.

Since A is by assumption compactly supported, the corresponding electric
field satisfies the AC–condition∫ t

t0

EA(s, x)ds = 0 , x ∈ Rd , (13)

for sufficiently large times t ≥ t1 ≥ t0. From (13)

t1 := min

{
t ≥ t0 :

∫ t′

t0

EA(s, x)ds = 0 for all x ∈ Rd and t′ ≥ t

}
(14)

is the (arbitrary) time at which the electric field is turned off.
We consider without loss of generality (w.l.o.g.) negatively charged fermions.

Thus, using the (minimal) coupling of A ∈ C∞
0 to the discrete Laplacian −∆d,

the discrete time–dependent magnetic Laplacian is (up to a minus sign) the self–
adjoint operator

∆
(A)
d ≡ ∆

(A(t,·))
d ∈ B(ℓ2(L)) , t ∈ R ,

defined by

⟨ex,∆(A)
d ey⟩ = exp

(
−i
∫ 1

0

[A(t, αy + (1− α)x)] (y − x)dα

)
⟨ex,∆dey⟩ (15)
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for all t ∈ R and x, y ∈ L. Here, ⟨·, ·⟩ is the scalar product in ℓ2(L) and {ex}x∈L
is the canonical orthonormal basis ex(y) ≡ δx,y of ℓ2(L). In (15), αy + (1− α)x
and y − x are seen as elements of Rd.

Therefore, in presence of electromagnetic fields, the Anderson tight–binding
Hamiltonian (∆d+λVω) for ω ∈ Ω and λ ∈ R+

0 is replaced by the time–dependent
one (∆

(A)
d + λVω). As explained in [BPK1, Section 2.3], the interaction between

magnetic fields and electron spins is here neglected because such a term becomes
negligible for electromagnetic potentials slowly varying in space. This yields a
perturbed dynamics defined by the random two–parameter group {U(ω,λ,A)

t,s }t≥s of
unitary operators on ℓ2(L) which is the unique solution, for any ω ∈ Ω, λ ∈ R+

0

and A ∈ C∞
0 , of the non–autonomous evolution equation

∀s, t ∈ R, t ≥ s : ∂tU
(ω,λ,A)
t,s = −i(∆(A(t,·))

d + λVω)U
(ω,λ,A)
t,s , U(ω,λ,A)

s,s := 1 .
(16)

The physical situation considered here to investigate Ohm and Joule’s laws
is as follows: We start with a macroscopic bulk containing conducting fermions.
This is idealized by taking the one–particle Hilbert space ℓ2(L). Then, the heat
production or the conductivity is measured in a local region which is very small
w.r.t. the size of the bulk, but very large w.r.t. the lattice spacing of the crystal.
We implement this hierarchy of space scales by rescaling the vector potentials.
That means, for any l ∈ R+ and A ∈ C∞

0 , we consider the space–rescaled vector
potential

Al(t, x) := A(t, l−1x) , t ∈ R, x ∈ Rd . (17)

Then, to ensure that a macroscopic number of lattice sites is involved, we eventu-
ally perform the limit l → ∞. Indeed, the scaling factor l−1 used in (17) means,
at fixed l, that the space scale of the electric field (12) is infinitesimal w.r.t. the
macroscopic bulk (which is the whole space), whereas the lattice spacing gets in-
finitesimal w.r.t. the space scale of the vector potential when l → ∞. Furthermore,
Ohm’s law is a linear response to electric fields. Therefore, we also rescale the
strength of the electromagnetic potential Al by a parameter η ∈ R and eventually
take the limit η → 0. All together, this yields the random two–parameter group
{U(ω,λ,ηAl)

t,s }t≥s to be studied in the limit l → ∞, η → 0. For more discussions,
see [BPK2, Section 2.3].

Recall that in [KLM, KM] the authors use a time–dependent spatially homo-
geneous electric field that is adiabatically switched on. This situation is thus rather
different from our study where the electromagnetic field is supported in an arbi-
trarily large but bounded region of space and is switched off for times outside the
finite interval [t0, t1].
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2.3 Algebraic Approach
Although there is no interaction between fermions, we do not restrict our anal-
yses to the one–particle Hilbert space to study transport properties. Instead, our
approach is based on the algebraic formulation of fermion systems on lattices
because it makes the role played by many–fermion correlations due to the Pauli
exclusion principle, i.e., the antisymmetry of the many–body wave function, more
transparent:

• The positivity required for the existence of the in–phase AC–conductivity
measure is directly related to the passivity property of (thermal equilibrium)
states on the CAR algebra U defined below.

• The conductivity is naturally defined from current–current correlations, that
is, four–point correlation functions, in this framework.

• The algebraic formulation allows a clear link between transport properties
of fermion systems and the CCR algebra of current fluctuations. The latter
is related to non–commutative central limit theorems (see, e.g., [GVV]).

• Moreover, this approach can be naturally used to define conductivity mea-
sures for interacting fermions as well. This paper can thus be seen as a
preparation for such mathematical studies.

The CARC∗–algebra of the infinite system is denoted by U . We define annihi-
lation and creation operators of (spinless) fermions with wave functions ψ ∈ ℓ2(L)
by

a(ψ) :=
∑
x∈L

ψ(x)ax ∈ U , a∗(ψ) :=
∑
x∈L

ψ(x)a∗x ∈ U . (18)

Here, ax, a∗x, x ∈ L, and the identity 1 are generators of U and satisfy the canoni-
cal anti–commutation relations.

For all ω ∈ Ω and λ ∈ R+
0 , the free dynamics on U is defined by the unique

one–parameter strongly continuous group τ (ω,λ) := {τ (ω,λ)t }t∈R of (Bogoliubov)
automorphisms of U satisfying the condition

τ
(ω,λ)
t (a(ψ)) = a((U

(ω,λ)
t )∗(ψ)) , t ∈ R, ψ ∈ ℓ2(L) . (19)

See (10) and [BR2, Theorem 5.2.5].
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Similarly, in presence of electromagnetic potentials A ∈ C∞
0 the dynamics on

U is defined by the unique family {τ (ω,λ,A)
t,s }t≥s of random (Bogoliubov) automor-

phisms with

τ
(ω,λ,A)
t,s (a(ψ)) = a((U

(ω,λ,A)
t,s )∗(ψ)) , t ≥ s, ψ ∈ ℓ2(L) , (20)

for all ω ∈ Ω, λ ∈ R+
0 . See (16) and [BR2, Theorem 5.2.5]. The family

{τ (ω,λ,A)
t,s }t≥s is itself the solution of a non–autonomous evolution equation, see

[BPK1, Sections 5.2-5.3].
States on the C∗–algebra U are, by definition, continuous linear functionals

ρ ∈ U∗ which are normalized and positive, i.e., ρ(1) = 1 and ρ(A∗A) ≥ 0 for
all A ∈ U . As explained for instance in [BPK1, Section 2.5], the thermodynamic
equilibrium of the system at inverse temperature β ∈ R+ (i.e., β > 0) is described
by the unique (τ (ω,λ), β)–KMS state ϱ(β,ω,λ). See also [BR2, Example 5.3.2.] or
[AJP, Theorem 5.9]. The choice of KMS states as thermal equilibrium states is
sustained by the second principle of thermodynamics [PW]. See discussions of
Section 4. It is well–known that such states are stationary w.r.t. the dynamics, that
is,

ϱ(β,ω,λ) ◦ τ (ω,λ)t = ϱ(β,ω,λ) , β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R . (21)

Since A(t, x) = 0 for all t ≤ t0, the time evolution of the state of the system is
thus

ρ
(β,ω,λ,A)
t :=

{
ϱ(β,ω,λ) , t ≤ t0 ,

ϱ(β,ω,λ) ◦ τ (ω,λ,A)
t,t0 , t ≥ t0 .

(22)

This time–evolving state is quasi–free by construction for all times. Such quasi–
free states are uniquely characterized by bounded positive operators d ∈ B(ℓ2(L))
obeying 0 ≤ d ≤ 1. These operators are named symbols of the corresponding
states. The symbol of ϱ(β,ω,λ) is

d
(β,ω,λ)
fermi :=

1

1 + eβ(∆d+λVω)
∈ B(ℓ2(L)) . (23)

We infer from the definitions (16), (20) and (22) together with the evolution law
(16) that the symbol d(β,ω,λ,A)

t of the quasi–free state ρ(β,ω,λ,A)
t is the solution to

the Liouville equation

∀t ≥ t0 : ∂td
(β,ω,λ,A)
t = −i[∆(A)

d + λVω,d
(β,ω,λ,A)
t ] , d

(β,ω,λ,A)
t0 := d

(β,ω,λ)
fermi ,

(24)
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for every realization ω ∈ Ω, λ ∈ R+
0 and β ∈ R+. In [BGKS, KLM, KM] the

authors consider an evolution equation similar to (24) with t0 = −∞ and use the
expectation value of the velocity observable w.r.t. the trace per unit volume of
d
(β,ω,λ,A)
t ∈ B(ℓ2(L)) to define a current density. See, e.g., [KLM, Eqs. (2.5)–

(2.6)]. Spatially local perturbations A ∈ C∞
0 of the electromagnetic field do not

influence the mean velocity of an infinite system of particles. Thus, by contrast,
the electromagnetic perturbation considered in [BGKS, KLM, KM] is infinitely
extended as it is space–homogeneous. Indeed, w.r.t. the time–evolving density
operator d

(β,ω,λ,A)
t , the main quantities we analyze are not trace densities, but

rather the infinite volume limit of (finite volume) traces, see, e.g., (56) below. Note
however that, by considering space–homogeneous electromagnetic perturbations
Al in finite boxes Λl and the corresponding current densities, up to the different
convention on d

(β,ω,λ,A)
t for the initial condition, one would obtain in the limit

l → ∞ a notion of conductivity corresponding quite well to the one introduced
in [KLM, Eqs. (2.5)–(2.6)], even if this correspondence is not totally explicit and
the approaches are conceptually different. See also discussions around (38).

3 CCR Algebra of Fluctuations of Ohm’s Law
The study of classical (macroscopic) Ohm’s law for fermions within disordered
media leads us to consider a CCR C∗–algebra of current fluctuations. Exactly
like in [BPK2, Section 3], we only consider space–homogeneous (though time–
dependent) electric fields in the box

Λl := {(x1, . . . , xd) ∈ L : |x1|, . . . , |xd| ≤ l} ∈ Pf (L) (25)

with l ∈ R+. More precisely, let w⃗ := (w1, . . . , wd) ∈ Rd be any (normalized)
vector, A ∈ C∞

0 (R;R) and set Et := −∂tAt for all t ∈ R. Then, Ā ∈ C∞
0 is

defined to be the electromagnetic potential whose electric field equals Etw⃗ at time
t ∈ R for all x ∈ [−1, 1]d, and (0, 0, . . . , 0) for t ∈ R and x /∈ [−1, 1]d. See
(72)–(74) for more details. This choice yields rescaled electromagnetic potentials
ηĀl as defined by (17) for l ∈ R+ and η ∈ R.

3.1 Macroscopic Transport Coefficients
For any pair x := (x(1), x(2)) ∈ L2, we define the paramagnetic and diamagnetic
current observables Ix = I∗x and IAx = (IAx )

∗ for A ∈ C∞
0 at time t ∈ R by

Ix := −2 Im(a∗x(2)ax(1)) = i(a∗x(2)ax(1) − a∗x(1)ax(2)) (26)
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and

IAx := −2 Im
((

e−i
∫ 1
0 [A(t,αx(2)+(1−α)x(1))](x(2)−x(1))dα − 1

)
a∗x(2)ax(1)

)
. (27)

Here, I(x,y) is the observable related to the flow of negatively charged particles
from the lattice site x to the lattice site y or the current from y to x without ex-
ternal electromagnetic potential. IAx is the current observable corresponding to
the acceleration of charged particles induced by the electromagnetic field. See
[BPK2, Section 3.1] for more details. We also denote by

Px := a∗x(2)ax(1) + a∗x(1)ax(2) , x := (x(1), x(2)) ∈ L2 , (28)

the second–quantization of the adjacency matrix of the oriented graph containing
exactly the edges (x(2), x(1)) and (x(1), x(2)).

Now, for any β ∈ R+, ω ∈ Ω and λ ∈ R+
0 we define two important functions

associated with the observables Ix and Px:

(p) The paramagnetic transport coefficient σ(ω)
p ≡ σ

(β,ω,λ)
p is defined by

σ(ω)
p (x,y, t) :=

∫ t

0

ϱ(β,ω,λ)
(
i[Iy, τ

(ω,λ)
s (Ix)]

)
ds , x,y ∈ L2 , t ∈ R .

(29)

(d) The diamagnetic transport coefficient σ(ω)
d ≡ σ

(β,ω,λ)
d is defined by

σ
(ω)
d (x) := ϱ(β,ω,λ) (Px) , x ∈ L2 . (30)

As explained in [BPK2, Section 3.3], σ(ω)
p is related with a quantum current vis-

cosity whereas σ(ω)
d describes the ballistic movement of charged particles within

the electric field.
For large regions Λl ⊂ L, we then define the space–averaged paramagnetic

transport coefficient

t 7→ Ξ
(ω)
p,l (t) ≡ Ξ

(β,ω,λ)
p,l (t) ∈ B(Rd)

w.r.t. the canonical orthonormal basis {ek}dk=1 of the Euclidian space Rd by{
Ξ
(ω)
p,l (t)

}
k,q

:=
1

|Λl|
∑
x,y∈Λl

σ(ω)
p (x+ eq, x, y + ek, y, t) (31)
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for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , k, q ∈ {1, . . . , d} and t ∈ R. Similarly, the

space–averaged diamagnetic transport coefficient

Ξ
(ω)
d,l ≡ Ξ

(β,ω,λ)
d,l ∈ B(Rd)

corresponds, w.r.t. the canonical orthonormal basis {ek}dk=1, to the diagonal ma-
trix {

Ξ
(ω)
d,l

}
k,q

:=
δk,q
|Λl|

∑
x∈Λl

σ
(ω)
d (x+ ek, x) ∈ [−2, 2] . (32)

See [BPK2, Eq. (37), Theorem 3.1, Corollary 3.2] for details on the mathemati-
cal properties of these random transport coefficients. They are directly linked to
Ohm’s law as explained in [BPK2, Theorem 3.3] and it is natural to consider their
expectation values:

We define the deterministic paramagnetic transport coefficient

t 7→ Ξp (t) ≡ Ξ(β,λ)
p (t) ∈ B(Rd)

by
Ξp (t) := lim

l→∞
E
[
Ξ
(ω)
p,l (t)

]
(33)

for any β ∈ R+, λ ∈ R+
0 , k, q ∈ {1, . . . , d} and t ∈ R. This transport coefficient is

well–defined, see, e.g., Equation (146). Furthermore, the convergence is uniform
w.r.t. times t in compact sets. By [BPK2, Corollary 3.2 (i)-(ii) and (iv)], Ξp ∈
C(R;B−(Rd)) and Ξp(t) = Ξp(|t|) with Ξp(0) = 0. Here, B−(Rd) is the set of
negative linear operators on Rd. Analogously, we also introduce the deterministic
diamagnetic transport coefficient

Ξd ≡ Ξ
(β,λ)
d ∈ B(Rd)

defined, for any β ∈ R+ and λ ∈ R+
0 , by

Ξd := lim
l→∞

E
[
Ξ
(ω)
d,l

]
. (34)

Indeed, by translation invariance of the probability measure aΩ and the uniqueness
of the KMS states ρ(β,ω,λ), we even have, for all l > 0,

Ξd = E
[
Ξ
(ω)
d,l

]
.

By using the Akcoglu–Krengel ergodic theorem (cf. Theorem 5.4) we show
that the limits l → ∞ of Ξ(ω)

p,l and Ξ
(ω)
d,l converge almost surely to Ξp and Ξd:

14



Theorem 3.1 (Macroscopic charge transport coefficients)
Let β ∈ R+ and λ ∈ R+

0 . Then, there is a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of
full measure such that, for any ω ∈ Ω̃, one has:
(p) Paramagnetic charge transport coefficient: For all t ∈ R,

Ξp (t) = lim
l→∞

Ξ
(ω)
p,l (t) ∈ B−(Rd) .

The limit above is uniform for times t on compact sets.
(d) Diamagnetic charge transport coefficient:

Ξd = lim
l→∞

Ξ
(ω)
d,l ∈ B(Rd), {Ξd}k,k ∈ [−2, 2], k ∈ {1, . . . , d} .

Proof: (p) Take electric fields which equal w⃗ := (w1, . . . , wd) ∈ Rd at time
t ∈ R for all x ∈ [−1, 1]d and (0, 0, . . . , 0) for t ∈ R and x /∈ [−1, 1]d. Then,
the first assertion is a direct consequence of (31), (33), (121), Theorem 5.19 and
Lemma 5.22 combined with [BPK2, Lemma 5.2].

(d) is Corollary 5.7 (ii). Note additionally that the intersection of two measur-
able sets of full measure has full measure.

In [BPK2, Eq. (47)] we introduce the (linear) conductivity Σ
(ω)
l of the fermion

system in the box Λl from its paramagnetic and diamagnetic charge transport co-
efficients. Exactly in the same way, we define the macroscopic conductivity Σ as
follows:

Definition 3.2 (Macroscopic conductivity)
For β ∈ R+ and λ ∈ R+

0 , the macroscopic conductivity is the map

t 7→ Σ (t) ≡ Σ(β,λ) (t) :=

{
0 , t ≤ 0 .
Ξd +Ξp (t) , t ≥ 0 .

Indeed, by Theorem 3.1, the local conductivity Σ
(ω)
l defined by [BPK2, Eq. (47)]

converges almost surely to the macroscopic conductivity Σ, as l → ∞.

Remark 3.3 (Current viscosity)
For β ∈ R+, λ ∈ R+

0 and t ∈ R, the quantity

V (t) := (Ξd)
−1 ∂tΞp (t) ∈ B(Rd)

defines a macroscopic current viscosity, similar to [BPK2, Eq. (40)].
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3.2 Classical Ohm’s Law
For any l, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 , η ∈ R, w⃗ ∈ Rd and A ∈ C∞
0 (R;R), the

current density due to the space–homogeneous electric perturbation E in the box
Λl is the sum of three current densities defined from (26)–(27):

(th) The thermal current density

J(ω,l)th ≡ J(β,ω,λ,l)th ∈ Rd

at equilibrium inside the box Λl is defined, for any k ∈ {1, . . . , d}, by{
J(ω,l)th

}
k
:= |Λl|−1

∑
x∈Λl

ϱ(β,ω,λ)(I(x+ek,x)) . (35)

(p) The paramagnetic current density is the map

t 7→ J(ω,ηĀl)
p (t) ≡ J(β,ω,λ,ηĀl)

p (t) ∈ Rd

defined by the space average of the current increment vector inside the box
Λl at times t ≥ t0, that is for any k ∈ {1, . . . , d},{
J(ω,ηĀl)
p (t)

}
k
:= |Λl|−1

∑
x∈Λl

ρ
(β,ω,λ,ηĀl)
t

(
I(x+ek,x)

)
− ϱ(β,ω,λ)

(
I(x+ek,x)

)
.

