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Abstract

We study a family of singularly perturbed small step size difference-differential nonlinear equations in
the complex domain. We construct formal solutions to these equations with respect to the perturbation
parameter € which are asymptotic expansions with 1—Gevrey order of actual holomorphic solutions on
some sectors in € near the origin in C. However, these formal solutions can be written as sums of formal
series with a corresponding decomposition for the actual solutions which may possess a different Gevrey
order called 1T —Gevrey in the literature. This phenomenon of two levels asymptotics has been already
observed in the framework of difference equations, see [6]. The proof rests on a new version of the
so-called Ramis-Sibuya theorem which involves both 1—Gevrey and 1T —Gevrey orders. Namely, using
classical and truncated Borel-Laplace transforms (introduced by G. Immink in [18]), we construct a set
of neighboring sectorial holomorphic solutions and functions whose difference have exponentially and
super-exponentially small bounds in the perturbation parameter.

Key words: asymptotic expansion, Borel-Laplace transform, Cauchy problem, difference equation, integro-
differential equation, nonlinear partial differential equation, singular perturbation. 2000 MSC: 35C10,
35C20.

1 Introduction

We consider a family of singularly perturbed small step size difference-differential nonlinear
problem of the form

(1) €0:d2 Xy(t, 2, €) + ad X;(t, 2, €)

bi(z,
- Z ktij-le> (850851X2)(t+k26a Zs 6) +P(27€7Xi(t7276))
k=(s,ko,k1,k2)€A1
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for given initial data
(2) (O1Xi)(t,0,€) = @jiltie) , 0<i<v—10<j<S—1,

where € is a complex parameter, S is some positive integer, a € C* is some complex number
with arg(a) # 0, v is some integer larger than 2 and A; is a finite subset of N* which satisfies
the constraints (115). The coefficients bg(z,€), k € A; of the linear part belong to O{z, €}
and P(z,€e,X) € O{z, e}[X] where O{z, ¢} denotes the space of holomorphic functions in (z,€)
near the origin in C2. The initial data ¢;;(t,€) are assumed to be holomorphic on products
of two sectors (T N {|t| > h}) x & C C2, for some h > 0 large enough, where 7 is a fixed
open unbounded sector centered at 0 and £ = {&; }o<i<,—1 is a family of open bounded sectors
centered at the origin whose union form a covering of V' \ {0}, where V is some neighborhood of
0.
In the paper [24], we have considered singular singularly perturbed nonlinear problems

(3) etQOtOzSui(t? 2, 6) = F(t7 Z, € 8t7 az)uz(t> 2 6) + P(t7 Z, € uz(ta Z, E))
for given initial data
(4) (i) (t,0,€) = ¢ji(t,e) , 0<i<v—1,0<;j<8—1,

where F' is some differential operator with polynomial coefficients and P some polynomial. The
initial data ¢;;(t,€) were assumed to be holomorphic on products (7 N {|t| < A'}) x &, for
some h' > 0 small enough. Under suitable constraints on the shape of the equation (3) and
on the initial data (4), we have shown the existence of a formal series i(e) = >, hxe*/k!
with coefficients hj belonging to the Banach space F of bounded holomorphic functions on
(T n{|t] < h'}) x D(0,9) (for some § > 0) equipped with the supremum norm, solution of (3),
which is the 1—Gevrey asymptotic expansion of actual holomorphic solutions u; of (3), (4) on
& as F—valued functions, for all 0 <i < v — 1 (see Definition 4 1)).

We mention also the work [21] of A. Lastra and the author, where a g—analog of the problem
(3), (4) was investigated. The discretization was performed with respect to the variable ¢
meaning that d; was replaced by the g—difference operator (f(qt) — f(t))/(qt —t) for a complex
g € C* with |g| > 1 (which formally tends to 0 as g tends to 1).

In this work we address the same question as in our previous papers [21], [24], namely our
main goal is the construction of actual holomorphic solutions X;(¢, z, €) to the problem (1), (2)
on domains (7 N{|t| > h}) x D(0,9) x &; for some small disc D(0,0) and the analysis of their
asymptotic expansions as € tends to 0. More precisely, we can present our main statements as
follows.

Main results We choose a set of directions d; € R, 0 < i < v — 1, such that d; # arg(a) with
the property that
d; + arg(t) — arg(e) € (—7/2,7/2)

for all e € & and t € T N{|t| > h}. We make the assumption that the initial Cauchy data
©;i(t,€) (given in (2)) can be written as Laplace transforms

tT
©;i(t, e):/ Vji(r,e)e” <dr
Ly,

on (T N {|t| > h}) x & along halflines Ly, = Rye¥Y =% for directions d; € (—m/2,7/2) and as
truncated Laplace transforms

F,L' log(Qit/e) i
©ji(t,€) = / Vii(T,€)e” < dr
0



on (TN{|t] > h})x&;, for well chosen complex numbers Q; € C andT'; € Ly, for directions d; €
[—m, —7/2)U(7 /2, ], where V;;(T,€) are holomorphic functions satisfying the growth constraints
(117) and (118).

Then, in Theorem 1, we construct a family of holomorphic and bounded functions X;(t, z, €),
0 <i<wv—1 on the products (T N{|t] > h}) x D(0,9) x & for some radius 6 > 0 small enough
with the property that

(I X:)(t,0,€) = pji(t,e) , 0<i<v—1, 0<j<8—1,

and whose differences X;11(t, z,€) — X;(t, z, €) satisfy the exponential and super-exponential flat-
ness estimates (121) and (122) on Ei41 N E;. Moreover, for all integers i € {0,...,v — 1} with
d; € (—m/2,m/2), we prove that X;(t, z,€) is an actual solution of the problem (1), (2).

In a second step (described in Theorem 2), we show the existence of a formal series

N gk
X(e) = ZHkg

k>0

whose coefficients Hy, belong to the Banach space E of bounded holomorphic functions on (T N
{It| > h}) x D(0,9), which solves the equation (1) and is the 1—Gevrey asymptotic expansion
of X; on & as E—walued functions. However, this formal series X(e) and the corresponding
functions X; own a fine structure which involves two levels of asymptotics. Namely, X(e) and
Xi(t,z,€) can be written as sums

X(e) =ale) + X&)+ X2%(e) , Xilt,z,€) =ale) + X} () + X2(e)

where a(e) is a convergent series near € = 0 with coefficients in E and X'(¢) (resp. X?(e)) is
a formal series with coefficients in E which is the 1— Gevrey asymptotic expansion (resp. the
17— Gevrey asymptotic expansion) of the E—valued function X}(€) (resp. X?2(€)) on & in the
sense of Definition 4, for all 0 < i < v — 1. In particular, the coefficients HZ, k > 2, of the
formal series XQ(E) satisfy estimates of the following form: there exist two constants C,M > 0
such that

(5) |HE||g < CM*(k/log k)

for all k > 2.

We stress the fact that this kind of phenomenon with two levels of asymptotics has already
been observed in the framework of linear difference systems of the form Y (s + 1) = A(s)Y (s)
for meromorphic matrices A(s) at oo in [6] (see especially Example 1 therein). These authors
denote the estimates of the form (5) what they called 17 —Gevrey type growth since a sequence
which is s—Gevrey for any s > 1 is 1T —Gevrey but a 1—Gevrey sequence is not necessary
1t —Gevrey (recall that s—Gevrey order means that estimates of the form C'M*(k/e)*/* hold
for some constants C;, M > 0). More recently G. Immink has extended their study to the
nonlinear situation and has also proposed a resummation procedure which constructs actual
holomorphic solutions of difference systems from formal series solutions using modified Laplace
transforms and acceleration kernels, see [18].

The Cauchy problem (1), (2) we consider in this work comes within the framework of the
asymptotic analysis of singularly perturbed difference-differential equations with small advance
or delay, which becomes a growing domain of research these last years and has numerous appli-
cations to engineering problems and biology, see for instance [13] and references therein.



In the context of differential equations most of the statements in the literature are dedicated
to problems of the form
€8t$(t7 6) = f(ta €, J)(t, 6), x(t + 9, 6))

for some vector valued function f, where € > 0 is a small parameter and § > 0 may or not depend
on ¢, and concern the study of asymptotic behaviour of their solutions x(¢,€) as € tends to 0.
For general and abstract convergence results we quote [1] and references therein for a historical
overview. For the construction of solutions x(¢, €) having asymptotic expansions of the form

|
—

(6) x(t,€) = z1(t)e' + Ry(t, €)
l

Il
=)

with error bounds estimates for the remainder R,, for some integers n > 2, we refer to [16] and
[31].

In the framework of partial differential equations, we mention [28] and [32] where formal
asymptotic expansion like (6) have been obtained for solutions to reaction-diffusion equations
with small delay.

Nevertheless, these problems when working with a complex parameter ¢ and with solutions
in analytic functions spaces are still quite unstudied although some important and interesting
results have been obtained for small step size difference equations, see [12], [14], [15] and for
singularly perturbed elliptic partial differential equations, see [27].

In the following, we explain our main results and the principal arguments needed in their
proofs. In a first part, we construct a holomorphic function V(7,z,€) near the origin with
respect to (7, z) and on a punctured disc with respect to e which solves an integro-differential
problem whose coefficients are meromorphic functions with respect to (7, €) with a pole at € = 0,
see (108), (109). The main novelty compared to our previous studies on singular perturbation
problems, see [21], [23], [24], [25], is that the coefficients of (108) now have at most polynomial
growth with respect to 7 on the half plane Cy = {r € C/Re(7) > 0} but exponential growth
on the half plane C_ = {7 € C/Re(7) < 0}. For suitable initial data satisfying the conditions
(117), (118), we show that V (7, 2, €) can be analytically continued to functions V;(r, z, €) defined
on products Uy, x D(0,9) x & where Ug,, 0 < i < v — 1, are suitable open unbounded sectors
with small aperture (see Definition 3 and below). If Uy, is contained in C, then V;(7, 2, €) has
at most exponential growth rate with respect to (7, €), namely there exist C, K > 0 such that

(7) sup |Vi(7,z,€)| < Cexp(K|7[/[€])
z€D(0,0)

for all 7 € Uy,, all € € &. When Uy, belongs to C_, Vi(7, z,€) owns an exponential growth rate
with respect to € but a super-exponential growth rate with respect to 7, more precisely there
exist C, K1, Ko > 0 with

7|

(8) sup |Vi(7, 2,€)| < Cexp(K1 + exp(Ka|T|))
2D(0,) le]

for all 7 € Uy, all € € &;.
In a second part, we construct actual solutions Xj(t, z, €) of our problem (1), (2) as Laplace
transforms

(9) Xi(t,z,€) = Vi(r, 2, e)e_T”dT
L%.



along halflines L., C Ug,, when Uy, C C, which defines a bounded holomorphic function on the
product (7 N{|t| > h}) x D(0,6) x &, provided that h > 0 is large enough. On the other hand,
when Uy, is located in C_, we construct bounded holomorphic functions X;(¢, z, €) as truncated
Laplace transform (as introduced by G. Immink in [18])

—tT

T'; log(2;t/€)
(10) Xi(t,z,€) = / Vi(r, z,€)e < dr
0

for some complex numbers §; € C and I'; € Uy,, for all (¢,z,¢) € (T N{|t| > h}) x D(0,0) x &,.

