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Abstract. We consider models given by Hamiltonians of the form

H(I, ϕ, p, q, t; ε) = h(I)+

n∑
j=1

±
(

1

2
p2j + Vj(qj)

)
+εQ(I, ϕ, p, q, t; ε)

where I ∈ I ⊂ Rd, ϕ ∈ Td, p, q ∈ Rn, t ∈ T1. These are higher di-
mensional analogues, both in the center and hyperbolic directions,
of the models studied in [DLS03, DLS06a, GL06a, GL06b]. All
these models present the large gap problem.

We show that, for 0 < ε� 1, under regularity and explicit non-
degeneracy conditions on the model, there are orbits whose action
variables I perform rather arbitrary excursions in a domain of size
O(1). This domain includes resonance lines and, hence, large gaps
among d-dimensional KAM tori.

The method of proof follows closely the strategy of [DLS03,
DLS06a]. The main new phenomenon that appears when the di-
mension d of the center directions is larger than one, is the exis-
tence of multiple resonances. We show that, since these multiple
resonances happen in sets of codimension greater than one in the
space of actions I, they can be contoured. This corresponds to
the mechanism called diffusion across resonances in the Physics
literature.

The present paper, however, differs substantially from [DLS03,
DLS06a]. On the technical details of the proofs, we have taken
advantage of the theory of the scattering map [DLS08], not avail-
able when the above papers were written. We have analyzed the
conditions imposed on the resonances in more detail.

More precisely, we have found that there is a simple condition
on the Melnikov potential which allows us to conclude that the res-
onances are crossed. In particular, this condition does not depend
on the resonances. So that the results are new even when applied
to the models in [DLS03, DLS06a].
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1. Introduction

The goal of this paper is to present some explicit sufficient conditions
for instability in models of the form

(1) H(I, ϕ, p, q, t; ε) = h(I) + P (p, q) + εQ(I, ϕ, p, q, t; ε),

where

P (p, q) =
n∑
j=1

Pj(pj, qj), Pj(pj, qj) = ±
(

1

2
p2
j + Vj(qj)

)
.
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We will assume that I ∈ I ⊂ Rd, ϕ ∈ Td, I an open set, p, q ∈ Rn.
The symplectic form of the phase space is Ω =

∑
i dIi∧dϕi+

∑
j dpj ∧

dqj. We will assume that the dependence of Q on t is 1-periodic, so
that t ∈ T1. Moreover, for simplicity, we will assume that Q is a
trigonometric polynomial in the variables (ϕ, t). This is not a crucial
assumption and can be eliminated. See remark 3 for details about this
assumption.

We will show (see Theorem 5 for precise statements) that, under suit-
able regularity and non-degeneracy assumptions—that can be checked
by studying the 3 jet in the ε variable of the perturbation εQ—there are
orbits of the system in which the I variables can perform largely arbi-
trary excursions in a set I∗ ⊂ I of size of order 1 (that is, independent
of ε as ε→ 0). An explicit example is shown in Section 4.

The main point is that the set I∗ can include simple resonant sur-
faces, that is, resonances of multiplicity one. This makes the models
considered here present the large gap problem. This problem, which will
be discussed in more detail in Section 3.5, consists in the fact that the
customary perturbation theory does not produce chains of whiskered
KAM tori with transverse heteroclinic intersections. The reason is that
a perturbation of size ε causes gaps in the set of whiskered KAM tori
of order ε1/2 near the (first order in ε) resonance surfaces of order 1.
On the other hand, the effect of the perturbation on the stable and un-
stable manifolds of these whiskered tori is only of O(ε). Hence, a naive
perturbation theory cannot establish the existence of chains of transi-
tion tori traversing the resonance surface. The main goal of this paper
is to describe a geometric mechanism, based on a the computation of a
scattering map defined on the normally hyperbolic invariant manifold
of the system, which is used to establish the existence of chains of tran-
sition tori that can traverse these resonance regions devoid of primary
KAM tori, that is, tori that can be continued from invariant tori of
the integrable system. The main idea of the mechanism proposed is
to use secondary tori, that is, tori generated by the resonances that
can not be continued from invariant tori of the integrable system. We
will show that these secondary tori generated by the resonances fill the
gaps created in the set of KAM primary tori.

The result for d = 1, n = 1 was already established in [DLS03,
DLS06a]. The problem was reexamined in [DH09], where the hy-
pothesis about Q being a trigonometric polynomial in (ϕ, t) was elim-
inated. The works [GL06a, GL06b] supplemented the methods of
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[DLS03, DLS06a] with the use of the method of correctly-aligned win-
dows. This method allowed to simplify the proof and to obtain ex-
plicit estimates on the time spent by the diffusion trajectories. In
[GL06b], which considers n arbitrary, a particularly careful version of
the method of correctly aligned windows produces essentially optimal
estimates on time and allows to weaken the non-degeneracy assump-
tions in [DLS03, DLS06a].

The case d ≥ 2 presents a difficulty that was not present in the
case d = 1, namely, that there are points where the resonances have
higher multiplicity (the multiplicity of a resonance is the dimension of
its resonance module, see (33)).

The technique used in [DLS03, DLS06a] was to take advantage of the
fact that, in the neighborhood of simple resonances, that is, resonances
of multiplicity 1, it is possible to introduce a normal form which is in-
tegrable, and can be analyzed with great accuracy. Unfortunately, it is
well known that multiple resonances, that is, resonances of multiplicity
greater or equal than 2, lead to normal forms that are not integrable
and need other techniques to be analyzed (see [AKN88, Hal99]). Re-
cent progress in the analysis of double resonances can be found in
[Mar13, KZ12, Che12]. We also note that [Tre12] establishes diffusion
far from strong resonances for the case n = 1, d ≥ 2, using the method
of the separatrix map.

In this paper we adapt the methods of the previous papers [DLS03,
DLS06a] to show instability under explicit conditions. The basic ob-
servation is that multiple resonances happen in subsets of codimension
greater than 1 in I. We will adapt the methods of [DLS03, DLS06a]
to analyze the behavior of the system in regions of simple resonances
and show that the diffusing trajectories can contour the multiple reso-
nances.

As we will see in Theorem 5, we can choose largely arbitrary paths in
the action space I (we just require that they do not pass through some
higher codimension subsets of multiple resonances) and then, show that
there are orbits whose I-projection follows these paths up to an error,
which becomes arbitrarily small with ε. The sets that can be reached
are of size O(1) and they include simple resonances.

Similar definitions of diffusion along paths were also used in [CG94,
CG98], but the methods of these and related papers [BB02, BBB03]
only established the existence of diffusion in sets completely devoid of
resonances (the so-called “gap bridging mechanism”). The orbits that
we produce cross the codimension 1 resonant surfaces of multiplicity
one. Similar phenomena have been observed in the heuristic literature
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[Chi79, LT83]. In [Ten82], a similar mechanism of diffusion is called
diffusion across resonances.

Of course, we are far from believing that the mechanism discussed in
this paper is the only one to produce changes of order one in the actions.
In particular, combinations of variational and geometric methods have
been recently applied in Hamiltonians with 2 + 1/2 degrees of freedom
[Mat04, Che12, Zha11, KZ12, Ber10, Mar13, BCV01] which require the
Hamiltonian to be positive definite, which is a non-generically (albeit
open) property.

Also, the paper of [Ten82] suggests several other mechanisms that
should be at play. It seems to be a very challenging problem to make
rigorous the heuristic discussions on statistical and quantitative prop-
erties of different instability mechanisms in the heuristic literature
[Chi79, LT83, Ten82]. Of course, the heuristic literature is convinced
that double resonances help diffusion because they are one of the in-
gredients in some of the heuristic mechanisms (but not in others!). It
is somewhat paradoxical that the rigorous mathematical theory has
difficulty precisely at the places which heuristics considers favorable.

In this paper, we show rigorously that double resonances can be
contoured. This can enhance the believe that there are several mecha-
nisms.

Note however that if we consider (1) as a model of what happens
in a resonance (the pendulum being the resonant variable), then the
multiplicity of the resonances in the real system is one more than the
order that appears in the model. Hence, what we call simple resonances
in our Hamiltonian (modeling a resonance in a real model) would be
double resonances in the real Hamiltonian.

Since the proof presented here is quite modular and has well defined
milestones, we think that it is almost certain that other methods can
be applied to improve some of our arguments. In particular, we expect
that the method of correctly aligned windows can also give alternative
proofs or to improve several steps of the proof. The field of instability
has experienced a great deal of activity in recent years and there is
a large variety of results that have been obtained or announced. For
a more detailed survey of recent results, we refer to [DGLS08, PT07,
Che08, Che10, Ber10].

Remark 1. It is customary in some literature to refer to models of
the form (1) as a-priori-unstable models. We note, however, that this
distinction only makes sense in considering analytic models depending
only on one small parameter. The results we present here apply just
as well when the potentials Vi in (1) are arbitrarily close to 0. In such

5



a case, we just need to choose ε very small (even exponentially small)
relatively to the hyperbolicity properties of the Vi. Several papers in
the literature, notably those dealing with generic results, which occur
in typical or cusp-residual Hamiltonian, call these systems “a priori
stable”. In particular, one can use this method to produce systems
that present instability but which are as close to integrable as desired.
This procedure was pioneered in [Arn64].

Remark 2. Hamiltonian (1) can be considered as a simplified model
of what happens in a neighborhood of a resonance of multiplicity n in
a near integrable Hamiltonian. The averaging method [LM88, Hal97,
Hal99, AKN88] shows that near a resonance of multiplicity j, one can
reduce a near integrable Hamiltonian to a Hamiltonian of the form

(2) h(I) +
n∑
i=1

p2
i

2
+ εV (q1, . . . , qn, I) +O(ε2).

The assumption that the averaged system is given by uncoupled
pendula is made often [HM82, Hal97]. It is a generic assumption for
n = 1. Hence we expect that the mechanism presented here is typ-
ical in a neighborhood of a resonance. Of course, the hyperbolicity
will be weak in systems close to integrable, but in families with two
parameters, it would suffice to exclude wedges. See Remark 1.

For n ≥ 2, the above model (2) is, in general, not integrable whereas
the pendulum part of (1) is . Nevertheless, we point out that the only

think we need for our analysis is that
∑n

i=1
p2i
2

+ εV (q1, . . . , qn, I) ad-
mits transversal homoclinic orbits to a hyperbolic equilibrium point.
Systems of the form (1) appear naturally in several physical models. A
motivation to include this generality is that there is very little differ-
ence dealing with any n and it allows to emphasize that the geometric
methods allow to deal with systems that are not positive definite.

2. Notation, assumptions and results

In this section, we will present an overview of the argument and
formulate precisely most of the non-degeneracy assumptions we will
assume. We will postpone the precise formulation of the most technical
ones till we have developed the notation for them and motivated their
explicit expressions.

The proof is divided in well defined steps and each of them can be
accomplished using standard tools. We hope that the experts in these
techniques can fill in the arguments better than the authors, so that
for many possible readers, the heuristic discussion will be enough.
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We have found it convenient to present the argument in an order
slightly different from the one followed in [DLS03, DLS06a] so that,
even if our hypotheses correspond closely to the assumptions of these
papers, the numbers do not correspond. In some cases, we have cho-
sen to present the result under slightly different assumptions than in
[DLS03, DLS06a] to simplify the exposition. For the same reason—
simplifying and shortening the exposition—some of the objects whose
expansions were explicitly computed in [DLS06a] will now be given
through existence theorems, so that the final conditions will become
slightly less explicit. Nevertheless, since the procedures here are rather
constructive, explicit formulas can be given through more detailed
work. On the other hand, we note that the tool of the scattering map
and its symplectic properties [DLS08], a tool which was not available
when [DLS06a] was written, simplifies significantly the computations
and thus, the conditions we obtain in this paper are simpler to verify
and more generally applicable than those in [DLS06a].

The precise statement of the main result (Theorem 5) requires the
definition of the resonance web, which depends on assumption H3.
The statement of the last non-degeneracy conditions, H6, H7, H8,
can only be made after the system has been analyzed near resonances.
We note that these conditions are verifiable in concrete models with a
finite calculation, as it is performed in the example (120).

2.1. Some elementary notation: the extended flow, the time-
one map. We will always consider the extended flow Φ̃ε,t(x̃) which is
obtained by supplementing the standard Hamilton equations with the
equation ṡ = 1:

İ = −ε∂Q
∂ϕ

(I, ϕ, p, q, s; ε)

ϕ̇ =
∂h

∂I
(I) + ε

∂Q

∂I
(I, ϕ, p, q, s; ε)

ṗ = −∂P
∂q

(p, q)− ε∂Q
∂q

(I, ϕ, p, q, s; ε)(3)

q̇ =
∂P

∂p
(p, q) + ε

∂Q

∂p
(I, ϕ, p, q, s; ε)

ṡ = 1

To the extended differential equations (3) corresponds the extended
phase space M̃ := I × Td × Rn × Rn × T associated to the variables
x̃ = (I, ϕ, p, q, s) respectively.

7



Some of our calculations are made easier by considering the time-1
map of the flow. We will use the notation fε to denote the time one
map starting at the initial condition t = 0.

2.2. The first elementary assumptions: regularity, hyperbolic-
ity of the pendula and non-degeneracy of the integrable part.
We will be making the following assumptions:

• H1 We will assume that the functions h, Vj, Q are Cr in their
corresponding domains with r ≥ r0 sufficiently large.

• H2 We will assume that the potentials Vj have non-degenerate
local maxima each of which gives rise, at least, to a homoclinic
orbit of the pendulum Pj.

Without loss of generality and to simplify the notation, we will as-
sume that the maxima of the potentials Vj happen at qj = 0. That
is, we will assume that V ′j (0) = 0, V ′′j (0) = −α2

j with αj ≥ α > 0,
j = 1, . . . , n.

We will denote by (p∗j(t), q
∗
j (t)) a parameterization by the natural

time of the homoclinic orbit we have chosen. That is,

d

dt
q∗j (t) = p∗j(t);

d

dt
p∗j(t) = −V ′j (q∗j (t));

lim
t→±∞

(p∗j(t), q
∗
j (t)) = (0, 0).

(4)

When the variables qj have the physical interpretation of angles it is
natural to assume that the Vj are periodic. In such a case, the limit in
(4) is understood modulus the period of the potential. The method of
proof only requires the existence of the homoclinic orbits to hyperbolic
saddles. Hence it applies to the coupling of an integrable system in the
(I, ϕ) variables to a chaotic system in the (p, q) variables.

We note that the choice of a parameterization of the homoclinic orbit
in the full space involves the choice of n origins of time in each of the
homoclinic orbits. Subsequent hypotheses will be independent of these
choices. The possibility of choosing the origin of the parameterizations
of each of the homoclinic orbits independently will play an important
role in our discussion of the Poincaré function in (9).

Once we have chosen a homoclinic orbit to the origin in any pendu-
lum, we obtain a homoclinic connection in the space of the pendula.
We will denote by U ⊂ Rn × Rn a neighborhood of the homoclinic
connection chosen in the p, q space.
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In this paper, we will assume that the equilibrium points are hy-
perbolic. It would be interesting to extend the result to degenerate
maxima (leading to weakly hyperbolic points). This case has been
proposed in the literature [DMM09].

From now on during the paper, we will consider I∗ ⊂ I, and we
consider the compact set

(5) D := I∗ × Td × U × T1

to be the domain of our problem. So, all the hypotheses refer to this
domain.

• H3 The mapping I → ω(I) := ∂
∂I
h(I) is a diffeomorphism

from I∗ to its image.

2.3. Assumption on the structure of the perturbation. We will
furthermore assume:

• H4 The function Q in (1) is a trigonometric polynomial on
(ϕ, t).

That is, we can write

(6) Q(I, ϕ, p, q, t; ε) =
∑

(k,l)∈NQ

Qk,l(I, p, q; ε)e
2πi(k·ϕ+lt)

with NQ ⊂ Zd × Z a finite set , with Qk,l 6≡ 0 in I∗ × U , if (k, l) ∈ NQ.
Hypothesis H4 clearly does not belong in the problem and we hope

to eliminate it in future treatments. Since the main goal of this paper
is to deal with the issue of multiple resonances, we have thought it
convenient to make the result as easy to read as possible, even if we do
not achieve the largest possible level of generality.

Remark 3. Hypothesis H4 appeared in [DLS06a] for the case d = 1,
n = 1. In that case, the trigonometric polynomial hypothesis has been
eliminated in [DH09, GL06b] under generic assumptions. The paper
[GL06b] eliminated the trigonometric polynomial hypothesis for d = 1,
n arbitrary (one can argue that, possibly, the orbits produced are not
the same as the orbits in the previous papers). Similar improvements
are clearly possible in the higher dimensional case d > 1.