(36)

(d) The diamagnetic (or ballistic) current density

t 7→ J(ω,ηĀl)
d (t) ≡ J(β,ω,λ,ηĀl)

d (t) ∈ Rd

is defined analogously, for any t ≥ t0 and k ∈ {1, . . . , d}, by{
J(ω,ηĀl)
d (t)

}
k
:= |Λl|−1

∑
x∈Λl

ρ
(β,ω,λ,ηĀl)
t (IηĀl

(x+ek,x)
) . (37)

Thermal currents are due to the space inhomogeneity of the fermion system for
λ ∈ R+. The paramagnetic current density is only related to the change of in-
ternal state ρ(β,ω,λ,A)

t produced by the electromagnetic field. We show in [BPK2,
Theorem 4.1] that it carries the paramagnetic energy increment defined in Sec-
tion 4.1. The diamagnetic current density corresponds to a raw ballistic flow of
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charged particles caused by the electric field. It yields the diamagnetic energy
again defined in Section 4.1. Paramagnetic and diamagnetic currents correspond
to different physical phenomena. See [BPK2, Sections 3.4-3.5, 4.4] for more de-
tails.

In order to compare the objects we study in the present paper with those of
[KLM] we rewrite the current densities in terms of the one–particle Hilbert space
ℓ2(L). Indeed, by using the time–evolving symbols d

(β,ω,λ,ηĀl)
t ∈ B(ℓ2(L)) of

the quasi–free state ρ(β,ω,λ,ηĀl)
t , the (full) current density on the direction ek, k ∈

{1, . . . , d}, can be seen as a trace on the one–particle Hilbert space ℓ2(L) for every
l ∈ R+: {

J(ω,l)th + J(ω,ηĀl)
p (t) + J(ω,ηĀl)

d (t)
}
k

= − |Λl|−1 Trℓ2(L)

[
d
(β,ω,λ,ηĀl)
t Pli[∆

(ηĀl)
d , Xk]Pl

]
+O(l−1) , (38)

uniformly w.r.t. all parameters. Here, for any l ∈ R+, Pl ∈ B(ℓ2(L)) is the
orthogonal projector with range lin{ex : x ∈ Λl}, i.e., the multiplication operator
with the characteristic function of the box Λl. For any k ∈ {1, . . . , d}, Xk is the
(unbounded) multiplication operator on ℓ2(L) with the kth space component:

Xk(ψ)(x1, . . . , xd) := xkψ(x1, . . . , xd)

for all ψ ∈ ℓ2(L) in the domain of definition of Xk. The term of order O(l−1) in
(38) results from the existence of O(ld−1) points x ∈ Λl such that x + ek /∈ Λl.
Therefore, by (38), the full current density can be seen as a kind of density of
trace of a velocity operator on the one–particle space ℓ2(L) like in [KLM, Eq.
(2.6)]. However, as compared with [KLM, KM], the density operator d(β,ω,λ,ηĀl)

t

depends on the size of the box in our formulation.
By [BPK2, Theorem 3.3], the current density behaves, at small |η| and uni-

formly w.r.t. the size of the box, linearly w.r.t. the parameter η: For any w⃗ ∈ Rd

and A ∈ C∞
0 (R;R), there is a strictly positive number η0 ∈ R+ such that, for

|η| ∈ [0, η0],

J(ω,ηĀl)
p (t) = ηJ

(ω,A)
p,l (t) +O

(
η2
)
, J

(ω,A)
p,l (t) = O (1) ,

J(ω,ηĀl)
d (t) = ηJ

(ω,A)
d,l (t) +O

(
η2
)
, J

(ω,A)
d,l (t) = O (1) ,

uniformly for l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and t ≥ t0.
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The Rd–valued linear coefficients

J
(ω,A)
p,l ≡ J

(β,ω,λ,w⃗,A)
p,l and J

(ω,A)
d,l ≡ J

(β,ω,λ,w⃗,A)
d,l

of the paramagnetic and diamagnetic current densities, respectively, become de-
terministic for large boxes. They are directly related to the charge transport coef-
ficients Ξp and Ξd via Ohm’s law:

Theorem 3.4 (Classical Ohm’s law)
Let β ∈ R+ and λ ∈ R+

0 . Then, there is a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of
full measure such that, for any ω ∈ Ω̃, w⃗ ∈ Rd, A ∈ C∞

0 (R;R) and t ≥ t0, the
following assertions hold true:
(th) Thermal current density:

lim
l→∞

J(ω,l)th = (0, . . . , 0) .

(p) Paramagnetic current density:

lim
l→∞

J
(ω,A)
p,l (t) = lim

l→∞

(
∂ηJ(ω,ηĀl)

p (t)
∣∣∣
η=0

)
=

∫ t

t0

(Ξp (t− s) w⃗) Esds .

(d) Diamagnetic current density:

lim
l→∞

J
(ω,A)
d,l (t) = lim

l→∞

(
∂ηJ(ω,ηĀl)

d (t)
∣∣∣
η=0

)
= (Ξdw⃗)

∫ t

t0

Esds .

Proof: (th) is Corollary 5.7 (th). Assertions (p) and (d) are deduced from Theo-
rem 3.1, [BPK2, Eqs (44)-(45)] and Lebesgue’s dominated convergence theorem.
Note that any countable intersection of measurable sets of full measure has full
measure.

Exactly like [BPK2, Theorem 3.3], Theorem 3.4 can be extended to macroscopi-
cally space–inhomogeneous electromagnetic fields, that is, for all space–rescaled
vector potentials Al (17) with A ∈ C∞

0 , by exactly the same methods as in the
proof of Theorem 4.1. We refrain from doing it at this point, for technical sim-
plicity. Such a result can indeed be deduced from Theorem 4.1, see Equations
(61)–(62).

Therefore, for any β ∈ R+, λ ∈ R+
0 and A ∈ C∞

0 (R;R), the full current den-
sity linear response Jlin ≡ J

(β,λ,A)
lin of the infinite volume fermion system equals

Jlin(t) =

∫ t

−∞
(Σ (t− s) w⃗) Es ds , t ∈ R . (39)
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Moreover, Jlin is the sum of paramagnetic and diamagnetic current densities. Such
a decomposition of the current is well–known in theoretical physics, see, e.g.,
[GV, Eq. (A2.14)]. For a discussion on the physical meaning of the paramagnetic
and diamagnetic components of the current, in particular in which concerns heat
production, we refere to [BPK2, Section 3.5].

3.3 Green–Kubo Relations and CCR Algebra of Current Fluc-
tuations

For every (lattice translation) x ∈ L, the condition

χx(ay) = ay+x , y ∈ L ,

uniquely defines a ∗–automorphism χx of the CARC∗–algebra U . For any l ∈ R+

and B ∈ U , set

F(l) (B) :=
1

|Λl|1/2
∑
x∈Λl

{
χx (B)− ϱ(β,ω,λ) (χx (B))1

}
. (40)

We name it the fluctuation observable of the element B ∈ U .
By Theorem 3.1 and Lebesgue’s dominated convergence theorem together

with Equations (29), (31) and (33), one obtains Green–Kubo relations: For any
β ∈ R+, λ ∈ R+

0 , t ∈ R and k, q ∈ {1, . . . , d},

{Ξp (t)}k,q =
∫ t

0

lim
l→∞

E
[
ϱ(β,ω,λ)

(
i
[
F(l)(I(ek,0)),F

(l)(τ (ω,λ)s (I(eq ,0)))
])]

ds (41)

with the current observable I(x,y) defined by (26). See also [BPK2, Eq. (46)] and
Theorem 3.5 which ensures the existence of the limit integrand. It is therefore
natural to introduce the so–called CCR C∗–algebra of current fluctuations, which
is reminiscent of non–commutative central limit theorems (see, e.g., [GVV]).

To this end, we define the linear subspace

I := lin
{
Im(a∗ (ψ1) a (ψ2)) : ψ1, ψ2 ∈ ℓ1(L) ⊂ ℓ2(L)

}
⊂ U , (42)

which is the linear hull (lin) of short range bond currents. As explained in [BPK2,
Section 5.1.2], it is an invariant subspace of the one–parameter group τ (ω,λ) for
any ω ∈ Ω and λ ∈ R+

0 . We define from I a pre–Hilbert space Ȟfl of current
fluctuations by using the following positive sesquilinear form ⟨·, ·⟩I :
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Theorem 3.5 (Positive sesquilinear form from current fluctuations)
Let β ∈ R+ and λ ∈ R+

0 . Then, there is a measurable set Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of full
measure such that, for any ω ∈ Ω̃, the limit

⟨I, I ′⟩I = lim
l→∞

ϱ(β,ω,λ)
(
F(l) (I)∗ F(l) (I ′)

)
, I, I ′ ∈ I ,

exists and does not depend on ω ∈ Ω̃.

Proof: See Theorem 5.26.

Because of the Cauchy–Schwarz inequality for ⟨·, ·⟩I , the set

I0 := {I ∈ I : ⟨I, I⟩I = 0}

is a subspace of I and the quotient Ȟfl := I/I0 is a pre–Hilbert space w.r.t. to the
(well–defined) scalar product

⟨[I], [I ′]⟩Ȟfl
:= ⟨I, I ′⟩I , [I], [I ′] ∈ Ȟfl .

Note that I0 ̸= I, in general. Observe also that I0 is an invariant subspace of
τ (ω,λ) because of (21). In particular, for any t ∈ R,

[τ
(ω,λ)
t (I)] = [τ

(ω,λ)
t (I ′)] , I, I ′ ∈ [I] ∈ Ȟfl .

Therefore, by Theorem 5.27, the dynamics defined by τ (ω,λ) on U induces a uni-
tary time evolution on the Hilbert space Hfl, the completion of Ȟfl w.r.t. the scalar
product ⟨·, ·⟩Ȟfl

: Let β ∈ R+ and λ ∈ R+
0 . Then, there is a measurable set

Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of full measure such that, for any ω ∈ Ω̃, there is a unique
strongly continuous one–parameter unitary group {V(ω,λ)

t }t∈R on the Hilbert space
Hfl obeying, for any t ∈ R,

V
(ω,λ)
t ([I]) = [τ

(ω,λ)
t (I)] , [I] ∈ Ȟfl . (43)

In Section 5.5.3 another construction is considered for an one–parameter unitary
group {V̄(λ)

t }t∈R that has similar properties but does not depend on ω. It is not
given here for the sake of technical simplicity.

We define next a non–degenerate symplectic bilinear form s ≡ s(β,λ) on Ȟfl

(seen as a real vector space) by

s ([I], [I ′]) := Im⟨[I], [I ′]⟩Ȟfl
, [I], [I ′] ∈ Ȟfl . (44)
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Let
W ≡ W(β,λ) ≡ W

(
Ȟfl, s

)
be the CCR algebra over the symplectic space

(
Ȟfl, s

)
, i.e., the C∗–algebra gen-

erated by the Weyl operators W ([I]), [I] ∈ Ȟfl, fulfilling (the Weyl form of) the
canonical commutation relations

W ([I])W ([I ′]) = e−
i
2
s([I],[I′])W ([I] + [I ′]) , [I], [I ′] ∈ Ȟfl . (45)

See, e.g., [BR2, Section 5.2.2.2.] for more details. Because of Remark 3.7 we
name the space W the algebra of current fluctuations of the system at inverse
temperature β ∈ R+ and strength λ ∈ R+

0 of disorder.
Take any regular state ρ on the C∗–algebra W . An example of such a state is

the so–called Fock state, uniquely defined by

ϱ
(β,λ)
Fock (W ([I])) = G

(β,λ)
Fock ([I]) := e

− 1
4
∥[I]∥2Ȟfl , [I] ∈ Ȟfl ,

see [BR2, Section 5.2.3.]. Let (Hρ, πρ,Ψρ) be the GNS representation of W w.r.t.
the state ρ. Then, for any [I] ∈ Ȟfl, there exists a Bose field Φ ([I]) – a self–adjoint
operator affiliated with the von Neumann algebra πρ (W)′′ – such that

πρ (W ([I])) = exp (iΦ ([I])) , [I] ∈ Ȟfl . (46)

Assume additionally that

Ψρ ∈ Dom (Φ ([I])∞) , [I] ∈ Ȟfl . (47)

This assumption is for instance satisfied by the Fock state ϱ(β,λ)Fock .
Now, by Equations (41) and (43)–(44) together with Theorem 3.5, observe

that

{Ξp (t)}k,q = −2s

(
[Iek,0],

∫ t

0

V(ω,λ)
s ([Ieq ,0])ds

)
(48)

for any ω ∈ Ω̃, t ∈ R and k, q ∈ {1, . . . , d}. Using this last assertion together
with (45)–(47) we then arrive at the equality

{Ξp (t)}k,q = −4 Im

⟨
Ψρ,Φ ([Iek,0]) Φ

(∫ t

0

V(ω,λ)
s ([Ieq ,0])ds

)
Ψρ

⟩
Hρ

for ω ∈ Ω̃, t ∈ R and all k, q ∈ {1, . . . , d}. In particular, by Theorem 3.4 (p), we
can rewrite the Green–Kubo relations for the paramagnetic current density at any
time in terms of time–correlations of the Bose fields Φ defined above:
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Theorem 3.6 (Green–Kubo relations)
Let β ∈ R+ and λ ∈ R+

0 . Then, there is a measurable set Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of
full measure such that, for any w⃗ := (w1, . . . , wd) ∈ Rd, A ∈ C∞

0 (R;R), t ≥ t0,
ω ∈ Ω̃ and k ∈ {1, . . . , d},

lim
l→∞

{
J
(ω,A)
p,l (t)

}
k

= −4 Im

∫ t

t0

d∑
q=1

⟨
Ψρ,Φ ([Iek,0]) Φ

(∫ t−s1

0

V(ω,λ)
s2

([Ieq ,0])ds2

)
Ψρ

⟩
Hρ

wqEs1ds1 .

By using additionally the i.i.d. property of the random variables, one can
simplify this last equation to obtain, almost surely, that

lim
l→∞

J
(ω,A)
p,l (t)

= −4w⃗ Im

∫ t

t0

⟨
Ψρ,Φ ([Ie1,0]) Φ

(∫ t−s1

0

V(ω,λ)
s2

([Ie1,0])ds2

)
Ψρ

⟩
Hρ

Es1 ds1 .

See Equation (67) below.

Remark 3.7 (Non–commutative central limit theorems)
By analogy with previous results on non–commutative central limit theorems (see,
e.g., [GVV]), we conjecture that the generating functional

G
(β,λ)
fl ([I]) := lim

l→∞
ϱ(β,ω,λ)

(
exp

(
iF(l) (I)

))
, [I] ∈ Ȟfl ,

exists for all ω in a set Ω̃ ⊂ Ω of full measure, is independent of ω in this set, and
uniquely defines a quasi–free state ϱ(β,λ)fl on W with

ϱ
(β,λ)
fl (W ([I])) = G

(β,λ)
fl ([I]) , [I] ∈ Ȟfl .

From the physical point of view, the natural choice of the regular state in Theorem
3.6 should be ϱ(β,λ)fl .

4 AC–Conductivity Measure From Joule’s Law
There is however one important property of the equilibrium states which is related
to the concept of the work. Namely for such states Lh(ω) = 0 [i.e., the energy

22



transmitted to the system is positive,] provided the final external conditions coin-
cide with the original ones: hT = 0. This fact is strongly related to the second
principle of thermodynamics saying that systems in the equilibrium are unable to
perform mechanical work in cyclic processes. We describe this property saying
that the equilibrium states are passive.

[Pusz–Woronowicz, 1978]

As discussed in the Introduction, our derivation of an AC–conductivity mea-
sure is based on the second principle of thermodynamics in the above form (cf.
[PW, p. 276]). It dovetails with the positivity of the heat production for cyclic
processes on equilibrium states. Indeed, we analyze in [BPK1] the heat produc-
tion of the fermion system considered here by using Araki’s relative entropy for
states of infinitely extended systems. We verify in particular the first law of ther-
modynamics by identifying the heat production with an energy increment defined
below, see [BPK1, Theorem 3.2]. As originally observed by J. P. Joule, in con-
ducting media, electric energy is always lost in form of heat. This is (part of)
the celebrated Joule’s law of (classical) electricity theory. It corresponds to the
passivity of equilibrium states, which is proven for KMS states in [PW, Theorem
1.2]. It follows from Joule’s law that the in–phase paramagnetic conductivity is the
kernel of a positive quadratic form on the space of smooth, compactly supported
functions satisfying an AC–condition. Recall that the latter is related to cyclic
electromagnetic processes. Together with the Bochner–Schwartz theorem [RS2,
Theorem IX.10], it in turn yields the existence of the AC–conductivity measure.

We thus need to prove Joule’s law, as it is done for microscopic electric fields
in [BPK2, Theorem 4.1]. It is an important result of this paper because we seek to
get a rigorous microscopic description of the phenomenon of linear conductivity
from basic principles of thermodynamics and quantum mechanics, only. To this
end we start by introducing energy densities, in particular the heat production
density.

4.1 Energy Densities
For any L ∈ R+, the internal energy observable in the box ΛL (25) is defined by

H
(ω,λ)
L :=

∑
x,y∈ΛL

⟨ex, (∆d + λVω)ey⟩a∗xay ∈ U . (49)
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When the electromagnetic field is switched on, i.e., for t ≥ t0, the (time–dependent)
total energy observable in the box ΛL is then equal to H(ω,λ)

L +WA
t , where, for

any A ∈ C∞
0 and t ∈ R,

WA
t :=

∑
x,y∈ΛL

⟨ex, (∆(A)
d −∆d)ey⟩a∗xay ∈ U (50)

is the electromagnetic potential energy observable.
Like in [BPK2, Section 4], we now define below four sorts of energy associ-

ated with the fermion system for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and A ∈ C∞

0 :

(Q) The internal energy increment S(ω,A) ≡ S(β,ω,λ,A) is a map from R to R+
0

defined by

S(ω,A) (t) := lim
L→∞

{
ρ
(β,ω,λ,A)
t (H

(ω,λ)
L )− ϱ(β,ω,λ)(H

(ω,λ)
L )

}
. (51)

It takes positive finite values because of [BPK1, Theorem 3.2].

