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1. Introduction

Consider the problem
—Au+V(x)u —au= f (1.1)

withu € E = H*(RY) andf € F = L*(R%), d € N, a is a constant an#l' ()

is a function converging t0 at infinity. Whena > 0, the essential spectrum of
the operatoA : £ — F, which corresponds to the left-hand side of equation (1.1)
contains the origin. Consequently, such operator does at@fy the Fredholm
property. Its image is not closed, fdr> 1 the dimensions of its kernel and the
codimension of its image are not finite. Elliptic equationataining non-Fredholm
operators were studied extensively in recent years (see [16], [18], [19], [20],
[22], [23], [24], also [5]) along with their potential appétions to the theory of
reaction-diffusion equations (see [7], [8]). In the caseewt = 0 the operatorA
satisfies the Fredholm property in some properly chosenheiigspaces (see [1],



[2], [3], [4], [5]). However, the case ai > 0 is very different and the approach
developed in the works above cannot be generalized.

One of the significant questions about problems with norHroén operators
concerns their solvability, which are studied in the foliog/ setting. Letf, be a
sequence of functions belonging to the image of the operétsuch thatf,, — f
in L? asn — oo. Let us denote by, a sequence of functions frof?, such that

Au, = fn, n € N.

Since the operatad does not satisfy the Fredholm property, the sequenamay
not be convergent. Let us call a sequengesuch thatdw,, — f a solution in the
sense of sequences of equatidn = f (see [15]). If this sequence converges to
a functionu, in the norm of the spacé, thenu, is a solution of this equation.
Solution in the sense of sequences is equivalent in thisegernthe usual solution.
However, in the case of non-Fredholm operators this coevexgmay not hold or it
can occur in some weaker sense. In this case, solution iretise®f sequences may
not imply the existence of the usual solution. Sufficientdibons of equivalence
of solutions in the sense of sequences and the usual sdw@rerthe conditions on
sequenceg, under which the corresponding sequenegare strongly convergent.
In our present work we generalize the results of [25] fromedfeation involving
a single non Fredholm Schrodinger operator to its sum viiéhane dimensional
Laplacian with the periodic boundary conditions. Note #natoblem in a layer in-
volving an operator without Fredholm property and with tleei@dicity on the sides
was studied recently in [21] in the context of proving thesénce of stationary
solutions of a certain nonlocal reaction- diffusion typeaipn.

In the present work our domain is a product space in four dgioers

Q:=R3>x I =R?*x[0,2n],
such that the variablesc€ R® andz, € I = [0, 27]. Let us consider the equation

0*u
—== —Au+V(z)u —au= f(x,x.), (1.2)
Ox?

wherea > 0 is a constant and the right side is square integrable. Theilaire
2

. 0 . .
Laplacian operatof := pre + A,, whereA, acts only on the: variable. We will
Ty
be using the functional space

H2(Q) = {u(x,m) :Q = C |u(z, 1) € LXQ), Au(z,z.) € L¥(Q),

0 0
u(z,0) = u(x, 2m), %(z,O) = %(wﬂﬁ), r €R*ae.}
equipped with the norm
||U||%{2(Q) = ||U||%2(Q) + ||AU||%2(Q)-
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The essential spectrum of our Schrodinger operator withal@v, short-range po-
tential (see Assumption 1 below) involved in (1.2) fills thegrs-axis|—a, oo) (see
e.g. [10]) such that its inverse froi?(R?) to F%(R?) is not bounded. The inner
product of two functions

(f(z,21),9(x,21)) 20 ZZ/Qf(xall)g(xafEl)dedela

with a slight abuse of notations when these functions aresguoare integrable.
Indeed, iff € L'(Q2) andg is bounded, then evidently the integral considered above
makes sense, like for instance in the case of functionsvedbih the orthogonality
conditions of Theorem 2 below. Similarly, we will use

(f(2), 9(%)) p2s) = g f(x)g(x)de

(f(xz1),9 /f:m (x))dzy.