Remark 4. The methods we will use here can reach the same conclu-
sions under slightly weaker hypotheses.

We only need that, for some big enough but finite m ≤ r the sets of
integer indexes

(7) {(k, l) ∈ NQ;
∂i

∂εi
Qk,l(I, p = 0, q = 0; ε = 0) 6= 0}
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for i ≤ m are finite. This happens, in fact, for some models in celes-
tial mechanics [FGKR11]. Nevertheless, since the writing in this case
becomes more cumbersome, we will only claim the weaker result.

2.4. Non degeneracy assumptions. The first non-degeneracy as-
sumption concerns the averaged Hamiltonian near simple resonances,
and are stated in Section 3.5.3.

• H5 Consider the set of integer indexes N [≤2] = N1∪N2 ⊂ Zd+1

where N1 is the support of the Fourier series of the perturbation
Q(I, ϕ, p, q, t; 0), N2 = (N1 +N1) ∪ N̄ , where N̄ is the support
of the Fourier series of ∂Q

∂ε
(I, ϕ, p, q, t; 0).

Then we assume that, for any (k, l) 6= (0, 0) ∈ N [≤2], the set

(8) {I ∈ I∗, Dh(I)k + l = 0, k>D2h(I)k = 0}

is empty or a manifold of codimension at least two in I∗ .
In the case the map h̃(I0, I) = I0 + h(I) is a quasi convex

function the set (8) is an empty set for any (k, l) 6= (0, 0) ∈
Zd × Z and a fortiori for any (k, l) 6= (0, 0) ∈ N [≤2]. Therefore
Hypothesis H5 is true for any perturbation Q in this case.
• H6 Assume that the perturbation Q satisfies some non-degene-

racy conditions stated in Section 3.5.3 in the connected domain
I∗ × Td+1 related to the averaged Hamiltonian.

The following non-degeneracy assumptions concern the so called
Poincaré function (or Melnikov potential) associated to the homoclinic
connection (p∗, q∗) chosen in assumption H2:

L(τ, I, ϕ, s) = −
∫ ∞
−∞

[
Q(I, ϕ+ ω(I)σ, p∗(τ + σ), q∗(τ + σ), s+ σ; 0)

−Q(I, ϕ+ ω(I)σ, 0, 0, s+ σ; 0)
]
dσ

(9)

where

τ = (τ1, . . . , τn)

p∗(τ + σ) = (p∗1(τ1 + σ), . . . , p∗n(τn + σ))

q∗(τ + σ) = (q∗1(τ1 + σ), . . . , q∗n(τn + σ))

• H7 Assume that, for any value of I ∈ I∗, there exists a non-
empty set JI ⊂ Td+1, with the property that when (I, ϕ, s) ∈
H−, where

(10) H− =
⋃
I∈I∗
{I} × JI ⊂ I∗ × Td+1,
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the system of equations

(11)
∂

∂τ
L(τ, I, ϕ, s) = 0

admits a non degenerate solution τ = τ ∗(I, ϕ, s) with τ ∗ a
smooth function.
• H8 Define the auxiliary functions (related to the scattering map

that will be introduced in Section 3.6)

(12) L(I, ϕ, s) = L(τ ∗(I, ϕ, s), I, ϕ, s), L∗(I, θ) = L(I, θ, 0)

Assume that the reduced Poincaré function L∗(I, ϕ− ω(I)s)
satisfies some non-degeneracy conditions stated in Section 3.8
in the domain H− (see (98), (114)). Nevertheless we anticipate
that an informal description of the hypothesis will be discussed
after the main theorem 5.

We also note that the hypothesis H8 is simplified by the very simple
hypothesis:

• H8’: ∀I ∈ I∗, the reduced Poincaré function L∗(I, θ) defined
in (12) has non degenerate critical points.

2.5. Statement of the main result. The main result of this paper
is the following:

Theorem 5. Let H be a Hamiltonian of the form (1) satisfying the
elementary assumptions H1, H2, the regularity assumption H3, the
simplifying assumption H4 and the non-degeneracy assumptions H5,
H6, H7, H8.

Then, for every δ > 0, there exists ε0 > 0, such that for every
0 < |ε| < ε0, given I± ∈ I∗, there exists an orbit x̃(t) of (1) and
T > 0, such that:

(13)
|I(x̃(0))− I−| ≤ Cδ
|I(x̃(T ))− I+| ≤ Cδ.

Actually, we will show that given a largely arbitrary path γ(s) ⊂ I∗,
we can find orbits x̃(t) such that I(x̃(t)) is δ-close to γ(Ψ(t)) for some
reparameterization Ψ. We postpone the precise statement till we have
developed the notation. See Theorem 26.

The set I∗ will be described precisely in the course of the proof. The
set is determined by the non-degeneracy assumptions H5, H6, H7 and
H8. Given any concrete system, the assumptions can be verified from
the finite jet in ε of H. Therefore, these conditions hold in regions of
order 1 of I.
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The main restriction to obtain the set I∗ from the domain of defini-
tion I is given by assumption H7, which guarantees the transversality
of the intersection of the stable and unstable manifolds of the perturbed
normally hyperbolic manifold Λε obtained in section 3.1. Once H7 is
imposed, one needs to eliminate some sets of codimension two from it
to obtain I∗:

• H8 Eliminates the values of I for which the scattering map is
not transversal to the inner map. More precisely, the invariant
KAM tori of the inner map are transverse to their images under
the scattering map. See Section 3.8.

In fact, the different conditions given in Section 3.8 which
constitute hypothesis H8 can be replaced by the sufficient con-
dition H8’.
• H5 and H6 Eliminate the region in the resonances where the

leading term of the averaged system is degenerate. That is,
given the codimension 1 resonant surfaces, we have to eliminate
the place when some function vanishes. See Section 3.5.3.

Since I∗ can contain multiple resonances appearing up to finite or-
der averaging theory, and our mechanism is based on avoiding these
multiple resonances, we choose δ > 0 and contour these codimension
two sets up to a distance of order O(δ), obtaining a reduced domain
Iδ ⊂ I∗. The precise definition of the sets to eliminate is deferred to
Section 3.3. Roughly, we eliminate the double resonances in which one
of the resonances are or order 1 or 2 (double resonances in which both
resonances are of order higher than 2 are allowed in Iδ).

Note that, since by H4, the perturbation is a trigonometric poly-
nomial and we assume hypothesis H3, we only need to eliminate the
intersection of finite number of codimension one manifolds.

We note that all the conditions H5-H8 are generic: C2 open in the
space of Hamiltonians and hold except in sets of infinite codimension.
Note that all these hypothesis are transversality conditions among ob-
jects that are independent. That is, we require transversality conditions
among objects that depend on the perturbation restricted to different
places. See the details later.

The only hypothesis that is not generic in the set-up is assumption
H4. It seems clear that this assumption H4 can be eliminated using
the techniques developed in [DH09]. However, we have preferred to
maintain it to simplify the exposition. Roughly, the idea is that, for
every ε > 0 one can approximate the perturbation by a trigonometric
polynomial. If the trigonometric polynomial verifies the hypotheses
of Theorem 5, one can obtain the existence of wandering paths and
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information about their robustness. As it turns out, if the perturbation
is smooth enough, one can show that truncation error is much smaller
than the robustness allowed by the mechanism. Of course, there are
quite a number of details to be verified and we will not endeavor to do
them now.

Once we have defined the set Iδ ⊂ I∗, we will show that KAM tori–
either primary or secondary–are closely spaced on it. We will show
that, given any KAM torus with I coordinates in Iδ, it has transversal
heteroclinic connections with all the other KAM tori in a small neigh-
borhood. Applying the shadowing lemma, we can find orbits whose
actions follow almost arbitrary paths inside Iδ. This is, of course,
slightly stronger than the conclusion (13) of Theorem 5.

It is important to note that codimension 2 objects do not separate
the regions and can be contoured so that they do not obstruct the
change along the paths.

3. Proof of Theorem 5

3.1. First step: The use of normal hyperbolicity. We note that
for ε = 0, the manifold

Λ0 = {p = 0, q = 0, I ∈ I∗, ϕ ∈ Td}
is locally invariant under f0, the time-1 map of the flow.

In this paper, we will not only work with the time one map but also
with the flow Φ̃0,t of system (3), so we will work in the extended phase

space M̃ = Rn × Rn × I × Td × T.
In the extended phase space, we consider the invariant manifold

Λ̃0 = {p = 0, q = 0, I ∈ I∗, ϕ ∈ Td, s ∈ T1}

which is a normally hyperbolic invariant manifold under the flow Φ̃0,t

in the sense of [Fen72, Fen74, HPS77, Pes04]. That is, for every x̃ ∈ Λ̃0,
there is a decomposition

(14) Tx̃M̃ = Es
x̃ ⊕ Eu

x̃ ⊕ Tx̃Λ̃0

and numbers C > 0, 0 < β < α, such that the decomposition (14) is
characterized by:

v ∈ Es
x̃ ⇐⇒ |DΦ̃0,t(x̃)v| ≤ Ce−αt|v| ∀t ≥ 0

v ∈ Eu
x̃ ⇐⇒ |DΦ̃0,t(x̃)v| ≤ Ce−α|t||v| ∀t ≤ 0

v ∈ Tx̃Λ̃0 ⇐⇒ |DΦ̃0,t(x̃)v| ≤ Ceβ|t||v| ∀t ∈ R

(15)

It is clear that the stable and unstable spaces Es,u
x̃ are the direct sum

of the stable and unstable spaces at the critical point of each of the
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pendula Pj, and α is given in assumption H2. Furthermore, we can
take for β any number satisfying 0 < β << α.

The standard theory of persistence of normally hyperbolic invariant
manifolds[Fen72, Fen74, HPS77, Pes04] implies that, for |ε| < ε0 there
is a locally invariant normally hyperbolic manifold Λ̃ε verifying (14)
and (15) for the perturbed flow Φ̃ε,t (with αε, βε, Cε close to α, β, C
respectively). The theory in [Fen72, Fen74, HPS77, Pes04] guarantees
that Λ̃ε is a somewhat smooth family of manifolds but the degree of
smoothness can be limited by ratios of normal and tangential exponents
α and β. In our case, since the motion on the manifold for ε = 0
is integrable and therefore the Liapunov exponents are zero, we can
guarantee that for |ε| small enough, the family Λ̃ε will be a Cr−1 family
if Φ̃ε,t is a Cr family.

Moreover, as it was shown in [DLS08, Theorem 24] there is a nat-
urally defined symplectic parametrization kε, such that the perturbed
manifold can be written as Λ̃ε = kε(Λ̃0), using as the reference manifold
the unperturbed manifold Λ̃0, and choosing k0 = Id.

Using this symplectic parameterization, one can show that the re-
duced flow φ̃ε,t on Λ̃0, characterized by kε ◦ φ̃ε,t = Φ̃ε,t ◦ kε is a Hamil-
tonian flow. The following proposition makes explicit its Hamiltonian.

Proposition 6. The reduced flow φ̃ε,t on Λ̃0 defined through kε ◦ φ̃ε,t =

Φ̃ε,t ◦kε is generated by a Cr−1 time dependent Hamiltonian vector field
with Hamiltonian of the form

(16) Kε(I, ϕ, s) = h(I) +
N∑
i=1

εiKi(I, ϕ, s) +OCr−N−2(εN+1),

where each of the terms Ki is a trigonometric polynomial in the ϕ, s
variables.

Moreover, Ki is an algebraic expression in terms of ∇`Q(I, ϕ, p =
0, q = 0, s; ε = 0), for ` = 0, . . . , i − 1. In particular, K1(I, ϕ, s) =
Q(I, ϕ, 0, 0, s; 0).

3.2. Analyzing the flow restricted to the invariant manifold.
The goal of next sections is to study the objects in Λ̃ε invariant by
the flow Φ̃ε,t. Using Proposition 6, this is equivalent to studying the

objects in Λ̃0 invariant under the Hamiltonian flow φ̃ε,t of Hamiltonian
Kε(I, ϕ, s) given in (16).

The main tool used to obtain invariant objects in Λ̃ε will be aver-
aging theory [DLS06a] and KAM theorem applied to the Hamiltonian
Kε(I, ϕ, s). We see that, after we add some extra variable I0 conju-
gated to the variable s ∈ T, to make it symplectic and autonomous,

14



we are lead to considering a Hamiltonian of the form:

(17) K̃ε = I0 +Kε = h̃(Ĩ) +
N∑
i=1

εiKi(I, ϕ̃) +OCr−2−N (εN+1)

were we have introduced the notation ϕ̃ = (ϕ, s), Ĩ = (I, I0), and

h̃(Ĩ) = I0+h(I). We recall that Proposition 6 tells us that, by choosing
|ε| small enough and assuming the regularity r of the Hamiltonian
H(p, q, I, ϕ, s; ε) in (1) large enough, we can take N as large as we
want and the regularity of the remainder in (17) is as large as we want.

Furthermore, in our case, using the assumption H4 it follows that
the Ki are trigonometric polynomials in the angle variables ϕ̃ with
Fourier coefficients that depend on I, but not on I0:

(18) Ki(I, ϕ̃) =
∑

(k,l)∈Ni

Ki
k,l(I)e2πi(kϕ+ls)

Ni being finite sets. Very explicit formulas for the coefficients Ki
k,l(I)

are given in [DLS06a].
The fact that the perturbation terms do not depend on the I0 variable

is a reflection of the fact that I0 is just a variable introduced to keep the
time rotating at unit speed. This is independent of the perturbations.

3.3. The averaging method. In this section we recall the basis of
the averaging method for time periodic perturbations. The averaging
method is a rather standard tool in Hamiltonian dynamical systems
and has an extensive literature. Modern surveys are [LM88, AKN88].

The basic idea of the averaging method is to make symplectic changes
of variables carefully chosen so that the resulting Hamiltonian presents
a particularly simple form. There are many averaging theories de-
pending on what is the simple form to be achieved and what is the
method used to keep track of the simplifying transformations. In this
paper, we will follow [DLS06a] and use the method of Lie transforms.
The averaged Hamiltonians we will use here are different from those
used in [DLS06a] to accommodate the fact that resonances for sys-
tems with two or more degrees of freedom are manifolds in the action
space whereas for one degree of freedom, resonances are just points. In
this paper, we also consider more general unperturbed Hamiltonians
h(I)—in [DLS06a], the unperturbed Hamiltonian was just quadratic—
but, under hypothesis H3, this makes little difference.
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3.3.1. Some generalities on the averaging method. We will follow the
method of Lie transforms [Car81, Mey91], considering transformations
obtained as the time-1 map of a Hamiltonian G(I, ϕ̃) in Rd × Td+1.

Given a Hamiltonian function G(I, ϕ̃) in the extended phase space,
we denote by exp(G) the time-1 map of the Hamiltonian flow generated
by G.

The main technical result we will use about the time-1 map is a
direct consequence of Taylor’s expansions and the regularity of the
solutions of an ordinary differential equation as well as the expression
of the derivatives of Hamiltonian functions in terms of Poisson brackets
[Thi97]. So that the following Lemma 7 is just a Taylor expansion along
trajectories.

Lemma 7. Let A ⊂ B ⊂ Rd+1 be compact sets and ` ≥ 2. There exists
a constant C = C(l, k), such that, given G ∈ C`(B × Td+1) satisfying

||G||C1(B×Td+1) < d(A,Rd+1 \B)

so that the Hamiltonian flow associated to G starting in A×Td+1 stays
in the interior of B × Td+1, we have:

a) expG ∈ C`−1(A× Td+1)
b) || exp(G)− Id||C`−1(A×Td+1) ≤ C||G||C`(B×Td+1)

c) given H ∈ C`(B × Td+1) then:

||H ◦ exp(G)−H − {H,G}||C`−2(A×Td+1)

≤ C||H||C`(B×Td+1)||G||2C`(B×Td+1)

where {·, ·} denotes the Poisson bracket in Rd+1 × Td+1.
d) More generally, if ` > k + 1, there is an asymptotic expansion

||H ◦ exp(G)−H − {H,G} − 1

2
{{H,G}, G}

− . . .− 1

k!
{{. . . {{H,G}, G}, G} . . . }||C`−k−1(A×Td+1)

≤ C||H||C`(B×Td+1)||(G||C`(B×Td+1))
k+1

As a consequence of Lemma 7, we obtain the following algorithm,
which is the main formal step of the general averaging method and
which allows computations to high order.