We stress the fact that these functions (10) do not solve the equation (1), but they share with
(9) the following crucial properties for our scope: the functions (cocyle) G;(€) = X;41(¢t, z,€) —
Xi(t, z,¢€), for 0 < i < v —1 (with the convention X, = Xj) are exponentially flat as € tends
to 0 on &1 NE; as E—valued functions, where E is the Banach space of bounded holomorphic
functions on (7 N {|¢t| > h}) x D(0,6) equipped with the supremum norm. Moreover, when
Uq,NUq,,, # 0 and Uy, Ug,,, C C_, the function G;(e) is even super-exponentially flat, meaning
that there exist K, L, M > 0 such that

M L
(11) IGi()e < KeXp(—H log H)

for all € € €411 N&;. In the proof, we use as in [24] deformations of the integration’s paths in X;
with the help of the estimates (7) and (8) (Theorem 1).

In the last part, we establish a new version of the Ramis-Sibuya theorem (Theorem (RS) in
Section 5.1) with two levels of 1—Gevrey and of 1T —Gevrey type estimates. It is worthwhile
noting that the classical Ramis-Sibuya criterion has shown to be very useful to investigate
the phenomenon of the so-called multi-summability (which involves several Gevrey orders) of
solutions to systems of meromorphic linear differential equations, see [26], nonlinear equations,
see [30], and nonlinear systems of difference equations, see [5].

By applying this criterion to our given cocycle G;, we deduce the main result of this paper
(Theorem 2), namely the existence of a formal series solution of (1)

~ gk
K=Y S € Elld]

which is the 1—Gevrey asymptotic expansion of X;(¢,z,¢) on &; for all 0 < i < v — 1 and such
that the couple (X, X;) shares a three terms decomposition

X(e)=ale) + X&) + X%(e) , Xi(t,z,€) = ale) + X} (e) + X2 (e)

where a(e) is a convergent series at € = 0, X' (e) is the 1—CGevrey asymptotic expansion of X;(e)
on & and X?(e) is the 17 —Gevrey asymptotic expansion of X?(¢) on &;, for any 0 <i < v — 1.

The paper is organized as follows.

In Section 2, we consider parameter depending nonlinear convolution differential Cauchy prob-
lems with singular and exponential growing coefficients. We construct solutions of these equa-
tions in parameter depending Banach spaces of holomorphic functions on sectors with exponen-
tial and super-exponential growths.

In Section 3, we construct holomorphic solutions X; to our problem (1), (2) on some sectors &;
as Laplace transform of solutions to nonlinear convolution problems studied in the section 2.
In the section 4, we show flatness estimates of exponential type for the cocycle G; = X;11 — X;



where the X; are constructed in Section 3. We complete this cocycle on the full family £ with
the help of truncated Laplace transform of solutions to singular problems studied in Section 2.
Moreover, we give flatness estimates that can be of super-exponential growth on some intersec-
tions &1 N &;.

In the last section, we first state a new version of the Ramis-Sibuya theorem in the framework
of 1—Gevrey and 1T —Gevrey type estimates and we finally prove our main result.

2 A global Cauchy problem with singular complex parameter

2.1 Banach spaces of holomorphic functions on sectors with exponential and
super-exponential growths

We denote D(0, r) the open disc centered at 0 with radius » > 0in C. Let S; be an open bounded
or unbounded sector with bisecting direction d € R and £ be an open sector with finite radius
re, both centered at 0 in C. By convention, these sectors do not contain the origin in C. For
any open set D C C, we denote O(D) the vector space of holomorphic functions on D. In this
section 2, we set Q = (SqUD(0,7)) xE. Let b > 1 a real number and let 7,(8) = Zgzo 1/(n41)°
for all integers 8 > 0.

Definition 1 Let e € £ and 0 > 0, 0’ > 0 be real numbers. We denote SEg . s o the vector
space of all functions v € O(SqU D(0,7)) such that

s

W(Mllgeoo o= sup [o(r)[(1+ ;ﬁ) exp (|0€|7"b(5)|7—| - eXp(O’rb(B)ITI))

T€S4UD(0,r)

is finite. Let 6 > 0 be a real number. We define SG(e,0,0',0,Q) to be the vector space of all
functions v(7,2) =355 v(7)2? /B! that belong to O(SqU D(0,7)){z} such that

58
10(7, 2) |00 ) = D Hvﬂ(f)!\ﬁ,e,a,acag

B=0
is finite. One can check that the normed space (SG(e,0,0",8,Q),||.l|(¢,0,0',6,0)) 5 a Banach space.

Remark: These norms are appropriate modifications of the norms introduced by G. Immink
in [18] and those of the author introduced in the work [24]. Notice that for ¢’ = 0, the space
SG(e,0,0,6,Q) coincides with the space G(€, 0, d,Q) defined in [24].

In the next proposition, we study the rate of growth of the functions belonging to the latter
Banach spaces.

Proposition 1 Let v(7,2) € SG(e,0,0',6,Q). Let 0 < &1 < 1. There exists a constant C > 0
(depending on |[v]|(c .00 5,0) and 61) such that

s

(12) lo(r,2)] < C(1+ ;?)_1 exp (a{(b)

el

ol + exp<a/<<b>m>)

forall ™€ SqUD(0,r), all z € C such that ‘(Sil < 61, where ((b) = >0 1 1/(n+1)°.



Proof Let v(r,z) = 2520 ’05(7')2'3/5! be in SG(e,0,0',6,Q). By definition, there exists a
constant ¢; > 0 (depending on [[v[|(¢ 4,4 50)) such that

|?

T , 1
()] < a1+ ) e (@)l + exp(omB)lr) ) 4157

forall 8 >0, all 7 € S;UD(0,7). Let 0 < §; < 1. From the definition of ((b), we deduce that

(13) Ju(1,2)| <e1(1+ —5 ‘T’ -1 Zexp <7“b )| + exp(o’re (B )|7‘|)> (61)°

B>0

2
< e+ T e ("C(b) o] + exp(a'c<b>|f|>> S
€] le] 1—4

for all z € C such that %‘ <601 < 1,al 7€ S;UD(0,r). Finally, from (13), we deduce the
estimates (12). O

In the next proposition, we study some linear operators of multiplication by polynomials and
exponential functions acting on the space SG(e, 0,0’ 9, Q).

Proposition 2 Let kg > 0 be a non negative integer and let ki, ko € N*.
1) Let o' > 0. Assume that the condition

kb
(14) ke > bko + i

holds. Moreover, we assume that the function T — exp(—kaT) is unbounded on the sector
Sq. Then, for all € € &, the operator v(T,z) — exp(—koT)T*00 ¥10(7, 2) is a bounded linear
operator from (SG(e,0,0",6,Q),[|.||(c.0,0,6,0)) into itself. Moreover, there exists a constant Cy >
0 (depending on ko, k1, ke,0,0’,b), which does not depend on € € £, such that

(15) | exp(—kam) 01 0(7, 2) | (c.0.0 55) < Crle8* |[0(7, 2) |(c.0.07 692
for allv € SG(e,0,0",6,Q), alle € £.

2) Let o' > 0. Assume that the condition

(16) k1 > bko

holds. Then, for alle € £, the operator v(r, z) = 700 %10 (1, 2) is a bounded linear operator from
(SG(e,0,0",0,), |||(e0,00,5,02)) into itself. Moreover, there exists a constant C1 > 0 (depending
on ko, ki,0,b), which does not depend on € € £, such that

(17) [Tr08; F1u(r, 2)

(e,0,07,6,2) < él|6|k05k1|’7)(7—7 Z)H(e,o,o’,é,ﬂ)

for allv € SG(e,0,0",6,Q), alle € €.

Proof 1) Let v(7,2) € SG(e,0,0,4,Q). By definition, we have

_ &8
(18)  [lexp(—ke7) T M 0(r, 2|00 50) = D Ilexp(—kar)T™v5 4, (7)] B0 Qg

B>k1




Lemma 1 There exists a constant C11 > 0 (depending on kg, k1, ko, 0,0") such that

kab
(19) || exp(—ko7) 7051, (T)]|5,c.00r,20 < Cralel™ (1 + B)"F o [|vg_, (T)|5— 1 e,0007.02
for all B> k.

Proof We can write

| exp(—k2) 054, (7)] = | exp(—ko7) 7"

g ! Ll
X exp <|e|rb(5 — k1)|7| + exp(o'ry (8 — kl)]7)> (1+ W)
ki

< Posn (L + ) exp (

ag

ry(B — k1)|7| — exp(o’ry (6 — k1)|7'|)>

el

for all 7 € SqU D(0,7). From this latter equality, we deduce

(20) |lexp(—kam)T*vs_k, (7)| 8,002 < A&, B)Vs—ty (T)| k1 0072
where
o
(21) A(e,8)= sup  exp(ka|r|)|7|" exp <7"b(ﬂ — k1)|T| + exp(a’ry (B — k1)|7)>
T7€S4UD(0,r) |6|

o
<exp (= L)l = oo (A )
Lemma 2 The following inequality holds

k -1

(22) sup |7 exp( (B — ka)lr| — L (B)lr]) < (Fl—yRoleffo(1 + )Pho

TESGUD(0,r) |6| |6‘ ok
for all B> k.
Proof From the fact that

k1
— (B —kp) >
(23) Tb(ﬁ) Tb(ﬁ 1) = (B“— 1)b
for all B > k1, we deduce that
k1

24 71% exp(ry(8 — k)|l — —rp(B)7]) < |7 exp(—o I7])
2y el 0 0 +ay
for all 7 € S;U D(0,r). From (24) and the classical equality
(25) sup "™ exp(—maz) = (m1/mg)™e ™

x>0

for any real numbers m;, ma > 0, we get (22).
Lemma 3 There exists a constant d > 0 (depending on k1,ke2 and o’) such that

(26)  exp (halrl + exp(o"my (8 — klr]) — explo’n(B)lr)) < exp(2 log(1 +6) +d)

for all B> ky, all 7 € Sy U D(0,r).