The sphere of radius > 0 in R? centered at the origin will be denoted kY.
Let us make the following technical assumptions on the sgadgentialV'(z)
analogously to those stated in Assumption 1.1 of [17] (see §18], [19]).

Assumption 1. The potential functiod’ (z) : R* — R satisfies the estimate
C
Viz)| <
| ( )| — 1+ |x|3.5+5

with some) > 0 andz = (z1, 22, 23) € R? a.e. such that

19 _2 e 8
49§(47r) 3||V||EW(R3)||V||2%(R3) <1 and ‘/CHLSHVHL%(R?,) <dr

Here and further dowid' stands for a finite positive constant ang; s given on
p.98 of [12] is the constant in the Hardy-Littlewood-Sohaleequality

(v) -
’/RS o |x— |2 ————~dxdy <CHLSHf1”L2(R3) f1 € L2(R?).

According to Lemma 2.3 of [17], under Assumption 1 above anpbtential
function, the operator-A, + V(z) — a on L*(R?) is self-adjoint and unitarily
equivalent to-A, — a via the wave operators (see [11], [14])

QF = 5 — lim,_,ooe AV )itAs
where the limit is understood in the strond sense (see e.g. [13] p.34, [6] p.90).
Hence—A, + V(z) — a on L?(R?) has only the essential spectrum,(—A, +
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[—a, oo0). By means of the spectral theorem, its functions of the

Viz) —a) =
continuous spectrum satisfying

(A, + V(@)]er(r) = Foi(2),
in the integral formulation the Lippmann-Schwinger eqoiatfor the perturbed

k € R3, (1.3)

plane waves (see e.g. [13] p.98)

() - I/Eﬂiiv)(ﬂ (1.4)
€T) = 3 .
ok (277)5 47 R3 ‘SL’—y| PrRNYIAY
and the orthogonality relations

(1.5)

(pr(@), (@) r2@sy = 6(k —q), k,q€R?

form the complete system ib?(IR?). In particular, when the vectdr = 0, we have
vo(x). We denote the generalized Fourier transform with resjpettigse functions

using the tilde symbol as
f(k) = (f(x)a%(x))m(um, ke R

The integral operator involved in (1.4) is being designated

ilkllo—l
o € L™(R?).

1
(Qp)(x) = R S P
Let us conside : L>*(R3) — L>*(R3). Under Assumption 1, according to

Lemma 2.1 of [17] the operator norfif)|| < 1, in fact it is bounded above by
a quantity independent @fwhich is expressed in terms of the appropriat¢R?)

norms of the potential functiol (z). Our first main statement is as follows.

(Vo) (y)dy,

Theorem 2. Let Assumption 1 holdf(z,z,) € L*(Q), |z|f(z,z1) € L'(Q)
and f(z,0) = f(x,27) forz € R® a.e.
a) Whena = 0, equation (1.2) admits a unique solutiofz, z,) € H*(Q) if

and only if the orthogonality condition

(). ol sy = 0

(1.6)
holds.
b) Whermu = n2, ny € N equation (1.2) possesses a unique solution x, ) €

H?(Q) if and only if the orthogonality relations
(1.7)

(f(ﬂf, xJ_>7 @0(3:) \/ﬁ



inx
e €

(f(x,z1), or(z) \/%)LQ(Q) =0, ke Si/n%——rﬂ ae., |n|<nyg—1 (1.8)
hold.

c) Whemn? < a < (ng + 1)%, ny € Z+ = {N} U {0} equation (1.2) has a
unique solution:(z, z, ) € H?*(Q2) if and only if the orthogonality condition

inT
e 1

(f('raxl)7 gOk(.CC) \/%)LQ(Q) = 07 ke S?/m a.e., ‘n‘ < ng (19)

holds.