Algorithm 8. Given a sufficiently smooth Hamiltonian averaged up to
order N − 1 ≥ 0
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(19) K̃N−1
ε = h̃+

N−1∑
i=1

εiK̄i + εNKN +O(εN+1)

Assume that we can find sufficiently smooth K̄N , GN solving:

(20) K̄N = KN + {h̃, GN}
Then

K̃N
ε = KN−1

ε ◦ exp(εNGN) = h̃+
N−1∑
i=1

εiK̄i + εNK̄N +O(εN+1)

= h̃+
N∑
i=1

εiK̄i + εN+1KN+1 +O(εN+2)

In general there are many choices for K̄N and GN . In the following
subsections, we will specify the choices that we make for our case and
establish estimates for the transformation GN and the new Hamiltonian
K̃N
ε . In particular, we will have estimates for the averaged Hamiltonian

K̄N .

3.3.2. One step of averaging: The infinitesimal equations. Resonances
in one averaging step. Our Hamiltonian K̃ε given in (17) is of the form

K̃ε = I0 +Kε

where Kε is given in (16) and only depends on (I, ϕ̃). Then, in our

case, we will take K̃N
ε in (19), with h̃ = I0 + h(I) and K̃N

ε − h̃ only
depends on (I, ϕ̃). So that the function G will depend only on (I, ϕ̃).

The fact that h̃ in (19) is given by h̃ = I0+h(I), will allow us to treat
the averaging equation (20) using Fourier series. We find it convenient
to divide the phase space into different regions and perform different
averaging procedures in each region.

At every step of the iteration algorithm 8, given K(I, ϕ̃), we have to
solve equation (20) for the unknowns K̄(I, ϕ̃), G(I, ϕ̃):

(21) K̄ = K + {h̃, G}

with h̃(Ĩ) = I0 + h(I). Writing

K =
∑

k̃∈N⊂Zd+1

Kk̃(I)e2πik̃·ϕ̃ =
∑

(k,l)∈N⊂Zd+1

Kk,l(I)e2πi(k·ϕ+ls),

it is clear, because h̃ depends only on Ĩ, that the Poisson bracket with
h̃ is diagonal in Fourier series. Hence, it is natural to search for K̄,G
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such that their Fourier series are supported in N , the support of the
Fourier series of K. Hence we look for:

G =
∑

(k,l)∈N⊂Zd+1

Gk,l(I)e2πi(k·ϕ+ls)

K̄ =
∑

(k,l)∈N⊂Zd+1

K̄k,l(I)e2πi(k·ϕ+ls).

Using that

{h̃, G} = −2πi
∑

(k,l)∈N⊂Zd+1

(ω(I) · k + l)Gk,l(I)e2πi(k·ϕ+ls)

where ω(I) = ∂h
∂I

(I) = ∇h(I), equation (21) becomes a set of equations
for the Fourier coefficients:

(22) K̄k,l(I)−Kk,l(I) = −2πi(ω(I) · k + l)Gk,l(I)

The solution of (22) is obtained by choosing K̄k,l and then, setting

(23) Gk,l(I) =
Kk,l(I)− K̄k,l(I)

2πi(ω(I) · k + l)
.

It is clear that the solution (23) requires special treatment when

(24) ω(I) · k + l = 0, (k, l) ∈ N .
This motivates next definition.

Definition 9. Given a Hamiltonian h(I) we define a resonance as the
set

(25) Rk,l = {I ∈ I, ω(I)·k+l = 0} = ω−1
(
{Ω ∈ Rd, Ω · k + l = 0}

)
.

where ω(I) = ∂h
∂I

(I) = ∇h(I).

Let us observe that, by Hypothesis H3, for I ∈ I∗, the resonances
are smooth surfaces for k 6= 0, as smooth as the map ω = ∂h

∂I
.

Moreover, Rmk,m l = Rk,l for any m ∈ Z, therefore any two of these
sets Rk,l and Rk̄,l̄ either:

• Are identical, if and only if (k, l) = (mk̄,ml̄) for some m ∈ Z
• Do not intersect
• Intersect transversally in a manifold of codimension two without

boundary

More generally, if we consider different resonances, the intersection

Rk1,l1 ∩ · · · ∩ Rkj ,lj = ω−1
(
{Ω ∈ Rd, ki · Ω + li = 0, i = 1, . . . , j}

)
will be a manifold of dimension m, where m is the dimension of the
Z-module M[(k1, l1), . . . , (kj, lj)] generated by (k1, l1), . . . , (kj, lj).
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GivenN ⊂ Zd+1, the support of the Fourier series of K, we introduce
the notation

(26) Ñ = {(k, l) ∈ N | @ m 6= 1 ∈ Z, (k̃, l̃) ∈ N , (k, l) = m(k̃, l̃)}

Notice that, with this notation if Rk1,l1 = Rk2,l2 , with (ki, li) ∈
Ñ , i = 1, 2 one has that (k1, l1) = (k2, l2) and then

∪(k,l)∈NRk,l = ∪(k,l)∈ÑRk,l.

Since resonances are sets of codimension 1, it is natural to give in
them a system of d−1 coordinates. In the next lemma we will consider
the function

Γk,l : I∗ → Rk,l

which is a projection onto the resonanceRk,l along a transversal bundle
to it. The standard choice is the orthogonal projection, in such a
way that the projection Γk,l(I) is the closest point to I in Rk,l. The
orthogonal projection is well defined in a tubular neighborhood with
respect to the normal bundle of Rk,l.

There is another simpler choice, which appears naturally when one
realizes that the dynamics close to resonances is generically “pendulum-
like” (see equation (51)). It is just projecting along the bundle Rk,l +
〈k〉, that is, defining Γk,l(I) as the intersection of the straight line
{I + tk, t ∈ R} with the resonance Rk,l. This projection will be not
well defined close to points I ∈ Rk,l ⊂ I∗ such that the direction given
by the vector k is tangent to Rk,l, that is, close to points I satisfying:

(27)
Dh(I) · k + l = 0
k>D2h(I)k = 0

Nevertheless, under hypothesis H5, for secular resonances , that is, for
Rk.l such that (k, l) ∈ N [≤2], these points are a codimension two set (as
one would expect from naive parameter counting because (27) are two
conditions). In the averaging procedure used in this paper, we just need
to deal carefully with secular resonances to obtain a “pendulum like”
Hamiltonian near them. So, our strategy will be to use this projection
near the secular resonances and the standard orthogonal one near the
rest of resonances we encounter in the higher averaging steps.

We define Jδ ⊂ I∗ as the set of points of I∗ taking out a neigh-
borhood of size δ of the points verifying (27) for some (k, l) ∈ N [≤2].
In the resulting set Jδ we will have a well defined projection in the k
direction for any secular resonance:

(28) If I∗ ∈ Jδ∩Rk0,l0 then k>0 D
2h(I∗)k0 6= 0 for (k0, l0) ∈ N [≤2]
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Of course, if our Hamiltonian h is quasiconvex, since the set satisfying
(27) is empty, we obtain that Jδ = I∗.

For future reference, let us write the characterization of the projec-
tion Γk,l(I) along the k-direction:

(29) I∗ = Γk,l(I)⇐⇒ I − I∗ ∈ 〈k〉 and
∂h

∂I
(I∗) · k + l = 0.

Let us observe that for I ∈ Jδ in a neighborhood of a secular reso-
nance Rk,l, (k, l) ∈ N [≤2], there exists a constant C ≥ 1 such that

(30) dist(I,Rk,l) ≤ dist(I,Γk,l(I)) ≤ C dist(I,Rk,l).

Indeed, C can be chosen as any constant satisfying

C >
‖k‖ ‖D2h(I)k‖
‖k>D2h(I)k‖

, ∀I ∈ Jδ, (l, k) ∈ N [≤2]

In the case of the orthogonal projection the value of the constant C
(30) is 1. We emphasize that, in the averaging procedure, the resonant
sets are determined by the integrable Hamiltonian h(I) and not by the
perturbation. Of course, given a concrete system, many resonances do
not play any role and only the resonances excited by the perturbation
play a role, as we will see in next lemma.

As we indicate before, the solution of the homological equation in-
volves choices of which terms are eliminated and which terms are kept
in the averaged Hamiltonian. The following lemma indicates the choice
we will follow. We will use in it a general projection Γk,l, just assuming
that it verifies (30).

Lemma 10. Let

K(I, ϕ, s) =
∑

(k,l)∈N

Kk,l(I)e2πi(kϕ+ls)

be a Hamiltonian, with N = N (K) ⊂ Zd+1 a finite set. Assume that
K is of class C` with respect to I ∈ Jδ ⊂ I∗ ⊂ Rd and consider
the resonant set RN = {I ∈ Jδ, ω(I) · k + l = 0, (k, l) ∈ N} =
∪(k,l)∈NRk,l ⊂ Jδ.

Choose 0 < L < 1 small enough such that for any (k, l), (k̄, l̄) ∈ N ,
either Rk,l = Rk̄,l̄ or the tubular neighborhood of Rk,l of radius L does
not contain Rk̄,l̄.

Assume that we have a projection Γk,l : Jδ → Rk,l such that it verifies
(30).

Then, there exist G(I, ϕ, s) of class C`−1 with respect to I, and K̄ of
class C` with respect to I, with N (G) and N (K̄) finite sets. Moreover
N (G), N (K̄) ⊂ N (K).
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The functions G(I, ϕ, s) and K̄ solve the homological equation (21)
in Jδ and satisfy:

a) If d(I,RN ) ≥ 2L, then

K̄(I, ϕ, s) = K0,0(I).

b) If d(I,Rki,li) ≤ L for i = 1, . . . j, then

K̄(I, ϕ, s) = K0,0(I) +

j∑
i=1

(
Ni∑

ν=−Ni

Kνki,νli(Γki,li(I))e2πiν(kiϕ+lis)

)
= K0,0(I) + Uk1,l1,...,kj ,lj(I, k1ϕ+ l1s, . . . , kjϕ+ ljs),

where 0 < Ni <∞ are such that if (νki, νli) ∈ N , then |ν| ≤ Ni.
c) The function K̄ verifies: ‖K̄‖C` ≤ (1 + C

L`+1 )‖K‖C`, where C is
a constant independent of L.

d) The function G verifies ‖G‖C`−1 ≤
C

L`+1
‖K‖C`.

Remark 11. We observe that in the formula of K̄ the angles can be
redundant because some of the angles included in the sum can be com-
bination of others. One can be more precise by considering the module
generated by (k1, l1), . . . , (kj, lj) and the dimension of this module gives
us the number of independent angles among k1ϕ + l1s, . . . , kjϕ + ljs.
However, in this paper, this will not be needed. Our strategy later will
be to reduce the domain in such a way that we will not need to deal
with multiple resonances.

Proof. If we write the homological equation (21) in Fourier coefficients,
we obtain equation (23). Our first choice is K̄k,l(I) = Gk,l(I) = 0, if
(k, l) /∈ N . For (k, l) ∈ N , we solve equation (23) choosing:

(1) If (0, 0) ∈ N we take K̄0,0(I) = K0,0(I).
(2) If (0, l) ∈ N , l 6= 0, K̄0,l(I) = 0.
(3) If (k, l) ∈ N , k 6= 0, we choose K̄k,l(I) as:

K̄k,l(I) = Kk,l(Γk,l(I))ψ

(
1

L
(d(I,Rk,l))

)
where ψ(t) is a fixed C∞ function such that: ψ(t) = 1, if t ∈
[−1, 1], and ψ(t) = 0, if t /∈ [−2, 2]. With this choice we have
that K̄k,l verifies:
(a) If d(I,Rk,l) ≤ L then K̄k,l(I) = Kk,l(Γk,l(I)),
(b) if d(I,Rk,l) ≥ 2L then K̄k,l(I) = 0.

Once we have defined K̄ =
∑

(k,l)∈N K̄k,le
i(kϕ+ls), it is clear that it has

the form announced in a) and b), is a C` function with respect to I, and
that it verifies the bounds c), where the constant C only depends on
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the cut-off C∞ function ψ, the functions Γk,l, the degree of the Fourier
polynomials and `.

Now, we choose G that satisfies equation (22):

(1) G0,0(I) = 0,

(2) For (0, l) ∈ N , l 6= 0, G0,l(I) =
K0,l(I)

2πil
,

(3) If (k, l) ∈ N , k 6= 0, we choose Gk,l(I) as:

(a) If ω(I) · k + l 6= 0 then Gk,l(I) =
Kk,l(I)− K̄k,l(I)

2πi(ω(I) · k + l)
,

(b) If ω(I) ·k+ l = 0 and we are using the standard orthogonal

projection, then Gk,l(I) =
∇Kk,l(Γk,l(I)) ·D2h(I)k

2πi||D2h(I)k||2
.

(c) If ω(I) · k + l = 0 and we are using the k-projection, then

Gk,l(I) =
DKk,l(I)k

2πi ‖k>D2h(I)k‖
.

To bound the function G we first bound its Fourier coefficients
Gk,l(I):

(1) For (0, l) ∈ N , l 6= 0, ‖G0,l‖C`−1 ≤ C‖K0,l‖C`−1 .
(2) Given (k0, l0) ∈ N , k0 6= 0, by the definition of K̄ and G, we

have:
(a) On {I ∈ I, d(I,Rk0,l0) ≤ L}, we have ‖Gk0,l0‖C`−1 ≤

C
‖Kk0,l0‖C`
|k0|

.

(b) On {I ∈ I, d(I,Rk0,l0) ≥ 2L}, we have ‖Gk0,l0‖C`−1 ≤

C
‖Kk0,l0‖C`
(|k0|L)`

.

(c) On {I ∈ I, L ≤ d(I,Rk0,l0) ≤ 2L}, we have

‖Gk0,l0‖C`−1 ≤ C
‖Kk0,l0‖C`−1

(|k0|L)`−1
.

Therefore, G(I, ϕ, s) is a trigonometric polynomial in (ϕ, s), and of
class C`−1 with respect to I and satisfies the bounds in d). �

Remark 12. We note that the above estimates use the fact that the
function K is a trigonometric polynomial in (ϕ, s) and the constant C
in the bounds of G depend on the degree of the polynomial.

One can follow the same procedure when the function is not a poly-
nomial by estimating the Fourier coefficients using Cauchy bounds:

‖Kk,l‖ ≤ C‖K‖Cr(|k|+ |l|)−r
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and then using the estimates we presented. The only difference is that
for general functions we obtain estimates:

‖G‖C`−d−1 ≤
C

L`+1
‖K‖C` .

where C depends only on the dimension of the space.

As we will use Lemma 10 in the averaging algorithm 8, in the next
definition we want to emphasize that resonances only play a role when
they are present in the Fourier transform of the Hamiltonian at the step
N , that is, when the numerator in the the equation (23) for Gk,l(I) is
not zero.

Note that the denominator in the expression (23) depends on the
unperturbed system, but the numerator depends on the perturbation.
The places where the denominator vanishes are the resonances. Clearly
the resonances do not matter unless the numerator is not zero.

Definition 13. Given a resonance Rk,l as defined in definition 9, we
say that it is activated at order N if N is the smallest value such that
(k, l) ∈ NN , were NN is the support of the Fourier transform of the
term of order εN , after applying N −1 steps of the averaging algorithm
8. That is, NN is the support of the Fourier transform of KN in (19).

We denote the set of resonances activated at order N by

(31) RN = ∪(k,l)∈NNRk,l

and we introduce the resonances open up to order N as the set

R[≤N ] = ∪Ni=1Ri = ∪(k,l)∈N [≤N ]Rk,l

where

N [≤N ] = ∪Ni=1Ni
The resonances open up to order 2, R[≤2], are called secular reso-

nances.

We note that if a resonance has been activated at order q, we have
that, in a neighborhood of that resonance, the system is reduced to
integrable up to order εq. If the term of order εq in the averaged
system does not vanish, averaging to higher order does not change the
leading order term anymore. We will only need the cases q = 1, 2.

Definition 14. Given a frequency ω and an order of averaging N , we
define its active resonances up to order N :

(32) A(ω,N) = {(k, l) ∈ N [≤N ], ω · k + l = 0}
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and m(ω,N), the multiplicity of ω up to order N , as the dimension of
the Z-module generated by A(ω,N):

(33) m(ω,N) = dim(M[A(ω,N)]).

Of course m(ω,N + 1) ≥m(ω,N) and inequality can be strict.
The relevance of the concept of multiplicity comes because, as we

emphasize in Remark 11, the main result of the averaging method is
that in a neighborhood of a point I ∈ Jδ such that the frequency
ω(I) is of multiplicity m(ω,N) up to order N , there exists a change of
variables that reduces the Hamiltonian K in Lemma 10 to a function
of I and m(ω,N) angles up to an error of order O(εN+1).