(P) The electromagnetic potential energy (increment) P(ω,A) ≡ P(β,ω,λ,A) is a
map from R to R defined by

P(ω,A) (t) := ρ
(β,ω,λ,A)
t (WA

t ) = ρ
(β,ω,λ,A)
t (WA

t )− ϱ(β,ω,λ)(WA
t0
) . (52)

(p) The paramagnetic energy increment J(ω,A)
p ≡ I

(β,ω,λ,A)
p is the map from R

to R defined by

I(ω,A)
p (t) := lim

L→∞

{
ρ
(β,ω,λ,A)
t (H

(ω,λ)
L +WA

t )− ϱ(β,ω,λ)(H
(ω,λ)
L +WA

t )
}
.

(53)

(d) The diamagnetic energy (increment) I(ω,A)
d ≡ I

(β,ω,λ,A)
d is the map from R

to R defined by

I
(ω,A)
d (t) := ϱ(β,ω,λ)(WA

t ) = ϱ(β,ω,λ)(WA
t )− ϱ(β,ω,λ)(WA

t0
) . (54)

In other words, P(ω,A) and I
(ω,A)
d are the electromagnetic potential energy of the

fermion system in the internal state ρ(β,ω,λ,A)
t and thermal equilibrium state ϱ(β,ω,λ),

respectively. S(ω,A) represents the increase of internal energy, while J
(ω,A)
p is the

part of electromagnetic work implying a change of the internal state of the system.
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Note that the limits (51) and (53) exist at all times because the increase of total
energy of the infinite system equals

S(ω,A) (t) +P(ω,A) (t) = I(ω,A)
p (t) + I

(ω,A)
d (t) . (55)

The increase of total energy is shown in [BPK1, Theorem 5.8] to be the work
performed by the electric field. See also [BPK2, Sections 4.2-4.3] for more details.

By using the time–evolving symbols d(β,ω,λ,A)
t ∈ B(ℓ2(L)), all energy incre-

ments can be seen as limits of traces on the one–particle Hilbert space ℓ2(L). For
instance,

I(ω,A)
p (t) = lim

L→∞
Trℓ2(L)

[
(d

(β,ω,λ,A)
t − d

(β,ω,λ,A)
t0 )PL(∆

(A)
d + λVω)PL

]
, (56)

where, for any L ∈ R+, PL ∈ B(ℓ2(L)) is the orthogonal projector with range
lin{ex : x ∈ ΛL}, i.e., the multiplication operator with the characteristic function
of the box ΛL.

Observe that the energies

P(ω,ηAl), I(ω,ηAl)
p (t) , I

(ω,ηAl)
d (t) ,

are all of order O(η2ld), by [BPK2, Theorem 4.1]. This can physically be under-
stood by the fact that, by classical electrodynamics, the energy carried by elec-
tromagnetic fields are proportional to their L2–norms. These are also of order
O(η2ld) in the case of a potential of the form ηAl. As a consequence, for any
β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and A ∈ C∞
0 , we define four energy densities:

(Q) The heat production (or internal energy) density s ≡ s(β,ω,λ,A) is a map
from R to R+

0 defined by

s (t) := lim
(η,l−1)→(0,0)

{(
η2 |Λl|

)−1
S(ω,ηAl) (t)

}
. (57)

This map has positive finite value because of [BPK1, Theorem 3.2].

(P) The (electromagnetic) potential energy density p ≡ p(β,ω,λ,A) is a map from
R to R defined by

p (t) := lim
η→0

lim
l→∞

{(
η2 |Λl|

)−1
P(ω,ηAl) (t)

}
. (58)
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(p) The paramagnetic energy density ip ≡ i
(β,ω,λ,A)
p is a map from R to R

defined by

ip (t) := lim
(η,l−1)→(0,0)

{(
η2 |Λl|

)−1
I(ω,ηAl)
p (t)

}
. (59)

(d) The diamagnetic energy density id ≡ i
(β,ω,λ,A)
d a map from R to R defined

by
id (t) := lim

η→0
lim
l→∞

{(
η2 |Λl|

)−1
I
(ω,ηAl)
d (t)

}
. (60)

For ω in a measurable subset of full measure, all energy densities above exist and
become deterministic:

4.2 Classical Joule’s Law
Note that the probability measure aΩ defined by (8) is translation invariant. As
a consequence, charge transport properties on macroscopic scales are invariant
under space translation. By following the heuristics presented in [BPK2, Section
4.4], we deduce from Theorem 3.4 that, for β ∈ R+, λ ∈ R+

0 and any elec-
tromagnetic potential A ∈ C∞

0 , the electric field EA yields paramagnetic and
diamagnetic currents linear response coefficients respectively equal to

Jp(t, x) ≡ J (β,λ,A)
p (t, x) :=

∫ t

t0

Ξp (t− s)EA(s, x)ds , (61)

Jd(t, x) ≡ J
(β,λ,A)
d (t, x) := Ξd

∫ t

t0

EA(s, x)ds , (62)

at any position x ∈ Rd and time t ∈ R.
Therefore, we expect the (density of) work delivered at time t ≥ t0 by param-

agnetic and diamagnetic currents to be equal to∫
Rd

ddx

∫ t

t0

ds ⟨EA(s, x), Jp(s, x)⟩ (63)

=

∫
Rd

ddx

∫ t

t0

ds1

∫ s1

t0

ds2 ⟨EA(s1, x),Ξp(s1 − s2)EA(s2, x)⟩
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and ∫
Rd

ddx

∫ t

t0

ds ⟨EA(s, x), Jd(s, x)⟩ (64)

=

∫
Rd

ddx

∫ t

t0

ds1

∫ s1

t0

ds2 ⟨EA(s1, x),ΞdEA(s2, x)⟩ ,

respectively.
In contrast to [BPK2, Section 4.4], there is no current density at equilibrium,

by Theorem 3.4 (th). Hence, (63) and (64) should be the work density performed
by the electromagnetic field. Moreover, since the diamagnetic energy (64) van-
ishes for t ≥ t1 when there is not anymore any electric field, (63) should be the
heat density s (t) (57), by the second principle of thermodynamics. We prove this
heuristics in Section 5 and obtain the following theorem:

Theorem 4.1 (Classical Joule’s law)
Let β ∈ R+ and λ ∈ R+

0 . Then, there is a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of
full measure such that, for any ω ∈ Ω̃, A ∈ C∞

0 and t ≥ t0:
(p) Paramagnetic energy density:

ip (t) =

∫
Rd

ddx

∫ t

t0

ds ⟨EA(s, x), Jp(s, x)⟩ .

(d) Diamagnetic energy density:

id (t) =

∫
Rd

ddx

∫ t

t0

ds ⟨EA(s, x), Jd(s, x)⟩ .

(Q) Heat density:

s (t) = ip (t)−
∫
Rd

ddx

∫ t

t0

ds ⟨EA(s, x), Jp(t, x)⟩ .

(P) Electromagnetic potential energy density:

p (t) = id (t) +

∫
Rd

ddx

∫ t

t0

ds ⟨EA(s, x), Jp(t, x)⟩ .

Proof: Assertion (p) corresponds to Theorem 5.21 and Lemma 5.22 together
with Fubini’s theorem, while (d) is Theorem 5.9. Then, (Q) and (P) follow from
(55) combined with Theorem 5.24.
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By using Definition 3.2 and Theorem 4.1, for any β ∈ R+, λ ∈ R+
0 and

A ∈ C∞
0 , the coefficient

Elin(t) ≡ E
(β,λ,A)
lin (t) := ip (t) + is (t) = s(t) + p(t)

corresponding to the total energy density delivered to the system by small elec-
tromagnetic fields at time t ∈ R is equal to

Elin (t) =

∫
Rd

ddx

∫ t

t0

ds1

∫ s1

t0

ds2 ⟨EA(s1, x),Σ(s1 − s2)EA(s2, x)⟩ . (65)

For any t ≥ t1, i.e., for cyclic electromagnetic processes, we deduce from [BPK1,
Theorem 3.2] that

id (t) = p (t) = 0 and Elin (t) = s (t) = ip (t) ≥ 0 . (66)

In other words, when the electromagnetic field is switched off, all the electromag-
netic work has been converted into heat, as expected from the second principle of
thermodynamics. This phenomenology is related to Joule’s law in the AC–regime.

Indeed, the J. P. Joule originally observed that the heat (per second) produced
within a circuit is proportional to the electric resistance and the square of the
current. There are two clear similarities to the results presented here:

• Like Joule’s law, Theorem 4.1 (Q) describes the rate at which resistance in
the fermion system converts electric energy into heat energy. This thermal
effect is directly related with current fluctuations via Green–Kubo relations,
as explained in Section 3.3.

• Quantitatively, Theorem 4.1 is the version of Joule’s law, in the DC– and
AC–regimes, with currents and resistance replaced by electric fields and (in
phase) conductivity.

In fact, the derivation of Joule’s law in its original formulation, that is, with cur-
rents and resistance rather than electric fields and conductivity, can be performed
by using the arguments of [BPK2, Section 4.5]. We omit the details.

In presence of electromagnetic fields, i.e., at times t ∈ [t0, t1] for which the
AC–condition (13) does not hold, the situation is exactly the one described in
[BPK2]: The raw ballistic movement of charged particles, that is responsible for
the diamagnetic currents, creates a kind of “propagating wave front” that destabi-
lizes the whole system by changing its internal state. These induce, at their turn,
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paramagnetic currents, by an effect of (quantum) viscosity. The latter (a) modify
the potential energy and (b) produce a quantity of entropy (heat) that survives even
after turning off the electromagnetic potential. For more detailed discussions on
these effects see [BPK2, Section 4.4].

Remark 4.2 (Role of field and space scales)
Note that the limits η → 0 and l → ∞ in (58) and (60) do not generally commute
for λ ∈ R+. This feature comes from the existence of thermal currents for space–
inhomogeneous media which are order O(η) (an not O(η2)), at fixed l ∈ R+.
See [BPK2, Theorem 4.1], (105)–(106) and Theorem 5.8. In this case, the heat
production and the paramagnetic energy increment, which are always of order
O(η2ld), are negligible at times t ∈ (t0, t1) as compared to the potential and dia-
magnetic energies, as η → 0. However, for t ≥ t1, i.e., for cyclic electromagnetic
processes, the results of Theorem 4.1 hold true even if one interchanges the limits
η → 0 and l → ∞ in (58) and (60). This is of course coherent with the second
principle of thermodynamics and Joule’s law in the AC–regime.

4.3 AC–Conductivity Measure
Recall that the random variables are independently and identically distributed
(i.i.d.), see Section 2.1. As to be expected, this yields scalar paramagnetic charge
transport coefficients (Lemma 5.23):

Ξp (t) = σp (t) IdRd , t ∈ R , (67)

where, for any β ∈ R+ and λ ∈ R+
0 , σp ≡ σ

(β,λ)
p is a well–defined real function.

By [BPK2, Corollary 3.2 (i)-(ii) and (iv)] and (67), σp ∈ C(R;R−
0 ) and σp(t) =

σp(|t|) with σp(0) = 0. A detailed study of its properties will be performed in
the subsequent paper. In the same way, by (32),

Ξd = σd IdRd , (68)

where, for any β ∈ R+ and λ ∈ R+
0 , σd ≡ σ

(β,λ)
d is the constant defined by

σd := E
[
σ
(ω)
d (e1, 0)

]
∈ [−2, 2] . (69)

In fact, one can use the scalar product ⟨·, ·⟩ in ℓ2(L), the canonical orthonormal
basis {ex}x∈L of ℓ2(L) defined by ex(y) ≡ δx,y, and the symbol d(β,ω,λ)

fermi defined
by (23), to get that

σd = 2Re
{
E
[
⟨ee1 ,d

(β,ω,λ)
fermi e0⟩

]}
(70)
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for any β ∈ R+ and λ ∈ R+
0 . By (67)–(68), the (full) conductivity Σ, which is by

Definition 3.2 the sum of the paramagnetic and diamagnetic conductivities, equals

Σ (t)=

{
0 , t ≤ 0 ,
σ (t) IdRd , t ≥ 0 ,

(71)

for any β ∈ R+, λ ∈ R+
0 and t ∈ R. Here, the so–called in–phase conductivity

σ ≡ σ(β,λ) ∈ C (R;R) at β ∈ R+ and λ ∈ R+
0 is the continuous function defined,

for any t ∈ R, by
σ (t) := σd + σp (t) .

This is a special situation which results from the i.i.d. property of the random
variables. For external potentials having non–trivial space correlations the con-
ductivity Σ(t) ∈ B(Rd) is, in general, not of the form σ(t)IdRd , σ(t) ∈ R.

Only the in–phase paramagnetic conductivity σp is responsible for heat pro-
duction. In fact, Theorem 4.1 (p) together with the AC–condition (13) uniquely
determines the quantity σp(t) for all t ∈ R because σp(0) = 0 and σp(t) =
σp(|t|). To see this more explicitly we consider the following choice of electro-
magnetic potential A ∈ C∞

0 : Take any smooth, compactly supported functions
E ∈ C∞

0 (R) and ψ ∈ C∞
0 (Rd;R) such that∫

R
Et dt = 0 and

∫
Rd

ψ2 (x) ddx = 1 . (72)

Next, pick any normalized vector w⃗ := (w1, . . . , wd) ∈ Rd (|w⃗| = 1) and define

A(E,ψ)(t, x) := A
(E,ψ)
1 (t, x)e1 + · · ·+A

(E,ψ)
d (t, x)ed (73)

for all t ∈ R and x ∈ Rd, where, for any k ∈ {1, . . . , d},

A
(E,ψ)
k (t, x) := wkψ (x)

∫ t

−∞
Es ds . (74)

Here, {ek}dk=1 is the canonical orthonormal basis of Rd. By (72), the vector po-
tential A(E,ψ) ∈ C∞

0 satisfies the AC–condition (13) for sufficiently large times t.
Then, we infer from Theorem 4.1 (p), (65) and (66) applied to the vector potential
A(E,ψ) that

1

2

∫
R
ds1

∫
R
ds2 σp(s1 − s2)Es2Es1 ≥ 0 (75)

for all E ∈ C∞
0 (R) satisfying (72). The latter is nothing but the density of heat

finally produced within the fermion system when the electromagnetic field A(E,ψ)

is turned off.
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Since σp ≡ σ
(β,λ)
p is a continuous function obeying σp(t) = σp(−t) and

σp(0) = 0, it is then straightforward to verify that the real numbers σp(t), t ∈ R,
are unique and only depend on the inverse temperature β ∈ R+ and the strength
λ ∈ R+

0 of disorder. Moreover, by (75), the in–phase paramagnetic conductivity
σp is the kernel of a positive quadratic form on the space of smooth, compactly
supported functions E ∈ C∞

0 (R) satisfying (72). We show below that this pos-
itivity property of σp together with the Bochner–Schwartz theorem leads to the
existence of the AC–conductivity measure for the system of lattice fermions con-
sidered here:

Theorem 4.3 (AC–conductivity measure)
For any β ∈ R+ and λ ∈ R+

0 , there is a positive measure µAC ≡ µ
(β,λ)
AC of at most

polynomial growth on R\{0} and a constant D ∈ R+
0 such that, for any A ∈ C∞

0

and t ≥ t1,

s (t) = ip (t) =
1

2

∫
Rd

ddx

∫
R\{0}

µAC(dν)⟨ÊA(ν, x), ÊA(ν, x)⟩

+D

∫
Rd

ddx
∣∣∣∂νÊA(ν, x)|ν=0

∣∣∣2
with ÊA being the Fourier transform of the electromagnetic field EA (12).

Proof: Fix β ∈ R+ and λ ∈ R+
0 . It follows from (75) that∫

R
σp(s) [φ̃ ∗ φ] (s)ds :=

∫
R
ds1σp(s1)

∫
R
ds2 φ(s2 − s1)φ(s2) ≥ 0 (76)

for all φ ∈ C∞
0 (R) satisfying the first condition of (72). Here, φ̃ is the function

defined by φ̃(s) := φ(−s) for any s ∈ R. For all φ ∈ C∞
0 (R), observe that

φ′ ∈ C∞
0 (R) and ∫

R
φ′ (s) ds = 0 . (77)

Using this in order to get rid of the first assumption in (72), i.e., the AC–condition,
we define the real–valued distribution ς ≡ ς(β,λ) by

ς(φ) := −
∫
R
σp(s)φ

′′(s)ds , φ ∈ C∞
0 (R) .

Indeed, by (76)–(77), note that

ς(φ̃ ∗ φ) =
∫
R
σp(s)

[
(̃φ′) ∗ φ′

]
(s)ds ≥ 0 .
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Since σp(t) = σp(−t), this equality can easily be extended to complex–valued
functions φ ∈ C∞

0 (R;C) by replacing φ̃ with its conjugate φ̃. So, the distribution
ς is of positive type. In particular, applying the Bochner–Schwartz theorem [RS2,
Theorem IX.10] we deduce that ς is a tempered distribution which is the Fourier
transform of a positive measure µς of at most polynomial growth. Then define the
measure µAC ≡ µ

(β,λ)
AC as the restriction of ν−2µς(dν) on R\{0} and observe that

s (t) =

∫
Rd

ddx

∫ t

t0

ds1

∫ s1

t0

ds2 σp(s1 − s2) ⟨EA(s1, x), EA(s2, x)⟩

=
1

2

∫
Rd

ddx

∫
R\{0}

µAC(dν)⟨ÊA(ν, x), ÊA(ν, x)⟩

+µς({0})
∫
Rd

ddx

∣∣∣∣∫
R
dsA(s, x)

∣∣∣∣2
for any A ∈ C∞

0 and t ≥ t1, using Theorem 4.1, Fubini’s theorem, as well as
Equations (14) and (67).

This theorem uniquely defines the measure µAC, named the (in–phase) AC–cond-
uctivity measure. It characterizes the heat production per unit volume due to the
component of frequency ν ∈ R\{0} of the electric field, in accordance with
Joule’s law in the AC–regime.

In fact, because of the restriction on functions satisfying the AC–condition
(72), (76) is weaker than the condition defining functions of positive type. Above
we overcome this problem by introducing the distribution ς which is clearly of
positive type, but only as a general tempered distribution. In the subsequent paper
we will show that the function σp, the in–phase paramagnetic conductivity, is
indeed of positive type up to a constant. This allows us to use the original theorem
of Bochner [RS2, Theorem IX.9] on functions of positive type (or the spectral
theorem) to show the existence of a finite positive measure µp such that

σp(t) =

∫
R
(cos (tν)− 1)µp(dν) , t ∈ R ,

similar to [BPK2, Theorem 3.1]. Observe that this fact implies, in particular, that
Theorem 4.3 actually holds with D = 0. Such analysis is technically a bit more
involved than the proof above and requires the use of the analyticity of time–
correlation functions of KMS states, but has the advantage of automatically im-
plying the finiteness of µp with µAC = µp|R\{0}, similar to the microscopic case
[BPK2, Theorem 3.1].
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Note that the case λ = 0 can be interpreted as the perfect conductor. We show
in the subsequent paper that

µ
(β,0)
AC (R\{0}) = 0

and hence, the heat production vanishes in this special case. Analogously, the limit
λ → ∞ corresponds to the perfect insulator and also leads to a vanishing heat
production. Positivity of the AC–conductivity measure means that the fermion
system cannot transfer any energy to the electromagnetic field. This property is
a consequence of the second principle of thermodynamics. In fact, the fermion
system even absorbs, in general, some non–vanishing amount of electromagnetic
energy. These points will be all addressed in the subsequent paper.