Proof With the help of the inequality (23) and from the Taylor formula we know that for all
T € SqUD(0,7), all § > 0 there exists a constant ¢ € (o'ry(8 — k1)|7|,0'rp(8)|7]) such that

(27)  exp(o'ry(B — ka)|7]) — exp(ory(B)]7])

k
= o'I7l(rs(8 = k1) = rs(8))e” < —0'l7l =555 exp(omo(8 — k) )
The next inequality will the useful. Let a, b, c > 0 be real numbers. Then,
(28) sup ez — aze” < max(c, E(log(i) —1)).
>0 b ab

Indeed, for all z > 1, we have cx — aze® < ¢(z) = cx — ae®. If log(-5)/b > 1, the function ¢
gets it’s maximum value 7 (log(2;) — 1) on [1,+00) at zg = log(:3)/b. If log(5)/b < 1, 1 gets
it’s maximum value ¢ — ae® < c on [1,400) at zg = 1. On the other hand, for all 0<z <1, we
have that cz — aze?® < c.

Using (28), we deduce that

sup  kal|t| — 0|7 exp(o’ry(B — k1)|7|)
r€S,UD(0,r) iy (14 8)° |
k2 kQ b
lo 1+ -1
U/Tb(ﬁ—kl)( g((UI)lerb(B_kl)( 6) ) ))
for all B > ky. From this latter inequality, we deduce the existence of a constant d > 0 (depending
on ki,ks, and o) such that

< max(ka,

kob
sup  ko|7| — o|7] 5 exp(o'my(8 — k)l7]) < 7 log(1+ 6) +d

TE€SZUD(0,r) ( +B)
for all 8 > kq. The inequality (26) follows. O

Gathering the estimates (22) and (26) yields a constant Cy.1 > 0 (depending on kg, k1, ko, 0, ")
such that

(29) A(e, B) < Chalelfo(1 + ﬂ)bkw’%}’

for all 5 > ky. From (20) and (29) the lemma 1 follows.
Now, from (18) and (19), we deduce

(30) || eXp(ikQT)Tkoa_klv(Tv Z)H (e,0,07,6,Q2)

Z 011’ ’kzo 1+5)bk0+

B>k1

k §h~k1
s (Db 8

Now, from the assumption (14), we get a constant C7.2 > 0 (depending on b, ko, k1, k2, 0”) such
that

2 (B —Fk1)!
B!
for all 5 > k;. Finally, from (30) together with (31) we get (15).

2) Let v(r,2) € SG(e,0,0,4,Q). By definition, we have

(31) (1+ ﬁ)bko+ <Ci2

58
(32) HTkoa m (TZHEO'O' 6,Q) — ZHT 07}5 kl Hﬂeaa Qﬁ'
B>k1
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Lemma 4 There exists a constant Cy1 > 0 (depending on ko, ki,0) such that

(33) 17081, (T)|g,e0or.2 < Cralel™ (1 + B) [Jvg—t, ()] 5=y es07,02

for all B > k.

Proof The explanation relies on the beginning of Lemma 1. If one puts ko2 = 0 in the estimates
(20) one gets

(34) vk (T)|g.e0r0r.00 < Al B) 05—ty (T)|| 5=k ses0,07 02
where
- g
(35) A(e,8)= sup |r|™exp <7“b(5 — k1)|7| 4+ exp(o'ry (B — kl)\Tl))
T€S4UD(0,r) le]

pr(—arﬂﬁﬂﬂ—emxde%hD)S sup [ exp(Zry(8 — k)|
‘6‘ T€S4UD(0,r) ’6’

me-%mWWﬂ

Therefore, Lemma 4 is a consequence of Lemma 2 together with (34), (35). O
Now, from (32) and (33), we get

(36) HTkoa,;klv(T7 Z)H(G,U,O'/,J,Q)
(B — k1)! 7k

< 37 Crale™ (1 + 8)%0 L gy (7)] |-y, 28 g
B>k1 5 (6 kl)

Now, from the assumption (16), we get a constant Cy.o > 0 (depending on b, kg, k1) such that

(B —k1)!
J5

for all 5 > k;. Finally, the result follows from (36) and (37). O

(37) (1 + B)bko < 1

Proposition 3 Let kg > 0 be a non negative integer and let ko € N*.

1) Let 0 > & >0, o' > &' > 0 be real numbers. We assume that the function T+ exp(—kaT) is
unbounded on the sector Sy. Then, there exists a constant Ch > 0 (depending on ko, ke, 0,5,0',5")
such that

(38) I eXp(—kJQT)TkO’U(T, 2)

(e,0,07,6,Q2) < C~Yl|6|ko||v(7-7 Z)H(e,&,&’,(s,Q)
for allv e SG(e,6,5',0,9), all e € £.

2) Let o > G > 0 be real numbers. Then, there exists a constant C~'1,1 > 0 (depending on ko, 0,5)
such that

(39) 17%00(7, 2) | (e0.069) < CLalel™[[o(T,2)l(5.050)

for allv € SG(e,5,0,0,Q), alle € €.
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Proof 1) Let v(7,2) € SG(¢,5,0",6,Q). By definition, we have
ko ko 55
(40) lexp(=kaT)7™0(T, 2)||(,0,05.02) = Z || exp(—koT)T U,B(T)HB,E,U,J’,QE-
B8=>0 '
Lemma 5 There exists a constant C1 > 0 (depending on kg, ko, 0,5,0',6") such that
(41) || exp(—kom)7"v5(7)|g,c000,0 < Cilel®[vg(7)l|5,e5,57.0
for all B > 0.

Proof We can write

| exp(—ka7)7"0vs(7)| = | exp(—koT) ™|
o ~/ ’7‘2 —1
X exp Hrb(ﬁ)lfl +exp(6'rp(B)I7]) | (1+ W)
|72 g ~
x Jog(T)|(1 + W) exp —Hrb(ﬁ)hl — exp(6'ry(B)|7)
for all 7 € S;U D(0,r). From this latter equality, we get
(42) | exp(—k27) 7505 (7)||5,60.07,00 < Ble, B)l|05(7)l.c.6.59
where
o) .
(43) B(e,8)=  sup  exp(ka|r|)|7[* exp (rb(ﬁ)lfl + exp(d'?"b(ﬁ)lfl))
TESGUD(0,r) ‘6’

X exp <—:’Tb(ﬁ)\7'| - eXP(U/Tb(/B)’TD>

for all 8 > 0. Moreover, using the estimates (25), we deduce that

— 5 kne— L
(a1) sup o exp(~ T 7)) < pepro My
7€S,UD(0,r) le] o
for all 8 > 0. 3
On the other hand, there exists a constant d > 0 (depending on ks, ¢’, ') such that
(45) exp (k27| + exp(&'ry(B)|7]) — exp(a’ry(B)|7])) < exp(d)

for all 5 > 0, all 7 € S;U D(0,7). Indeed, from the Taylor formula, we know that for all
T € SqUD(0,7), all § > 0 there exists a constant ¢ € (6'ry(8)|7|,oc’rp(5)|7]) such that

(46)  exp('ry(B)|7]) — exp(a’ry(B)[7])
= (6" = o")rp(B)lr]e® < (0" = 6")ro(B) 7] exp(&'y(B)]7])

From (28) we deduce that

(47) sup ka7 — (0" = ")y (B)| 7| exp(6'ro(B)|7])
T7€S4UD(0,r)

k‘g k'2
< maxtha 5 ) (log((a/ — AP 1>)
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for all # > 0. From (46) and (47), one deduces (45). Finally, from (44) and (45), one obtains
a constant C7 > 0 (depending on ko, ko, 0,5, 0’,6') such that B(e, 3) < Cqle/fo for all B > 0.
Hence, the lemma 5 follows. O

The estimates (38) result from (40) and (41).
2) Let v(7,2) € SG(¢,0,0,6,9Q). By definition, we have

&8
: : HT /Uﬁ 5’670—09 :
B!

£>0

(48) [0,

Lemma 6 There exists a constant C~'1,1 > 0 (depending on ko,0,6) such that
(49) I7"v8(7)|1g.e00.0 < Crilel™|va(T)l|g.co.0.0

for all B> 0.

Proof The arguments relies on the beginning of Lemma 5. If one puts ¢/ =0, 6" = 0 and ky =0
n (42), one gets

(50) [ 0s(D)lIg.c00.0 < Ble, B)[vs(T)]]5.66.09
where
~ _ ko o g
(51) B(e,8) = sup  [7[* exp(—m(B)|7]) x exp(—=75(8)I7])
TE€S4UD(0,r) |6| ‘6’
for all 5 > 0. Gathering (50) and (44) yields Lemma 6. O
The estimates (39) follow from (48) and (49). O

In the next proposition, we study linear operators of multiplication by bounded holomorphic
functions.

Proposition 4 Let h(t, z,€) be a holomorphic function on (Sq U D(0,r)) x D(0,p) x &, for
some p > 0, bounded by some constant M > 0. Let 0 < § < p. Then, the linear operator of
multiplication by h(t,z,€) is continuous from (SG(e,0,0",0,Q),||.|(c,0,0,5,0)) into itself, for all
e € €. Moreover, there exists a constant Cy (depending on M,d,p), independent of €, such that

(52) Hh(Ta 2, G)U(T’ Z) H(e,o,a’,é,Q) < 02| |’U(7‘, Z) | |(E,U,0’,5,Q)

for all v(r,z) € SG(e,0,0",6,Q), for all e € £.