Using the method of Lemma 10 in the Algorithm 8 we obtain straight-
forwardly Lemma 15, that is the main iterative step in the averaging
procedure.

The hypothesis of next Lemma 15 are that we have a Hamiltonian
averaged up to order q. The conclusions are that we can produce
another Hamiltonian which is averaged up to a higher order q+ 1 in ε.

Lemma 15. Consider a Hamiltonian of the form:

(34) Kq(I, ϕ, s; ε) = K0
q (I, ϕ, s; ε) + εq+1K1

q (I, ϕ, s; ε).

Assume that Kq is of class C` with respect to I ∈ Jδ ⊂ I∗ ⊂ Rd.
Consider the finite collection of sets Rs ⊂ Jδ, called resonances

activated at order s, s = 1, . . . , q, and R[≤q] = ∪1≤s≤qRs the set of
resonances open up to order q.

Consider a number L < 1 small enough such that:

L1 for any Rk,l,Rk̃,l̃ ∈ R[≤q], either Rk,l = Rk̃,l̃ or the tubular
neighborhood of Rk,l of radius L does not contain Rk̃,l̃.

And assume that:

• K0
q (I, ϕ, s; ε) satisfies:

– If q = 0, K0
0(I, ϕ, s; ε) = I0 + h(I).

– If q ≥ 1, K0
q (I, ϕ, s; ε) is a Cn+2−2q function that verifies:

1.1. If d(I,R[≤q]) ≥ 2L, then

K0
q (I, ϕ, s; ε) = I0 + h(I) + εK0,0

q (I; ε),

where εK0,0
q (I; ε) is a polynomial of degree q in ε.

1.2. If d(I,R[≤q]) ≤ L, then we can find at least one (may be
more) 0 ≤ j ≤ q such that d(I,Rj) ≤ L, and therefore at
least one kji , l

j
i such that

Rkji ,l
j
i
∈ Rs, i = 1, . . . , nj,

and that d(I,Rkji ,l
j
i
) ≤ L.
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Then,
(35)

K̄0
q (I, ϕ, s; ε) = h(I) + εK̄0,0(I; ε)

+
∑

0≤j≤q ε
jU j,q(I, kj1ϕ+ lj1s, . . . , k

j
nj
ϕ+ ljnjs; ε)

where the functions U j,q(I, θj1, . . . , θ
j
nj

; ε) are polynomials in

ε and trigonometric polynomials in the angle variables θji ,
i = 1, . . . , nj, with support of the Fourier transform with
respect to the (ϕ, s) contained in N1 ∪ · · · ∪ Nq.
Moreover, for j = 1 the function U1,q(I, θ1

1, . . . , θ
1
n1

; ε) is
given by:

U1,q =

n1∑
i=1

(
Ni∑

p=−Ni

K1
pk1i ,pl

1
i
(Γk1i ,l1i (I))e2πip(k1i ϕ+l1i s)

)
+ O(ε)

where K1
k,l(I) are the Fourier coefficients of K1

0(I, ϕ, s; 0)
with respect to the angle variables (ϕ, s).

2. K1
q (I, ϕ, s; ε) is a Cn−2q function whose Taylor series coefficients

with respect to ε are trigonometric polynomials in (ϕ, s).

Denote by

K = K1
q (I, ϕ, s; 0) =

∑
(k,l)∈Nq+1

Kk,l
q (I)e2πi(kϕ+ls),

where Nq+1 is assumed to be a finite set. K is the term of the per-
turbation of order exactly q + 1. Introduce also the set of resonances
activated at order q + 1:

(36) Rq+1 = ∪(k,l)∈N q+1Rk,l \ R[≤q]

Choose 0 < L̃ < L such that L) holds for R[≤q+1].
Let G(I, ϕ, s) be the Cn−2q−1 function whose Fourier coefficients Gk,l

verify equation (22), for (k, l) ∈ Nq+1, with K = K1
q (I, ϕ, s; 0).

Then, the Cn−2q−2 change of variables

(I, ϕ, s) = g(B, α, s),

given by the time one flow of the Hamiltonian εq+1G(B, α, s), trans-
forms the Hamiltonian Kq(I, ϕ, s; ε) into a Hamiltonian

Kq+1(B, α, s; ε) = K0
q+1(B, α, s; ε) + εq+2K1

q+1(B, α, s; ε),

with

(37) K0
q+1(B, α, s; ε) = K0

q (B, α, s; ε) + εq+1K̄1
q (B, α, s; 0),
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where K̄1
q (B, α, s; 0) = K̄(B, α, s), given in Lemma 10, is a Cn−2q func-

tion whose Fourier coefficients solve equations (22).
Moreover, the Hamiltonian K0

q+1(B, α, s; ε) verifies properties [1.0],

[1.1], [1.2] up to order q + 1 with L̃ replacing L.
Furthermore, εq+2K1

q+1(B,α, s; ε) is a Cn−2q−2 function whose Taylor
series coefficients with respect to ε are trigonometric polynomials in
(α, s).

Once we know how to solve any homological equation (22), we can
proceed to obtain a suitable global normal form of our reduced Hamil-
tonian by applying repeatedly the procedure. The precise result is
formulated in the following Theorem 16, which is a straightforward
generalization of Theorem 8.9 in [DLS06a].

Theorem 16. Let K̃(Ĩ , ϕ, s; ε) be a Cn Hamiltonian, n > 1, for I ∈
Jδ ⊂ I∗ ⊂ Rd and consider any 1 ≤ m < n, independent of ε. Assume
that

(38) K̃(Ĩ , ϕ, s; ε) = I0 + h(I) + εK(I, ϕ, s; ε).

Let Ki(I, ϕ, s) i = 1, , . . . ,m be the coefficients in the Taylor expansion
with respect to ε of K(I, ϕ, s; ε), and assume that the Ki(I, ϕ, s), i =
1, . . . ,m are trigonometric polynomials in ϕ, s.

Consider the finite collection of sets Ri ⊂ I∗, called resonances ac-
tivated at order i, i = 1 . . .m, following definition 13, as well as the
resonances open up to order m: R[≤m] = ∪1=1,...,mRi.

Consider a number 0 < L < 1 small enough such that:

L1 for any Rk,l,Rk̃,l̃ ∈ R[≤m], either Rk,l = Rk̃,l̃ or the tubular
neighborhood of Rk,l of radius L does not contain Rk̃,l̃.

Then, there exists a symplectic change of variables, depending on
time, (I, ϕ, s) 7→ (B, α, s), periodic in ϕ and s, and of class Cn−2m,
which is ε-close to the identity in the Cn−2m−1 sense, such that trans-
forms the Hamiltonian system associated to K̃(Ĩ , ϕ, s; ε) into a Hamil-
tonian system of Hamiltonian

B0 + K̄(B, α, s; ε) = B0 + K̄0(B, α, s; ε) + εm+1K̄1(B, α, s; ε)

where the function K̄0 is of class Cn−2m+2, and εm+1K̄1 is of class
Cn−2m, and they verify:

(1) If d(B,R[≤m]) ≥ 2L, then

K̄0(B, α, s; ε) = h(B) + εK̄0,0(B; ε)

where K̄0,0(B; ε) is a polynomial of degree m− 1 in ε.
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(2) If d(B,R[≤m]) ≤ L, then we can find at least one (may be more)
0 ≤ j ≤ m such that d(B,Rj) ≤ L, and therefore at least one
kji , l

j
i such that

Rkji ,l
j
i
∈ Rj, i = 1, . . . nj,

and that d(B,Rkji ,l
j
i
) ≤ L.

Then,
(39)
K̄0(B, α, s; ε) = h(B) + εK̄0,0(B; ε)

+
∑

0≤j≤m ε
jU j,m(B, kj1α + lj1s, . . . , k

j
nj
α + ljnjs; ε)

where the functions U j,m(B, θj1, . . . , θjnj ; ε) are polynomials in ε

and trigonometric polynomials in the angle variables θji , i =
1, . . . , nj, with support of the Fourier transform with respect to
the (ϕ, s) contained in N1 ∪ · · · ∪ Nm.

Moreover, if j = 1, the function U1,m(I, θ1
1, . . . , θ

1
n1

; ε) is given
by:

U1,m =

n1∑
i=1

(

Ni∑
p=−Ni

K1
pk1i ,pl

1
i
(Γk1i ,l1i (B))e2πip(k1i α+l1i s))

+ O(ε)

where K1
k,l(B) are the Fourier coefficients of the K(B, α, s; 0)

with respect to the angle variables (α, s).

Note that in this Theorem 16 we have not claimed anything in the
regions at a distance between L and 2L of the resonance set R. This
is not a problem because, by remembering that L is arbitrary, we can
obtain the same results using L/2 in place of L.

Hence, the analysis that we will carry out in each of the different
pieces applies to the whole space.

3.4. Averaging close to simple resonances. Theorem 16 reduces
the original system to a non-integrable system of a partially simple
form by a change of variables. The number of angles that enter in the
averaged Hamiltonian for a given I depends on the resonances which
are close to I. The key of the following reasoning is to understand the
geometry of the set of points I for which the averaged system involves
only one angle. The set of points that we have found useful to omit are
the points in secular resonances (i.e. in the resonances which appear
in averaging to order 1 or 2) which are also part of another resonance
activated when averaging up to order m.
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So, next step is to define a region Iδ ⊂ Jδ where we take out the
intersection of the secular resonances with any other resonances which
appear in the process of averaging up to order m.

To this end we consider

B = R[≤2] ∩ {I ∈ Jδ, m(ω(I),m) ≥ 2}
which is a finite union of surfaces of codimension two or higher in
Jδ, and we consider Bδ a δ-neighborhood of these surfaces. Reducing
L = L(δ) if necessary, the set Iδ = Jδ \ Bδ verifies the following
property:

L2 If I ∈ Iδ there is at most one Rk,l ∈ R[≤2] such that
d(I,Rk,l) ≤ L.

Theorem 16 in the domain Iδ reads:

Theorem 17. Let K̃(Ĩ , ϕ, s; ε) be the Cn Hamiltonian of Theorem 16,
n > 1, and consider any 1 ≤ m < n, independent of ε.

Consider the finite collection of sets Ri ⊂ I∗, called resonances ac-
tivated at order i, i = 1, . . .m, given in definition 13.

Let 0 < δ < 1 be any number and consider 0 < L < 1 verifying L1
and L2 in Iδ.

Then, the symplectic change of variables given in Theorem 16,

(I, ϕ, s) 7→ (B, α, s),
transforms the Hamiltonian system associated to K̃(I, ϕ, s; ε) in Iδ into
a Hamiltonian system of Hamiltonian

(40) B0 + K̄(B, α, s; ε) = B0 + K̄0(B, α, s; ε) + εm+1K̄1(B, α, s; ε)
where the function K̄0 is of class Cn−2m+2, and εm+1K̄1 is of class
Cn−2m and they verify:

(1) If B ∈ Iδ, satisfies d(B,R[≤2]) ≥ 2L, then

K̄0(B, α, s; ε) = h(B) + εK̄0,0(B; ε) +O(ε3)

where K̄0,0(B; ε) is a polynomial of degree 1 in ε.
(2) If B ∈ Iδ, satisfies d(B,R[≤2]) ≤ L, there exists a unique reso-

nance activated at order one or two

Rk0,l0 ∈ Rj, j = 1, 2

such that d(B,Rk0,l0) ≤ L. Then

(41)
K̄0(B, ϕ, s; ε) = h(B) + εK̄0,0(B; ε)

+ εjUk0,l0(Γk0,l0(B), k0 · α + l0s; ε)

where the functions Uk0,l0(Γk0,l0(B), θ; ε) are polynomial in ε and
trigonometric polynomial in the angle variable θ = k0 · α + l0s.
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Moreover, if Rk0,l0 ⊂ R1 the function Uk0,l0 is given by:

Uk0,l0 =

N1∑
p=−N1

K1
pk0,pl0

(Γk0,l0(B))e2πip(k0·α+l0s) + O(ε)

where K1
k,l(B) are the Fourier coefficients of K(B, α, s; 0) with

respect to the angle variables (α, s).

The next goal is to study in more detail the behavior of the system
predicted by the averaged Hamiltonian.

The main remark is that, near simple resonances, the averaged sys-
tem contains only one angle and, therefore, it is integrable. This allows
us to analyze explicitly its dynamics. Its turns out that, for the prob-
lem at hand, we only need to study the resonances of order 1 or 2,
which are called “secular resonances” by astronomers.

3.5. Geometric properties of the orbits of the averaged Hamil-
tonian. In this section, we study the invariant tori of the averaged
system obtained in Theorem 17, that is, the system given by Hamil-
tonian K̄0 in (40). Later, in section 3.5.2, 3.5.4, we show that, under
some non-degeneracy conditions, some of these tori are also present in
the original system. This is, basically, the KAM theorem.

In Sections 3.5.1, 3.5.3, we will see that the phase space Iδ ×Td+1 is
foliated by (quasi)-periodic solutions of the averaged system. Neverthe-
less, the topology of the solutions is very different in the non-resonant
regions and in the resonant regions. We define the non-resonant region
as the set:

(42) SL = {(I, ϕ, s) ∈ Iδ × Td+1, d(I,R[≤2]) ≥ 2L}
In particular, SL includes the intersection of Iδ with all the resonances
activated at order higher than 2. This region SL will be covered, up to
very small gaps of order O(ε3/2), by KAM tori.

In the resonant regions of Iδ×Td+1\SL, we will obtain tori which are
contractible to tori of lower dimension and, therefore, are not homo-
topic to a torus present in the unperturbed system. We call secondary
KAM tori the invariant tori which have different topological type from
the tori of the unperturbed system. We use the name primary tori
for the invariant tori which are homotopic to those of the unperturbed
system. Primary tori are those usually considered in the perturbative
versions of KAM theorem for quasi-integrable systems.

The importance of the secondary tori is that they dovetail precisely
into the gaps between the set of KAM primary tori created by the
resonances, so that it will be possible to construct a web of KAM tori,
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primary and secondary, which are ε3/2-close. For systems with 2+1/2
degrees of freedom this was introduced in [DLS03, DLS06a]. See also
[GL06a].

In hypothesis H6 given in 3.5.3, we formulate precisely one non-
degeneracy assumption on the averaged system which allows us to ap-
ply the KAM theorem and conclude that some of the solutions found in
the averaged system K̄0 (including secondary tori) are indeed present
in the full Hamiltonian (40), and therefore in the original system (16).
Of course, since the averaged system is computable from the original
model, the non-degeneracy conditions on the averaged system amount
to some non-degeneracy conditions on the original system.

3.5.1. The invariant tori of the averaged system in the non-resonant
region of Iδ. By item (1) in Theorem 17, in the non-resonant region
SL defined in (42), the full averaged hamiltonian (40) reads

B0 + h(B) + εK̄0,0(B; ε) +O(ε3).

For the truncated Hamiltonian

(43) B0 + h(B) + εK̄0,0(B; ε)

the tori are given as the level sets of the averaged action variables

B0 = c0,B1 = c1, . . . ,Bd = cd

where the equation B0 = c0 is a reflection of the fact that the Hamil-
tonian (43) is autonomous.

When written in the original variables of the time dependent Hamil-
tonian (16), these tori in SL ⊂ Iδ×Td+1, as shown in Theorem 16 and
Theorem 17, are given by the equations:

F1(I, ϕ, s; ε) = c1, . . . , Fd(I, ϕ, s; ε) = cd

where

(44) F1(I, ϕ, s; ε) = I1 +O(ε), . . . , Fd(I, ϕ, s; ε) = Id +O(ε).

3.5.2. The invariant tori in the non-resonant region of Iδ: KAM The-
orem. We note that in the non-resonant region SL, we have managed
to transform the system into an integrable system up to an error which
is ε3 when measured in the Cr−3 norm.

Furthermore, we point out that the averaged part has a frequency
map which is a diffeomorphism (it is an O(ε) perturbation of the dif-
feomorphism I 7→ ∂h

∂I
in a smooth norm).

If r is sufficiently large (so that r − 3 is larger than 2d + 3) we can
apply a KAM theorem [Pös82] and conclude that there are invariant
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tori which cover the non-resonant region SL except for a set of measure
smaller than O(ε3/2).

Theorem 18. Under the conditions of theorem 5, there exists ε0 such
that, for 0 < |ε| < ε0, the region SL can be covered by O(ε3/2) neigh-
borhoods of invariant objects under the Hamiltonian flow of the Hamil-
tonian Kε(I, ϕ, s) in (16). Moreover:

• These invariant objects are given by the level sets F = E, for
|E − E ′| ≤ ε

3
2 .