Remark 4.4
For electric fields slowly varying in time, charge carriers have time to move and
significantly change the charge density, producing an additional, self–generated,
internal electric field. This contribution is not taken into account in our model.
Thus, the physical meaning of the behavior of the AC–conductivity measure µAC

at low frequencies is not clear, in general. However, if one imposes regularity of
µAC near ν = 0 then this behavior becomes physically relevant. One natural way
to obtain some regularity of µAC at low frequencies is to avoid the presence of
free charge carriers by imposing some localization condition. This is done, for
instance, in [KLM] where the validity of Mott’s formula for the conductivity of
quantum mechanical charged carriers is studied.

5 Technical Proofs
We start our study by two technical results that are used in various proofs of Sec-
tions 5.3–5.5: a decomposition of complex–time two–point correlation functions
(Section 5.1) and a relatively simple extension of the Akcoglu–Krengel ergodic
theorem to non–regular sequences (Section 5.2). Then, we tackle the proof of
Theorem 4.1 in Sections 5.3–5.4. Finally, Section 5.5 justifies the construction
done in Section 3.3. In particular, we prove Theorem 3.5 in that subsection.

5.1 Complex–Time Two–Point Correlation Functions
By [BPK2, Lemma 5.2], the microscopic paramagnetic transport coefficient (29)
can be expressed in terms of complex–time two–point correlation functions. The
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latter are explicitly given in terms of quantities involving the Anderson tight–
binding Hamiltonian (Section 2.1). Indeed, by [BPK2, Eq. (101)], for all β ∈ R+,
ω ∈ Ω, λ ∈ R+

0 , t ∈ R, and α ∈ [0, β],

C
(ω)
t+iα(x) = ⟨ex(2) , e−it(∆d+λVω)F β

α (∆d + λVω) ex(1)⟩ , x := (x(1), x(2)) ∈ L2 ,
(78)

where F β
α is the real function defined, for every β ∈ R+ and α ∈ R, by

F β
α (κ) :=

eακ

1 + eβκ
, κ ∈ R . (79)

Equation (78) provides useful estimates like space–decay properties of C(ω)
t+iα.

Note that the notation ∥ · ∥op stands for the operator norm.

Theorem 5.1 (Decomposition of two-point correlation functions)
For any ε, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 , t ∈ R, υ ∈ (0, β/2) and α ∈ [υ, β − υ], the
complex–time two–point correlation function C(ω)

t+iα can be decomposed as

C
(ω)
t+iα (x) = A

(ω)
t+iα,υ,ε (x) +B

(ω)
t+iα,υ,ε (x) , x := (x(1), x(2)) ∈ L2 ,

where A(ω)
t+iα,υ,ε (·) and B(ω)

t+iα,υ,ε (·) are kernels (w.r.t. {ex}x∈L) of bounded opera-
tors A(ω)

t+iα,υ,ε ≡ A
(β,ω,λ)
t+iα,υ,ε and B(ω)

t+iα,υ,ε ≡ B
(β,ω,λ)
t+iα,υ,ε acting on ℓ2(L) and satisfying

the following properties:
(i) Boundedness: There is a finite constant D ∈ R+ only depending on β, υ such
that ∥∥∥A(ω)

t+iα,υ,ε

∥∥∥
op

≤ ε and
∥∥∥B(ω)

t+iα,υ,ε

∥∥∥
op

≤ D .

(ii) Decay: If T ∈ R+ and t ∈ [−T, T ], then there is a finite constant D ∈ R+

only depending on ε, β, υ, d, T such that∣∣∣B(ω)
t+iα,υ,ε (x)

∣∣∣ ≤ D

1 + |x(1) − x(2)|d2+1
, x ∈ L2 .

(iii) Continuity w.r.t. times: If T ∈ R+ and s1, s2 ∈ [−T, T ], then there is a finite
constant η ∈ R+ only depending on ε, β, υ, d, T such that∣∣∣B(ω)

s1+iα,υ,ε
(x)−B

(ω)
s2+iα,υ,ε

(x)
∣∣∣ ≤ ε (1 + λ)

1 + |x(1) − x(2)|d2+1
, x ∈ L2 ,
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whenever |s2 − s1| ≤ η.
(iv) Continuity w.r.t. random variables: For any x ∈ L2, the maps

ω 7→ C
(ω)
t+iα (x) , ω 7→ A

(ω)
t+iα,υ,ε (x) , ω 7→ B

(ω)
t+iα,υ,ε (x)

from Ω to R are continuous w.r.t. the topology on Ω of which AΩ is the Borel
σ–algebra .

Proof: (i) The spectral theorem applied to the bounded self–adjoint operator
(∆d + λVω) ∈ B(ℓ2(L)) implies from (78) that

C
(ω)
t+iα(x) =

∫
F β
α (κ)e−itκdκ(ω)x (κ)

with κ(ω)x ≡ κ
(ω,λ)
x being the spectral measure of (∆d + λVω) w.r.t. ex(1) , ex(2) ∈

ℓ2(L). Note that F β
α (79) is a Schwartz function for all β ∈ R+ and α ∈ (0, β).

Therefore, its Fourier transform F̂ β
α is again a Schwartz function. Moreover, for

all β > 0 and υ ∈ (0, β/2), there is a finite constant Dβ,υ ∈ R+ such that, for any
α ∈ [υ, β − υ] and all ν ∈ R, ∣∣∣F̂ β

α (ν)
∣∣∣ ≤ Dβ,υ

1 + ν2
. (80)

In particular, for any ε ∈ R+, there is Mβ,υ,ε ∈ R+ such that∫
|ν|≥Mβ,υ,ε

∣∣∣F̂ β
α (ν)

∣∣∣ dν ≤
∫
|ν|≥Mβ,υ,ε

Dβ,υ

1 + ν2
dν < ε . (81)

For any ε, β ∈ R+, υ ∈ (0, β/2) and α ∈ [υ, β − υ], we then decompose the
function F β

α into two orthogonal functions of κ ∈ R:

fβυ,ε,α (κ) :=

∫
|ν|≥Mβ,υ,ε

F̂ β
α (ν) eiνκdν , (82)

gβυ,ε,α (κ) :=

∫
|ν|<Mβ,υ,ε

F̂ β
α (ν) eiνκdν . (83)

Now, for any ε, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R, υ ∈ (0, β/2) and α ∈ [υ, β − υ],

define the bounded operatorsA(ω)
t+iα,υ,ε ≡ A

(β,ω,λ)
t+iα,υ,ε andB(ω)

t+iα,υ,ε ≡ B
(β,ω,λ)
t+iα,υ,ε acting

on ℓ2(L) by their kernels

⟨ex(2) , A
(ω)
t+iα,υ,εex(1)⟩ ≡ A

(ω)
t+iα,υ,ε (x) :=

∫
fβυ,ε,α (κ) e−itκdκ(ω)x (κ) (84)

⟨ex(2) , B
(ω)
t+iα,υ,εex(1)⟩ ≡ B

(ω)
t+iα,υ,ε (x) :=

∫
gβυ,ε,α (κ) e−itκdκ(ω)x (κ) (85)
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for any x ∈ L2. Indeed, by construction (cf. (81)–(82)),∥∥∥A(ω)
t+iα,υ,ε

∥∥∥
op

≤ ε and
∥∥∥B(ω)

t+iα,υ,ε

∥∥∥
op

≤ πDβ,υ

for all ε, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , t ∈ R, υ ∈ (0, β/2) and α ∈ [υ, β − υ]. By

(80), recall that Dβ,υ only depends on β and υ ∈ (0, β/2).
(ii) We first invoke Fubini’s theorem to observe from (83)–(85) that

B
(ω)
t+iα,υ,ε (x) =

∫
|ν|<Mβ,υ,ε

dν F̂ β
α (ν)

∫
dκ(ω)x (κ) e−iκ(t−ν)

=

∫
|ν|<Mβ,υ,ε

dν F̂ β
α (ν) ⟨ex(2) , e−i(t−ν)(∆d+λVω)ex(1)⟩ (86)

for all x ∈ L2. If T ∈ R+, t ∈ [−T, T ] and |ν| < Mβ,υ,ε, then

(t− ν) ∈ [−Mβ,υ,ε − T,Mβ,υ,ε + T ] .

Thus, by [BPK1, Lemma 4.2] with ϵ = d2 − d+ 1 (d ∈ N), for any ε, β, T ∈ R+

and υ ∈ (0, β/2), there is a finite constant D̃β,υ,ε,T,d ∈ R+ such that∣∣⟨ex(2) , e−i(t−ν)(∆d+λVω)ex(1)⟩
∣∣ ≤ D̃β,υ,ε,T,d

1 + |x(1) − x(2)|d2+1
(87)

for all ω ∈ Ω, λ ∈ R+
0 , t ∈ [−T, T ], ν ∈ [−Mβ,υ,ε,Mβ,υ,ε] and x ∈ L2. We now

combine this last inequality with (80) and (86) to derive the bound∣∣∣B(ω)
t+iα,υ,ε (x)

∣∣∣ ≤ πDβ,υD̃β,υ,ε,T,d

1 + |x(1) − x(2)|d2+1
, x ∈ L2 .

(iii) By Equation (86), note that

∂tB
(ω)
t+iα,υ,ε (x) = −i

∫
|ν|<Mβ,υ,ε

dν F̂ β
α (ν) ⟨(∆d + λVω) ex(2) , e

−i(t−ν)(∆d+λVω)ex(1)⟩

(88)
for all ε, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 , t ∈ R, υ ∈ (0, β/2), α ∈ [υ, β − υ] and
x ∈ L2. Since, for any x ∈ L2,

⟨(∆d + λVω) ex(2) , e
−i(t−ν)(∆d+λVω)ex(1)⟩

= −
∑

z∈L,|z|=1

⟨ex(2)+z, e−i(t−ν)(∆d+λVω)ex(1)⟩

+(λVω(x
(2)) + 2d)⟨ex(2) , e−i(t−ν)(∆d+λVω)ex(1)⟩ ,
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we use again (80) and (87) together with (88) and |Vω (x) | ≤ 1 to arrive at the
third assertion.
(iv) Take any sequence {ωn}∞n=1 ⊂ Ω converging to ω∞ ∈ Ω w.r.t. the topology of
which AΩ is the Borel σ–algebra. This means that the functions ωn : L → [−1, 1],
n ∈ N, converges pointwise to ω∞, as n → ∞. By Lebesgue’s dominated con-
vergence theorem, it follows that the sequence {∆d + λVωn}∞n=1 of uniformly
bounded operators at fixed λ ∈ R+

0 converges strongly to ∆d + λVω∞ . By [RS1,
Chap. VIII, Problem 28 and Theorem VIII.20 (b)], for any bounded and contin-
uous function φ on R, the sequence {φ(∆d + λVωn)}∞n=1 converges also strongly
to φ(∆d + λVω∞).

Now, similar to Equation (78), Definitions (84)–(85) can be rewritten as

A
(ω)
t+iα,υ,ε (x) = ⟨ex(2) , e−it(∆d+λVω)fβυ,ε,α (∆d + λVω) ex(1)⟩ (89)

B
(ω)
t+iα,υ,ε (x) = ⟨ex(2) , e−it(∆d+λVω)gβυ,ε,α (∆d + λVω) ex(1)⟩ (90)

for every x ∈ L2. By (79) and (82)–(83), for any ε, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 ,

t ∈ R, υ ∈ (0, β/2) and α ∈ [υ, β − υ], F β
α , fβυ,ε,α and gβυ,ε,α are bounded

and continuous function on R. Therefore, for every x ∈ L2 and as n → ∞,
the correlation functions A(ωn)

t+iα,υ,ε (x), B
(ωn)
t+iα,υ,ε (x) and C

(ωn)
t+iα (x) converges to

A
(ω∞)
t+iα,υ,ε (x), B

(ω∞)
t+iα,υ,ε (x) and C(ω∞)

t+iα (x), respectively.

Better estimates on complex–time two–point correlation functions C(ω)
t+iα can

certainly be obtained by using that the spectrum of the self–adjoint operator (∆d+
λVω) belongs to some (λ–dependant) compact set. This property is however not
used in Theorem 5.1 to get bounds (i)–(ii) that do not depend on λ ∈ R+

0 . Note
that we only need here the measurability w.r.t. the σ–algebra AΩ of all operators
of Theorem 5.1, which is a direct consequence of their continuity, see Theorem
5.1 (iv).

5.2 Ergodic Theorem for some Non–Regular Sequences
The second important ingredient we use in our proofs is the Akcoglu–Krengel
ergodic theorem. We present it for completeness. This result is rather standard
and can be found in textbooks. Therefore, we keep the exposition as short as
possible and only concentrate on results used in this paper. For more details, we
recommend [CL]. It is important to note, however, that Theorem 5.5 is a rela-
tively simple extension of [CL, Theorem VI.1.7, Remark VI.1.8] to non–regular
sequences.
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We restrict ourselves to additive processes associated with the probability
space (Ω,AΩ, aΩ) defined in Section 2.1, even if the Akcoglu–Krengel ergodic
theorem holds for superadditive or subadditive ones (cf. [CL, Definition VI.1.6]).

Definition 5.2 (Additive process associated with random variables)
{F(ω) (Λ)}Λ∈Pf (L) is an additive process if:
(i) the map ω 7→ F(ω) (Λ) is bounded and measurable w.r.t. the σ–algebra AΩ for
any Λ ∈ Pf (L).
(ii) For all disjoint Λ1,Λ2 ∈ Pf (L),

F(ω) (Λ1 ∪ Λ2) = F(ω) (Λ1) + F(ω) (Λ2) , ω ∈ Ω .

(iii) For all Λ ∈ Pf (L) and any space shift x ∈ L,

E
[
F(ω) (Λ)

]
= E

[
F(ω) (x+ Λ)

]
. (91)

The random potentials used here are independently and identically distributed
(i.i.d.), see Equation (8), and (91) will trivially hold for the processes we consider
below. Recall that E[ · ] is the expectation value associated with the probability
measure aΩ. Note further that additive processes {F(ω) (Λ)}Λ∈Pf (L) as defined in
Definition 5.2 are superadditive and subadditive in the sense of [CL, Definition
VI.1.6].

We now define regular sequences (cf. [CL, Remark VI.1.8]) as follows:

Definition 5.3 (Regular sequences)
The family {Λ(l)}l∈R+ ⊂ Pf (L) of non–decreasing (possibly non–cubic) boxes
of L is a regular sequence if there is a finite constant D ∈ R+ and another
non–decreasing sequence of boxes {Λl}l≥1, given by (25), such that L = ∪l≥1Λl,
Λ(l) ⊂ Λl and 0 < |Λl| ≤ D|Λ(l)| for all l ≥ 1.

Then, the form of Akcoglu–Krengel ergodic theorem we use in the sequel is
the lattice version of [CL, Theorem VI.1.7, Remark VI.1.8] for additive processes
associated with the probability space (Ω,AΩ, aΩ):

Theorem 5.4 (Akcoglu–Krengel ergodic theorem)
Let {F(ω) (Λ)}Λ∈Pf (L) be an additive process. Then, for any regular sequence
{Λ(l)}l∈J ⊂ Pf (L), there is a measurable subset Ω̃ ⊂ Ω of full measure such
that, for all ω ∈ Ω̃,

lim
J

{∣∣Λ(l)
∣∣−1

F(ω)
(
Λ(l)
)}

= E
[
F(ω) ({0})

]
.
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The Ackoglu–Krengel (superadditive) ergodic theorem, cornerstone of ergodic
theory, generalizes the celebrated Birkhoff additive ergodic theorem. Unfortu-
nately, this theorem, in the above form, is not sufficiently general to be applied in
our proofs. Indeed, Theorem 5.4 requires regular sequences. This is too restrictive
w.r.t. our applications because we have to evaluate space–inhomogeneous limit of
the form

lim
l→∞

1

|Λl|
∑
x∈Λl

F(ω) ({x}) f
(
l−1x

)
(92)

with f ∈ C0

(
Rd,R

)
and {Λl}l≥1 defined by (25). See for instance Section 5.3.

To this end, we divide the compact support of f , say for simplicity [−1/2, 1/2]d,
in nd boxes {bj}j∈Dn of side–length 1/n, where

Dn := {− (n− 1) /2,− (n− 3) /2, . . . , (n− 3) /2, (n− 1) /2}d . (93)

Explicitly, for any j ∈ Dn,

bj := jn−1 + n−1[−1/2, 1/2]d and [−1/2, 1/2]d =
∪
j∈Dn

bj . (94)

We then need to analyze the limit

lim
l→∞

|L ∩ (lbj)|−1 F(ω) (L ∩ (lbj))

for n ∈ N and j ∈ Dn. However, {L∩(lbj)}l∈N is non–regular, in general. For in-
stance, if n is an odd integer then this situation appears for all j ∈ Dn\{(0, . . . , 0)}
because {L∩(lbj)}l∈N is not a non–decreasing sequence in this case. To overcome
this difficulty, we proof the following extension of Theorem 5.4:

Theorem 5.5 (Ergodic theorem for some non–regular sequences)
Let {F(ω) (Λ)}Λ∈Pf (L) be an additive process. Then, there is a measurable subset
Ω̃ ⊂ Ω of full measure such that, for all ω ∈ Ω̃, n ∈ N, and j ∈ Dn,

lim
l→∞

{
|L ∩ (lbj)|−1 F(ω) (L ∩ (lbj))

}
= E

[
F(ω) ({0})

]
.