Proof Let h(7,z,€) = 355 ha(T, €)2% /8! be holomorphic on (S; U D(0,r)) x D(0,p) x € such
that there exists M > 0 with

sup |h(T,z,€)] < M.
T7€S4UD(0,r),2€D(0,p),e€E

Let v(1,2) = 2520 vﬁ(T)zﬁ/ﬁ! € SG(e,0,0',6,Q). By construction, we have that

gl 88

(53) (7,2 v 2l oora) < D D 17, (7, Yo (Ml oo 757) Br-

1 351
5>0 B1+Ba=P 115!
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From the Cauchy formula, we have

sup [ha(7, )l < M(5; )ﬁﬂ'
T7€S4UD(0,r),e€€

for any § < &' < p, for all 3 > 0. By deﬁnition, we deduce that
(54)  lhg, (1, €)vs, ()l g.e.0000 < M B1! ( )ﬁleﬁz( Npeoo o < MpBi! ( )ﬁlH%( T)ga,c.0.07.02
for all 1, B2 > 0 such that 51 + B2 = 5. From (53) and (54), we deduce that

)
”h(T7 2, E)U(Tv z)H(e,o,a’,&,Q) < M(Z(y)ﬁ)”?}(’i} Z)H(e,a,o/,é,ﬂ)
B8>0

which yields (52). O
In the next proposition, we give norm estimates for the convolution product.

Proposition 5 Let f,g be in SG(e,0,0',0,Q). Then, the function

(Fe)r) = [ 1= s.20(s.2)ds
belongs to SG(e,0,0’,6,Q). Moreover, there exists a (universal) constant C3 > 0 such that

(55) ||(f * g)(Ta Z) (e,0,07,6,Q) < C3|€|Hf(7-? Z)||(e,cr,a’,5,ﬂ)||g(7_a Z)
forall f,g € SG(e,0,0",6,Q).

(6?0-70-/7679)

Proof Let
=" fa(n)PIBL g(rz) = gs(r)2? /B!

B=>0 B8>0
be in SG(e,0,0”,6,Q). By construction of f x g, we have that

(56) ||/0 J(T = 5,2)9(s,2)ds|| (0.0 6.02)
5B
<> (> 51,52 H/ f, (T — 8)gs, (s )dsHB,mw,,Q)ﬁ‘

B20 B1+B2=

Lemma 7 There exists a (universal) constant Cg > 0 such that

(57) ||/ T8 (T = 5)98,(5)ds||g,c.00n .0 < Cslel|| f5, (7)1 61,e,0,07,2198: (T)] | 82, e00,07 02

for all B> 0 and all 81,82 > 0 with 51 + B2 = .

Proof We write

|2
[ gatr = stam@ias =1 [ tr =+ T

X exp (—‘rbwl)rf ~ 8| — explory(Br)lr — s!)>

s

<)+ ) exp (—[’drb%)rsr - exp(o’rbwz)rs))

b (GBI = 5|+ 10(B)lsl) + exp(or(B1)]7 — s + exp(o'my(52)1s]))
(1+ )1+ )

s|
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for all 7 € S;U D(0,r). We deduce that

58 |/ fBl 962( )d8| S ‘|f61(7—)‘|181367050/7Q"gﬁ2(7_)|’5276’070179

/1 7/ exp (T'm,(m)( — h) +7u(B2)h) + exp(o’ro(81)17](1 = b)) + expla'ny ()7 |h) )
dh

x BE BE

In the next step we will show that there exists a constant C3 > 0 such that
2
(59) Il el . o) = (14 Ty exp (= 28] = expto™m()le) )
/ rlexp (G (ro(B) (1 = ) + r(Ba)h) + exp(om()Irl (1L = ) + explo’ (Bl

“ s (1+ (1= ) (1 + I h2)

< |e|Cs

for all 7 € S4UD(0,r), all e € &, for all > 0, all 81,52 > 0 with 51 + B2 = . Indeed, from
the fact that r, is increasing, we first have that

(60) p(B1)(1 = h) + rp(B2)h < 1p(8)
for all 0 < h <1, all 51,82 > 0 with 81 + 82 = 8. Then, from (60), we get that

(61) eXp(—|:|7"b( )|7l) exp(Z B 2 (1 (B1)(1 = h) + 1(Ba)h)) < 1

for all 7 € S4UD(0,7), all e € &, for all B > 0, all 1, B2 > 0 with 81 + B2 = S and all h € [0, 1].
On the other hand, since 7} is increasing, we get that

(62) exp(o’ry(B1)|7|(1 — h)) + exp(o’ry(B2)|7|h) — exp(a'ry(B)I7])

< exp(0’ry(B)|7[(1 — h)) + exp(o’ry(B)|7|h) — exp(o'ry(B)|7]) = ¢ (h)
for all h € [0,1], for all 7 € S;U D(0,r), all e € &, for all B > 0, all 1, 52 > 0 with 81 + B2 = S.
By construction, one has ¢(0) = ¢(1) = 1. Moreover, by direct computation, one can check

that ¢/(h) <0if 0 <h <1/2and ¢'(h) > 01if 1/2 < h < 1. So that ¢(h) <1 for all h € [0,1].
From (61) and (62), we deduce that

1 e(1+ )]
(63) (7l 1el.8.P1.B2) < J(rl. 1) = | TENC Ty
2\ le[?

for all 7 € S U D(0,7), all € € £. On the other hand, we have that

JQdil ) [ e(1+ |77
(64 = | e

From Corollary 4.9 of [10], we know that the right hand side of (64) is a bounded function of
|7] on Ri. We deduce that there exists a (universal) constant C5 > 0 such that

(65) Tl _ g ZUellTlle) )

sup ————— = su <
|7]>0 el |7]>0 | |
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for all e € £. We get from (63) and (65) that the inequality (59) holds. Finally, the inequality

(57) follows from (58) and (59). O
From (56) and (57), we get that (55) holds with the constant Cs from Lemma 7. O
a

Corollary 1 Let s, kg > 0 be non negative integers and let ki, ko € N*.
1) Let o' > 0. Assume that the condition

kb
(66) ki > bko + —
g

holds. Moreover, we assume that the function T — exp(—kaT) is unbounded on the sector Sg.
Then, for all € € £, the operator

u(T,2) — / (7 — h)® exp(—kah)h" 0 F10(h, 2)dh
0
is a bounded linear operator from (SG(e,a,0',6,Q),|.|[(c.0,0,6,0)) into itself. Moreover, there
exists a constant Cy > 0 (depending on s, ko, k1, ke,0,0’,b), which does not depend on € € &,
such that

(67) H / (T - h>s eXp<_k2h)hkoaz_klv(hv Z>dh| ’(6,0’,0”,5,Q) < C4‘e‘s+k0+16kl ‘ |U(Ta Z)‘ ‘(6,0,0”,(5,9)
0

for allv e SG(e,0,0",6,Q), alle € E.

2) Assume that the condition
(68) k1 > bko

holds. Let q(T) be a holomorphic function bounded by some constant M > 0 on Sq U D(0,r).
Then, for all € € &€, the operator

(1,2 »—>/ 7 — h)*q(h)h*d; *1v(h, z)dh

is a bounded linear operator from (SG(e,0,0,6,Q), ||.|[(c,0.0,5,0)) into itself. Moreover, there exists
a constant Cy1 > 0 (depending on s, ko, ki,0,b, M ), which does not depend on € € €, such that

(69) ||/ B g(M)RROT M 0, )] (e 055 < Caa el [o(r )l o050

for allv € SG(e,0,0,6,Q), alle € E.

Proof 1) Using Proposition 5, there exists a universal constant C3 > 0 for which

(70) II/ (T — h)* exp(—kah) W08 F10(h, 2)dhl| (¢.0.0 5.0
0

< C3’€H|Ts| ’(e,a,a’,é,ﬂ)” exp(—k27-)7-k°8;k1v(7', Z)

(67070/7679)
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holds. Moreover, using the estimates (25) we notice that

-1 -1
se s+2)e
M) 11l enmrsm = I Teome < Illneoon = (o) + (B2,

Finally, gathering (15), (70) and (71) yields (67).

2) Again, due to Proposition 5, we get a universal constant C > 0 such that

1) 1| [ (= Ry a0 vih )bl s
< Cslelll™*ll(e.00.5.0) 1a(T) 7007 0 (7, 2)||(c.00.6.0)
Using (17) and (52) together with (71) and (72) give the result. O

2.2 A global Cauchy problem

We keep the same notations as in the previous section. In the following, we introduce some
definitions. Let A; (resp. Az) be a finite subset of N* (resp. N).
For all k = (s, ko, k1,k2) € A1, we denote I a finite subset of N. For all n € Ij, we denote
an (7, 2, €) some bounded holomorphic function on (S;UD(0,r)) x D(0, p) x €, for some p > 0.
For all £ € Ay, we consider

5(T,2,€) Z A (T, 2,€)€ "

nEI&

which are holomorphic functions on (S; U D(0,r)) x D(0,p) x €. For all [ € Ay, we denote
ay(T, z,€) some bounded holomorphic function on (Sq U D(0,7)) x D(0,p) x E.
Let S > 1 be an integer. We consider the following equation

(13) OV(rz0= 3 ax(r,7¢) / (7 — h)* exp(—kah)hKOO5 V (B, 2, €)dh
keA, 0

—G—Zasze r, 2, €)

leAs

where V*! =V and V*1| [} > 2, stands for the convolution product of V applied {1 — 1 times
with respect to .
We state the main result of this section.

Proposition 6 1) We make the following assumptions.

There exist real numbers o' > &' > 0 such that, for all k € Ay, all n € Ij,, we have

kob

(74) S>ki+bko+ =, stko+1>n , S>k.
o

For olll € Ay, we have

(75) 1>2.

For all0 < j < S —1, we consider a function T — V;(7,€) that belongs to SEy ¢ 55 q, for some
>0 and all e € £. We assume that the function T — exp(—kaT) is unbounded on the sector
Sa.
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Then, there exist constants I > 0, R > 0 and § > 0 (independent of €) such that if we assume
that

S—1-h

&9
(76) Z [ Vjsn(T, €)||07€,&,&’,Qﬁ <I,
=0

for all0 < h < S —1, forall e € £, the equation (73) with initial data
(77) (agV)(T,O,E):‘/j(T,6) ’ OS]SS_L

has a unique solution V (T, z,€) in the space SG(e,0,0',0,Q), for some o > &, for all € € &,
which satisfies moreover the estimates

V(7,26 |(e.00r5.0) < O°R+1,

foralle € £.
2) We assume that the next conditions hold.
For allk € Ay, alln € I,

(78) S>ki+bky , s+ko+1>n , S>k
hold and for all l € Az, we have
(79) 1> 2.