• The C2 function F : Rd × Td × T→ R is given by (44).
• These invariant objects are regular primary KAM d+ 1-tori

Therefore, in the non-resonant region, each torus has several tori
which are much closer than O(ε) to it. This is what in [CG98] was
called the “gap bridging mechanism”.

Remark 19. For experts, we note that there are different KAM theo-
rems in the literature, which differ in some subtle features; a systematic
comparison can be found in [Lla01]. The main difference in the litera-
ture is whether one step of averaging requires to solve one cohomology
equation or two. The methods which use only one cohomology equation
(e.g. the method in [Arn63, Pös82, Sal04]), called first order methods,
establish that the gaps between tori are bounded by the error to the
power 1/2. Those that use two cohomology equations (e.g. the meth-
ods in [Kol54, Mos66, Zeh75, Zeh76a]), called second order methods,
lead to gaps which are bounded by the error to power 1/4. These
quantitative estimates for the Newton method are found in [Zeh76b]
Very explicit verifications of the quantitative estimates of the method
of [Arn63] appear in [Nĕı81]. Simple examples show that the exponent
1/2 cannot be increased.

In our case, either method could be applied. If we wanted to just
refer to the second order methods to obtain gaps of order O(ε1/4), it
would have been enough, to obtain gaps of order O(ε3/2), to define
the non-resonant region as the region where one can average to order
m = 5 instead of m = 2 (in fact, it would be enough m = 4 if we allow
gaps of order O(ε5/4)).

Another technical point is that some results in the literature lose
more derivatives. This is totally irrelevant for us since it only affects
the number of derivatives that we need to assume in the original Hamil-
tonian.

3.5.3. Primary and secondary invariant tori of the averaged system in
the resonant region. We define the secular resonant region as:

(45) S [≤2] = {(I, ϕ, s) ∈ Iδ × Td+1, d(I,R[≤2]) ≤ L}
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In this region we will perform an elementary change of variables that
makes it clear that, close to a resonance activated at order one or two,
the Hamiltonian is a function of d− 1 actions and one resonant angle.

The first observation is that the region S [≤2] is the union of the
regions RL

k,l, which consist on tubular neighborhoods of size L of the
resonances Rk,l defined in Definition 9.

For points (B, α, s) ∈ RL
k0,l0

, where

Rk0,l0 ⊂ Rj ⊂ R[≤2], j = 1, 2

the averaged Hamiltonian is

(46) B0 + K̄0(B, α, s; ε)
where, by Theorem 17:
(47)
K̄0(B, α, s; ε) = h(B) + εK̄0,0(B; ε) + εjUk0,l0(Γk0,l0(B), k0 · α + l0s; ε)

is given in (41).
Assuming km0 6= 0 for some 1 ≤ m ≤ d, to understand the geometry

of the averaged Hamiltonian we first perform the following change of
angles

(48) θ̃ = Mα̃,

where θ̃ = (s, θ), and α̃ = (s, α), and M is the d+ 1× d+ 1 matrix:

M =


1 . . .
· ·
l0 k>0
· ·

1


Let us observe that this change is just to take as a new angle the

resonant angle:

θi = αi, i 6= m, θm = k0 · α + l0s

To make the change symplectic we perform the change in actions:

(49) J̃ = M−>B̃.

The change B̃ = M>J̃ is equivalent to B = N>J where

N =


1 . . .
· ·

k>0
· ·

1


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and B0 = J0 + l0Jm, which is just the change in action which reflects
the fact that we are doing a time dependent change of angles.

In components, this change is simply:

Bm = km0 Jm, Bi = Ji + ki0Jm, i 6= m

or, analogously

(50) Jm =
Bm
km0

, Ji = Bi −
Bm
km0

ki0, i 6= m

With this change, the averaged Hamiltonian (46) is given by:

(51) J0+l0Jm+h(N>J)+εK̄0,0(N>J ; ε)+εjUk0,l0(Γk0,l0(N
>J), θm; ε)

which, in the region RL
k0,l0
⊂ Iδ×Td+1, corresponds to the autonomous

Hamiltonian:

(52) l0Jm + h(N>J) + εK̄0,0(N>J ; ε) + εjUk0,l0(Γk0,l0(N
>J), θm; ε).

Working in the variables (J, θ, s) makes easier to identify the in-
variant tori. The invariant tori of Hamiltonian (52) will be given by
prescribing the values of the d − 1 action variables Ji, for i 6= m, and
the value of the Hamiltonian (52), which is a constant of motion.

Abusing slightly the notation, let us write J = (Ĵ , Jm), θ = (θ̂, θm),
with

Ĵ = (J1, . . . , Jm−1, Jm+1, . . . , Jd), θ̂ = (θ1, . . . , θm−1, θm+1, . . . , θd).

Given a value of B = N>J = (B̂,Bm), we want to compute its
projection Γk0,l0(B) = B∗k0,l0 = N>J∗.

By the k0-characterization (29) of the projection Γk0,l0 we have that

B − B∗k0,l0 ∈ 〈k0〉 and Dh(B∗k0,l0) · k0 + l0 = 0.

Note that using the form of the change (50), and since B = N>J and
B∗k0,l0 = N>J∗, we have that Ji = J∗i , if i 6= m and that B − B∗k0,l0 =
(Jm − J∗m)k0.

Then, given B = N>J , with J = (Ĵ , Jm), one can characterize the
projection Γk0,l0(B) as:

We compute:

(53) Ĵ = B̂ − Bm
km0

k̂0 , Jm =
Bm
km0

and therefore

B = (Ĵ , 0) +
Bm
km0

k0,
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one can obtain the projection B∗k0,l0 = N>J∗, with J∗ = (Ĵ , J∗m) in

terms of Ĵ :

(54) B∗k0,l0 = B∗(Ĵ) = (Ĵ , 0) +
B∗m
km0

k0

where B∗m = km0 J
∗
m and J∗m = J∗m(Ĵ) is obtained solving

(55) Dh(N>(Ĵ , J∗m)) · k0 + l0 = 0.

Let us emphasize that J∗m and therefore J∗ and B∗k0,l0 are uniquely

determined through (55) for a given B = N>J , and therefore for a

given Ĵ , assuming dist(B,Rk0,l0) < L and L small enough.
Let us observe that for values B such that (B, α, s) ∈ Iδ, one has

that the corresponding values of Ĵ vary in a compact set that we will
denote by Ĵ .

For Ĵ ∈ Ĵ , we will denote:

(56) Uk0,l0,∗(θm; Ĵ , ε) = Uk0,l0(B∗k0,l0(Ĵ), θm; ε)

Using this notation, system (52) can be written as:

(57) l0Jm +h(N>(Ĵ , Jm)) + εK̄0,0(N>(Ĵ , Jm); ε) + εjUk0,l0,∗(θm; Ĵ , ε).

The next step is to use Hypotheses H5 and H6 to obtain a change
of variables

(Jm, θm)→ (y, x)

such that Hamiltonian (57) in these new variables becomes:

(58) K0(y, x; Ĵ , ε) = a(Ĵ , ε)
y2

2
(1 +O(y)) + εjU(x; Ĵ , ε).

We first proceed to formulate hypothesis H5 which states precisely
that the leading part of the kinetic energy is quadratic.

Taylor expanding the function h(N>J) around the resonant point
N>J∗ and using (55), we obtain:

l0Jm + h(N>J) = l0Jm + h(N>J∗ + k0(Jm − J∗m))

= l0J
∗
m + h

(
N>J∗

)
+

1

2
(Jm − J∗m)2k>0 D

2h
(
N>J∗

)
k0

+O((Jm − J∗m)3)

(59)

where we have used that

Dh(B∗k0,l0(Ĵ))k0 + l0 = 0, ∀Ĵ ∈ Ĵ .
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by the definition of B∗k0,l0(Ĵ) = N>J∗ in (54). Therefore, introducing

(60) a(Ĵ) = a(Ĵ)k0,l0 := k>0 D
2h
(
N>J∗

)
k0 = k>0 D

2h
(
B∗k0,l0(Ĵ)

)
k0,

the hypothesis H5 is:

H5 a(Ĵ) 6= 0, for any (k0, l0) ∈ R[≤2] and Ĵ ∈ Ĵ .

With the notation (60), equation (59) becomes
(61)

l0Jm+h(N>J) = l0J
∗
m+h(N>(Ĵ , J∗m))+

a(Ĵ)

2
(Jm−J∗m)2+O((Jm−J∗m)3).

Since the actions Ĵ are d−1 first integrals of the averaged Hamilton-
ian (52), we have that the dynamics in the (Jm, θm) variables is that of

a nonlinear oscillator with potential Uk0,l0,∗(θm; Ĵ , ε). We can think of

the variables Ĵ as parameters in the non-linear oscillator.
We now introduce Hypothesis H6, which is the other non-degeneracy

assumption which will make precise the heuristic notion that “the av-
eraged system near secular resonances looks like a pendulum”.

Assumption H6 formulates precisely that the potential of the trun-
cated averaged Hamiltonian (47) at the resonance (see also (57)), if

a(Ĵ) > 0, has a unique non-degenerate maximum or, if a(Ĵ) < 0, has
a unique non-degenerate minimum.

H6 For any B = N>J ∈ S [≤2] ⊂ Iδ, consider the value (k0, l0) such

that d(B,Rk0,l0) ≤ L and its k0-projection Γk0,l0(B) = B∗k0,l0(Ĵ).

By hypothesis H5 we know that a(Ĵ) = a(Ĵ)k0,l0 6= 0.

If a(Ĵ) > 0, we assume that there is a unique non-degenerate
maximum of the potential of Hamiltonian (47)

Uk0,l0(Γk0,l0(B), θm; 0) = Uk0,l0(B∗k0,l0(Ĵ), θm; 0)

with respect to θm, which is uniformly non-degenerate with re-
spect to B ∈ S [≤2]. If a(Ĵ) < 0, we assume instead that there
is a unique non-degenerate minimum with the same uniformity
conditions.

That is, there is a unique θ∗m such that

a(Ĵ)Uk0,l0(Γk0,l0(B), θ∗m; 0) = max
θm

a(Ĵ)Uk0,l0(Γk0,l0(B), θm; 0),

a(Ĵ)
∂2

∂θ2
m

Uk0,l0(Γk0,l0(B), θ∗m; 0) ≤ β < 0.
(62)
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Remark 20. We call attention to the fact that, as Γk0,l0(B) ∈ Rk0,l0 ⊂
R[≤2] the conditions H5, H6 need to be verified only on the codimen-
sion one set R[≤2] ∩ Iδ × Td+1 formed by the secular resonances in
Iδ × Td+1.

Note that the assumptions H5, H6 are Cr open conditions in the
space of Hamiltonians. If assumptions H5, H6 are verified for a family,
they will also be verified for all families close to it in a Cr topology
with r ≥ 2 sufficiently large so that we can carry out the averaging
procedure. Therefore, the conditions also hold in a Cr set of original
Hamiltonians.

Using the notation introduced in (56) hypothesis H6 can be written
as:

a(Ĵ)Uk0,l0,∗(θ∗m; Ĵ , 0) = max
θm

a(Ĵ)Uk0,l0,∗(θm; Ĵ , 0),

a(Ĵ)
∂2

∂θ2
m

Uk0,l0,∗(θ∗m; Ĵ , 0) ≤ β < 0.
(63)

From now on we will assume that a(Ĵ) > 0. Moreover, it is uniform

respect to Ĵ ∈ Ĵ . Therefore hypothesis H6 can be written as:

Uk0,l0,∗(θ∗m; Ĵ , 0) = max
θm

Uk0,l0,∗(θm; Ĵ , 0),

∂2

∂θ2
m

Uk0,l0,∗(θ∗m; Ĵ , 0) ≤ β < 0.
(64)

The case a(Ĵ) < 0 can be done analogously.
Assumptions H5, H6 imply that, as a function of (Jm, θm), for any

value of Ĵ , the Hamiltonian

l0Jm + h(N>(Ĵ , Jm)) + εjUk0,l0,∗(θm; Ĵ , 0)

has a saddle point at (J∗m(Ĵ), θ∗m(Ĵ)), which gives rise to a saddle equi-
librium point for the associated Hamiltonian system.

We note that, because of uniformity of the second derivative of the
potential in (64) and the hypothesis H5, we obtain that the point

(J∗m(Ĵ), θ∗m(Ĵ)) is uniformly hyperbolic. For a given ε > 0, the Li-

apunov exponents are bounded away from zero for any Ĵ ∈ Ĵ uni-
formly, and the angle between its stable and unstable directions is also
bounded away from zero.

Therefore, by the implicit function Theorem, for |ε| < ε0, the Hamil-
tonian system associated to Hamiltonian (57) in the phase space of
(Jm, θm), has a saddle equilibrium point
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(65) (J̃m(Ĵ , ε), θ̃m(Ĵ , ε)) = (J∗m(Ĵ), θ∗m(Ĵ)) +O(ε).

for any Ĵ ∈ Ĵ .
To make the pendulum-like structure of the system given by Hamil-

tonian (57) more apparent and to analyze the behavior, we will find it
convenient to make the translation

(66) y = Jm − J̃m(Ĵ , ε), x = θm − θ̃m(Ĵ , ε), s = s,

and we obtain the Cr−2m−2 Hamiltonian

(67) K0(y, x; Ĵ , ε) = h0(y; Ĵ , ε) + εjU(x; Ĵ , ε)

where

h0(y; εĴ, ) = l0y + h
(
N>(Ĵ , J̃m + y)

)
− h

(
N>(Ĵ , J̃m)

)
+ εK̄0,0

(
N>(Ĵ , J̃m + y); ε

)
− εK̄0,0

(
N>(Ĵ , J̃m); ε

)
U(x; Ĵ , ε) = Uk0,l0,∗(θ̃m + x; Ĵ , ε)− Uk0,l0,∗(θ̃m; Ĵ , ε)

(68)

where we have subtracted a constant term to the averaged Hamilton-
ian (57), the energy of the saddle (J̃m, θ̃m) = (J̃m(Ĵ , ε), θ̃m(Ĵ , ε)), to
normalize:

h0(0; Ĵ , ε) =
∂h0

∂y
(0; Ĵ , ε) = 0,

∂2h0

∂y2
(0; Ĵ , ε) = a(Ĵ , ε) = a(Ĵ) +O(ε) 6= 0,

U(0; Ĵ , ε) =
∂U

∂x
(0; Ĵ , ε) = 0,

∂2U

∂x2
(0; Ĵ , ε) ≤ β < 0,

(69)

therefore the averaged Hamiltonian (67) can be written as:

(70) K0(y, x; Ĵ , ε) = a(Ĵ , ε)
y2

2
(1 +O(y)) + εjU(x; Ĵ , ε)

and (0, 0) is a saddle point of Hamiltonian (67), with energy level

K0(0, 0; Ĵ , ε) = 0.
Once we have the averaged Hamiltonian written in the form (58), we

discuss the geometry and the dynamics on the sets obtained by fixing
the energy level.

The main observation is that if we fix Ĵ = ĉ, there is a critical
value c∗m(ĉ, ε) = 0 = K0(0, 0; Ĵ , ε) for cm at which the topology and
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the dynamics of the level sets of the Hamiltonian K0(y, x; Ĵ , ε), and
therefore of the Hamiltonian (57), change.

Now we describe the invariant sets of Hamiltonian K0(y, x, Ĵ ; ε) given
in (67) in the region:

(71) D = {(Ĵ , θ̂, y, x, s) ∈ Ĵ × Td−1 × R× T2, |y| ≤ L̄}.

for some 0 < L̄ < L, where θ̂ = (θ1, . . . , θm−1, θm+1, . . . , θd).

Given any value Ĵ = ĉ we consider in the (y, x) space, the level set

K0(y, x; Ĵ , ε) = cm:

• When cm > 0 but close enough to zero, the level set in the (y, x)
annulus is composed by two non-contractible circles.
• When cm < 0 but close enough to zero, the level set in the (y, x)

annulus is a circle which, however, is contractible to a point.
• When cm = 0, the level set is the union of two separatrices and

the hyperbolic critical point (0, 0).

Therefore, the region D is filled by the the level sets of the constants
of motion, that is, the energy surfaces of the Hamiltonian K0, and the
corresponding Ĵ :
(72)

T 0
c = {(Ĵ , θ̂, y, x, s) ∈ Rd−1×Td−1×R×T2 : K0(y, x; Ĵ , ε) = cm, Ĵ = ĉ}.