Note that orthogonality conditions from (1.6) to (1.9) ilw@the functions of
the continuous spectrum of our Schrodinger operator,sigdt from the Limiting
Absorption Principle in which one needs to orthogonalizéh standard Fourier
harmonics (see e.g. Lemma 2.3 and Proposition 2.4 of [9]).

In the second part of the article we consider the sequencguat®ns corre-
sponding to problem (1.2), namely

*u,,

——— — Aty + V() Uy, — Ay, = frn(x,21), meN, (1.10)
Ox?

wherea > 0 is a constant. Our second main result is as follows.

Theorem 3.Let Assumption 1 holdyp € N, such thatf,,(z,0) = f,.(x, 27) for
r € R*ae.,f, € L*(Q) and|z|f,,(z,z,) € L' (), such thatf,, — fin L*(Q)
and |z| fo (2, z,) — |z|f(z,z)) in L'Y(Q) asm — oo. Let in the cases a), b)
and c) of Theorem 2 the corresponding orthogonality condsi(1.6), (1.7), (1.8)
and (1.9) hold for allf,,. Then problems (1.2) and (1.10) admit unique solutions
u(x,r) € H*(Q) andu,,(z,r,) € H*() respectively, such that,,(z,z,) —
u(x, 1) in H*(Q) asm — oo.

Our final technical statement will be helpful in establighiine result of the
theorem above.

Lemma 4. Let the assumptions of Theorem 3 hold. Then for exesyZ we
have

IVl (k) = Falk) |l =es) = 0, m — o0
with £, (k) and f,,..(k) defined in formulas (2.11) and (3.21) respectively.

First of all, let us turn our attention to establishing thésability conditions for
problem (1.2).

2. Proof of the solvability conditions in a layer in four dimensions
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Proof of Theorem 2Note that according to our assumptions, the potential func-
tion involved in equation (1.2) is bounded and the right @itlfl.2) is square inte-
grable. Therefore, if we find a solutiar{z, z,) € L*(Q2) of problem (1.2), it will
belong toH?((2) as well.

Suppose equation (1.2) admits two solution$z, v, ), us(z,x1) € H*(Q).
Then their difference functiom(x, 1) := uy(z,x1) —us(z, 2,) € H?*(Q2) as well
and solves the homogeneous problem

Pw

——— — A, w+ V(z)w — aw = 0.
ox?

Let us use the standard Fourier series expansion

o0

w(z,z,) = Z wy ()

n=—oo

einxL
V2T

Clearly, |[wl]|72 o) = 3207 [1wall72gs), SUCh thatw, (z) € L*(R®) for n € Z. We
easily arrive at

—Aywy () + V(z)w, (7) = (a — n*)w,(z), n€Z.

As discussed before, the Schrodinger operatatdiR?) involved in the left side of
the equation above has only the essential spectrum and acesapegrable bound
states. Hencey, (z) = 0 a.e. inR3 for n € Z. Thereforeu,(z,z,) = us(z,x,)
a.e. infQ.

We will be using the cumulative transform withc R3 andn € Z as

T |

Ful) = (o) =iz = [ o [ dosfloguta)

—inT |

P
(2.11)
For the right side of (1.2) we estimate from above its nornmgishe Schwarz in-

equality as

2m 2m
Wlow <[t [Taessaenmf[ o [
|z|<1 0 #|<1 0

27
ﬁA da [ dosfallfle,20)] < Cl ey + el o) < o0
z|>1 0

e

according to our assumptions. Thyse L'(Q2). By applying (2.11) to both sides
of problem (1.2), we arrive at

i) — )

_ Ia\E) 3
R keR’, neZ, a>0. (2.12)



First of all, let us turn our attention to the case a) of thethen whem: = 0. Then
(2.12) yields .
fu(k)