For all0 < j < S —1, we consider a function T — V;(7,€) that belongs to SEy ¢z 00, for some
>0 and all e € £. We make the assumption that the function T — exp(—koT) is bounded on
the sector Sy.

Then, there exist constants I > 0, R > 0 and § > 0 (independent of €) such that if we assume
that

S—1-h

(80) > (IVisn(re)

=0

&7
0,65,0077 <1,
j.

for all0 < h < S —1, for all e € €, the equation (73) with initial data
(81) (BV)(7,0,6) = Vj(r,e) , 0<j<S—1,

has a unique solution V (7, z, €) in the space SG(e,0,0,9,8), for some o > &, for all e € £, which
satisfies moreover the estimates

IV (7, 2,€)]

(€,0,0,6,92) < 5SR + -[7

for alle € £.

Proof We consider
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where Vj(7,€) are given in (77) or (81). For all € € £, we define a map A, from O(SqUD(0,r)){z}
into itself by

A(U(r,2) = > ap(r,2,€) / (1 — h)® exp(—koh) R 055U (b, z)dh
ke A 0

+ Z ak(r,z,e)/ (7 — h)* exp(—koh)hF ¥ 1w (h, 2, €)dh
keA; 0

+ Z (1, 2,€) (075U (7, 2) + w(T, 2, €))*)
le Az

In the following, we only plan to give details for the point 1) since exactly the same lines of
arguments apply for the point 2) of the Proposition 6 with the help of the point 2) of Propositions
2,3 and Corollary 1 instead.

In the next lemma, we show that A, is a Lipschitz shrinking map from and into a small ball
in a neighborhood of the origin of SG(e, o,0’,6,Q), for some o > 7, o/ > ¢'.

Lemma 8 Under the conditions (74), (75), let a real number I be such that

S—1—h 5
Z ||Vj+h(77 €)||07€,&,6”,Qﬁ <I,

J=0

for all0 < h < S—1, forall e € £. Then, for a good choice of I > 0,
a) there exist real numbers 0 < § < p, o > 7, o' > &' and R > 0 (not depending on €) such that

(82) HAe(U(Tv Z))H(e,a,a/,é,ﬁ) <R

for allU(t,z) € B(0,R), for all e € £, where B(0, R) is the closed ball centered at 0 with radius
R in SG(e,0,0",0,Q),
b) we have

1
(83) 14e(U1(7, 2)) = Ae(Ua(T, 2))ll(c.00 60) < 511U1(T:2) = U2(72)l(c.0.07 5.0
for all Uy,Us € B(0, R), for all e € £.

Proof First of all, forall 0 < A< S5 —1,0< 5 <S5 —1—h, we have that

Visn(T,)lje5.670 < |Vitn(T: 0,560
We deduce that d%w(r,z,€) € SG(e,5,5',0,9) and that

S—1-h

89
(84) 102w(7, 2, )l (e5.5' 5.0) < Z [|[Vign(T, E)H(),e,a,&',ﬂﬁ <I
j=0 '

forall0<h<S-—1.
We first show the estimates (82).
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Let 0 > 5, 0/ > &', R > 0 and U(71,2) € SG(¢,0,0',0,Q) with |[U(7,2)|l(co0 50 < R
Under the assumptions (74), from Proposition 4 and Corollary 1, we get a constant C5 > 0
(independent of €) such that

(85) Han,k(ﬂz,é)E"/ (T = h)* exp(—kph) WO =5U (h, 2)dh | (c 0,01 5.0
0

< CslefThott=ngs =R |U(7, )]

(670—7UI767Q)

for all kK € Ay, all n € I,.
Again under the assumptions (74) with the help of Propositions 3, 1) and Proposition 5 and
the estimates (71), (84), we get constants Cg, C7 > 0 (independent of €) such that

(86) ||an,k‘(7-aza€)€_n/ (7 = h)* exp(—kah) W05 w(h, 2, €) |00 5)
0

< Cﬁ|€|1in| |Ts| ’(e,a,o’,é,Q) H exp(_kQT)Tkoaflw(Tv Zs 6) H(e,o,a’,J,Q)

< Crlel om0 w(r, 2, €)l(e .60 5.0) < Oplfef*Hrotton

for all kK € Ay, all n € .
On the other hand, since the convolution product is commutative, from the binomal formula,
we can write

(075U (1, 2) + w(r, z,€)" = (875U (1, 2))* + (w(T, 2,€))*

! B Wl 2
+ Z ll!lzl(a‘z SU<T7 z)) P x (w(r, z,¢€)) !
P2=11>1,2>1

for all [ > 2. From Proposition 2, 2) and Proposition 5 we get a constant Cg > 0 (independent
of €) such that

(87) ||(a;SU(T) Z) + U)(T, 2 6))*l| |(€,U,U’,5,Q)

!
< Cyle[ TN (R + 1"+ > 11!12!5Sl1Rl11l2) = Cgle/ " (6°R + 1)’

2=, >1,12>1
for all [ € Ay. From Proposition 4 we get a constant Cy > 0 (independent of €) such that

(88) lleu(r, 2,€)(0;°U (7, 2) + w(7, 2,)))l(c.007 6.0
< Coll(8;°U (1, 2) + w(r, z,€))"|

(6?0-70-/7679)

for all I € Ay. From (87) and (88), we get that

(89) (T, 2, €)(87 U (7, 2) + w(T, 2, €)™

(oo 6.0) < CsCyle[ "M ("R +TI)!
for all [ € Ay. Now, we choose 9, R, I > 0 such that

(90) DO ettt (Cy 65 M R+ CoI) + ) CCole TN (R4 1) < R
ke Ay nely leAs

for all € € £. From the inequalities (85), (86) and (89), we deduce that

AU (7, 2))|

(eo000) < R
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for all e € £.
We prove now the estimates (83).

Let R > 0 and let Uy,U; € B(0, R). Under the assumptions (74), from Proposition 4 and
Corollary 1, 1) we get a constant C1o > 0 (independent of €) with
(91) Han,k(ﬂzjﬁ)ﬁ_"/ (T = h)* exp(—kah)h* O = (U (h, 2) — Ua(h, 2))dh|| (¢ 000 5.2
0
< 010|€|S+k0+1_n65_k1”U1 (7-7 Z) - UQ(Ta Z)H(E,U,U’,é,ﬁ)

for all k € Ay, all n € I. As in the part a), we can write from the binomial formula
(92) (87°UL(T, 2) + w(T, z,€)* — (075Ua(7, 2) + w(r, z,€))*

= (075U1(r,2))" = (0 °Ua(7, 2))"

t Z l1§;2! (05U (r, Z))*ll — (07 5Us(r, 2))*11) * (w(r, z, e))*l2

[L2=]01>1,12>1

for all I > 2. On the other hand, we have that
(93) (87°Un(r,2))** = (87 °Us(r, 2))*
= (075U (1, 2) — 0 5Us(7, 2)) % (97 °U1 (7, 2) + 87 °Ua (7, 2))
and, for all I > 3, we can write
(94) (85U (7, 2))™" = (0; 5Us(7,2)™" = (0;5U1 (7, 2) — 07 Va7, 2))
« (075017, 2) " + (075U (7, 2) "

-2

+ Z SUQ (1,2) *k (a;SUl(T, z))*llkl) .

Using (93) and (94), from Propositions 2, 2) and 5 we get a constant C1; > 0 (independent of
€) such that

(95) 105U (7, 2))"" = (025021, 2))" (| (e 0 5.0
< (Cplel" 165 R 1| |UL (7, 2) — Us(7, 2)

(e,0,07,6,Q2)

for all I' € Ay. From (92), (95), we get a constant Cyo > 0 (independent of €) such that

(96) (0= UL (7, 2) + w(T, 2,€))" = (07U (7, 2) + (T, 2,€) || 0,07 5.)
I

I-1/5Sl pl—1
SCeldTETRT D

2= 1 >1,12>1
= Crale/ 'RTH(ETR+ 1) = 1N)||Ui(7, 2) = Ua (7, 2) | (eor0 5.9

1_1.72
Rl 1Il )HUl(Ta Z) - U2(7-7 Z)H(e,a,a’,é,ﬂ)

for all [ € Ay. From Proposition 4 we get a constant Ci3 > 0 (independent of €) such that

97) leu(r, 2, ) (97 °UL(7, 2) + w(T, 2, €)™ = (97 5Ua(7, 2) + w(7, 2,))")|(c.007 6.0
< 013”(8;SU1 (T7 Z) + U)(T, 2, 6))*l - (8;SU2(7-7 Z) + U}(T, Z, 6))*ZH(E,U,U’,6,Q)
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for all I € Ay. Gathering (96) and (97), we get that

(98) |lau(r, 2, €)((0; °Ui (7, 2) + w(r, 2,€))" — (9, °Ua(7, 2) + w(7, 2, )| (c.o0 5.0
< C1oCu3lel T R7Y(6°R 4 1) — IH||UL (7, 2) — Us(T, 2)|

(e,0,07,6,Q2)
for all [ € As. Now, we choose d, R, I > 0 such that
1
(99) D D Cuole Rt g N CoaCusle T RTNSTR+ 1) - 1Y) < 5
ke Ay nely leAs

for all € € £. From the inequalities (91), (98), we deduce that

1
HAE(Ul(Tv Z)) - AG(UQ(Tv Z))H(e,a,a’,é,Q) < §HU1(7_7 z) - UQ(Ta z)H(e,a,a’,é,Q):

for all e € £.
Finally, we choose d, R, I > 0 is such a way that the conditions (90) and (99) hold simulta-
neously. This yields Lemma 8. O

Now, let the assumptions (74), (75) hold. We choose the constants I, R, 0 as in the lemma 8.