T 0
c will, of course, be invariant by the Hamiltonian flow of K0.
The sets T 0

c consist on:

• When cm > 0 but close enough to zero, the level set T 0
c is com-

posed by two primary tori (non-contractible tori of dimension
d+ 1).
• When cm < 0 but close enough to zero, the level set T 0

c is a
secondary torus (torus of dimension d + 1 contractible to a d-
dimensional torus).
• The level set corresponding to cm = 0 consists of one whiskered

torus and its coincident whiskers: the hyperbolic torus Td ×
{(0, 0)} and the homoclinic orbits to it. We will refer to T 0

0 as
the separatrix loop.

Formula (72) gives an implicit equation for the tori T 0
c . To compute

the images of these tori under the scattering map in section 3.8, it will
be convenient to have the explicit equation of these tori.

Lemma 21. There exists ρ > 0, such that the two primary tori (com-
ponents of the secondary tori) T 0

c of Hamiltonian K0 can be written

as graphs of the variables (Ĵ , y) over the angle variables (θ̂, x), for
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ρ ≤ x ≤ 2π − ρ:

(73)
T 0
c ={(Ĵ , θ̂, y, x, s) ∈ Rd−1 × Td−1 × R× [ρ, 2π − ρ]× T :

Ĵ = ĉ, y = ±Ỹ(x; c, ε)}.

where the function Ỹ(x; c, ε) has different expressions depending of the
value cm:

(1) If 0 < cm ≤ εj:

(74) Ỹ(x; c, ε) = ˜̀(x; c, ε)(1 +O(ε
j
2 ))

(2) If εj ≤ cm < 1, for cm = dmε
α, with 0 < α < j:

(75) Ỹ(x; c, ε) = ˜̀(x; c, ε)(1 +O(ε
α
2 ))

(3) If cm = O(1):

(76) Ỹ(x; c, ε) = h
(−1)
0 (cm)(1 +O(εj))

where the function where h0 is given in (69) and ˜̀ is given by:

˜̀(x; c, ε) =

√
2

a(ĉ, ε)
(cm − εjU(x; ĉ, ε))

Once we know the structure of the level sets of the averaged Hamil-
tonian (57) in terms of the variables (Ĵ , θ̂, y, x), we can write the equa-
tions of these sets in the original variables of the problem.

First, in terms of the variables (B, α, s) ∈ Rd×Td+1, using (50), (53),

(66) and (67) and (68), the tori T 0
E , with E = (Ê, Ẽm), are given by:

B̂ − Bm
km0

k̂0 = Ê

Bm
km0

l0 + h(B) + εK0,0(B; ε) + εjUk0,l0,∗(k0α + l0s; Ê, ε) = Ẽm.

(77)

T 0
E will, of course, be invariant by the Hamiltonian flow of the averaged

system (47).

Remark 22. The equations (77) are a natural consequence of the fact
that the non-autonomous Hamiltonian (47) has as first integrals the
functions that are at the left hand side of (77).

Let us observe that the relation between the constants c and E is
given by

Ê = ĉ

Ẽm = cm + Ẽ∗m(Ê) = cm + l0J̃m + h(N>(Ê, J̃m))

+ εK̄0,0(N>(Ê, J̃m)) + εjUk0,l0,∗(θ̃m; Ê, ε)
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and the critical value where the topology of the invariant tori change
is now Ẽ∗m = Ẽ∗m(Ê), which is the energy level of the saddle (J̃m, θ̃m) =

(J̃m(Ê, ε), θ̃m(Ê, ε)) and corresponds to taking the critical value cm =

0, ĉ = Ê, in (72), of Hamiltonian K0 in (67) with variables (66).
It is important to note that equations (77) can also be written, using

(50), (66) and (53), as:

(78)

B̂ − Bm
km0

k̂0 = Ê

a(Ê, ε)
y2

2
(1 +O(y)) + εjUk0,l0,∗(k0α + l0s; Ê, ε) = Em

where

y =
Bm
km0
− J̃m(Ê, ε) =

Bm − B∗m(Ê)

km0
+O(ε).

The value of the critical value E∗m where the topology of the tori changes
is given by

E∗m = εjUk0,l0,∗(θ̃m(Ê, ε); Ê, ε),

which is just the value of the potential at the saddle point. Again,
using the changes (50), (66) and formula (73) of Lemma 21, we can
obtain explicit formulae for these tori:

B̂ = Ê +
Bm
km0

k̂0

Bm = km0 J̃m(Ê, ε)± km0 Y(k0α + l0s;E, ε)

= km0 J
∗
m(Ê)± km0 Y(k0α + l0s;E, ε) +O(ε)

= B∗m(Ê)± km0 Y(k0α + l0s;E, ε) +O(ε)

where
Y(θm;E, ε) = Ỹ(θm − θ̃m(Ê, ε);E; ε).

Going back to the original variables (I, ϕ, s) ∈ Rd × Td+1 we can
write the implicit equations for these tori T 0

E as:

Î − Im
km0

k̂0 +O(ε) = Ê,

Im
km0

l0 + h(I) + εK0,0(I; ε) + εjUk0,l0,∗(k0ϕ+ l0s; Ê, ε) +O(ε) = Ẽm

That can also be also written as:

Î − Im
km0

k̂0 +O(ε) = Ê,(79)

a(Ê, ε)
y2

2
(1 +O(y)) + εjUk0,l0,∗(k0ϕ+ l0s; Ê, ε) +O(εj+1) = Em
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where:

(80) y =
Im − B∗m(Ê)

km0
+O(ε), E∗m = εjUk0,l0,∗(θ̃m(Ê, ε); Ê, ε).

Finally, these tori can be also written explicitly as:

Î = Ê +
Im
km0

k̂0 +O(ε)(81)

Im = B∗m(Ê)± km0 Y(k0ϕ+ l0s;E, ε) +O(ε)

Let us observe that the function Y verifies, according to Lemma 21:

• If 0 < |Em − E∗m| ≤ εj:

(82) Y(θm;E, ε) = `(θm;E, ε)(1 +O(ε
j
2 ))

• If εj < |Em − E∗m| < 1, writing |Em − E∗m| = dmε
γ, with 0 <

γ < j:

(83) Y(θm;E, ε) = `(θm;E, ε)(1 +O(ε
γ
2 ))

• If |Em − E∗m| = O(1):

(84) Y(θm;E, ε) = h
(−1)
0 (Em)(1 +O(εj))

where the function ` is given by (see (68):

(85) `(θm;E, ε) =

√
2

a(Ê, ε)
(Em − εjUk0,l0,∗(θm; Ê, ε)).

3.5.4. Primary and secondary tori near the secular resonances: KAM
Theorem. If we apply the changes of variables (48), (50) and (66) to
Hamiltonian (40) we obtain:

(86) K(Ĵ , θ̂, y, x, s; ε) = K0(Ĵ , y, x; ε) + εm+1S(Ĵ , θ̂, y, x, s; ε).

First, we change to action–angle variables of the integrable part K0.
The two only difficulties are that the action angle variables become
singular near the level set K0 = 0, which is the separatrix of the torus
{(x, y) = (0, 0)}, and also the twist condition becomes singular. In
fact, the twist goes to ∞ when one approaches the separatrix and
this is favorable to application of the KAM theorem [Her83, DLS06a])
because this theorem only requires lower bounds on the twist and a
larger twist improves the quantitative assumptions of the theorem.

If the number of averaging steps m is large enough we can ensure
that there exist KAM tori (both primary and secondary) that cover the
whole resonant region up to distances O(ε3/2) and which are ε3 close to
the level sets K0 = cm of the averaged Hamiltonian K0. Of course, we
could get even higher powers in the density by averaging more times.
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• We select a region |cm − c∗m| ≤ εα surrounding the separatrix
K0 = c∗m = 0. In this region (the chaotic zone) we will not
perform any further analysis. We will just remark that it is
small. In particular, if α = 3

2
+ j

2
, the level sets of energy cm

and c∗m are at a distance ε3/2 if (cm − c∗m) = ±εα .
• In the complementary region: |cm − c∗m| ≥ εα we change to

action angle variables adapted to the level sets, F = c = (ĉ, cm),

of the function F = (Ĵ ,K0) defined in (72). We note that one
of the components of F is precisely K0, the integrable part of
the averaged Hamiltonian (86). The action variables can be
obtained geometrically integrating the canonical form over the
loops in a torus [Arn78, AM78].

It is well known that the singularities of the action variable
are only a power of (cm − c∗m). Therefore, since the size of
the remainder in Hamiltonian (86) is O(εm+1), when expressed
in the action angle variables in the region |cm − c∗m| ≥ εα the
smallness of the remainder will be O(εm+1−Aα), for some value
A > 0.
• The KAM theorem in action-angle variables [Pös01] gives tori

which are at a distance εm+1−Aα of the level sets of the action
variables. The gaps between these tori are O(ε(m+1−Aα)/2).

• Coming back to variables (y, x, Ĵ , θ̂) we obtain tori at a distance
between them of order O(ε(m+1−Aα)/2−αA), and that are at a

distance O(εm+1−2Aα) from the level sets of (Ĵ ,K0).
We note that, if we fix α = 3

2
+ j

2
, taking into account that

A is a fixed number, we obtain that, taking m large enough we

can ensure that we have tori for |c − c′| < ε
3
2

+ j
2 , that is, the

gaps are smaller than ε3/2 as claimed.
• Going back to the original variables through changes (53), (66)

(which are close to the identity), we obtain the result in next
theorem 23.

Theorem 23. Under the conditions of theorem 5, there exists ε0 such
that, for 0 < |ε| < ε0, the secular resonant region S [≤2] can be covered
by O(ε3/2) neighborhoods of invariant objects under the Hamiltonian
flow of the Hamiltonian Kε(I, ϕ, s) in (16). Moreover:

• These invariant objects are given by the level sets F = E =

(Ê, Em), for |E−E ′| ≤ ε
3
2

+ j
2 and where ε

3
2

+ j
2 ≤ |Em−E∗m| ≤ 1

with E∗m given in (80).
• The C2 function F : Rd × Td × T→ R is given by (79).
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• These invariant objects are either regular primary KAM d+ 1-
tori, secondary d+1-KAM tori of class 1 (i.e. d+1-dimensional
invariant tori which are contractible to a Td) or invariant man-
ifolds of d-dimensional whiskered invariant tori.

3.6. Second step: The generation of a homoclinic manifold
and computation of the scattering map. Let us observe that by
hypothesis H2, for ε = 0, the manifold Λ̃0 has stable and unstable
manifolds which coincide along a homoclinic manifold

Γ̃0 = W s(Λ̃0) = W u(Λ̃0)

with

Γ̃0 = {(p∗(τ), q∗(τ), I, ϕ, s), (I, ϕ, s, τ) ∈ I∗ × Td+1 × Rn}
The first result in this section is that, if system (3) satisfies the non-
degeneracy assumption H7, then for all 0 < |ε| < ε0, W s(Λ̃ε), W

u(Λ̃ε),
the stable and unstable manifolds of the normally hyperbolic invariant
manifold Λ̃ε introduced in Section 3.1, have a transversal intersection
along a homoclinic manifold Γ̃ε. Then, following [DLS08] we use this
intersection to define the scattering map in H− ⊂ Λ̃ε.

We will use a notation very similar to that of [DLS06a] and, indeed
refer to this paper for a series of detailed calculations. The proof of the
next proposition is identical to proposition 9.2 in [DLS06a].

Proposition 24. Assume that hypothesis H7 is fulfilled. Then, given
(I, ϕ, s) ∈ H− ⊂ I∗ × Td+1, for ε small enough, there exists a locally
unique point z̃∗ of the form
(87)
z̃∗(I, ϕ, s; ε) = (p∗(τ ∗(I, ϕ, s)) + O(ε), q∗(τ ∗(I, ϕ, s)) + O(ε), I, ϕ, s)

such that W s(Λ̃ε) t W u(Λ̃ε) at z̃∗, that is,

z̃∗ ∈ W s(Λ̃ε) ∩W u(Λ̃ε) and Tz̃∗W
s(Λ̃ε) + Tz̃∗W

u(Λ̃ε) = Tz̃∗M̃,

where M̃ = Rn × Rn × I × Td × T.
In particular, there exist unique points

x̃± = x̃±(I, ϕ, s; ε) = (0, 0, I, ϕ, s) + OC1(ε) ∈ Λ̃ε

such that

(88)
∣∣∣Φ̃ε,t(z̃

∗)− Φ̃ε,t(x̃±)
∣∣∣ ≤ cte. e−α|t|/2 for t→ ±∞.

Moreover, expressing the points x̃± = kε(I±, ϕ±, s±; ε) in terms of the
symplectic parametrization of Λ̃ε introduced in section 3.1, the following
formulas hold:

I(x̃±) = I + OC1(ε), ϕ(x̃±) = ϕ+ OC1(ε), s(x̃±) = s,
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and

(89) I(x̃+)− I(x̃−) = ε
∂L∗

∂ϕ
(I, ϕ− ω(I)s) + OC1(ε

1+%),

where L∗(I, θ) is given in (12), and % > 0.

3.7. The scattering map. From now on we will take the homoclinic
manifold

Γ̃ε = {z̃∗(I, ϕ, s; ε), (I, ϕ, s) ∈ H− ⊂ I∗ × Td+1}
given by proposition 24. Following [DLS08] we will call Γ̃ε an homo-
clinic channel and we can define the scattering map sε on Λ̃ε, also called
outer map, associated to Γ̃ε.

Following [DLS06a, DLS08] the scattering map is defined as follows:
for any two points x̃± ∈ Λ̃ε, we say that x̃+ = sε(x̃−), if there exists a
point z̃ ∈ Γ̃ε such that

dist(Φ̃ε,t(z), Φ̃ε,t(x±))→ 0, for t→ ±∞.
Since the unperturbed system is a product system, it is clear that,
independently of what is the homoclinic manifold, the stable manifold
of one point in Λ̃0 is the same as its unstable manifold. Therefore,
s0 = Id.

As shown in [DLS08] the scattering map is an exact symplectic map
and depends smoothly on parameters because the homoclinic manifold
depends smoothly on parameters even through ε = 0.

It is well known (see [LMM86]) that a family of exact symplectic
mappings sε is conveniently described using a generator Sε and the
associated Hamiltonian Sε:

d

dε
sε = Sε ◦ sε; ıSεω = dSε.

Indeed in [DLS08] it is shown that the Hamiltonian Sε is given, up to
first order in ε by the function −L∗(I, ϕ − ω(I)s), where the reduced
Melnikov potential L∗(I, θ) is given in (12):

Sε = −L∗ + εS1 +O(ε2)

Therefore, the scattering map can be written, using the coordinates
(I, ϕ, s) as:

(90)
sε(I, ϕ, s) = (I + ε∂θL∗(I, ϕ− ω(I)s) +O(ε2),

ϕ− ε∂IL∗(I, ϕ− ω(I)s) +O(ε2), s)

and, for any fixed s ∈ T, up the first order in ε it is given, in the
coordinates (I, ϕ), as the time −ε map of the Hamiltonian flow of
Hamiltonian L∗(I, θ) evaluated at (I, ϕ− ω(I)s).
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The fundamental property to have instability will be to check, for
any fixed s, that the tori invariant for the inner flow in Λ̃ε are not
invariant by the perturbed scattering map sε. Therefore, we will pay
attention at how the scattering map moves the tori TE given in (44),
(79), (80) using the results in [DH09].

3.8. Interaction between the inner flow and the scattering map
and hypothesis H6. We have already shown in theorems 18 and 23,
that the KAM tori TE (both primary and secondary) are the level sets
of an Rd-valued function Fε. Indeed we have approximate expressions
for it in (44), (79), (80) (see also (81)).

The scattering map transports the level sets of Fε into other mani-
folds, which are the level sets of Fε ◦ s−1

ε .
The key observation relies on Lemma 10.4 in [DLS06a] (see also

[DLS00]), which states that, given two invariant manifolds for the inner
flow Σi ⊂ Λ, i = 1, 2, if Σ1 intersects transversally sε(Σ2) in Λ̃ε, then
W u

Σ2
t W s

Σ1
.

Our next goal will be to make explicit the conditions to ensure that
the scattering map creates heteroclinic intersections between the KAM
tori, primary or secondary, created in sections 3.5.2 and 3.5.4.

Fix s ∈ T. The tori TE′ and sε(TE) intersect if there exists a point
x̃ = (I, ϕ, s) such that:

(91)
Fε(I, ϕ, s; ε) = E

Fε ◦ sε(I, ϕ, s; ε) = E ′.