3
Ezing, k G]R s n c Z..

i (k) =
Clearly

2 _ |jb |fh
HuHLz(Q)—/R |k|4 - > / n2+k2 (2.13)

neZ, n#0

Obviously, for the second term in the right side of (2.13) vaeérthe upper bound
of || f1|32 (o < ocasassumed. To study the first term in the right side of (248),
mtroduce the auxiliary problem

—Agvo(x) + V(@)vo(x) = fo(w) (2.14)
with fo(z) = (f(z.2.), \/12_%)9([) andfo(k) = (fo(@), or(x))oes), k € RP.
Evidently, o, (k) = fok(z ), such that the norm
fo(k)[?
A

which equals to the first term in the right side of (2.13). Lstuse the standard
Fourier series expansion

znxL

f(z,z1) Z falz NoTh

n=—oo

such that

1 f1I720) = Z | fall72(gsy < 00 (2.15)

n=—oo

and thereforefy(z) € L?(R3). We estimate

e fo)lwey = [ Tell(F ). <=l < —=llel oo <

due to our assumption. Hengd fo(z) € L*(R?). Theorem 1.2 of [17] gives us the
necessary and sufficient solvability condition of equaf@i4) in L?(R?), namely
(fo(),po(x))2m@sy = 0, which is equivalent to (1.6).

Then we consider the case b) of the theorem, suchdathatn?, ny € N and
(2.12) yields .
fulk)

3
REN I keR’, neZ.

an(k) =



Let us express the norm

JulF oy = Z/Jk

n=+ng

+Z/ n2+k2—n 2 T Z / n2+k2 )2' (2.16)

|n|>no In|<ng—1

We estimate the second term in the right side of (2.16) frouvalb)nyH%Q(Q) < oo
according to one of our assumptions. To study the first tertiménright side of
(2.16) we introduce following auxiliary problem

—Ayvp(x) + V(2)v, () = fu(z), n==%£ne. (2.17)

By applying the generalized Fourier transform to both siofe®@.17), we arrive at

Un(k) = f"k( )

, such that the norm

G
Jono) e = [ d .
I

Note that by means of (2.15) we hayig(x) € L*(R?) for n € Z. Let us estimate
the norm

inT|

\/2—)L2(1 ylda < \/—H|$\fHL1(Q

as assumed. Henge|f,,(z) € L'(R?), n € Z. By means of Theorem 1.2 of [17],
the necessary and sufficient solvability condition of peobl(2.17) inL?*(R?) is
given by (f,.(z), po(z))r2ms) = 0, n = %ne, Which is equivalent to (1.7).

Let us use the following auxiliary problem for the studiegiud third term in
the right side of (2.16)

llelfu(@ ey = [ lall(FGe. )

—Avn(@) + V(@)oa() — (02 = n2)va(@) = fule), |n|<no—1. (2.18)

Note thatf,(z) € L*(R3) and|z|f,(x) € L'(R?) as discussed above. Application
of the generalized Fourier transform to both sides of (2yiélyls

fulk)

k? — (n —n?)’

f}n(k) =

such that N
k)]
o) = | b




Theorem 1.2 of [17] gives us the necessary and sufficienabdity condition of
equation (2.18) i.(R?), namely

(fn(x)v (pk(x»LQ(RS) =0, ke Si/n%——nz a.ce., |n| <ng—1,
which is equivalent to orthogonality relation (1.8).

Finally, we turn our attention to the case c) of the theorememn? < a <
(no +1)% ng € Z* = {N} U {0}. Let us write the norm of our solution

lullfay = > / dk k?Enn? + 0y /dek kQ‘f” et (2.19)

In|<ng |n|>no+1

The second term in the right side of (2.19) can be triviallyneated from above by
1
((no+1)%2 —a)?

Let us introduce the following auxiliary equation for thepase of studying the
first term in the right side of (2.19), namely

1£]I72(q) < oo as assumed.

—A,vn(@) + V(@)oa(2) = (a = n2)oa(@) = fula), || Smo,  (2.20)

such that for its right sidg,,(z) € L*(R?) and|z|f.(z) € L'(R?) (see above).
When applying the generalized Fourier transform to botlesiof problem (2.20),
we obtain .