Proof: Let n ∈ N. By Theorem 5.4, we can fix w.l.o.g. the parameter j ≡
(j1, . . . , jd) ∈ Dn such that the family {L ∩ (lbj)}l∈N is non–regular. Then, we
take the sequences {Λ(l,j)}l∈N and {Λ̃(l,j)}l∈N defined, for any l ∈ R+, by

Λ(l,j) :=
{
(x1, . . . , xd) ∈ L : ∀k ∈ {1, . . . , d}, |xk| ≤ l(|jk|+ 1/2)n−1 + 1

}
(95)
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and
Λ̃(l,j) := Λ(l,j)\{L ∩ (lbj)} . (96)

In particular,
F(ω)(lbj) = F(ω)(Λ(l,j))− F(ω)(Λ̃(l,j)) (97)

because {F(ω) (Λ)}Λ∈Pf (L) is by assumption an additive process. Note that {Λ(l,j)}l∈N
is a regular sequence and thus

lim
l→∞

{
|Λ(l,j)|−1F(ω)(Λ(l,j))

}
= E

[
F(ω) ({0})

]
almost surely, by Theorem 5.4. {Λ̃(l,j)}l∈N satisfies Definition 5.3, up to the fact
that it is not a sequence of boxes. Indeed, we can obtain Λ̃(l,j) by subtracting from
Λ(l,j) d boxes of the form

Λ(l,j) ∩ {x ∈ L | xk ≶ l(jk ± 1/2)n−1 ± 1}, k = 1, . . . , d ,

containing the origin of L. By applying Theorem 5.4 to the corresponding regular
sequences of boxes we arrive at:

lim
l→∞

{
|Λ̃(l,j)|−1F(ω)(Λ̃(l,j))

}
= E

[
F(ω) ({0})

]
We omit the details. Therefore, by Theorem 5.4 and (97), there is a measurable
subset Ω̂j,n ≡ Ω̂

(β,λ)
j,n ⊂ Ω of full measure such that, for any ω ∈ Ω̂j,n,

lim
l→∞

{
|L ∩ (lbj)|−1 F(ω) (L ∩ (lbj))

}
= E

[
F(ω) ({0})

]
. (98)

Note that we have used here that the intersection of any countable intersection of
measurable sets of full measure has full measure. This fact is used many times in
our proofs.

It follows that (98) holds true for any n ∈ N, j ∈ Dn, and ω ∈ Ω̂j,n, while the
measurable subset defined by

Ω̃ :=
∩
n∈N

∩
j∈Dn

Ω̂j,n ⊂ Ω

has full measure.

Note that the notion of a regular sequence is not completely consistent in the
literature. Use used here the definition given in [CL, Remark VI.1.8] and then
generalized Theorem 5.4 to some, w.r.t. this definition, non–regular sequences in
the above theorem.

Theorem 5.5 directly yields the limit (92):
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Theorem 5.6 (Space–inhomogeneous ergodic theorem)
Let {F(ω) (Λ)}Λ∈Pf (L) be an additive process. Then, for any f ∈ C0

(
Rd,R

)
, there

is a measurable subset Ω̃ ⊂ Ω of full measure such that, for all ω ∈ Ω̃,

lim
l→∞

1

|Λl|
∑
x∈Λl

F(ω) ({x}) f
(
l−1x

)
= E

[
F(ω) ({0})

] ∫
Rd

f (x) ddx .

Proof: Since f ∈ C0

(
Rd,R

)
has compact support, f is uniformly continuous.

Assume w.l.o.g. that
supp(f) ⊂ [−1/2, 1/2]d .

Then, there is a finite constant D not depending on j ∈ Dn, t ∈ R, k ∈ {1, . . . , d}
and x, y ∈ bj such that

|f (x)− f (y)| ≤ Dn−1 . (99)

Using this and Theorem 5.5 we obtain the assertion.

This last theorem could be extended to continuous functions f ∈ C
(
Rd,R

)
vanishing sufficiently fast when |l| → ∞ as well as for ergodic probability mea-
sures aΩ. This generalization is however not necessary here and we refrain from
proving it in detail.

5.3 Diamagnetic Transport Coefficient and Density
The aim of this section is to obtain the deterministic diamagnetic transport co-
efficient Ξd as well as the diamagnetic energy density id. See (34) and (60) for
their definitions. It is an simple application of the ergodic theorems of Section
5.2 and serves as a sort of “warm up” for the technically more involved case of
paramagnetic quantities.

We consider here the limit l → ∞ of the current density (35) at equilibrium
and the space–averaged diamagnetic energy production coefficient Ξ(ω)

d,l that is de-
fined by (32). Indeed, as explained in Section 3.2, there exist, in general, currents
coming from the inhomogeneity of the fermion system for λ ∈ R+, even in ab-
sence of electromagnetic fields. We want to prove that, for large samples, there
are almost surely no currents within the fermion system at thermal equilibrium.
This result yields Assertion (th) of Theorem 3.4. We also would like to show that,
as l → ∞, Ξ(ω)

d,l converges almost surely to the diamagnetic transport coefficient
Ξd, see Theorem 3.1 (d).
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Corollary 5.7 (Currents and diamagnetic conductivity)
Let β ∈ R+ and λ ∈ R+

0 . Then one has:
(th) Current densities at thermal equilibrium: For any z ∈ Zd, there is a measur-
able subset Ω̃ (z) ≡ Ω̃(β,λ) (z) ⊂ Ω of full measure such that, for all ω ∈ Ω̃ (z),

lim
l→∞

1

|Λl|
∑
x∈Λl

ϱ(β,ω,λ)
(
I(x+z,x)

)
= 0 .

(d) Diamagnetic charge transport coefficient: There is a measurable subset Ω̃ ≡
Ω̃(β,λ) ⊂ Ω of full measure such that, for any ω ∈ Ω̃,

Ξd := lim
l→∞

E
[
Ξ
(ω)
d,l

]
= lim

l→∞
Ξ
(ω)
d,l ∈ [−2, 2] .

Proof: Let β ∈ R+, λ ∈ R+
0 and z ∈ Zd. We define an additive process

{F(ω)
z (Λ)}Λ∈Pf (L) by

F(ω)
z (Λ) :=

∑
x∈Λ

ϱ(β,ω,λ)
(
a∗x+zax

)
=
∑
x∈Λ

⟨ex, F β
0 (∆d + λVω) ex+z⟩ (100)

for any finite subset Λ ∈ Pf (L), see (79) and Definition 5.2. Similar to Theorem
5.1 (iv), the map ω 7→ F

(ω)
z (Λ) is bounded and measurable w.r.t. the σ–algebra

AΩ for all Λ ∈ Pf (L). By the uniqueness of the KMS states ϱ(β,ω,λ), we moreover
have

F(ω)
z (z′ + Λ) = F(ω)

z (Λ)

for all z′ ∈ Zd, Λ ∈ Pf (L) and ω ∈ Ω. Clearly, {Λl}l∈R+ ⊂ Pf (L) is a regular
sequence, see Definition 5.3. Therefore, Theorem 5.4 implies the existence of
a measurable subset Ω̂ (z) ≡ Ω̂(β,λ) (z) ⊂ Ω of full measure such that, for all
ω ∈ Ω̃ (z),

lim
l→∞

{
|Λl|−1 F(ω)

z (Λl)
}
= E

[
ϱ(β,ω,λ) (a∗za0)

]
= E

[
⟨e0,d(β,ω,λ)

fermi ez⟩
]
. (101)

Recall that E[ · ] is the expectation value associated with the probability measure
aΩ (8), d(β,ω,λ)

fermi is the symbol (23), and {ex}x∈L is the canonical orthonormal basis
of ℓ2(L) with scalar product ⟨·, ·⟩.

By (26), observe that

1

|Λl|
∑
x∈Λl

ϱ(β,ω,λ)
(
I(x+z,x)

)
= 2 Im

{
|Λl|−1 F(ω)

z (Λl)
}
,
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while, from the definition (32),{
Ξ
(ω)
d,l

}
k,q

= 2δk,q Re
{
|Λl|−1 F(ω)

ek
(Λl)

}
for any k, q ∈ {1, . . . , d}. Combined with (68), (70) and (101), these two equali-
ties yield Assertions (th) and (d), respectively. Indeed, Vω is an i.i.d. potential and
E[I(z,0)] = 0 for any z ∈ L.

We study now the limit (η, l−1) → (0, 0) of the diamagnetic energy I
(ω,ηAl)
d

defined by (54). An asymptotic expansion of the diamagnetic energy is given by
[BPK2, Theorem 5.12] for small parameters |η| ≪ 1: For any A ∈ C∞

0 , there is
η0 ∈ R+ such that, for all |η| ∈ (0, η0], l, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and t ≥ t0,

I
(ω,ηAl)
d (t) =

η

2

∑
x∈K

ϱ(β,ω,λ)(Ix)

∫ t

t0

EAl
s (x)ds (102)

+
η2

2

∫ t

t0

ds1

∫ s1

t0

ds2
∑
x∈K

σ
(ω)
d (x)EAl

s2
(x)EAl

s1
(x) +O(η3ld) .

The correction terms of order O(η3ld) is uniformly bounded in β ∈ R+, ω ∈ Ω,
λ ∈ R+

0 and t ≥ t0. Here,

EA
t (x) ≡ EA

t (x
(1), x(2)) :=

∫ 1

0

[
EA(t, αx

(2) + (1− α)x(1))
]
(x(2) − x(1))dα ,

(103)
is the integrated electric field between x(2) ∈ L and x(1) ∈ L at time t ∈ R and

K :=
{
x := (x(1), x(2)) ∈ L2 : |x(1) − x(2)| = 1

}
(104)

is the set of bonds of nearest neighbors.
The asymptotic expansion (102) ensures the existence of the limit

lim
η→0

{
(η |Λl|)−1 I

(ω,ηAl)
d (t)

}
= G

(ω)
l (t) . (105)

Here, for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , A ∈ C∞

0 and t ∈ R, the function

G
(ω)
l (t) ≡ G

(β,ω,λ,ηAl)
l (t) =

1

2

∫ t

t0

1

|Λl|
∑
x∈K

ϱ(β,ω,λ)(Ix)E
Al
s (x)ds (106)

is the electric work density produced by thermal currents within the box Λl.

43



The limit l → ∞ of the function G
(ω)
l is a little bit more complicated than

in the first two examples because the electric field EAl
t is space–inhomogeneous.

In fact, we can divide the (compact) support supp(A(t, .)) ⊂ Rd of the vector
potential A(t, .) at t ∈ R in small regions to combine the piecewise–constant
approximation of the smooth electric field EA (12) in (106) with Theorem 5.5. A
similar problem is already treated in Theorem 5.6. In fact, one gets the following
assertion:

Theorem 5.8 (Electric work density produced by thermal currents)
Let β ∈ R+, λ ∈ R+

0 . Then, there is a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of full
measure such that, for all A ∈ C∞

0 ,

lim
l→∞

G
(ω)
l (t) = 0 , ω ∈ Ω̃ ,

uniformly for all t ≥ t0.

Proof: We study the limit l → ∞ of the function

M
(ω)
l (t) :=

1

|Λl|
∑
x∈K

ϱ(β,ω,λ) (Ix)E
Al
t (x) (107)

for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , A ∈ C∞

0 and t ∈ R. Indeed, because
A ∈ C∞

0 , note that

∥EA∥∞ := max {|EA(t, x)| : (t, x) ∈ supp(A)} ∈ R+ , (108)

which implies that

sup
t∈R

∣∣∣M(ω)
l (t)

∣∣∣ ≤ ∥EA∥∞
∑

z∈L,|z|=1

∥I(0,z)∥ <∞ . (109)

Therefore, by (106) and Lebesgue’s dominated convergence theorem, in order to
get the assertion it suffices to show that, for any fixed t ∈ [t0, t1] and ω in a subset
Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of full measure, the l.h.s. of (109) vanishes when l → ∞. This is
done like in Theorem 5.6.

Indeed, assume w.l.o.g. that, for all t ∈ R,

supp(A(t, .)) ⊂ [−1/2, 1/2]d . (110)

For any integer n ∈ N, we divide the elementary box [−1/2, 1/2]d in nd boxes
{bj}j∈Dn of side–length 1/n, see (93)–(94). For any j ∈ Dn, let z(j) ∈ bj be any
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fixed point of the box bj . Then, we consider piecewise–constant approximations
of the (smooth) electric field (12), that is,

EA(t, x) := −∂tA(t, x) , t ∈ R, x ∈ Rd , (111)

and define the approximated energy density

M̃
(ω)
l (t) :=

1

|Λl|
∑
j∈Dn

∑
x∈K∩(lbj)2

ϱ(β,ω,λ) (Ix)
[
EA(t, z

(j))
]
(x(1) − x(2)) (112)

for any l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , A ∈ C∞

0 , t ∈ R and n ∈ N.
We infer from (17), (103) and (111) that, for any l ∈ R+, A ∈ C∞

0 , j ∈ Dn,
t ∈ R, k ∈ {1, . . . , d} and x ∈ lbj ,∣∣∣EAl

t (x, x± ek)−
[
EA(t, z

(j))
]
(±ek)

∣∣∣
≤

∫ 1

0

∣∣[∂tA(t, z(j))
]
(ek)− [∂tAl(t, x± (1− α)ek)] (ek)

∣∣ dα
≤ sup

y∈b̃j,l

∣∣[∂tA(t, z(j))
]
(ek)− [∂tA(t, y)] (ek)

∣∣ <∞ ,

where

b̃j,l :=

{
x ∈ Rd : min

y∈bj
|x− y| ≤ l−1

}
.

In particular, since A ∈ C∞
0 , there is a finite constant D ∈ R+ not depending on

j ∈ Dn, t ∈ R, k ∈ {1, . . . , d} and x ∈ bj such that∣∣∣EAl
t (x, x± ek)−

[
EA(t, z

(j))
]
(±ek)

∣∣∣ ≤ D(n−1 + l−1) . (113)

This upper bound is the analogue of (99) in the proof of Theorem 5.6. Using also
(110), it follows that∣∣∣M(ω)

l (t)− M̃
(ω)
l (t)

∣∣∣ ≤ D(n−1 + l−1)
∑

z∈L,|z|=1

∥I(z,0)∥ . (114)

Therefore, by (104) and (112), for any z ∈ Zd such that |z| = 1, it suffices to
compute the limit

lim
l→∞

1

|L ∩ (lbj)|
∑

x∈L∩(lbj)

ϱ(β,ω,λ)
(
I(x+z,x)

)
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like in Theorem 5.6. For any β ∈ R+, λ ∈ R+
0 and z ∈ Zd, we invoke Theorem

5.5 to get the existence of a measurable subset Ω̂z ≡ Ω̂
(β,λ)
z ⊂ Ω of full measure

such that, for any ω ∈ Ω̂z,

lim
l→∞

 1

|L ∩ (lbj)|
∑

x∈L∩(lbj)

ϱ(β,ω,λ)
(
I(x+z,x)

) = E[I(z,0)] = 0 . (115)

Note that the last equality is a consequence of the identity I(z,0) = −I(0,z) and the
translation and reflection invariance of the probability measure aΩ. Meanwhile,
the measurable subset defined by

Ω̃ ≡ Ω̃(β,λ) :=
∩

z∈L,|z|=1

Ω̂z ⊂ Ω

has full measure and we obtain from (114)–(115) that, for any ω ∈ Ω̃,

lim
l→∞

sup
t∈R

∣∣∣M(ω)
l (t)

∣∣∣ = 0 .

It remains to study the diamagnetic energy density id defined by (60), that is,

id (t) := lim
η→0

lim
l→∞

{(
η2 |Λl|

)−1
I
(ω,ηAl)
d (t)

}
for β ∈ R+, ω ∈ Ω, λ ∈ R+

0 , A ∈ C∞
0 and t ≥ t0. Thanks to the asymptotic ex-

pansion (102), its derivation is done like in the proof of Theorem 5.8 by replacing
current observables Ix (26) and the integrated electric field EAl

t (x) in Equation
(107) with fermion fields Px (28) and products EAl

s2
(x)EAl

s1
(x). Then, one gets the

diamagnetic energy density id as stated in Theorem 4.1 (d).

Theorem 5.9 (Diamagnetic energy density)
Let β ∈ R+ and λ ∈ R+

0 . Then, there is a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of
full measure such that, for any ω ∈ Ω̃ and A ∈ C∞

0 ,

id (t) =

∫
Rd

ddx

∫ t

t0

ds1

∫ s1

t0

ds2 ⟨EA(s1, x),ΞdEA(s2, x)⟩

uniformly for all t ≥ t0 in compact sets. Here, Ξd is defined by (34).
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Proof: Let β ∈ R+ and λ ∈ R+
0 . By (30) and (102), for any A ∈ C∞

0 , there is
η0 ∈ R+ such that, for all |η| ∈ (0, η0], l, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and t ≥ t0,

I
(ω,A)
d (t)−η |Λl|G(ω)

l (t) = η2 |Λl|
∫ t

t0

ds1

∫ s1

t0

ds2X̃
(ω)
l (s1, s2)+O(η3ld) (116)

with the energy density G
(ω)
l defined by (106) while

X̃
(ω)
l (s1, s2) :=

1

2 |Λl|
∑
x∈K

ϱ(β,ω,λ) (Px)E
Al
s1
(x)EAl

s2
(x) (117)

for any s1, s2 ∈ R. The correction term of order O(η3ld) is uniformly bounded in
β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and t ≥ t0.
Similar to the proof of Theorem 5.8 we use piecewise–constant approxima-

tions of the (smooth) electric field and Theorem 5.5 together with (108), (113)
and Lebesgue’s dominated convergence theorem to compute the limit l → ∞ of
the r.h.s. of (116) (without the factor η2ld). More precisely, one finds the existence
a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of full measure such that, for all ω ∈ Ω̃,

lim
l→∞

{∫ t

t0

ds1

∫ s1

t0

ds2 X̃
(ω)
l (s1, s2)

}
(118)

=

∫ t

t0

ds1

∫ s1

t0

ds2

∫
Rd

ddx ⟨EA(s1, x),ΞdEA(s2, x)⟩

uniformly for all t ≥ t0. The assertion follows from (116) and (118) together with
Theorem 5.8 and Fubini’s theorem.

5.4 Paramagnetic Energy Density
The aim of this section is to prove the existence of the paramagnetic energy density
ip defined by (59), that is,

ip (t) = lim
(η,l−1)→(0,0)

{(
η2 |Λl|

)−1
I(ω,ηAl)
p (t)

}
(119)

for β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , A ∈ C∞

0 and t ≥ t0. Our proof requires similar
arguments to those proving Theorems 5.8–5.9:

• The asymptotic expansion given by [BPK2, Theorem 5.12] for the param-
agnetic energy increment.
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• We divide the (compact) support supp(A(t, .)) ⊂ Rd of the vector potential
A(t, .) at t ∈ R in small regions to use the piecewise–constant approxima-
tion of the smooth electric field EA.

• Theorem 5.5 and the fact that any countable intersection of measurable sets
of full measure has full measure.

• Lebesgue’s dominated convergence theorem.

The proof for the paramagnetic case is, however, technically more involved
than those of Section 5.3. Indeed, to use [BPK2, Lemma 5.2, Theorem 5.12],
we additionally need some (space) decay of complex–time two–point correlation
functions. To this end, we invoke Theorem 5.1. The application of the latter
requires some technical preparation and we present the corresponding additional
arguments in various lemmata which then yield a proposition and a few corollaries
and theorems. This rather technical study ends with Theorem 5.21, which serves
as a springboard to obtain Theorem 4.1.