Let us observe that the first equation is the implicit equation for the
torus TE. Instead, we can use its explicit equation I = λE(ϕ, s; ε) to
eliminate the first d equations. The manifolds TE′ and sε(TE) intersect
if there exists (ϕ, s) such that:

(92) Fε ◦ sε(λE(ϕ, s; ε), ϕ, s; ε) = E ′

and the intersection will be transversal if

(93) detD(Fε ◦ sε(λE(ϕ, s; ε), ϕ, s; ε)) 6= 0,

where D = Dϕ.
Using formula (159) in [DH09], we know that, given a function F :

(94) F ◦ sε = F − ε{F,L∗}+
ε2

2
({{F,L∗},L∗}+ {F, S1}) +O(ε3).

Therefore equation (92) reads:

(95) −{Fε,L∗}(λE(ϕ, s; ε), ϕ, s; ε) +O(ε) =
E ′ − E

ε
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and we will have intersection as long as E′−E
ε

is small enough, close to
the non-degenerate zeros of

{Fε,L∗}(λE(ϕ, s; ε), ϕ, s; ε) = 0

therefore the transversality condition (93) is equivalent to

(96) D({Fε,L∗})(λE(ϕ, s; ε), ϕ, s; ε) 6= 0

for a point in each of the level sets of Fε.

3.8.1. The non-degeneracy condition H8 in the non-resonant region.
The non-resonant region SL (see (42)) is of O(1) and is covered by ε

3
2

neighborhoods of tori which are given by the level sets of the function:

Fε(I, ϕ, s) = I +O(ε) = E.

Therefore λE(ϕ, s; ε) = E +O(ε), and equation (95) reads:

(97)
∂L∗

∂θ
(E,ϕ− ω(E)s) +O(ε) =

E ′ − E
ε

Moreover, by the KAM theorem 18 given in section 3.5.2 we have tori
for |E − E ′| ≤ cε3/2, and therefore equation (97) has solutions for ϕ,
which are non-degenerate if condition (96) is verified, which in our case,
becomes:

det

∣∣∣∣∂2L∗

∂θ2
(E,ϕ− ω(E)s)

∣∣∣∣ 6= 0,

and is guaranteed if

(98) det

∣∣∣∣∂2L∗

∂θ2
(I, ϕ− ω(I)s)

∣∣∣∣ 6= 0

is satisfied for (I, ϕ, s) ∈ H− ⊂ I∗ × Td+1, and is one of the non-
degeneracy conditions included in Hypothesis H8.

3.8.2. Heteroclinic orbits close to homoclinic ones in the non-resonant
region. If condition (98) is verified in the region SL we can guarantee
the existence of heteroclinic connections between neighboring KAM
tori in this region. If we look for heteroclinic connections close to
homoclinic ones, one can obtain a more explicit sufficient condition for
equations (97) to have a solution. The main idea is to solve equations
(97), using the implicit function theorem. The small parameter will be

δ =
E ′ − E

ε
+ ε

and then equation (97) read:

∂L∗

∂θ
(E,ϕ− ω(E)s) = O(δ)
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Therefore, a non-degeneracy condition which guarantees that equation
(97) have solutions close to the solutions of:

∂L∗

∂θ
(E,ϕ− ω(E)s) = 0

is that the function L∗ has non-degenerate critical points, that is:

(99)
∂L∗

∂θ
(E,ϕ− ω(E)s) = 0, =⇒ det

∣∣∣∣∂2L∗

∂θ2
(E,ϕ− ω(E)s)

∣∣∣∣ 6= 0,

in the region SL ∩H−. Equation (99) is part of Hypothesis H8.

3.8.3. The non-degeneracy condition H8 in the resonant region. Now,
we study the intersection equation (91) in the secular resonant region
(45) S [≤2]∩H−, to ensure that the image under the scattering map of a
primary or secondary torus intersects other nearby tori. We denote by
Fε again the function whose level sets gives the tori. We recall that the
secular resonant region S [≤2] is the union of the tubular neighborhoods
RL
k,l of the secular resonances Rk,l, for (k, l) ∈ N [≤2].

If Rk0,l0 is a resonance of order j, j = 1, 2, in the region RL
k0,l0

,
according to (79), (80) and the KAM theorem 23, the invariant tori
are given by the level sets of a function:

Fε = (F̂ , Fm) = E = (Ê, Em),

for ε
3
2

+ j
2 ≤ |Em − E∗m| ≤ 1, where E∗m = εjUk0,l0,∗(θ̃m(Ê, ε); Ê, ε) (see

[DLS06a]), with Uk0,l0,∗ given in (56),

(100) F̂ (I, ϕ, s; ε) = Î − Im
km0

k̂0 +O(ε),

and
(101)

Fm(I, ϕ, s; ε) = a(Ê, ε)
y2

2
(1+O(y))+εjUk0,l0,∗(k0ϕ+l0s; Ê, ε)+O(εj+1)

with a(Ê, ε) given in (69), (60), and

y =
Im − B∗m(Ê)

km0
+O(ε)

where B∗m(Ê) = Γk0,l0(I) is the k0-projection in the resonance Rk0,l0 .
Moreover, by the KAM theorem 23, we know that there exist tori

Fε = E, Fε = E ′ for |E − E ′| ≤ ε
3
2

+ j
2 .

The way to solve equation (91) is slightly different for a resonance or
order one or for a resonance of order two. We give all the details in the
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case of a first order resonance. The case of a resonance of order two
can be done with minor modifications, as it is explained in Remark 25.

For Fε = (F̂ , Fm), the set of equations (91) reads

F̂ (I, ϕ, s; ε) = Ê

Fm(I, ϕ, s; ε) = Em

F̂ (I, ϕ, s; ε)− ε{F̂ ,L∗}(I, ϕ, s; ε) +O(ε2) = Ê ′

Fm(I, ϕ, s; ε)− ε{Fm,L∗}(I, ϕ, s; ε) +O(ε2) = E ′m

and, using (100), (101), these equations are equivalent to

(102)

F̂ (I, ϕ, s; ε) = Ê
Fm(I, ϕ, s; ε) = Em

∂θ̂L
∗(I, ϕ− ω(I)s)− 1

km0
∂θmL∗(I, ϕ− ω(I)s)k̂0

+O(ε) =
Ê ′ − Ê

ε

a(Ê, ε)
Im − B∗m(Ê)

(km0 )2
∂θmL∗(I, ϕ− ω(I)s

+O(ε) =
E ′m − Em

ε
.

From the first two equations we obtain, using (81) for Em−E∗m = O(εγ),
0 < γ ≤ 3

2
+ j

2
= 2, we obtain:

I = (Ê, 0) +
Im
km0

k0 +O(ε)

Im = B∗m(Ê)± km0 Y(k0ϕ+ l0s;E; ε) +O(ε)

where E = (Ê, Em) and

(103) Y(k0ϕ+ l0s;E; ε) = `(k0ϕ+ l0s;E, ε)(1 +O(ε
γ
2 ))

and the function ` is given in (85):

`(k0ϕ+ l0s;E; ε) =

√
2

a(Ê, ε)
(Em − εUk0,l0,∗(k0ϕ+ l0s; Ê, ε))

which gives, using that Em − E∗m = O(εγ):

I = (Ê, 0) +
B∗m(Ê)

km0
k0 = I∗(Ê) +O(ε, ε

γ
2 )
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and therefore, the two last equations of (102) read:

(104)

∂θ̂L
∗ − 1

km0
∂θmL∗k̂0 +O(ε, ε

γ
2 ) = −Ê − Ê

′

ε

±a(Ê; ε)

km0
[Y(k0ϕ+ l0s;E; ε) +O(ε)]×

×
(
∂θmL∗ +O(ε, ε

γ
2 )
)

= −Ẽm − E
′
m

ε

where, to shorten the notation, we have just written

L∗ = L∗(I∗(Ê), ϕ− ω(I∗(Ê))s).

Using equation (103) and that, by (69), a(Ê, ε) = a(Ê) + O(ε), equa-
tions (104) are equivalent to:
(105)

∂θ̂L
∗ − 1

km0
∂θmL∗k̂0 +O(ε, ε

γ
2 ) =

Ê ′ − Ê
ε

±

(
a(Ê) +O(ε)

)
km0

[
`(k0ϕ+ l0s;E; ε)(1 +O(ε

γ
2 )) +O(ε)

]
×
(
∂θmL∗ +O(ε, ε

γ
2 ))
)

=
Ẽ ′m − Em

ε
.

We will see that we will have a solution of equations (105) for ϕ if

|E ′ − E| ≤ O(ε
3
2

+ j
2 ) = O(ε2).

It will be useful to work in the variables θ = (θ̂, θm) = (ϕ̂, k0ϕ+ l0s).
Observe that conversely:

(106) ϕ̂ = θ̂, ϕm =
θm − k̂0ϕ̂− l0s

km0

Now, if we define the auxiliary function:

L∗k0,l0(θ̂, θm, s; Ê) =L∗(I∗(Ê), ϕ− ω(I∗(Ê))s)

=L∗(I∗(Ê), ϕ̂− ω̂(I∗(Ê))s, ϕm − ωm(I∗(Ê))s)

(107)

Using that ω(I∗(Ê)) · k0 + l0 = 0, we obtain:

L∗k0,l0(θ̂, θm, s; Ê) =

L∗(I∗(Ê), θ̂ − ω̂(I∗(Ê))s,
θm − (θ̂ − ω̂(I∗(Ê))s)k̂0

km0
),
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and then, taking derivatives with respect to θ̂ and θm:

∂

∂θ̂
L∗k0,l0(ϕ̂, k0ϕ+ l0s, s; Ê) =

∂

∂θ̂
L∗(I∗(Ê), ϕ− ω(I∗(Ê))s)

− 1

km0

∂

∂θm
L∗(I∗(Ê), ϕ− ω(I∗(Ê))s) k̂0

∂

∂θm
L∗k0,l0(ϕ̂, k0ϕ+ l0s, s; Ê) =

1

km0

∂

∂θm
L∗(I∗(Ê), ϕ− ω(I∗(Ê))s)

Therefore equations (105) become:
(108)

∂

∂θ̂
L∗k0,l0(θ̂, θm, s; Ê) +O(ε, ε

γ
2 ) =

Ê ′ − Ê
ε

±(a(Ê) +O(ε))

km0

[
`(θm;E; ε)(1 +O(ε

γ
2 )) +O(ε)

]
×

×
(

∂

∂θm
L∗k0,l0(θ̂, θm, s; Ê) +O(ε, ε

γ
2 )

)
=
Ẽ ′m − Em

ε

which are the generalization to higher dimensions of the function M
in [DLS06a, page 108].

Before looking for the solutions of these equations, me make a further
simplification. First observe that there exist primary and secondary
tori close to the separatrix of the averaged Hamiltonian for energies

|Em − E∗m| > ε
3
2

+ j
2 = O(ε2), E∗m = εUk0,l0,∗(θ̃(Ê, ε); Ê, ε)),

therefore it makes sense to scale Em = εem in the function ` of equations
(108) obtaining:
(109)

∂

∂θ̂
L∗k0,l0(θ̂, θm, s; Ê) +O(ε, ε

γ
2 ) =

Ê ′ − Ê
ε

±(a(Ê) +O(ε))

km0

[
¯̀(θm;E; ε)(1 +O(ε

γ
2 ) +O(ε

1
2 ))
]
×

×
(

∂

∂θm
L∗k0,l0(θ̂, θm, s; Ê) +O(ε, ε

γ
2 )

)
=
Ẽ ′m − Em
ε1+ 1

2

and the function ¯̀ is a scaled version of the one given in (85):

¯̀(θm; Ê, em; ε) =

√
2

a(Ê, ε)
(em − Uk0,l0,∗(θm; Ê, ε)).

The function ¯̀ = O(1), but the important observation is that if we

take ρ > 0 and we exclude a small region around the critical point θ̃m,
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(that is, for ρ < θm − θ̃m ≤ 2π − ρ) ¯̀ never vanishes. In fact one has:

(110) ¯̀(θm; Ê, em; ε) ≥ d > 0, for ρ < θm − θ̃m ≤ 2π − ρ.

To have non-degenerate solutions of equations (109) it suffices to
assume:

(111) detDθ

(
∂

∂θ̂
L∗k0,l0(θ̂, θm, s;E)

±a(Ê)
km0

¯̀(θm;E; ε) ∂
∂θm
L∗k0,l0(θ̂, θm, s;E)

)
6= 0.

Making explicit the derivatives in (111) and separating in blocks cor-

responding to θ̂ and θm, one obtains:

(112) ±a(Ê)

km0

∣∣∣∣∣ ∂2

∂θ̂2
L∗k0,l0

∂2

∂θ̂∂θm
L∗k0,l0

∂

∂θ̂
(¯̀ ∂
∂θm
L∗k0,l0)

∂
∂θm

(¯̀ ∂
∂θm
L∗k0,l0)

∣∣∣∣∣ (θ̂, θm, s;E, ε) 6= 0

which gives:
(113)∣∣∣∣∣

∂2

∂θ̂2
L∗k0,l0

∂2

∂θ̂∂θm
L∗k0,l0

¯̀ ∂2

∂θ̂∂θm
L∗k0,l0 ¯̀ ∂2

∂θ2m
L∗k0,l0 −

(Uk0,l0,∗)′

a(Ê) ¯̀
∂
∂θm
L∗k0,l0

∣∣∣∣∣ (θ̂, θm, s;E, ε) 6= 0,

which, using that neither ¯̀ nor a(Ê) vanish, is equivalent to:(
2(em − Uk0,l0,∗)[

∂2

∂θ̂2
L∗k0,l0

∂2

∂θ2
m

L∗k0,l0 − (
∂2

∂θ̂∂θm
L∗k0,l0)

2] −

∂2

∂θ̂2
L∗k0,l0

∂

∂θm
L∗k0,l0(U

k0,l0,∗)′
)

(θ̂, θm, s;E, ε) 6= 0(114)

This inequality (or (113)) constitutes part of hypothesis H8, and is
the generalization of the non-degeneracy conditions H5’ and H5” in
[DLS06a]. We call attention to the fact that (113) takes a value for
ε = 0.

An equivalent formulation for this non-degeneracy conditions can be
written using the symplectic structure of the system.

Introducing the poisson brackets:

{F̂ , ·} =
∂

∂θ̂

{Fm, ·} = ¯̀ ∂

∂θm
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we see that equations (108) read:

{F̂ ,L∗k0,l0}+O(ε, ε
γ
2 ) =

Ê − Ê ′

ε

{Fm,L∗k0,l0}+O(ε
1
2 , ε

γ
2 ) =

Êm − Ê ′m
ε

and the non-degeneracy condition (113) becomes:∣∣∣∣∣ {F̂ , {F̂ ,L∗k0,l0}} {Fm, {F̂ ,L∗k0,l0}}
{F̂ , {{Fm,L∗k0,l0}} {{Fm, {{Fm,L

∗
k0,l0
}}

∣∣∣∣∣ (θ̂, θm, s;E, ε) 6= 0.

3.8.4. Heteroclinic connections between primary tori and secondary tori
close to homoclinic connections. If condition (114) is verified in the

region R[≤L]
k0,l0

we can guarantee the existence of heteroclinic connections
between the primary and secondary tori in this region. If we look for
this heteroclinic connections close to homoclinic ones, one can obtain a
more explicit sufficient condition to have a solution of equations (109).

The main idea is to solve equations (109) using the implicit function
theorem. The small parameters will be

δ̂ =
Ê − Ê ′

ε
+O(ε, εγ/2), δm =

Em − E ′m
ε

1
2

+1
+O(ε

1
2 , εγ/2),

and then equations (109) read:

∂

∂θ̂
L∗k0,l0(θ̂, θm, s; Ê) = O(δ̂)

a(Ê)

km0
¯̀(θm;E; ε)

∂

∂θm
L∗k0,l0(θ̂, θm, s; Ê) = O(δm)

and, using that, by (110), the function ¯̀ never vanishes neither does

a(Ê), they are equivalent to:

∂

∂θ̂
L∗k0,l0(θ̂, θm, s; Ê) = O(δ̂)(115)

∂

∂θm
L∗k0,l0(θ̂, θm, s; Ê) = O(δm)(116)

Therefore, the non-degeneracy condition which guarantees that these
equations have solutions close to the solutions of:

∂

∂θ̂
L∗k0,l0(θ̂, θm, s; Ê) = 0

∂

∂θm
L∗k0,l0(θ̂, θm, s; Ê) = 0(117)
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is simply:

(118) det

∣∣∣∣∂2L∗k0,l0
∂θ2

(θ, s; Ê)

∣∣∣∣ 6= 0.

holding in the region R[≤L]
k0,l0

. This is part of the non-degeneracy condi-
tions which constitute Hypothesis H8.