Assume that
S—1—-h

KV
> Vil Wocsarazy <T
j=0 :

forall0 < h < S—1, forall e € £. From Lemma 8 and the classical contractive mapping theorem
on complete metric spaces, we deduce that the map A, has a unique fixed point (called U(T, 2, €))
in the closed ball B(0, R) C SG(e,0,0",6,Q), for all € in £, which means that A, (U(r, z,€)) =
U(r, 2, ¢€) with ||U||(c0,0',5,0) < R. Finally, we get that the function

V(r,z,€) = 87°U(r, 2, €) + w(T, 2, €)

satisfies the Cauchy problem (73), (77), for all 7 € Sy U D(0,r), all z € D(0,0), all € € €.
Moreover, from Proposition 2, 2) we deduce that

||V(T’ 2, E)H(e,a,a’,&,Q) < 5SR + I,

for all e € £. O

3 Analytic solutions in a complex parameter of a singularly per-
turbed Cauchy problem

Definition 2 Let V(7,€) be a holomorphic function on some punctured polydisc

Qry.e0 = D(0,70) x (D(0, €0) \ {0})

where 0 < 19 < |a| and 0 < eg < 1, with a € C* such that arg(a) # 0. We make the assumption
that the function T +— V (7, €) belongs to SE0.,6,6 Qs ¢+ JOT SOME T, ' >0, alle € D(0,€)\{0}.

Let Uy be an open unbounded sector centered at 0, with bisecting direction d and with small
opening. Let € be an open sector centered at 0 such that € C D(0,¢ey). We denote by

Q(d, &) = (Ug U D(0,70)) x E.
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We also assume that there exists an open unbounded sector T centered at 0 such that
d -+ arg(t) — arg(€) € (—/2,7/2)

forallt € T.

1) Let d € (—n/2,7/2) with d # arg(a). We assume that a ¢ Ug. We assume that the
function (7,€) — V(7,€) can be extended to an analytic function (1,€) — Vy, £(1,€) on Q(d, &)
and that the function T+ Vi, e(7,€) belongs to SEy 5 0.0(a,), for all € € £.

2) Let d € [—m,—7/2) U (7/2,7] with d # arg(a). We assume that a ¢ Uy. We assume
that the function (7,€) — V (1, €) can be extended to an analytic function (,€) — Vi, £(7,€) on
Q(d, &) and that the function T+ Vi, e(7,€) belongs to SEy 5 5 0, for all e € E.

If 1) holds, we say that the set {V, Vi, ¢,a,6,6', T} is (6,0)—admissible and if 2) holds, we say
that the set {V, Vi, ¢,a,6,6',T} is (6,6")—admissible.

Let A; (resp. As) be a finite subset of N* (resp. N). For all k = (s, ko, k1, k2) € Aj, we
denote by bi(z, €) some bounded holomorphic function on D(0, p) x &, for some p > 0. For all
l € Az, we denote by ¢(z, €) some bounded holomorphic function on D(0, p) x £. Let a € C* be
a complex number with arg(a) # 0, S > 1 be an integer and d € (—7/2,7/2) with d # arg(a).
We consider the following singularly perturbed Cauchy problem

(100) e@tanUd,g(t, z,€) + a@fXUmg(t, Z,€)

bp(z, €
= Z tiﬂ )(650851XU475)(t + ko€, z,€) + Z oz, e)X(l]df(t, 2, €)
k=(s,ko,k1,k2)€A1 leAs
for given initial data
(101) (agXUd,g)(tv 0,€) = ijde,g(tv €, 0<j<S5-1,

where the functions ¢; 7, £(t, €) are constructed in the following manner. For all 0 < j < .S —1,
let {V;,Vju,e,a,6,6', T} be a (6,0)—admissible set, then we consider the function

tT
einetsd) = [ Vigsetr.ep(-Dir

Ly

where L, = R;e” C Uy U {0} is a halfline where « depends on ¢ and € in such a way that there
exists 41 > 0 with

cos(y + arg(t) — arg(e)) > 01

for all t € T with [t| > /1 and € € £. By construction, the function ¢; y, ¢(t, €) is holomorphic
and bounded on (7T N{|t| > &/6:1}) x E.

Proposition 7 We make the following assumptions.
There exist real numbers o’ > ¢’ > 0 such that, for all k € Ay, we have

kiob
(102) Szk1+bko+% .S >k,

and for all l € Az, we have

(103) 1> 2.
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Then, there exist constants I >0 and 6 > 0 (independent of €) such that if we assume that

S—1—h 5 S—1—h 50
|0767&’07970160F <I, Z 1Vitn,ua,e(T, 6)||0,e,&,0,§2(d,€)ﬁ <I,

(104) S IViea(re) _

J=0 J=0

for all0 < h < S —1, for all e € £, the Cauchy problem (100), (101) has a solution (t, z,€) —
Xy, £(t, z,€) which is holomorphic and bounded on a domain (t,z,€) € (T N{[t| > o((b)/d1}) x
D(0,6/2) x &€ for some o > . The function Xy, g(t, z,€) can be written as a Laplace transform

t
(105) Xu,e(t,z,€) = / Vi, e(r, 2, €) exp(——)dr
Ly €

where V7, (T, 2, €) is a holomorphic function on the domain (UgU D(0,19)) x D(0,6/2) x £ and
satisfies the following estimates: there exists a constant Cqq ey > 0 (independent of €) such that

I?

e al(b
(106) Vil 2,6) < Cotas(1+ ) expl ¢(b)

el

1)

for all (1,z,€) € (UgU D(0,79)) x D(0,0/2) x £. Moreover, the function Vi, (T, 2,€) is the
analytic continuation of a function V(7,z,€) which is holomorphic on a punctured polydisc
D(0,79) x D(0,6/2) x (D(0,€p) \ {0}) and fulfills the next estimates: there exists a constant
Co > 0 (independent of €) such that

T0:€0
ki

TI*
(107) V(7 2,6)] < Cay ., (1+ W) Fexp(

a¢(b)
€]

I7])
for all 7 € D(0,79), all z € D(0,§/2) and all e € D(0,¢€) \ {0}.

Proof We consider the following Cauchy problem

(108) AV (T, z,€)

(—1)*0bg (2, €)
- Z (a— T)ElﬁerkoS!

k=(s,ko,k1,k2)€EA1

/ (T — h)* exp(—koh)h* M1V (R, 2, €)dh
0

Cl(276) xl
—1—27@_7‘/ (1,2,€)
leAs

for the given initial data
(109) (@V)(7,0,¢) =Vj(r,e) , 0<j<S5—1.

From the assumptions (102), (103) together with (104) we deduce that the conditions (78), (79)
and (80) from Proposition 6, 2) are fulfilled for the problem (108), (109). We deduce that the
problem (108), (109) has a unique solution V' (7, z, €) that belongs to the space SG(€, 0,0, 6, Q7 ¢ )
for some o > &. In particular, V(7, 2, €) is holomorphic on the punctured polydisc D(0, 1) x
D(0,0/2) x (D(0,¢€p) \ {0}) and using Proposition 1, it satisfies also (107).

In the second step of the proof, we show that the function V' (7, z,€) can be analytically
continued to a function Vi, ¢(7, 2,€) on (Ug U D(0,79)) x D(0,6/2) x € which satisfies (106).
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Indeed, by construction, the function V (7, z, €) solves also the problem

(110) 35V (1, z,€)
_ Z (_1>k0bk(z7€)

B (a — 7)eltsthog]

/ (T — h)* exp(—koh)hW* 1V (R, 2, €)dh
k=(s,ko.k1,k2) €A 0

Cl(27 E) ®
+ Z P V*(r, z,€)
le Az
with the given initial conditions
(111) (DIV)(r,0,¢) = Vipye(re) . 0<j<S—1,

for all 7 € D(0,79), z € D(0,6/2) and € € £. Gathering the assumptions (102), (103) and (104)
we deduce that the conditions (78), (79) and (80) from Proposition 6, 2) are fulfilled for the
problem (110), (111). We get that the problem (110), (111) has a unique solution Vi, (7, 2, €)
that belongs to the space SG(e,0,0,0,(d,€)) for some o > 6. In particular, Vi, £(7, 2, €)
defines a holomorphic function on (Ug U D(0,79)) x D(0,6/2) x &, coincides with V (7, z,€) on
D(0,71) x D(0,0/2) x £ and fills (106) due to Proposition 1.

In the last part of the proof, it remains to show that the Laplace transform

X tr
Uag(t, 2, €) :/ VU (T, 2, €) exp(—=—)dr
L'Y

satisfies the problem (100), (101) on the domain (7 N {[t| > o((b)/01}) x D(0,/2) x €. This
is a consequence of the classical properties of the Laplace transform that we recall in the next
lemma, see [2], [9] for references.

Lemma 9 Let m > 0 be an integer. Let wi(7), wa(T) be holomorphic functions on the un-
bounded sector Uy such that there exist C, K > 0 with

wj(T)| < Cexp(K|r]) , j=1,2

for all T € Ug. We denote

wy * wa(T) = /OT w (17 — s)wa(s)ds

their convolution product on Ug. We denote by D an unbounded sector centered at 0 for which
there exists 61 > 0 with

d+ arg(t) € (—m/2,7/2) , cos(d+ arg(t)) > 01,
for allt € D. Then the following identities hold for the Laplace transforms

m!

/Ld 7" exp(—tT)dT = presu gl 8t(/Ld w(7) exp(—t7)dr) = /Ld(—’i')’u}l(’l') exp(—tr)dr,

/Ld wy * wa(T) exp(—tT)dr = (/Ld w1 (7) exp(tT)dT)(/ wa(7) exp(—t7)dr)

Lq

where Lg = Rye c UgU {0}, for allt € DN {|t| > K/6}.
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4 Construction of a Banach valued cocyle

We keep the notations of Section 3. We recall the definition of a good covering.

Definition 3 For all 0 < i < v — 1, we consider open sectors & centered at 0, with radius €
such that &N Eir1 # 0, for all 0 < i < v —1 (with the convention that &, = &), which are three
by three disjoint and such that U;’;&&- = U\ {0}, where U is some neighborhood of 0 in C. Such
a set of sectors {&;}o<i<y—1 is called a good covering in C*.

Let {&}o<i<y—1 be a good covering in C*. For all 0 < j < S —1,forall 0 <i<wv-—1,
we consider directions d; € R with d; # arg(a), 0 < i < v — 1, for some a € C* and a
family of sets {V}, Vju, ¢,a,5,6", T} which are (&,0)—admissible when d; € (—/2,7/2) and
(¢,6")—admissible when d; € [—7, —7/2)U (7 /2, 7]. We make the assumption that there exists a
least one integer 0 < ig < v—1 such that d;y, djy1 € [~7, —7/2)U(7/2, 7] with Ug, NUq, ,, # 0.