First, by [BPK2, Lemma 5.2, Theorem 5.12], for any A ∈ C∞
0 , there is η0 ∈

R+ such that, for all |η| ∈ (0, η0], l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and t ≥ t0,

I(ω,ηAl)
p (t) = η2 |Λl|

∫ t

t0

ds1

∫ s1

t0

ds2 X
(ω)
l,0 (s1, s2) +O(η3ld) . (120)

The correction term of order O(η3ld) is uniformly bounded in β ∈ R+, ω ∈ Ω,
λ ∈ R+

0 and t ≥ t0. Here, X(ω)
l,υ is defined, for any υ ∈ [0, β/2) and s1, s2 ∈ R, by

X
(ω)
l,υ (s1, s2) :=

1

4 |Λl|
∑
x,y∈K

∫ β−υ

υ

dα
(
C
(ω)
s1−s2+iα(x,y)− C

(ω)
iα (x,y)

)
×EAl

s1
(x)EAl

s2
(y) . (121)

C
(ω)
t+iα is the map from L4 to C defined by

C
(ω)
t+iα(x,y) :=

∑
π,π′∈S2

επεπ′C
(ω)
t+iα(y

π′(1), xπ(1))C
(ω)
−t+i(β−α)(x

π(2), yπ
′(2)) (122)

for any x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈ L2, where π, π′ ∈ S2 are by
definition permutations of {1, 2} with signatures επ, επ′ ∈ {−1, 1}. The definition
of the set K ⊂ L2 of bonds of nearest neighbors is given by (104). Note also that
the integral in (121) can be exchanged with the (finite) sum because A ∈ C∞

0 .
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The first important result of the present subsection will be a proof that X(ω)
l,0 al-

most surely converges to a deterministic function, as l → ∞. See Corollary 5.19.
Then, we will use Lebesgue’s dominated convergence theorem to get the para-
magnetic energy increment I(ω,ηAl)

p in the limit (η, l−1) → (0, 0), see Theorem
5.21.

By Theorem 5.1, note that, for all ε, β ∈ R+, λ ∈ R+
0 , t ∈ R, υ ∈ (0, β/2)

and α ∈ [υ, β − υ], the complex–time two–point correlation function C(ω)
t+iα can

be written as the sum

C
(ω)
t+iα (x) = A

(ω)
t+iα,υ,ε (x) +B

(ω)
t+iα,υ,ε (x) , x := (x(1), x(2)) ∈ L2 , (123)

of two maps A(ω)
t+iα,υ,ε, B

(ω)
t+iα,υ,ε from L2 to C. This decomposition has the follow-

ing useful property: A(ω)
t+iα,υ,ε can be seen as the kernel (w.r.t. the canonical basis

{ex}x∈L) of an operator, again denoted by A(ω)
t+iα,υ,ε ∈ B(ℓ2(L)), with arbitrarily

small operator norm ∥A(ω)
t+iα,υ,ε∥op ≤ ε, whereas B(ω)

t+iα,υ,ε (x) rapidly decays, as
|x(1) − x(2)| → ∞. This is however only satisfied if α ∈ [υ, β − υ] with fixed
υ ∈ (0, β/2), see Theorem 5.1.

As a consequence, the first step is to approximate X(ω)
l,0 with X

(ω)
l,υ for arbitrarily

small parameters υ > 0:

Lemma 5.10 (Approximation I)
Let A ∈ C∞

0 . Then,

X
(ω)
l,0 (s1, s2) = X

(ω)
l,υ (s1, s2) +O(υ) ,

uniformly for l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and s1, s2 ∈ R.

Proof: The canonical orthonormal basis of ℓ2(L)⊗ℓ2(L) is defined by {ex}x∈L2

with
ex := ex(1) ⊗ ex(2) , x := (x(1), x(2)) ∈ L2 . (124)

Recall that ex(y) ≡ δx,y ∈ ℓ2(L). The coefficient C(ω)
t+iα defined by (122) can be

seen as the kernel (w.r.t. {ex}x∈L2) of a bounded operator on ℓ2(L) ⊗ ℓ2(L) that
is again denoted by C

(ω)
t+iα. In particular, similar to (85),∑

x,y∈K

C
(ω)
s1−s2+iα(x,y)E

Al
s1

(x)EAl
s2
(y) =

∑
x,y∈K

⟨
ey,C

(ω)
s1−s2+iαex

⟩
EAl
s1

(x)EAl
s2
(y) .

(125)
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In particular, via [BPK2, Lemma 5.3], i.e., ∥C(ω)
t+iα∥op ≤ 4, and Equation (108) we

arrive at the upper bound∣∣∣∣∣ 1

4 |Λl|
∑
x,y∈K

C
(ω)
s1−s2+iα(x,y)E

Al
s1

(x)EAl
s2
(y)

∣∣∣∣∣ ≤ 2d∥EA∥2∞max
t∈R

|supp(A(t, .))|

(126)
for any A ∈ C∞

0 , l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , α ∈ [0, β] and s1, s2 ∈ R.

Therefore, the assertion follows from (121) combined with (126).

Because of (123) and Theorem 5.1, it is natural to define, at any ε, β ∈ R+,
t ∈ R, υ ∈ (0, β/2) and α ∈ [υ, β − υ], the map B

(ω)
t+iα,υ,ε from L4 to C by

B
(ω)
t+iα,υ,ε(x,y) :=

∑
π,π′∈S2

επεπ′B
(ω)
t+iα,υ,ε(y

π′(1), xπ(1))B
(ω)
−t+i(β−α),υ,ε(x

π(2), yπ
′(2))

(127)
for any x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈ L2. In other words, this map
is defined by replacing in (122) the complex–time two–point correlation function
C

(ω)
t+iα by its approximation B(ω)

t+iα,υ,ε, which comes from the decomposition (123).
Similarly, for s1, s2 ∈ R, let

Y
(ω)
l,υ,ε,0(s1, s2) :=

1

4 |Λl|
∑
x,y∈K

∫ β−υ

υ

dα
(
B

(ω)
s1−s2+iα,υ,ε(x,y)−B

(ω)
iα,υ,ε(x,y)

)
×EAl

s1
(x)EAl

s2
(y) . (128)

We show in the next lemma that it is a good approximation of (121), provided
υ > 0.

Lemma 5.11 (Approximation II)
Let ε, β ∈ R+, A ∈ C∞

0 and υ ∈ (0, β/2). Then,

X
(ω)
l,υ (s1, s2) = Y

(ω)
l,υ,ε,0(s1, s2) +O(ε) ,

uniformly for l ∈ R+, ω ∈ Ω, λ ∈ R+
0 and s1, s2 ∈ R.

Proof: Let ε, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , A ∈ C∞

0 and υ ∈ (0, β/2). By Theorem
5.1 (i) and (85), A(ω)

t+iα,υ,ε, B
(ω)
t+iα,υ,ε can be seen as the kernels (w.r.t. {ex}x∈L) of

two bounded operators on ℓ2(L). Therefore, Theorem 5.1 (i) and the Cauchy–
Schwarz inequality yield the existence of a finite constant D ∈ R+ depending on
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β, υ but not on ε ∈ R+, ω ∈ Ω, λ ∈ R+
0 , α ∈ [υ, β − υ] and t ∈ R such that, for

all cx, c′y ∈ C, x, y ∈ L,∣∣∣∑
x,y∈L

cxc
′
yA

(ω)
t+iα,υ,ε(x, y)

∣∣∣ ≤
∥∥∥A(ω)

t+iα,υ,ε

∥∥∥
op

√∑
x,y∈L

|cx|2
∣∣c′y∣∣2

≤ ε

√∑
x,y∈L

|cx|2
∣∣c′y∣∣2,∣∣∣∑

x,y∈L
cxc

′
yB

(ω)
t+iα,υ,ε(x, y)

∣∣∣ ≤
∥∥∥B(ω)

t+iα,υ,ε

∥∥∥
op

√∑
x,y∈L

|cx|2
∣∣c′y∣∣2

≤ D

√∑
x,y∈L

|cx|2
∣∣c′y∣∣2.

It obviously follows that, for all cx ∈ C, x ∈ K, and some similar constant
D ∈ R+,∣∣∣∣∣ ∑

x,y∈K

cxcyB
(ω)
t+iα,υ,ε(y

(1), x(1))A
(ω)
−t+i(β−α),υ,ε(x

(2), y(2))

∣∣∣∣∣ ≤ εD
∑
x∈K

|cx|2 ,∣∣∣∣∣ ∑
x,y∈K

cxcyA
(ω)
t+iα,υ,ε(y

(1), x(1))B
(ω)
−t+i(β−α),υ,ε(x

(2), y(2))

∣∣∣∣∣ ≤ εD
∑
x∈K

|cx|2 ,∣∣∣∣∣ ∑
x,y∈K

cxcyA
(ω)
t+iα,υ,ε(y

(1), x(1))A
(ω)
−t+i(β−α),υ,ε(x

(2), y(2))

∣∣∣∣∣ ≤ ε2D
∑
x∈K

|cx|2 ,

provided α ∈ [υ, β−υ] with υ ∈ (0, β/2). Here, x = (x(1), x(2)), y = (y(1), y(2)).
Similar to (126), we then use these three above bounds to get the existence of a
finite constant D ∈ R+ depending on β, υ,A but not on l ∈ R+, ε ∈ (0, 1),
ω ∈ Ω, λ ∈ R+

0 and s1, s2 ∈ R such that∣∣∣X(ω)
l,υ (s1, s2)−Y

(ω)
l,υ,ε,0(s1, s2)

∣∣∣ ≤ εD .

The approximating correlation functions B(ω)
t+iα,υ,ε in (127) rapidly vanish, as

|yπ′(1) − xπ(1)| → ∞ or |xπ(2) − yπ
′(2)| → ∞, see Theorem 5.1 (ii). The decay is

uniform for times t on compact sets. This property will allows us further on to use
piecewise–constant approximations of the smooth electric field EA (12) in (128),
similar to what is done in the preceding subsection.
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To do this, as in the proof of Theorem 5.8, let us assume w.l.o.g. that, for all
t ∈ R,

supp(A(t, .)) ⊂ [−1/2, 1/2]d .

For all n ∈ N, we divide the elementary box [−1/2, 1/2]d in nd boxes {bj}j∈Dn of
side–length 1/n. The sets Dn and {bj}j∈Dn are defined by (93)–(94), respectively.
Then, for all ε, l, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and υ ∈ (0, β/2), we extend the
definition of Y(ω)

l,υ,ε,0 to all n ∈ N as

Y
(ω)
l,υ,ε,n(s1, s2) :=

1

4 |Λl|
∑
j∈Dn

∑
x,y∈K∩(lbj)2

∫ β−υ

υ

dα (129)

×
(
B

(ω)
s1−s2+iα,υ,ε(x,y)−B

(ω)
iα,υ,ε(x,y)

)
EAl
s1

(x)EAl
s2
(y)

for all s1, s2 ∈ R. In fact, the accumulation points of Y(ω)
l,υ,ε,n, as l → ∞, do not

depend on n:

Lemma 5.12 (Approximation III)
Let n ∈ N, ε, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and υ ∈ (0, β/2). Then,

lim
l→∞

∣∣∣Y(ω)
l,υ,ε,0 (s1, s2)−Y

(ω)
l,υ,ε,n (s1, s2)

∣∣∣ = 0

uniformly for s1, s2 ∈ R.

Proof: We observe from (94) and (128)–(129) that∣∣∣Y(ω)
l,υ,ε,0(s1, s2)−Y

(ω)
l,υ,ε,n(s1, s2)

∣∣∣
≤ 1

4 |Λl|
∑

j,k∈Dn,j ̸=k

∑
x∈K∩(lbj)2

∑
y∈K∩(lbk)2

|Ks1,s2 (x,y)| (130)

+
1

4 |Λl|
∑
j∈Dn

∑
x∈∂(lbj)

∑
y∈K

|Ks1,s2 (x,y) +Ks1,s2 (y,x)| ,

where, for any Λ ∈ Pf (L) with complement Λc ⊂ L,

∂Λ :=
{
(x(1), x(2)) ∈ K : {x(1), x(2)} ∩ Λ ̸= 0, {x(1), x(2)} ∩ Λc ̸= 0

}
and

Ks1,s2 (x,y) :=

∫ β−υ

υ

dα
(
B

(ω)
s1−s2+iα,υ,ε(x,y)−B

(ω)
iα,υ,ε(x,y)

)
EAl
s1

(x)EAl
s2
(y) .
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Meanwhile, for any j, k ∈ Dn, j ̸= k, and every

x :=(x(1), x(2)) ∈ K , y :=(y(1), y(2)) ∈ K ,

one clearly has the lower bound

min
π,π′∈S2

∣∣∣xπ(1) − yπ
′(1)
∣∣∣ ≥ min

{∣∣∣∣x(1) − y(1)
∣∣− 2

∣∣ , ∣∣x(1) − y(1)
∣∣} ,

see (104). We use this simple inequality together with (108) and Theorem 5.1 (ii)
to obtain from (127) and (130) that, for all s1, s2 ∈ R,∣∣∣Y(ω)

l,υ,ε,0(s1, s2)−Y
(ω)
l,υ,ε,n(s1, s2)

∣∣∣
≤ D

ld

∑
j,k∈Dn,j ̸=k

∑
x∈L∩(lbj)

∑
y∈L∩(lbk)

1

(1 + |x− y|)2d2+2
(131)

+
D

ld

∑
j∈Dn

∑
(x(1),x(2))∈∂(lbj)

∑
y∈L

1

(1 + |x(1) − y|)2d
2+2

,

where D ∈ R+ is a finite constant only depending on ε, β, υ, d and A ∈ C∞
0 .

Note that the second term of the r.h.s. of the above inequality is of order O(l−1).
For any small δ > 0 with δl ≥ 1,

1

ld

∑
j,k∈Dn,j ̸=k

∑
x∈L∩(lbj)

∑
y∈L∩(lbk)

1 [|x− y| ≥ δl]

(1 + |x− y|)2d2+2
= O

(
1

l2d2−d+2δ2d
2+2

)

and

1

ld

∑
j,k∈Dn,j ̸=k

∑
x∈L∩(lbj)

∑
y∈L∩(lbk)

1 [|x− y| ≤ δl]

(1 + |x− y|)2d2+2
= O

(
δd+1ld

)
.

Then, by choosing δ = l
− 2d2+2

2d2+d+3 , the last two sums are both of order O(l
− d2−d+2

2d2+d+3 )
with d2 − d + 2 ≥ 2 for all d ∈ N. Using this estimate to bound the first term of
the r.h.s. of (131) we arrive at the assertion.

As already mentioned above, we now consider piecewise–constant approxi-
mations of the (smooth) electric field EA (111). For any j ∈ Dn, let z(j) ∈ bj be
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any fixed point of the box bj . Then, for any s1, s2 ∈ R, define the function

Ȳ
(ω)
l,υ,ε,n(s1, s2) :=

1

4 |Λl|
∑
j∈Dn

∑
x,y∈K∩(lbj)2

∫ β−υ

υ

dα (132)

×
(
B

(ω)
s1−s2+iα,υ,ε(x,y)−B

(ω)
iα,υ,ε(x,y)

)
×
[
EA(s1, z

(j))
]
(x(2) − x(1))

[
EA(s2, z

(j))
]
(y(2) − y(1)) .

Recall that x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈ L2. See also (104). This
new function approximates (129) arbitrarily well, as l → ∞ and n→ ∞:

Lemma 5.13 (Approximation IV)
Let n ∈ N, ε, l, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 and υ ∈ (0, β/2). Then,

lim
n→∞

{
lim sup
l→∞

∣∣∣Y(ω)
l,υ,ε,n (s1, s2)− Ȳ

(ω)
l,υ,ε,n (s1, s2)

∣∣∣} = 0

uniformly for s1, s2 ∈ R.

Proof: Using (108), (113) and Theorem 5.1 (ii) as in (131), one gets that, for
any s1, s2 ∈ R, ∣∣∣Y(ω)

l,υ,ε,n (s1, s2)− Ȳ
(ω)
l,υ,ε,n (s1, s2)

∣∣∣ (133)

≤ D(n−1 + l−1)
1

ld

∑
j∈Dn

∑
x,y∈L∩(lbj)

1

(1 + |x− y|)2d2+2
,

where D ∈ R+ is a finite constant only depending on ε, β, υ, d and A ∈ C∞
0 . For

all j ∈ Dn and l > 1, note that

1

ld

∑
x,y∈L∩(lbj)

1

(1 + |x− y|)2d2+2
≤ (2l + 1)d

ndld

∑
x∈L

1

(1 + |x|)2d2+2
≤ D

nd

for some finite constant D ∈ R+. Therefore, we arrive at the assertion by com-
bining this last bound with (133).

By taking the canonical orthonormal basis {ek}dk=1 of Rd and setting e−k :=
−ek for each k ∈ {1, . . . , d}, we rewrite the function (132) as

Ȳ
(ω)
l,υ,ε,n(s1, s2) =

1

4nd

∑
j∈Dn

∑
k,q∈{1,−1,...,d,−d}

(
Z

(ω)
l,j,k,q(s1 − s2)− Z

(ω)
l,j,k,q(0)

)
×
[
EA(s1, z

(j))
]
(eq)

[
EA(s2, z

(j))
]
(ek) (134)
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for any s1, s2 ∈ R, where, for all n ∈ N, ε, l, β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , υ ∈

(0, β/2), j ∈ Dn, k, q ∈ {1,−1, . . . , d,−d} and t ∈ R,

Z
(ω)
l,j,k,q(t) :=

nd

|Λl|
∑

x,y∈L∩(lbj)

∫ β−υ

υ

dαB
(ω)
t+iα,υ,ε(x, x− eq, y, y − ek) .

Notice that we have added terms related to x, y on the boundary of L ∩ (lbj), but
we use the same notation Ȳ

(ω)
l,υ,ε,n for simplicity. These terms are indeed irrelevant

in the limit l → ∞. For x := (x(1), x(2)) ∈ L2 and y := (y(1), y(2)) ∈ L2, we used
the notation

B
(ω)
t+iα,υ,ε(x

(1), x(2), y(1), y(2)) ≡ B
(ω)
t+iα,υ,ε(x,y) , (135)

see (127). By Theorem 5.1 (i), (iv) and Lebesgue’s dominated convergence theo-
rem, note that, for all ε, β ∈ R+, λ ∈ R+

0 , x, y ∈ L, k, q ∈ {1,−1, . . . , d,−d},
t ∈ R and υ ∈ (0, β/2), the map

ω 7→
∫ β

0

dαB
(ω)
t+iα,υ,ε(x, x− eq, y, y − ek)

is bounded and measurable w.r.t. the σ–algebra AΩ. In particular, its expectation
value E[ · ] w.r.t. the probability measure aΩ (8) is well–defined. It now remains
to analyze the limit of Z(ω)

l,j,k,q, as l → ∞.