(k)

k24+n2—a’

Fulk)?
an(x)H%?(RS) :/ dk(k,2|+ T(LQ)|— a)Q

According to Theorem 1.2 of [17], the necessary and suffigelvability condition
of equation (2.20) in.?(R?) is given by

f}n(k) =

and therefore

(fn(ZL‘),ng(ZL‘))Lz(R:a) =0, k€ S?/m a.c., |TL| < no,
which is equivalent to orthogonality condition (1.9). [ |
3. Solvability in the sense of sequences

Proof of Theorem 3Under the assumptions of Theorem 3 by means of Theorem
2 problem (1.10) admits a unique solutiop (z,z,) € H*(2), m € N. We have
fm(z,z1) € LY(Q), m € N (see the proof of Theorem 2). Let us estimate the norm
via the Schwarz inequality

27 27
[fm = fllzre) < \// daf/ d | fm — fIQ\// dx/ dz |+
lz| <1 0 |z <1 0

9




2T
+/‘ch/ dzy |x|| fon = f1 < Ol fin = fll2@)+
z|>1 0

Izl fm = 2| fllr@) = 0, m — o0

due to our assumptions. Hengg — fin L'(Q) asm — oo and the limiting
function f(z,z,) € L*(Q2) as well. There is a subsequenie — f pointwise a.e.
in 2 and therefore

f(2,0) = limg—oo frny, (2, 0) = limg—so0 fin, (z,27) = f(z,27)
a.e. inR?. Let us assume that the orthogonality condition
(fm7 )L2Q)—O m e N

holds for somev(z, x,) € L>°(Q2). Then we easily obtain

\(f,w) 2] = [(f = fs w) 2@y < Nf = fnllor@)lwl| o) = 0, m — oo,

such that f, w)2q) = 0 as well. Note that via Corollary 2.2 of [17] the functions
of the continuous spectrum of our Schrodinger operatobataded and the argu-
ment above gives us that orthogonality conditions (1.6))(X1.8) and (1.9) valid
for f,,, m € N by assumption, will hold for the limiting functiofi as well. Then
the limiting problem (1.2) has a unique solutiofx, z, ) € H*(Q).

From equations (1.2) and (1.10) we easily deduce the inggéal m € N

1A (U — )| 22) < | fm — fllz2@) F 1V | oo @3) | tm — vl 22(0) + @[t —ul| 2

Hence under our assumptions it will be sufficient to prove tha— w in L?(Q) as
m — oo, which will imply thatw,, — u in H*(Q) asm — oo as well.

Let us first consider the case @f= 0 and apply the cumulative Fourier trans-
form to both sides of (1.10). We arrive at

Fon(k
am,n(k):M() keR® neZ, meN

n2 + k2’
with .
Fon(E) = (flz,20), @k(x)i/%)m(m. (3.21)

Let us express the norm

2 o ‘fm,O( ‘fmn _fn<k>|2
i~ s = et 08 1 52 [ anline
(3.22)
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The second term in the right side of (3.22) can be easily eséichfrom above by
| fn = fI32 2@ = 0, m — o0 as assumed. The first term in the right side of (3.22)
can be expressed as

Fmolk) — )2 Fmolk) — FolB)L?
dk ’ dk ’ . 3.23
A@ I *LM R (3:23)

We easily derive the upper bound for the second expressi128) as
L ) 0 < o~ Sl = 0, m o
>1

due to our assumption. To estimate the remaining term wesespr

- - Ikl 5 f
k) = 7o)+ [ S (sl s
0
Here and further down will denote the angle variables on the sphere. Similarly

. N Ik\am
JMWIMWHA gﬁuwm

Note thatf,, o(0) vanishes as assumed afid0) = 0 as well, which can be ob-
tained by takingn — oo as discussed before. Using the formulas above, we easily

estimate - ;
‘fm’O(k|)k|_2 fo(k)| < Vi (Fno (k) — fo(/f))HLw(W)%'