For d; € (—m/2,7/2), we consider the Laplace transform

tT
(12) P35t = [ Vivye(remn(-Tyr
Lo,

where L., = RyeV—1% ¢ Ug; U{0} is a halfline where ; may depend on ¢ and € in such a way
that there exists §; > 0 with

cos(vy; + arg(t) — arg(e)) > 01

for all t € T with |t| > 6/01 and € € &;.
We choose a real number ¢” > ¢’ and a real number 6; such that

arg(t) —arg(e) +60; # 7

for all t € T, all € € &. The function log(z) denotes also the principal branch of the logarithm
of z which is holomorphic on {z € C*/arg(z) # 7}.

For d; € [—m,—n/2) U (n/2,7], we choose v; with eV~17 € Ug, that may depend on ¢ and e
in such a way that there exists §; > 0 with

(113) cos(v; + arg(t) —arg(e)) > o
for all t € T, all € € &. Due to the formula

t t) — 0;
arg(log(-eV 1)) = arctan(arg( ) ] a1‘"§|(e) +
€ og c

)

for all t € T with [t| > w7 provided that pur > 0 is large enough, all € € &;, we notice that
eV log(éeﬁai) € Uy, for all e € &, all t € T for |t| > pur. We consider the truncated
Laplace transform (introduced in [18])

/eﬁw log(£ev/"1%) /(a¢ (b))

tT
(114) PjUa, Eivio 0: (t: €) = Viva, (7€) exp(="2)dr

0

where the integration is made along the segment [0, eV~ 1% log(éemgi)/(a”g(b)], forallte T,
all € € &;.
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The following theorem is crucial in order to establish our main result (Theorem 2) that will
be stated in the next section. In this theorem we construct by means of Laplace transforms
and truncated Laplace transforms a family of bounded holomorphic functions Xy, ¢, (¢, z,€) on
products (T N{|t| > h}) x D(0,0/2) x &;, for h > 0 large enough and 6 > 0 small enough, for
all 0 <7 < v —1, whose differences

Ai(e) = XUdi+175i+1 (t,z,€) — XUdi &t z€)

satisfy exponential and super-exponential flatness estimates on the intersections &1 N &;. The
sequence of functions A;(e), 0 < i < v —1, viewed as functions from &; into the Banach space E
of bounded holomorphic functions on (7 N {|t| > h}) x D(0,6/2) equipped with the supremum
norm will be called a (Banach valued) cocycle according to the terminology of [26].

Theorem 1 We make the following assumptions.

There exists o' > &' such that, for all k € Ay, we have

kob
(115) Szk1+bko+% . S >k,
and for alll € Ay, we have
(116) 1>2.

Then, there exist constants I > 0 and 6 > 0 (independent of €) such that if we assume that for
alld; € (—m/2,7/2),

S—1-h i S—1-h

o7 57
(117) Z HVjJrh<T7 6)”0,6,&,0797—0,50 = <I, Z HVJ'Jrh,UdZ-,&‘( 76)”0,6,&,0,9(%,&)? <I,
j=0 J: j=0 J:
forall0 <h < S —1, foralle €& and for all d; € [—m,—7/2) U (7/2,7],
S—1—h (S] S—1—h 5J
(118) > IVisn (T, 0,666,020y g e I > Vighws,&(T 6)!\0,6,&,&',9(di,&)ﬁ <I,
=0 ' =0 '

for all0 < h < S —1, for all e € &;, there exists a family of holomorphic and bounded functions
Xu,, & (t,z,€), 0 <i <v—1, on the product (T N{[t| > pr}) x D(0,6/2) x & with the following
properties:

1) If di € (—=7/2,m/2), then Xy, ¢ (t,2,€) is the solution of the equation (100) with initial data
(119) (X Xu, &)t,0,€) = v, &(te) , 0<j<S—1.

2) If d; € [-m,—m/2) U (7 /2, 7], then Xy, ¢,(t, 2, €) satisfies

(120) (L Xu, £)(t:0,€) = @ju, &moro(tie) , 0<j<S—1.

3) For all 0 < i <wv —1, there exist constants h > pr, K;, M; > 0 such that

M,

(121) sup | X (t,z,€) — Xu, ¢ (L, 2,€)| < Kie T

Ud, e
teTN{|t|>h},2€D(0,5/2) R
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for all e € & N E;41 where by convention &, = &, dy, = dy.
4) If diy1,d; € [—m,—7/2) U (7/2, 7] and if moreover Ug, N Uy
h > wr, KiyM; >0 and L; > 1 with

1 7 0, then there exist constants

M; L;
(t,z,6) = Xy, ¢ (t,2,6)| < K; exp(——zlogrl

(122) sup | X
le[ 7 le]

teTN{|t|>h},2€D(0,6/2)

)

Ud;y1.6i11

foralle e &N Ei1.

Proof If d; € (—m/2,7/2), we consider the solution Xy, ¢,(t,z,€) of the equation (100) with
initial data ‘

(ag;XUdi,gi)(t? 0,¢) = ¥P35,Ua,,Ei (te) , 0<j<S—-1
constructed as in Proposition 7. Recall that the function Xy 4356 (t,z,€) can be written as a
Laplace transform

t
(123) XUd_7gi(t,z,e):/ VUd,7gi(T,Z,6)eXp(—%)dT
1 L,Yl 1

where Vi, ¢,(T, 2,€) is a holomorphic function on the domain (Ug, U D(0,79)) x D(0,6/2) x &
and satisfies the following estimates: there exists a constant Cq(g, ¢,) > 0 (independent of )
such that

|72

T, _ o((b
(124) ‘VUd“gi(T, z, 6)‘ < Cﬂ(dif«;)(l + W) 1eXp( C( )

el

for all (7,z,¢) € (Ug, U D(0,70)) x D(0,6/2) x &, for some o > &. Moreover, the function
Vu, & (T, 2,€) is the analytic continuation of a function V(7,z,€) which is holomorphic on a
punctured polydisc D(0,719) x D(0,6/2) x (D(0,€p) \ {0}) and fulfills the next estimates: there
exists a constant Co > 0 (independent of €) such that

1)

T0:€0

2 b
(125) V(701 < G (15 1) exn( %)

for all 7 € D(0,79), all z € D(0,6/2) and all € € D(0,¢p) \ {0}.
If d; € [-m,—m/2) U (7/2, 7], we consider the following Cauchy problem

(126) 8§VUdi,&; (1,2,€)

—1)"by(z, € T
e = 1‘%(5*’“0) '/ (T — B)® exp(—kah)h* O Vi, e, (h, 2, €)dh
k=(s,ko,k1,k2)€A1 (a’ T)E st Jo

c(z, €
+ Z a(—, 7') V(jéwgi (1,2,€)
leAs

with the given initial conditions
(127) (Vi &)(1,0,€) = Viv, &(r,e) , 0<j<S—1,

for all 7 € D(0,79) UUy,, z € D(0,6/2) and € € &. Gathering the assumptions (115), (116)
and (118) we deduce that the conditions (74), (75) and (76) from Proposition 6, 1) are fulfilled
for the problem (126), (127). We get that the problem (126), (127) has a unique solution
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Vu,, (7, 2,€) that belongs to the space SG(e, 0, 0',8,Q(d;, &;)) for 0 > ¢ and ¢/ > ¢'. In
particular, Vi7, ¢,(7, 2, €) defines a holomorphic function on (Ug, U D(0, 7)) x D(0,8/2) x &,

coincides with V (7, z,¢€) on D(0,79) x D(0,0/2) x £ and satisfies the estimates

A, (70

(128) Vu,,.&(7,2,€)| < Cag, e (1 + W) E 7| + eXP(U’C(b)IT!)>

for all (7,2,€) € (Ug, UD(0,79)) x D(0,6/2) x &, due to Proposition 1.
Now, we define the truncated Laplace transform

6\/—71'71' lOg(%e\/ij)/(g”C(b)) N
/ VUdzvgz (TJ Z, 6) eXp(—?)d,T

(129) Xu,, & (t,z,€) =
0

for all (t,z,¢) € (T N{Jt|] > ur}) x D(0,§/2) x &, where ¢’ > ¢’ > ¢’ and ~; are chosen as in
(114).

In order to provide estimates for the differences of the functions Xy, ¢, (t, 2, €), we consider
several cases. '

Lemma 10 If d;,dit1 € (—7/2,7/2), then there exist constants h > pr, K;, M; > 0 such that

M,
(130) sup |X (t,z,€) = Xu, . (2, €)| < Kie T

teTN{|t|>h},2€D(0,5/2)
forallee &N Eiyq.

Udi 1,611

Proof Let i an integer with 0 <14 < v — 1 such that d;,d;y+1 € (—7/2,7/2). From the fact that
7+ V(7, 2z, €) is holomorphic on D(0, 1) for all (z,€) € D(0,6/2) x (D(0,€y) \ {0}), the integral
of 7+ V(7,2,€) exp(—tr/e) along the union of a segment starting from 0 to (rp/2)eY " Di+1,
an arc of circle with radius 79/2 connecting (70/2)e¥~1i+1 and (19/2)eY 1 and a segment
starting from (79/2)eY 1% to 0, is equal to zero. Therefore, using the representation (123), we
can rewrite the difference Xy; dip1 Eir1 — XU, £ AS @ sum of three integrals,

tT
(131) XUdi+1vgi+l(t’ z,€) — XUdi,gi(t,z, €) = / VUdiH,giH(T,z,e)e_?dT
LTO/Q,%‘-H
tt tT
—/ Vo, &7, 2,€)e” <dr +/ V(r,z,€)e” <dr
Loy /2, C(10/2,viYit1)

where L /9., = [70/2, +00)eY 17, Lyy/omin = [70/2, 400)eY~11+1 and C(70/2,7i,vit1) is an
arc of circle with radius 7/2 connecting (70/2)e¥ =% with (79/2)e¥ =1+ with a well chosen

orientation.