Lemma 5.14 (Infinite volume limit and ergodicity)
Let ε, l, β ∈ R+, λ ∈ R+

0 , t ∈ R and υ ∈ (0, β/2). Then, there is a measurable
subset Ω̃υ,ε (t) ≡ Ω̃

(β,λ)
υ,ε (t) ⊂ Ω of full measure such that, for any n ∈ N, j ∈ Dn,

k, q ∈ {1,−1, . . . , d,−d} and any ω ∈ Ω̃υ,ε (t),

lim
l→∞

Z
(ω)
l,j,k,q(t) =

∑
x∈L

E
[∫ β−υ

υ

dαB
(ω)
t+iα,υ,ε(x, x− eq, 0,−ek)

]
∈ R .

Proof: The arguments are similar to those proving Theorems 5.6 or 5.8, but
a little bit more complicated. For the reader’s convenience, we give the proof
in detail. For any ε, β ∈ R+, ω ∈ Ω, λ ∈ R+

0 , t ∈ R, υ ∈ (0, β/2), k, q ∈
{1,−1, . . . , d,−d} and y ∈ L, let

F
(β,ω,λ)
t,υ,ε,k,q ({y}) :=

∑
x∈L

∫ β−υ

υ

dαB
(ω)
t+iα,υ,ε(x, x− eq, y, y − ek) ∈ R . (136)
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This infinite sum absolutely converges because of (127) and Theorem 5.1 (ii). We
now define an additive process {F(β,ω,λ)

t,υ,ε,k,q (Λ)}Λ∈Pf (L) by

F
(β,ω,λ)
t,υ,ε,k,q (Λ) :=

∑
y∈Λ

F
(β,ω,λ)
t,υ,ε,k,q ({y})

for any finite subset Λ ∈ Pf (L), see Definition 5.2. Indeed, by Theorem 5.1 (i),
(iv) and Lebesgue’s dominated convergence theorem, the map ω 7→ F

(β,ω,λ)
t,υ,ε,k,q (Λ)

is bounded and measurable (in fact continuous) w.r.t. the σ–algebra AΩ for all
Λ ∈ Pf (L). Then, for any ε, β ∈ R+, λ ∈ R+

0 , t ∈ R and υ ∈ (0, β/2), we apply
Theorem 5.5 on the previous additive process to get the existence of a measurable
subset

Ω̃υ,ε (t) ≡ Ω̃(β,λ)
υ,ε (t) ⊂ Ω

of full measure such that, for all ω ∈ Ω̃υ,ε (t), n ∈ N, j ∈ Dn and k, q ∈
{1,−1, . . . , d,−d},

lim
l→∞

{
nd

|Λl|
F
(β,ω,λ)
t,υ,ε,k,q (lbj)

}
= E

[
F
(β,ω,λ)
t,υ,ε,k,q ({0})

]
. (137)

Note that to prove this equation we use once again that any countable intersection
of measurable sets of full measure has full measure. In the way one proves Lemma
5.12, one verifies that

lim
l→∞

 nd

|Λl|
∑

y∈L∩(lbj)

∑
x∈L\(lbj)

∫ β−υ

υ

dαB
(ω)
t+iα,υ,ε(x, x− eq, y, y − ek)

 = 0 .

Using this with (136)–(137) and observing that

E
[
F
(β,ω,λ)
t,υ,ε,k,q ({0})

]
=
∑
x∈L

E
[∫ β−υ

υ

dαB
(ω)
t+iα,υ,ε(x, x− eq, 0,−ek)

]
,

we arrive at the assertion for any realization ω ∈ Ω̃υ,ε (t).

For all ε, β ∈ R+, λ ∈ R+
0 , υ ∈ (0, β/2) and k, q ∈ {1,−1, . . . , d,−d}, define

the functions

Γ̃υ,ε,k,q(t) :=
∑
x∈L

E
[∫ β−υ

υ

dαB
(ω)
t+iα,υ,ε(x, x− eq, 0,−ek)

]
(138)
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for any t ∈ R, and

Y∞,υ,ε(s1, s2) :=
∑

k,q∈{1,−1,...,d,−d}

(
Γ̃υ,ε,k,q(s1 − s2)− Γ̃υ,ε,k,q(0)

)
×
∫
Rd

ddx [EA(s1, x)] (eq) [EA(s2, x)] (ek) (139)

for any s1, s2 ∈ R. We show next that the function Y
(ω)
l,υ,ε,0 defined by (128) almost

surely converges to the deterministic function Y∞,υ,ε, as l → ∞:

Proposition 5.15 (Infinite volume limit of the Y–approximation)
Let ε, β ∈ R+, λ ∈ R+

0 , υ ∈ (0, β/2) and s1, s2 ∈ R. Then, there is a measurable
subset Ω̃υ,ε (s1, s2) ≡ Ω̃

(β,λ)
υ,ε (s1, s2) ⊂ Ω of full measure such that, for any A ∈

C∞
0 and ω ∈ Ω̃υ,ε (s1, s2),

lim
l→∞

Y
(ω)
l,υ,ε,0 (s1, s2) = Y∞,υ,ε(s1, s2) .

Proof: Let ε, β ∈ R+, λ ∈ R+
0 , υ ∈ (0, β/2), A ∈ C∞

0 and s1, s2 ∈ R.
Using Lemmata 5.12–5.14 and (134), we obtain the existence of a measurable
subset Ω̃υ,ε (s1, s2) ≡ Ω̃

(β,λ)
υ,ε (s1, s2) ⊂ Ω of full measure such that, for any ω ∈

Ω̃υ,ε (s1, s2),

lim
l→∞

Y
(ω)
l,υ,ε,0 (s1, s2) =

∑
k,q∈{1,−1,...,d,−d}

(
Γ̃υ,ε,k,q(s1 − s2)− Γ̃υ,ε,k,q(0)

)

× lim
n→∞

{
1

4nd

∑
j∈Dn

[
EA(s1, z

(j))
]
(eq)

[
EA(s2, z

(j))
]
(ek)

}
.

The latter implies the proposition because the term within the limit n → ∞ is a
Riemann sum and EA ∈ C∞

0 for any A ∈ C∞
0 , see (111).

This last limit depends on the two arbitrary parameters ε ∈ R+ and υ ∈
(0, β/2), where β ∈ R+. The next step is to remove them by considering the
limits ε→ 0+ and υ → 0+.

We first observe that the functions (138) are approximations of the function
Γk,q ≡ Γ

(β,λ)
k,q defined, for any β ∈ R+, λ ∈ R+

0 , k, q ∈ {1,−1, . . . , d,−d} and
t ∈ R, by

Γk,q(t) := lim
l→∞

1

|Λl|
∑
x,y∈Λl

E
[∫ β

0

dα C
(ω)
t+iα(x, x− eq, y, y − ek)

]
. (140)
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By Theorem 5.1 (i), (iv) and Lebesgue’s dominated convergence theorem, note
that the map

ω 7→
∫ β

0

dα C
(ω)
t+iα(x, x− eq, y, y − ek)

is bounded and measurable w.r.t. the σ–algebra AΩ. Here, we use the same con-
vention for the arguments of C

(ω)
t+iα as in (135) for B

(ω)
t+iα,υ,ε. This function is

well–defined and it is the limit of Γ̃υ,ε,k,q, as ε→ 0+ and υ → 0+:

Lemma 5.16 (Approximation on the function Γ)
Let ε, β ∈ R+, λ ∈ R+

0 , t ∈ R, k, q ∈ {1,−1, . . . , d,−d} and υ ∈ (0, β/2). Then,
Γk,q(t) exists and equals

Γk,q(t) = Γ̃υ,ε,k,q(t) +O(υ) +Oυ(ε)

uniformly for times t in compact sets. The term of order Oυ(ε) vanishes when
ε→ 0+ for any fixed υ ∈ (0, β/2).

Proof: Let ε, β ∈ R+, λ ∈ R+
0 , υ ∈ (0, β/2), t ∈ R and k, q ∈ {1,−1, . . . , d,−d}.

Using similar arguments to the proof of Lemma 5.11, one shows that

lim sup
l→∞

1

|Λl|
∑
x,y∈Λl

E
[ ∫ β−υ

υ

dα
∣∣∣B(ω)

t+iα,υ,ε(x, x− eq, y, y − ek)

−C
(ω)
t+iα(x, x− eq, y, y − ek)

∣∣∣ ] = O(ε)

uniformly for t ∈ R. Moreover, by Theorem 5.1 (ii) and translation invariance of
aΩ observe that, for υ ∈ (0, β/2),

lim
l→∞

{
1

|Λl|
∑
x,y∈Λl

E
[∫ β−υ

υ

dαB
(ω)
t+iα,υ,ε(x, x− eq, y, y − ek)

]

−
∑
x∈L

E
[∫ β−υ

υ

dαB
(ω)
t+iα,υ,ε(x, x− eq, 0,−ek)

]}
= 0 (141)

uniformly for t in compact sets. Then, one uses the same arguments as in Lemma
5.10 to obtain the assertion, see (138) and (140). We omit the details.
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We now consider the limit of the integrand X
(ω)
l,0 in (120), as l → ∞, and show

that it converges almost surely to the deterministic function X∞ ≡ X
(β,λ)
∞ defined,

for any β ∈ R+, λ ∈ R+
0 and s1, s2 ∈ R, by

X∞(s1, s2) :=
1

4

∑
k,q∈{1,−1,...,d,−d}

(
Γk,q(s1 − s2)− Γk,q(0)

)
×
∫
Rd

ddx [EA(s1, x)] (eq) [EA(s2, x)] (ek) . (142)

Theorem 5.17 (Infinite volume limit of the X–integrands – I)
Let β ∈ R+, λ ∈ R+

0 and s1, s2 ∈ R. Then, there is a measurable subset
Ω̃ (s1, s2) ≡ Ω̃(β,λ) (s1, s2) ⊂ Ω of full measure such that, for any A ∈ C∞

0

and ω ∈ Ω̃ (s1, s2),

lim
l→∞

X
(ω)
l,0 (s1, s2) = X∞ (s1, s2) .

Proof: Fix β ∈ R+, λ ∈ R+
0 and s1, s2 ∈ R. Define also the countable

sequences {υn}n∈N and {εm}m∈N by υn := n−1 and εm := m−1 for n,m ∈
N. Then, by Proposition 5.15, for any n,m ∈ N, there is a measurable subset
Ω̂n,m (s1, s2) ≡ Ω̂

(β,λ)
n,m (s1, s2) ⊂ Ω of full measure such that, for any A ∈ C∞

0

and ω ∈ Ω̂n,m (s1, s2),

lim
l→∞

Y
(ω)
l,υn,εm,0

(s1, s2) = Y∞,υn,εm (s1, s2) . (143)

Thus, we define the subset

Ω̃ (s1, s2) :=
∩

n,m∈N

Ω̂n,m (s1, s2) . (144)

It has full measure, since it is a countable intersection of measurable sets of full
measure.

Take A ∈ C∞
0 and any strictly positive parameter ϵ ∈ R+. Then, by Lemmata

5.10, 5.11 and 5.16, there are Nϵ,Mϵ ∈ N such that, for all l ∈ R+ and ω ∈
Ω̃ (s1, s2),∣∣∣X(ω)

l,0 (s1, s2)−X∞ (s1, s2)
∣∣∣ ≤ ϵ+

∣∣∣Y(ω)
l,υNϵ ,εMϵ ,0

(s1, s2)−Y∞,υNϵ ,εMϵ
(s1, s2)

∣∣∣ .
Therefore, we arrive at the assertion by combining this bound together with (143)
for any realization ω ∈ Ω̃ (s1, s2).
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To find the energy increment (120) in the limit (η, l−1) → (0, 0), we use be-
low Lebesgue’s dominated convergence theorem and it is crucial to remove the
dependency of the measurable subset Ω̃ (s1, s2) on s1, s2 ∈ R, see Theorem 5.17.
To this end we first need to show some uniform boundedness and continuity of
the function (121):

Lemma 5.18 (Uniform Boundedness and Equicontinuity of X–integrands)
Let β ∈ R+, λ ∈ R+

0 and A ∈ C∞
0 . The family{

(s1, s2) 7→ X
(ω)
l,0 (s1, s2)

}
l∈R+,ω∈Ω

of maps from R2 to C is uniformly bounded and equicontinuous.

Proof: The uniform boundedness of this collection of maps is an immediate
consequence of (126), see (121). To prove its equicontinuity, it suffices, by Lem-
mata 5.10–5.11, to verify that, for any fixed β ∈ R+, λ ∈ R+

0 , A ∈ C∞
0 , ε ∈ R+

and υ ∈ (0, β/2), the family{
(s1, s2) 7→ Y

(ω)
l,υ,ε,0(s1, s2)

}
l∈R+,ω∈Ω

of maps from R2 to C is equicontinuous, see (128). This property immediately
follows from Theorem 5.1 (iii). We omit the details.

Theorem 5.17 and Lemma 5.18 imply two corollaries: The first one allows us
to eliminate the (s1, s2)–dependency of the measurable set Ω̃ (s1, s2) of Theorem
5.17. The second one concerns the continuity of the function Γk,q, which is in fact
related to a matrix–valued conductivity as explained after Theorem 5.21.

Corollary 5.19 (Infinite volume limit of the X–integrand-II)
Let β ∈ R+ and λ ∈ R+

0 . Then, there is a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of
full measure such that, for any s1, s2 ∈ R, A ∈ C∞

0 and ω ∈ Ω̃,

lim
l→∞

X
(ω)
l,0 (s1, s2) = X∞(s1, s2) . (145)

Proof: Fix β ∈ R+ and λ ∈ R+
0 . By Theorem 5.17, for any s1, s2 ∈ Q, there

is a measurable subset Ω̂ (s1, s2) ⊂ Ω of full measure such that (145) holds for
any A ∈ C∞

0 and ω ∈ Ω̂ (s1, s2). Let Ω̃ be the intersection of all such subsets
Ω̂ (s1, s2). Since this intersection is countable, Ω̃ is measurable and has full mea-
sure. By Lemma 5.18 and the density of Q in R, it follows that (145) holds true
for any s1, s2 ∈ R, A ∈ C∞

0 and ω ∈ Ω̃.
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Corollary 5.20 (Continuity of paramagnetic production coefficients)
Let β ∈ R+, λ ∈ R+

0 and k, q ∈ {1,−1, . . . , d,−d}. Then, the function Γk,q from
R to C defined by (140) is continuous.

Proof: For each k, q ∈ {1,−1, . . . , d,−d} and t ∈ R, choose A ∈ C∞
0 such

that, in a fixed neighborhood of t, the map s 7→ EA(s, x) is constant for any
x ∈ Rd and ∫

Rd

ddx [EA(t, x)] (eq) [EA(0, x)] (ek) ̸= 0 .

Then, we combine the equicontinuity of the family{
s 7→ X

(ω)
l,0 (s, 0)

}
l∈R+,ω∈Ω

of maps from R to C given by Lemma 5.18 with Corollary 5.19 to show that the
function Γk,q is continuous at t ∈ R for each k, q ∈ {1,−1, . . . , d,−d}.

Therefore, we can now use Lebesgue’s dominated convergence theorem to get
the energy increment (120) in the limit (η, l−1) → (0, 0):

Theorem 5.21 (Matrix–valued heat production coefficient)
Let β ∈ R+ and λ ∈ R+

0 . Then, there is a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of
full measure such that, for any ω ∈ Ω̃, A ∈ C∞

0 and t ≥ t0,

ip (t) := lim
(η,l−1)→(0,0)

{(
η2 |Λl|

)−1
I(ω,ηAl)
p (t)

}
=

∫ t

t0

ds1

∫ s1

t0

ds2 X∞(s1, s2) .

Proof: Recall (120), that is, for any t ≥ t0,(
η2 |Λl|

)−1
I(ω,ηAl)
p (t) =

∫ t

t0

ds1

∫ s1

t0

ds2 X
(ω)
l,0 (s1, s2) +O(η) .

The assertion then follows from Lemma 5.18 and Corollary 5.19 together with
Lebesgue’s dominated convergence theorem.

Notice at this point that the theorem above together with Equation (142) means
that the continuous functions Γk,q define the entries of a matrix–valued heat pro-
duction coefficient. In fact, (142) can be rewritten by using the deterministic
paramagnetic transport coefficient Ξp defined by (33):
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Lemma 5.22 (Ξp as heat production coefficient)
For any β ∈ R+, λ ∈ R+

0 and s1, s2 ∈ R,

X∞(s1, s2) =

∫
Rd

ddx ⟨EA(s1, x),Ξp(s1 − s2)EA(s2, x)⟩ .

Proof: By combining [BPK2, Theorem 3.1, Lemma 5.2] with Equations (26),
(29), (31), (33), (140), (142), one gets

{Ξp (t)}q,k = {Ξp (t)}k,q = Γk,q (t)− Γk,q (0) ∈ R (146)

for any k, q ∈ {1, . . . , d} and t ∈ R. Hence,

X∞(s1, s2) =

∫
Rd

ddx
d∑
q=1

[EA(s1, x)] (eq)
d∑

k=1

{Ξp (s1 − s2)}q,k [EA(s2, x)] (ek) .

Therefore, Theorem 4.1 (p) directly results from Theorem 5.21 and Lemma
5.22 together with Fubini’s theorem. In particular, Ξp can also be seen as the
heat production coefficient. Under the assumption that the random variables are
independently and identically distributed (i.i.d.) (Section 2.1), this coefficient be-
comes a scalar:

Lemma 5.23 (Paramagnetic transport coefficient as a scalar)
For any β ∈ R+, λ ∈ R+

0 , there is a real function σp ≡ σ
(β,λ)
p such that

Ξp (t) = σp (t) IdRd , t ∈ R .

Proof: Straightforward computations using the invariance of aΩ under transla-
tions, reflections and permutations of axes (cf. (8)) show from (31) and (33) that
at t ∈ R, the coefficient {Ξp (t)}k,q vanishes for all k, q ∈ {1, . . . , d} with k ̸= q,
while, for any k, q ∈ {1, . . . , d} and t ∈ R,

{Ξp (t)}k,k = {Ξp (t)}q,q =: σp (t) .

It remains to prove Assertions (Q) and (P) of Theorem 4.1. By Equation (55),
it suffices to study the potential energy density difference ∆P ≡ ∆

(β,ω,λ,A)
P defined

by
∆P (t) := lim

(η,l−1)→(0,0)

{(
η2 |Λl|

)−1
(
P(ω,ηAl) (t)− I

(ω,ηAl)
d (t)

)}
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for any β ∈ R+, ω ∈ Ω, λ ∈ R+
0 , A ∈ C∞

0 and t ≥ t0. This analysis is done in
the following theorem:

Theorem 5.24 (Potential energy density difference)
Let β ∈ R+ and λ ∈ R+

0 . Then, there is a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of
full measure such that, for any ω ∈ Ω̃, A ∈ C∞

0 and t ≥ t0,

∆P (t) =

∫
Rd

ddx

∫ t

t0

ds1

∫ t

t0

ds2 ⟨EA(s1, x),Ξp (t− s2)EA(s2, x)⟩ .