Then we trivially obtain the upper bound for the first expressn (3.23) as

47| Vi(fmo(k) = fo(k) 7 es) = 0, m — 00

by means of Lemma 4, such that — w in L?(Q2) asm — oo in the case ofi = 0.
Then we turn our attention to the situation whenr= n2, ny € N. Thus, we

have ~
fmn(k)

3
W= keR’, neZ, meN.

am,n(k) -

Let us write the norm

n=+ng

r 2
+ Z/ |f’;§+k2 + Y /dk'f’;;+k2 ;f’;fg))2|. (3.24)

[n|>ng [n|<ng—1
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The second term in the right side of (3.24) can be triviallyneated from above by
| fn = fI32 y =0, m — oo. Letus write the first term in the right side of (3.24)
as

Zﬁ |w +Z/ |w - (829)

n==%ng k<1 n=+no |k|>1

The second expression in (3.25) can be trivially estimatechfabove by f,, —
fH%Q(Q) — 0, m — oo as assumed. To study the first term in (3.25), we will use
the expansions

- - L
16 =10+ [ gl cpa,

. N |%|
mAMZMAmfAéWTu|MM

Note that in the formula abovg, ,,(0) = 0, n = £n, as assumed anf},(0) = 0,
which can be obtained via the limiting argumentras— oo as discussed before.
This yields

k) = (O _ IVilnn(h) = Fo(b)ll ey
R [ |

which enables us to estimate from above the first term in {325

dm Z ||vk(fm,n(k:) - fn(k))H%OO(RS) — 07 m — 00

n=+ng

via Lemma 4. Clearly, we have the trivial inequality faf < ny — 1

(k* = (ng —n?))* = (|k| = \/n§ — n?)*(ng —n?),

such that we have the upper bound for the last term in the sigktof (3.24) as

m,n ~nka
T / | fonin(K) — f(2)|

n|<ma1 (ng —n?)(|k| — /n& — n?)?

For technical purposes, let us introduce the following $esfpberical layers in the
space of three dimensions

Apo i ={keR | /n2—n2—oa <|k| <\/ni—n2+0}, |n|<ng—1

with) < o < \/n — n2. Thus, it remains to estimate the sum

+

1 | (k) = fu(E)]?
dk Ano
Z_ n%—nQ /RS (|| - /771 —n2)2X :

12



| frnn (k) = Fu(k)P?
dk s 3.26
t O e /R (K] = o/mE — 22 (3.26)

[n|<no— 1

Here and further dowry, denotes the characteristic function of a geind A€
stands for the complement &f in the space of three dimensions. For the second
term in (3.26) we have the upper bound of

! 7 ; 1
(n2 _ 2\ 2 dk mnk_nk?2<7 '~ — 2 _)0
2w [ b1 ) = FBP < sl =
n|<ng—
asm — oo according to our assumption. Hence it remains to estimate

L man (k) — Fu(R)[?
2n0 —1 Z / |k3| W)QXAn,J- (327)

[n|<ng—1

For this purpose we express

- N |%|
ZCRSANERCmE - Ol s

r r 14 a~mn
o)) =l =t + [l .

Evidently, for|n| < ny — 1 we havef,, . (1/n2 — n2,w) = 0 due to our assumption
and f,,(1/n2 — n?,w) vanishes as well, which can be obtained by letting— oo
as discussed before. Then the expansions above will give us

| fonn (k) — fn( )|
[k = /n§ —n?