In summarizing, the Hypothesis H8 consists in assuming inequalities
(98), (99), (113), (118).

It is important to note that the function L∗k0,l0(θ̂, θm) is the Poincaré

function L∗(I∗(Ê), ϕ− ω(I∗(Ê))s) after the linear change of variables
(106). Therefore condition (118) is equivalent to condition (99) that
ensures that the Poincaré function has non-degenerate critical points.

Any of the non-degeneracy simplified conditions (117), (118), or
equivalently (99), constitute Hypothesis H8’ stated after Theorem 5,
since they are sufficient conditions to ensure that the surface T ′E inter-

sects transversally sε(TE) for |E − E ′| = O(ε
3
2

+ 1
2 ).

Remark 25. In the case of a second order resonance, one needs to
take into account the terms of order ε2 in equation (94). Nevertheless,
if one looks for heteroclinic solutions close to homoclinic ones some
easy computations show that these heteroclinic connections exist if
equations (117) have non-degenerate zeros, and this is also guaranteed
by condition (118).

3.9. Constructing chains of invariant tori. Contouring the res-
onances of higher multiplicity. Formulation of the symbolic
dynamics. In this section, we will see how to put together the infor-
mation we have gathered on the scattering map and the KAM tori, and
show that we can construct largely arbitrary motions in action space.
In particular, we can go around double resonances and other effects of
codimension 2.

We will prove the following result which clearly implies Theorem 5
since it has the same hypothesis and clearly stronger conclusions.

Theorem 26. Let Hε be a family of the form (1). Assume that Hε

satisfies all the hypothesis H1–H8. In particular, it is Cr for r ≥ r0.
Let m0 be a sufficiently large number. Fix δ > 0 sufficiently small

and consider the set Iδ ⊂ I∗ ⊂ I defined before theorem 17 to verify
condition L2. Then, there exists ε0 > 0 such that for all |ε| ≤ ε0,
given any C1 path γ : [0, 1] → Iδ in Iδ there exists xε(t) a trajectory
of the flow generated by H and a time reparameterization Ψε (i.e. a
diffeomorphism Ψε : R+ → [0, 1]) in such a way that

(119) |I(xε(t))− γ(Ψε(t))| ≤ Cε1/2
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Of course, Theorem 26 immediately implies Theorem 5. Clearly, the
hypothesis of both theorems are the same and, for δ sufficiently small
so that given any two points I−, I+ ∈ I∗, we can get a path contained
in Iδ which starts at a distance less than δ from the I− and ends at
a distance less than δ from I+. Applying Theorem 26 to this path we

obtain the statement of Theorem 5 for δ + Cε
1/2
0 .

As a corollary of the proof of Theorem 26, we obtain that it is possible
to construct orbits that are δ dense on invariant manifold Λε for ε
small enough. These orbits also include excursions on the stable and
unstable manifolds. So that they are dense in a larger domain. Some
constructions of models with orbits dense on submanifolds appear also
in [FM03].

Remark 27. Note that we do not prescribe first the path and then state
conditions on the perturbations. We have identified conditions on the
Hamiltonian that give the simultaneous existence of trajectories that
follow any path in Iδ.

Remark 28. As we will see, the estimate in (119), is rather pessimistic
for most of the paths. Indeed, except when the path is close to the
resonant region we can have a bound Cε in (119).

3.9.1. Proof of Theorem 26. The proof of Theorem 26 will consist in
recalling all the information that we have been gathering to construct
a transition chain of whiskered tori that follows the indicated path.
Then, it will suffice to invoke an obstruction argument that establishes
that given

a transition chain of whiskered tori (i.e. a sequence of whiskered tori
Ti such that W u

Ti t W
s
Ti+1

), there is an orbit that follows the path.
Recall that we have shown that there is a normally hyperbolic in-

variant manifold Λ̃ε.
We have shown that under the nondegeneracy assumptions. H5,

H6 we can define a scattering map in the region I∗, which is of a size
independent of ε. In this region, we could define the scattering map
and give explicit formulas for its leading behavior.

Independently of the scattering map, we have developed averaging
theory and obtained information about a geography of the resonances
that appear when

averaging. It is important to note that the geography of resonances
depends only on the integrable flow. The perturbations activate some
of them at the order that we consider.
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We recall that the set Iδ was obtained by removing from the set I∗
(defined through hypotheses H3—H8) all the points at a distance less
than δ from either of

a) The set of double resonances activated at order smaller than m0

one of whose resonances is a secular resonance (i.e. a resonance
of order 1,2, see (33) and Definition 13).

b) The set of points in (8) for which the secular resonance is de-
generate.

Note that by assumption H3 and H8, the sets involved in a), b)
above are the union of a finite number of codimension 2 manifolds—b)
will be empty for quasi-convex Hamiltonians—. Hence, for sufficiently
small δ, the set Iδ will be connected. Note also that Iδ is independent
of ε and that has a size of order 1.

Recall that in Section 3.2 we have shown that the region Iδ can be
covered by a collection of KAM tori which are ε3/2 close to each other
(as mentioned in Remark 19, we could have obtained a larger power of
ε simply by averaging more times, which requires to remove some more
double resonances and assume more derivatives in the model). We will
refer to this collection as the scaffolding since the motions we construct
consist on jumping from one element of the scaffolding to the next by
the scattering map and moving along the element for a while.

We have shown that, under the hypothesis H8, we have that the
image under the scattering map of any of the tori constructed in Sec-
tion 3.5 intersects transversally all the other tori which are at a distance
smaller that a quantity O(ε).

That is, if T is an invariant torus in Λ̃ε – hence a whiskered torus
in the whole phase space – we have T tΛ̃ε

T ′ for all other tori T ′ at a
distance smaller than Cε.

Given a C1 path as in the conclusion of Theorem 26, we can find a
sequence {Ti}∞i=0 of tori at a distance O(ε) from each other and from
the path γ (recall that we have shown that these tori are at a distance
not more than O(ε3/2).) These tori satisfy

Sε(Ti) tΛ̃ε
Ti+1.

By Lemma 10.4 in [DLS00], we obtain that these invariant tori in Λ̃ε –
hence whiskered tori in the full phase space – satisfy

W u
Ti tΛ̃ε

W s
Ti+1

.

That is, they constitute a transition chain.
In these circumstances, there are theorems that show that there are

orbits that follow the transition whole transition chain. One theorem
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particularly well suited for our purposes is that of [FM00] (See also
some extensions [FM00, DLS00, DLS06b].) Of course, there are many
versions of these results in the literature, but some of them include the
extra assumption that the Birkhoff normal form of the tori does not
contain some terms, or that the system is C∞ or that the transition
chain is finite. The paper [FM00] does not have any of these limita-
tions and also does not need any assumptions on the topology of the
embedding of the torus. It applies just as well to chains in which some
of the tori are primary and other that are secondary.

4. An example

In this section, we present an explicit example where one can check
it verifies the conditions H1 to H8. Consider the Hamiltonian:

(120) H(I1, I2, ϕ1, ϕ2, p, q, t, ε) = ±
(
p2

2
+ cos q − 1

)
+ h(I1, I2)

+ ε cos q g(ϕ1, ϕ2, t)

where

h(I1, I2) = Ω1
I2

1

2
+ Ω2

I2
2

2
,

and

g(ϕ1, ϕ2, t) = a1 cosϕ1 + a2 cosϕ2 + a3 cos(ϕ1 + ϕ2 − t).

Proposition 29. Assume that a0, a1, a2, Ω1, Ω2, Ω1 + Ω2, 4Ω1 + Ω2

and Ω1+4Ω2 are non zero. Then Hamiltonian (120) verifies hypotheses
H1 to H8 of Theorem 5.

As we will see, the proof of this proposition is very explicit and we can
give a rather precise description of the geometric objects involved in the
construction. This proof also shows that there are other heteroclinic
connections which could be used to construct unstable orbits. These
other choices would lead, through similar calculations, to other regions
of parameters where Theorem 5 applies.

Proof. The first observation is that g is a trigonometric polynomial
in the angles ϕ1, ϕ2, t, so it is clear that Hamiltonian (120) satisfies
hypotheses H1 to H4. The Hamiltonian of one degree of freedom
P±(p, q) = ± (p2/2 + cos q − 1) is the standard pendulum when we
choose the + sign, and its separatrix for positive p is given by:

q0(t) = 4 arctan e±t, p0(t) = 2/cosh t.
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An important feature of the Hamiltonian (120) is that the 5-dimen-
sional hyperbolic invariant manifold

Λ̃ = {(0, 0, I1, I2, ϕ1, ϕ2, s) : (I1, I2, ϕ1, ϕ2, s) ∈ R2 × T3}

is preserved for ε 6= 0: p = q = 0 ⇒ ṗ = q̇ = 0. However, in contrast
with the example in [Arn64], the perturbation does not vanish on Λ̃.
Indeed, the dynamics on Λ̃ is provided simply by the restriction of H|Λ̃,
which is a 2 and a half degrees of freedom Hamiltonian taking the form

h(I1, I2) + εg(ϕ1, ϕ2, t).

However, for any I = (I1, I2), the 3-dimensional whiskered tori

T 0
I = {(0, 0, I, ϕ1, ϕ2, s) : (ϕ1, ϕ2, s) ∈ T3}

are not preserved if ai 6= 0, and the resonances activated at order one
are given by the equations ωi = 0, i = 1, 2, 3, where we introduce the
notation

ω1 = Ω1I1, ω2 = Ω2, ω3 = Ω1I1 + Ω2I2 − 1.

Therefore, (120) presents the large gap problem, because it has “large
gaps” associated to any of these resonances activated at order one (and
also to the resonances activated at order two that will be introduced
later on).

The Melnikov potential (9) associated to the Hamiltonian (120) is
given by

L(τ, I, ϕ1, ϕ2, s) =
1

2

∫ ∞
−∞

p2
0(τ + σ)g(ϕ1 + Ω1I1σ, ϕ2 + Ω2I2σ, s+ σ)dσ,

and computing the integrals by the residue theorem, we obtain

L(τ, I, ϕ1, ϕ2, s) =
3∑
i=1

Ai cos(ϕi − ωiτ)

where we introduce ϕ3 := ϕ1 + ϕ2 − s, and

Ai = Ai(ωi) =
2πωi

sinh(πωi/2)
ai, i = 1, 2, 3.

Since τ ∈ R, it can be written as

L(τ, I, ϕ1, ϕ2, s) = L(I, ϕ1 − ω1τ, ϕ2 − ω2τ, ϕ3 − ω3τ)

with

L(I, ϕ) =
3∑
i=1

Ai cosϕi.
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Therefore

∂L

∂τ
(τ, I, ϕ1, ϕ2, s) =

3∑
i=1

ωiAi cos(ϕi − ωiτ)

so that, given (I, ϕ1, ϕ2, s), the condition

∂L

∂τ
(τ, I, ϕ1, ϕ2, s) = 0

is equivalent to the search of critical points τ ∗ of the map

(121) τ ∈ R 7→ L(τ, I, ϕ1, ϕ2, s) =
3∑
i=1

Ai cos(ϕi − ωiτ)

that is, of the function L restricted to the straight line in T3:

(122) R = R(I, ϕ) = {ϕ− ωτ, τ ∈ R}.

Fixing I ∈ R2, the 8 critical points of

ϕ ∈ T3 7→ L(I, ϕ)

satisfy τ ∗ = 0, as well as the points (I, ϕ) in

C(I) = {ϕ ∈ T3,
3∑
i=1

ωiAi cosϕi = 0,
3∑
i=1

ω2
iAi sinϕi 6= 0}.

As a consequence, the search for critical points of the map (121) is
equivalent to the search for intersections between the straight line
R(I, ϕ) and the set C(I).

For Hamiltonian (120) the equation of C(I) is simply

(123) ω1A1 sinϕ1 + ω2A2 sinϕ2 + ω3A3 sinϕ3 = 0

which is just DL(ϕ)ω = 0 and defines, locally, the equation of a reg-
ular surface in the angles ϕ = (ϕ1, ϕ2, ϕ3 = ϕ1 + ϕ2 − s) as long as
ω>D2L(ϕ)ω 6= 0 holds. We notice that for any I ∈ R2, the points ϕ∗M
and ϕ∗m where the Melnikov potential L reaches its maximum and min-
imum (ϕ∗i = 0 or π) belong to the set C(I), so there exist at least two
zones contained in C(I) where this set behaves as a local regular surface
CM(I), Cm(I), respectively, which will be called crests in analogy with
the case when ϕ is two-dimensional (see [DH09]).

Once the set C(I) is known to be formed at least by the two crests
Cm(I) and CM(I), it is clear that, for any ϕ, there exist several possible
intersections of the straight line R(I, ϕ) given in (122) with the crests
Cm(I) and CM(I), parameterized by several values τ ∗ of the parameters
τ which give rise to several scattering maps.
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From now on, we will choose only one of these intersections, the “first
one” with the crest CM(I). Given (I, ϕ1, ϕ2, s), we define τ ∗(I, ϕ1, ϕ2, s)
= τ ∗M(I, ϕ) as the real number τ with minimum absolute value |τ |
among all τ satisfying:

ϕ− ωτ ∈ CM(I).

To determine a domain of definition of τ ∗ in the variables (I, ϕ), it
suffices to check that the straight line R(I, ϕ) intersects transversally
CM(I), that is, that ω>D2L(ϕ)ω 6= 0 which is exactly the inequality
satisfied by C(I) and a fortiori by CM(I).

We can now choose the domain of definition H− = HM , where τ ∗

is continuous simply by taking H− as an appropriate neighborhood of
ϕ∗M , so that hypothesis H7 is fulfilled.

Recall that the reduced Poincaré function defined in (12) is

L∗(I, θ) = L(τ ∗(I, θ, 0), I, θ, 0) = L(I, θ − ωτ ∗(I, θ)).
Given (I, θ), L∗(I, θ) is the value of L on R(I, θ) ∩ CM(I) and it is
constant along R(I, θ) so L∗(I, θ) is well defined on CM = ∪I∈I∗CM(I).

Recall that the scattering map written in coordinates (I, ϕ, s) takes
the form (90), which, in coordinates (I, θ = ϕ− ω(I)s) becomes

sε(I, θ) = (I + ε∂θL∗(I, θ) +O(ε2), θ − ε∂IL∗(I, θ) +O(ε2), s).

We will check the hypotheses in the non-resonant region and in the
resonances activated up to order two. There are three resonances acti-
vated at order one in this model

R1 = R1,0,0 = {(I1, I2), I1 = 0}
R2 = R0,1,0 = {(I1, I2), I2 = 0}
R3 = R1,1,−1 = {(I1, I2), Ω1I1 + Ω2I2 = 1}

and four more activated at order two:

R4 = R1,0,−1 = {(I1, I2), Ω1I1 = 1}
R5 = R0,1,−1 = {(I1, I2), Ω2I2 = 1}
R6 = R2,1,−1 = {(I1, I2), 2Ω1I1 + Ω2I2 = 1}
R7 = R1,2,−1 = {(I1, I2), Ω1I1 + 2Ω2I2 = 1}

For (I1, I2) in the non-resonant region, the condition to have hetero-
clinic orbits between the KAM tori are given by (99). In the resonant
regions, one has to check (117) and (118). In our example, one can
easily check that both conditions are implied by the conditions

DL(θ)ω = 0, ω>D2L(θ)ω 6= 0

defining C(I), which are a fortiori satisfied by the crest CM(I).
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To check conditions H5, H6 and H8 in Ri we simply need to impose
that Ω1, Ω2, Ω1 + Ω2, 4Ω1 + Ω2 and Ω1 + 4Ω2 are non zero. Moreover,
the potential at the resonance R2 is given by

U1(0, I2, ϕ1) = a1 cosϕ1

and therefore hypothesis H6 is also verified. The study of the potential
in the other resonances Ri is analogous.

Acknowledgements

R.L. has been supported by NSF grant DMS1162544 and he acknowl-
edges the hospitality of UPC for many visits and he was affiliated with
Univ. of Texas during part of the work.

A. Delshams and Tere M-Seara have been partially supported by the
Spanish MINECO-FEDER Grants MTM2009-06973, MTM2012-31714
and the Catalan Grant 2009SGR859.

We thank CRM for hospitality during the program “Stability and
Instability in Dynamical Systems” in 2008. We also thank. M. Gidea,
G. Huguet, V. Kaloshin, P. Roldán, C. Simó, D. Treschev for several
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[Pös82] J. Pöschel. Integrability of Hamiltonian systems on Cantor sets. Comm.
Pure Appl. Math., 35(5):653–696, 1982.
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