Proof: By [BPK2, Lemmata 5.2 and 5.13], for any A ∈ C∞
0 , there is η0 ∈ R+

such that, for all |η| ∈ (0, η0] and l ∈ R+,

P(ω,A) (t)− I
(ω,A)
d (t) = η2 |Λl|

∫ t

t0

ds1

∫ t

t0

ds2 X̂
(ω)
l (s1, s2) +O(η3ld)

uniformly for β ∈ R+, ω ∈ Ω, λ ∈ R+
0 and t ≥ t0, where

X̂
(ω)
l (s1, s2) :=

1

4 |Λl|
∑
x,y∈K

∫ β

0

dα
(
C
(ω)
t−s2+iα(x,y)− C

(ω)
iα (x,y)

)
EAl
s1

(x)EAl
s2
(y)

for any s1, s2 ∈ R. The function X̂
(ω)
l is very similar to X

(ω)
l,0 . Compare indeed

the last equation with (121). As a consequence, one gets the assertion exactly in
the same way one proves Theorem 5.21 and Lemma 5.22. We omit the details.

5.5 Hilbert Space of Current Fluctuations
5.5.1 Positive Sesquilinear Forms

As explained in Section 3.3 the linear subspace

I := lin
{
Im(a∗ (ψ1) a (ψ2)) : ψ1, ψ2 ∈ ℓ1(L) ⊂ ℓ2(L)

}
⊂ U (147)

is an invariant space of the one–parameter (Bogoliubov) group τ (ω,λ) for any ω ∈
Ω and λ ∈ R+

0 .
Let the random positive sesquilinear form ⟨·, ·⟩(ω)I,l ≡ ⟨·, ·⟩(β,ω,λ)I,l in I be defined

by
⟨I, I ′⟩(ω)I,l := ϱ(β,ω,λ)

(
F(l) (I)∗ F(l) (I ′)

)
, I, I ′ ∈ I , (148)
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for any l, β ∈ R+, ω ∈ Ω and λ ∈ R+
0 . Here, F(l) is the fluctuation observable

defined by (40), that is,

F(l) (I) :=
1

|Λl|1/2
∑
x∈Λl

{
χx (I)− ϱ(β,ω,λ) (χx (I))1

}
, I ∈ I , (149)

for each l ∈ R+. Recall that χx, x ∈ L, are the (space) translation automorphisms.
In the following we aim to prove Theorem 3.5. The latter says that for ω in a

subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of full measure, the limit l → ∞ of ⟨·, ·⟩(ω)I,l is a positive
sesquilinear form ⟨·, ·⟩I ≡ ⟨·, ·⟩(β,λ)I on I which does not depend on ω ∈ Ω̃. To
prove this, it suffices to consider elements I, I ′ ∈ I of the form

I = Im(a∗ (ψ1) a (ψ2)) , I ′ = Im(a∗ (ψ′
1) a (ψ

′
2)) ,

with ψ1, ψ2, ψ
′
1, ψ

′
2 ∈ ℓ1(L). In this case, we have a uniform estimate given by

[BPK2, Lemma 5.10]: There is a constant D ∈ R+ such that, for any l, β ∈ R+,
ω ∈ Ω, λ ∈ R+

0 and all ψ1, ψ2, ψ
′
1, ψ

′
2 ∈ ℓ1(L),∣∣∣⟨Im(a∗ (ψ1) a (ψ2)), Im(a∗ (ψ′

1) a (ψ
′
2))⟩

(ω)
I,l

∣∣∣ ≤ D ∥ψ1∥1 ∥ψ2∥1 ∥ψ
′
1∥1 ∥ψ

′
2∥1 .
(150)

Using this we can restrict the choice of ψ1, ψ2, ψ
′
1, ψ

′
2 to some convenient dense

subset of ℓ1(L): Let

ℓQ0 :=
{
ψ ∈ ℓ1(L) : ψ is a (Q+ iQ)–valued function with finite support

}
(151)

and observe that it is a countable and dense subset of ℓ1(L).
By countability of ℓQ0 , it suffices to prove, for each ψ1, ψ2, ψ

′
1, ψ

′
2 ∈ ℓQ0 , the

existence of a subset Ω̃ψ1,ψ2,ψ
′
1,ψ

′
2
⊂ Ω of full measure such that the limit

lim
l→∞

⟨Im(a∗ (ψ1) a (ψ2)), Im(a∗ (ψ′
1) a (ψ

′
2))⟩

(ω)
I,l

exists and does not depend on ω ∈ Ω̃ψ1,ψ2,ψ
′
1,ψ

′
2

in order to obtain a subset

Ω̃ :=
∩

ψ1,ψ2,ψ
′
1,ψ

′
2∈ℓ

Q
0

Ω̃ψ1,ψ2,ψ
′
1,ψ

′
2
⊂ Ω

of full measure with the required properties for all ψ1, ψ2, ψ
′
1, ψ

′
2 ∈ ℓQ0 . This is

performed in the following lemma:
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Lemma 5.25 (Well–definiteness of ⟨·, ·⟩I)
For any β ∈ R+, λ ∈ R+

0 and ψ1, ψ2, ψ
′
1, ψ

′
2 ∈ ℓQ0 , there is a measurable subset

Ω̃ψ1,ψ2,ψ
′
1,ψ

′
2
⊂ Ω of full measure such that, for any ω ∈ Ω̃ψ1,ψ2,ψ

′
1,ψ

′
2
,

lim
l→∞

⟨Im(a∗ (ψ1) a (ψ2)), Im(a∗ (ψ′
1) a (ψ

′
2))⟩

(ω)
I,l

= lim
l→∞

E
[
⟨Im(a∗ (ψ1) a (ψ2)), Im(a∗ (ψ′

1) a (ψ
′
2))⟩

(ω)
I,l

]
∈ R .

Proof: Let β ∈ R+, λ ∈ R+
0 and ψ1, ψ2, ψ

′
1, ψ

′
2 ∈ ℓQ0 . One uses the first

equation of the proof of [BPK2, Lemma 5.10] as well as [BPK2, Eq. (134)], that
is all together,

⟨Im(a∗ (ψ1) a (ψ2)), Im(a∗ (ψ′
1) a (ψ

′
2))⟩

(ω)
I,l

=
∑

x:=(x(1),x(2)),y:=(y(1),y(2))∈L2

ψ1(y
(1))ψ2(y

(2))ψ′
1(x

(1))ψ′
2(x

(2))

×

[
1

4 |Λl|
∑

z1,z2∈Λl

C
(ω)
0 (x+ (z1, z1) ,y + (z2, z2))

]
. (152)

See (122) for the definition of the map C
(ω)
t+iα. Then, one approximates C

(ω)
0 by

C
(ω)
iα with α≪ β in (152) by using the bounds∣∣∣∣∣ 1

|Λl|
∑

z1,z2∈Λl

C
(ω)
0 (x+ (z1, z1) ,y + (z2, z2))− C

(ω)
iα (x+ (z1, z1) ,y + (z2, z2))

∣∣∣∣∣
≤ ∥C(ω)

iα − C
(ω)
0 ∥op ≤ Dα

for sufficiently small α ∈ [0, β]. Here, D ∈ R+ is a finite constant only depending
on λ ∈ R+

0 . For more details, see [BPK2, Lemma 5.3, Eq. (102)]. This allows us
to use Theorems 5.1 and 5.4 in order to prove the assertion. We omit the details
as it is a simpler version of results proven in this paper. See for instance Theorem
5.21.

Therefore, we define the deterministic positive sesquilinear form ⟨·, ·⟩I ≡
⟨·, ·⟩(β,λ)I in I to be

⟨I, I ′⟩I := lim
l→∞

E
[
⟨I, I ′⟩(ω)I,l

]
∈ R , I, I ′ ∈ I .

By combining (150) and Lemma 5.25 we deduce the existence of this limit for all
I, I ′ ∈ I as well as Theorem 3.5:

65



Theorem 5.26 (Sesquilinear form from current fluctuations)
Let β ∈ R+ and λ ∈ R+

0 . Then, one has:
(i) The positive sesquilinear form ⟨·, ·⟩I is well–defined, i.e.,

⟨I, I ′⟩I := lim
l→∞

E
[
⟨I, I ′⟩(ω)I,l

]
∈ R , I, I ′ ∈ I .

(ii) There is a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω of full measure such that, for
any ω ∈ Ω̃,

⟨I, I ′⟩I = lim
l→∞

⟨I, I ′⟩(β,ω,λ)I,l , I, I ′ ∈ I .

We are now in position to introduce next the Hilbert space of current fluctua-
tions.

5.5.2 Hilbert Space and Dynamics

As explained in Section 3.3, the quotient Ȟfl := I/I0 is a pre–Hilbert space w.r.t.
to the (well–defined) scalar product

⟨[I], [I ′]⟩Ȟfl
:= ⟨I, I ′⟩I , [I], [I ′] ∈ Ȟfl , (153)

where
I0 := {I ∈ I : ⟨I, I⟩I = 0} .

The completion of Ȟfl w.r.t. the scalar product ⟨·, ·⟩Ȟfl
is the Hilbert space of

current fluctuations denoted by

(Hfl, ⟨·, ·⟩Hfl
) . (154)

The random dynamics defined by τ (ω,λ) on U induces a unitary time evolution on
Hfl:

Theorem 5.27 (Dynamics of current fluctuations)
Let β ∈ R+ and λ ∈ R+

0 . Then, there is a measurable subset Ω̃ ≡ Ω̃(β,λ) ⊂ Ω
of full measure such that, for any ω ∈ Ω̃, there is a unique, strongly continuous
one–parameter unitary group {V(ω,λ)

t }t∈R on the Hilbert space Hfl obeying, for
any t ∈ R,

V
(ω,λ)
t ([I]) = [τ

(ω,λ)
t (I)] , [I] ∈ Ȟfl .
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Proof: By (150), Theorem 5.26 and the stationarity of the KMS state ϱ(β,ω,λ) (cf.
(21)), for any β ∈ R+, ω ∈ Ω and λ ∈ R+

0 , the one–parameter group τ (ω,λ) defines
a unitary group {V(ω,λ)

t }t∈R on the Hilbert space (Hfl, ⟨·, ·⟩Hfl
) as explained in the

theorem: τ (ω,λ)t (I) ⊂ I while the stationarity of ϱ(β,ω,λ) implies∥∥∥[τ (ω,λ)t (I)]
∥∥∥
Hfl

= ∥[I]∥Hfl
, [I] ∈ Ȟfl ,

for all t ∈ R. In particular, τ (ω,λ)t (I0) ⊂ I0 and hence, [τ (ω,λ)t (I)] ∈ Ȟfl depends
only on the equivalence class [I] ∈ Ȟfl for all I ∈ I and t ∈ R. It remains to
show that, for any β ∈ R+, ω ∈ Ω and λ ∈ R+

0 , V(ω,λ)
t is strongly continuous at

t = 0 on a dense subset of Hfl.
To this end, observe that, for any [I] in the dense subspace Ȟfl of Hfl and any

fixed ω ∈ Ω,∥∥∥V(ω,λ)
t ([I])− [I]

∥∥∥2
Hfl

= lim
l→∞

ϱ(β,ω,λ)
(
F(l)

(
I − τ

(ω,λ)
t (I)

)∗
F(l) (I)

)
+lim
l→∞

ϱ(β,ω,λ)
(
F(l)

(
I − τ

(ω,λ)
−t (I)

)∗
F(l) (I)

)
.

We assume w.l.o.g. that I = a∗ (ψ1) a (ψ2) for some ψ1, ψ2 ∈ ℓ1(L). Then,
explicit computations starting from the last equality lead to∥∥∥V(ω,λ)

t ([I])− [I]
∥∥∥2
Hfl

= lim
l→∞

⟨I(ω)1 (t) , I⟩(ω)I,l + lim
l→∞

⟨I(ω)2 (t) , I⟩(ω)I,l (155)

+lim
l→∞

⟨I(ω)1 (−t) , I⟩(ω)I,l + lim
l→∞

⟨I(ω)2 (−t) , I⟩(ω)I,l ,

where, for any ψ1, ψ2 ∈ ℓ1(L),

I
(ω)
1 (t) := a∗(ψ1−U

(ω,λ)
t ψ1)a(ψ2) and I

(ω)
2 (t) := a∗(U

(ω,λ)
t ψ1)a(ψ2−U

(ω,λ)
t ψ2) .

Then, by using (150) together with

lim
t→0

∥ψ1 − U
(ω,λ)
t ψ1∥1 = lim

t→0
∥ψ2 − U

(ω,λ)
t ψ2∥1 = 0 , lim

t→0
∥U(ω,λ)

t ψ1∥1 = ∥ψ1∥1 ,

we infer from (155) that

lim
t→0

∥∥∥V(ω,λ)
t ([I])− [I]

∥∥∥
Hfl

= 0

for any β ∈ R+, ω ∈ Ω and λ ∈ R+
0 .
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Note that the strongly continuous one–parameter unitary group {V(ω,λ)
t }t∈R on

the Hilbert space (Hfl, ⟨·, ·⟩Hfl
) is a priori depending on the parameter ω ∈ Ω̃, even

if Equation (48) does not depend on ω ∈ Ω̃. In fact, one can also construct a direct
integral Hilbert space to get a deterministic, strongly continuous one–parameter
unitary group {V̄(λ)

t }t∈R. For the interested reader, we sketch this construction in
the next subsection:

5.5.3 Averaged Initial State and Dynamics

Note that the map ω 7→ ϱ(β,ω,λ) is continuous w.r.t. the topology on Ω of which
AΩ is the Borel σ–algebra and the weak∗–topology for states. It is a consequence
of a result similar to [BR2, Proposition 5.3.25.] together with the uniqueness of
(τ (ω,λ), β)–KMS states. Then, define, for any β ∈ R+ and λ ∈ R+

0 , the averaged
state ϱ̄(β,λ) ∈ U∗ by

ϱ̄(β,λ) (B) := E
[
ϱ(β,ω,λ) (B)

]
, B ∈ U .

For any β ∈ R+, λ ∈ R+
0 and ω ∈ Ω, let (H(ω), π(ω),Ψ(ω)) be the GNS

representation of the (τ (ω,λ), β)–KMS state ϱ(β,ω,λ). The vector Ψ(ω) is cyclic and
the CAR C∗–algebra U is separable. Therefore, there is a sequence {Bn}n∈N ⊂ U
such that the subset

{π(ω) (Bn)Ψ
(ω)}n∈N ⊂ H(ω) , ω ∈ Ω ,

is dense in H(ω). Moreover, the map

ω 7→ ⟨π(ω) (Bn)Ψ
(ω), π(ω) (Bm)Ψ

(ω)⟩H(ω) = ϱ(β,ω,λ) (B∗
nBm)

is bounded and measurable w.r.t. the σ–algebra AΩ for all n,m ∈ N. It follows
that {H(ω)}ω∈Ω is a measurable family, see [BR1, Definition 4.4.1B.]. In particu-
lar, as the probability measure a0 is a standard measure, there is a direct integral
Hilbert space

H̄ :=

∫ ⊕

Ω

H(ω) da0(ω)

with scalar product

⟨b1, b2⟩H̄ :=

∫
Ω

⟨b(ω)1 , b
(ω)
2 ⟩H(ω)da0(ω) .

Note that U is the inductive limit of (finite dimensional) simple C∗–algebras
{UΛ}Λ∈Pf (L), see [S, Lemma IV.1.2]. By [BR1, Corollary 2.6.19.], U is thus
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simple and hence, the (τ (ω,λ), β)–KMS state ϱ(β,ω,λ) is faithful. In particular, π(ω)

is injective for any ω ∈ Ω. We define a separating vector

Ψ̄ :=

∫ ⊕

Ω

Ψ(ω)da0(ω) ∈ H̄

and a non–degenerate and injective representation

π̄ :=

∫ ⊕

Ω

π(ω)da0(ω)

of the C∗–algebra U into the space B(H̄). Then we have

ϱ̄(β,λ) (B) = ⟨Ψ̄, π̄(B)Ψ̄⟩H̄ , B ∈ U .

In other words, (H̄, π̄) is a faithful representation of the C∗–algebra U and Ψ̄ is a
separating vector representing the state ϱ̄(β,λ).

Observe that the one–parameter group τ (ω,λ) has a unique unitary represen-
tation {eitL(ω)}t∈R ⊂ π(ω) (U)′′ with L(ω) being a self–adjoint operator acting on
the Hilbert space H(ω) such that Ψ(ω) ∈ Dom(L(ω)) and L(ω)Ψ(ω) = 0. The fam-
ily {eitL(ω)}t∈R,ω∈Ω defines a strongly continuous one–parameter unitary group
{Ūt}t∈R on H̄ by

Ūt :=

∫ ⊕

Ω

eitL
(ω)

da0(ω) .

It defines an averaged unitary dynamics on H̄ which satisfies ŪtΨ̄ = 0. In par-
ticular we can define a deterministic one–parameter group τ̄ (λ) ≡ {τ̄ (λ)t }t∈R of
automorphisms of B(H̄) by

∀t ∈ R, B ∈ B(H̄) : τ̄ t (B) := ŪtBŪ
∗
t ∈ B

(
H̄
)
.

Using these constructions, one can perform all the arguments of Sections
5.5.1–5.5.2 by taking the invariant space

Ī :=

∫ ⊕

Ω

π(ω)(I)da0(ω) ⊂ B(H̄)

(cf. (147)) of the group τ̄ (λ). See, e.g., Theorem 5.26 (i). Then, for any β ∈ R+

and λ ∈ R+
0 , one obtains the existence of a unique, strongly continuous one–

parameter deterministic unitary group {V̄(λ)
t }t∈R on the Hilbert space constructed
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from the space of equivalence classes Ī/Ī0 and denoted again by (Hfl, ⟨·, ·⟩Hfl
).

The unitary group {V̄(λ)
t }t∈R obeys, for any t ∈ R,

V̄
(λ)
t ([π̄(I)]) = [τ̄ t(π̄(I))] , I ∈ I .

Moreover, by Theorems 3.1 (p) and 5.26 (i),

{Ξp (t)}k,q = 2 Im

⟨
[π̄(Iek,0)],

∫ t

0

V̄(λ)
s ([π̄(Ieq ,0)])ds

⟩
Hfl

for any β ∈ R+, λ ∈ R+
0 , t ∈ R and k, q ∈ {1, . . . , d}.
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