Finally, for (3.27) we derive the upper bound of

< Vi Frn (k) = falk)) 1o -

1
2710 —

> IV (B) = FalB)) s g = 0, = 00

[n|<ng—1

. 4
via Lemma 4. Here,, , := %{(\ /n2 —n? 4 0)® — (y/n2 —n% —o)*}. Hence

we arrive atu,, — u in L*(Q2) asm — oo whena = n2, ny € N,
We conclude the proof with the studies of the situation whigr: @ < (ng+1)?
with ng € Z* = {N} U {0}. Evidently

- - fm,n(k) 3
um’"(k)_nQJrk:?—a’ keR’, neZ, meN.
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Let us express the norih,, — u||%2(m as the sum

Z/Rgdk n2+k2—a)2 " ) /dk +k2 o (3.28)

In|<no In|>no+1

Apparently, the second term in (3.28) can be estimated flooveby

1
((no +1)? = a)

[ fm = fll720) = 0, m — oo

by our assumption. We will be using the trivial inequality fa| < n,
(K = (a—n*)* > (a —n®)(|k] = Va—n2)%.
Let us introduce the set of spherical layers in the spacereéttimensions
Bho ={keR}|Va—n2—c<|k|<Va—-n2+0c}, |n|<ng

with 0 < o < va — n?. Then the first term in (3.28) can be bounded from above

by the sum
S [ et R0
0 [n|<no |k:| a—n )
S [ L0 529)
0 [n|<no |k| a—n ) ’

For the second term in (3.29) we have the upper bound of

1 fm = FllZ2@) = 0, m = o0

1
o%(a —nj)

as assumed. To estimate the remaining termin (3.29), weigelthe representation
formulas

_ _ || £
) = Futa=re)+ [ Sl

B B K| a~
Frn(k) = Foun(vVa =122, 0) + /ﬁ af|m|"<|s| w)dls.

Note thatf,, ,(v/a — n2,w) = 0 for |n| < ng via (1.9) andf, (va — n2,w) vanishes
as well which can be obtained by letting — oo as discussed before. Hence

| fonn (k) = fu(F)|
k] = vV —n?|

< Vi(frmn (k) = fu(k) | oo o),
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such that the first term in (3.29) can be bounded from above by

Z [Vi( fmn fn(k))H%OO(RS)Dn,J -0, m—o0

0 [n|<ng

via Lemma 4. HerdD,,, := 37{(va —n? +0)* — (Va —n? — 0)*}. Therefore,
Uy — win L2(Q)) asm — oo in the case ofi < a < (ng + 1)? withng € Z+ =
{N} U {0} as well. |

We conclude the paper with establishing the result of tharteal Lemma 4
used in the proof of Theorem 3 above.

Proof of Lemma 4We havef, (z) € L*(R?) and|z|f,.(z) € L'(R?) forn € Z
as discussed before. We use the standard Fourier seriassexpa

(e o]

folwe) =Y frnl(2)"

inT |

, meN

such that

o (2, 2 )72 Z 1o () |22 sy < 00

according to our assumption. Henge,,(z) € L*(R?) forn € Z andm € N. Let
us estimate the norm

el sy = [ dolell(fnfa0)

inT
emT L

\/%)LQ(I)‘ <

] fm (2, xJ_)HLl(Q) < 0

<

¥~
=)

as assumed. Therefotie| f,, .(z) € L'(R?) for n € Z andm € N. Moreover,

—

—inT |

V2m

(&

dSL’J_|2§

o) = ey = [l [ (o) = Fo)

§||fm—f||%2(9)—>0, m — 00

due to our assumption and the Schwarz inequality. Thus(z) — f.(x) in
L?*(R3) asm — co. Furthermore,

m,n - n 1 = d m s - > ) 2 <
] fnn(2) = 2] fo (@) || 21 (@3) /RS el||(fm (2, 21) — fla,21) \/%)L ol
1
< —\llx|fm — |x 1) — 0, m — oo
< el = ol e
as assumed, such that f,,, .(z) — |z|f.(z) in L'(R3) asm — oo for eachn € Z.
Then the statement of the lemma follows from Lemma 3.4 of .[25] [ |

15
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