We give estimates for Iy = | [, g (T, 2, e)eftfdﬂ. By construction, the direc-

T0/2:%i4+1 VUdi“’
tion ;41 (which depends on €,t) is chosen in such a way that cos(v;+1 + arg(t) — arg(e)) > 01,
foralle e &1 NE;, allt € TN{|t| > pr}, for some fixed ;7 > 0. From the estimates (124), we
get

—+o00 2 al(b)r r|t|

(132) Il < P CQ(di+1ugi+1)(1 + (;?)_18 lel e Tel CoS(’Yi+1+arg(t)*arg(6))dr
70
+o00
al(b)—06 U
< Cﬂ(di+1,&+1)e( CO)=0lt g g

T0/2
_ Cﬂ(di+175i+1)|€| —(81[t]~o¢(6) P 1y < Co(disr,E01) 0 e_%

a1]t] — a¢(b) - d2
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for all t € T N{Jt| > pr}, with [¢| > (02 + o((b))/d1, for some dy > 0, and for all € € £ 11 NE;.

We give also estimates for I = | [, i Vu, & (T, 2, e)e_%dﬂ. By construction, the direction
T0/2,74 (2

i (which depends on €,t) is chosen in such a way that there exists a fixed §; > 0 with cos(; +

arg(t) —arg(e)) > 01, for all e € £ N E;, all t € T N {|t] > p7}. From the estimates (124), we

deduce as above that

CQ(d. £)€0 _%270/2
15~ 6 I

(133) I < g
02
for all t € T N{|t| > pr}, with [t| > (02 + o((b))/d1, for some §3 > 0, and for all € € ;11 NE;.

Finally, we get estimates for I3 = | fC(TO/2 iryien) V(r,z, e)e_t?rd7'|. From the estimates (125),
we have

Yit1 2)2 LSO L _
(134) I <| / Co,, ., (1+ (TTe/IQ) )le i ezt cos(Orare(®) E) 2 ap)
ot

i

By construction, the arc of circle C(70/2, i, 7vi+1) is chosen in such a way that that cos(6 +

arg(t) — arg(e)) = 01, for all & € [yi,vi41] (if v < vi41)), 0 € [vitr, %] (f 71 < 7)), for all
teT,aleec&NE&41. From (134), we deduce that

70 —((1[t]=0¢(0) ) , , To —2%270
5 2 el S |7’l+1 - 71’0970,60 56

(135) I3 < [vit1 —vilCasy .,

for all t € T N{Jt| > pr}, with [¢| > (02 + o((b))/d1, for some dy > 0, and for all € € ;11 NE;.

Finally, collecting the inequalities (131), (132), (133), (135) we obtain that the estimates
(130) hold. O

Lemma 11 Ifd;, € (—n/2,7/2) and d;y1 € [—m,—7/2) U (7/2, 7] or dit1 € (—7/2,7/2) and
d; € [-m,—7/2) U (7 /2, 7] then there exist constants h > uy, K;, M; > 0 such that

M;
€l

(136) sup | Xv, et z,6) = Xy, gt z,€)] < Kie |
teTN{|t|>h},2€D(0,5/2) o ’

foralle e &N Eiyq.

Proof Assume that d; € (—7/2,7/2) and d;+1 € [—7,—7/2) U (7/2,7]. The other alternative
can be handled in a similar way. We know that 7 — V (7, 2, €) is holomorphic on D(0, 7p) for all
(z,€) € D(0,6/2) x (D(0,¢€) \ {0}). Therefore, the integral of 7 +— V (7, z,€) exp(—t7/€) along
the segment

0, T/ T rrslog( e 1)

followed by an arc of circle with radius 74/2 connecting

%e\/jl("/i+1+arg(log(é€\/jl0i+l))) and %ex/jl(’yﬂrarg(log(ée\/jlei)))

and along the segment
[0 oV=Tltarg(log(£e¥ 1)) ()
2 )
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is equal to zero. So that, using the representations (123) and (129) we can rewrite the difference
XUul_H’giJrl — Xy, & as asum of three integrals,

_tr
(137) XUdiH,&H(t’ z,€) = Xuy, & (t,z,€) = / VUdZ—H&ﬂ (1,2,€)e” < dr
LTO/277i+1’t
tT i1
- / Vqugi(T?Zve)e_edT‘*'/ V(r,z,€)e” <dr
LT()/Q,’yi,t,oo ‘ C(TO/2a’Yi7'Yi+lvt)
where
70 “1(~;+ar t v/ —16;
LTO/Q,’Yi,t,oo = [53 +OO)€\/71(%+& glog( e )))a
t —16;
L — [0V =TOis+arg(log(zeV 1)) oV =Tri log(geV™ 1)
T0/2,%i+1,t 2 ’ o”((b)
and C(10/2,7i,7i+1,t) is an arc of circle with radius 7y9/2 connecting
%eﬁmmg(wg(zeﬁgim with 10 V=101 +arg(log(teY ™ ¥+1))
with a well chosen orientation.
We show estimates for the first integral
_tr
L =| VUdi+175i+1(T7z’€)e < dr|
Lro/2miq1:t
From the estimates (128), we deduce that
log(teV10041)| B2 ¢(b)
a’'¢(b) _ o
(138) I < ) Codigr i0) (1 + W) ! eXP(Wh + exp(a'¢(b)h))
T0/2
t t .
X exp(—Re(gh exp(vV —1(vit1 + arg(log(geﬁelﬂ))))))dh.

We know that
t , t
(139) [log(-e¥™"%+1)] = ((log |-|)? + (arg(t) — arg(e) + 6i41))"/%,
Ee\/jloH»l)) — arctan( arg(t) — argl(te) + 9i+1)
€ log ||

arg(log(

for all t € T with |t| > p7 provided that pug > 0 is large enough, all € € £ N E;11. Therefore, we
can choose pr > 0 large enough such that there exists a constant 0 < C14 < ¢’ /0’ (depending
on pu7) with

t t
(140) [log(Ze¥=1)] < Cualog] |

€ €
for all t € T N{|t| > pr}, all € € & N Ei+1. Moreover, using (139) we deduce from (113) that
there exists ¢] > 0 (which may be smaller than ¢; defined in (113)) with

(141) Re(thexp(v (301 + are(log(Le¥T01)))

€

(arg(t) — a'rg<6) + H’H-l ))

t
t Z6/1|7|h
log\g| €

t
= |-|hcos(vi+1 + arg(t) — arg(e) + arctan
€



forallt € TN{|t| > pur}, all e € & N E;y1. From (138), (140) and (141) we get that

Ciqlog |t
a"7C(b) o¢(b t
2 1< [T Gl exnt T+ explo R expl1 )
T0

Ciqlog |t

t oc a7¢(b) h
< Coyr,600) xP(1 | ) / i exp(—(&]¢] —GC(b))H)dh
T0

I

11t — o< (0)

1) ~ P (i1t = o (®))

a’Cl4
(7'//

)

t
= CQ(dH_l,gH_l) eXp(| E|

. (exp<—<6irtr — o (b)) Cialog . >> |

a"¢(b)|e]
Now, from the choice of the constant C14 in (140), we can choose 0 < d2 < §7/4 such that
a¢(b) [ty
143 t —) 7 <9
(143) 1> 720 - () <

for all t € T N{|t| > w7} (whenever uy is large enough). Therefore, we deduce that

) exp(—(01]t] — UC(b))%) < exp(—52To||i||) < exp(—02707

for allt € TN {|t| > pur}, all € € & N E;1. Gathering (142) and (144) yields

’
a'Cig
P

(149)  exp(l

CQ(di+175i+1)60

14 I <
(145) ! 40op1

exp(—%m%)

forallt € TN{|t| > pr}, alle € &N Eiya.

We give estimates for the second integral

_tir
IQ = | VUdl,SZ(ng,e)e € d7_|.
LTO/Q,'yi,t,oo
From (124), we get that

+o0o h2 B UC b
(146) I < Co(a,,e)(1+ W) Lexp( |€(| )

T0/2
« exp(~Re( - hexp(v/ 7Ty -+ arg(log(Le¥T%))))) .

€

h)

31

for all t € T N{|t] > pr}, all e € & N Eiy1. As before, with the help of (113) and (139), we get

a constant 0] > 0 (which can be smaller than §; from (113)) with

(147) Re(zh exp(vV—1(v + arg(log(§€ﬁ9i)))))
arg(t) — arg(e) + 6;
log [f]

— 151 cos(y: + arg(t) — arg(e) + arctan( NETAM
€ €
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forall t € TN{Jt| > pr}, all e € & N E; 1. Hence,

+OO ! T
(148) I < Cﬂ(dhgi)e(gc(b)_(slm)mdr

T0/2

Caa, &) el 7(6’1|t\7o§(b))%0)i<CQ(di,£i)506762‘770/2

le] e

Ot — o (b) - 02
for all t € T N{Jt| > pr}, with [¢t| > (02 + 0((b))/d], for some dy > 0, and for all € € E11 N E;.
Finally, we treat the third integral

I3 = |/ V(T,z,e)e_%dﬂ
C(10/2,%i Yig1,t)

From the estimates (125), we have

’Yi+1+arg(log(£e‘/jwi+1)) 2 o¢(b)T [t]7
(149) I < | Gl (1 LTL2) )1 S o i con(otars(t)—ars() T0 g
vitarg(log(tev=10:)) o e 2

Bearing in mind (139), the arc of circle C'(79/2,7i,vi+1,t) is chosen in such a way that cos(6 +
arg(t) — arg(e)) > ¢}, for some 0 < 0] < §; where d; is defined in (113), for all

t t .
0 € [ +arg(log(geﬁ”l)),%+1 +arg(log(geﬁez“))] if v <%it1,

t . t . .
0 € [yi+1 + arg(log(geﬁe’“)),% + argﬂog(geﬁe’))] if Yit1 <
forallt € T,all e € &N Ei11. From (149) and using (139) we deduce that
TO —((8 |t|—oC (b)) Q)L To —%270
(150) Iy < (|vit1 — il + W)CQTo,cogo (OS2I < (yir — il + W)CQTO,G(,?O@ 2l

for all t € T N{|t| > w7}, with [t| > (02 + o((b))/d], for some dy > 0, and for all € € £;11 N E;.
Finally, by collecting (137), (145), (148), (150) we deduce that the estimates (136) hold. O

Lemma 12 Ifd;,diy1 € [—7, —7/2) U (7/2, 7], then there exist constants h > pr, K;, M; > 0
such that

M;

(151) sup (t,z,e) — Xy, g(t,z,€)] < Kie Td

|‘XULiiJrl Eit1
teTN{|t|>h},2€D(0,6/2)

forallee &N Ei1.

Proof Let d;,dit1 € [-7,—7/2) U (7/2,7]. We know that 7 + V(7,2,€) is holomorphic on
D(0, 1) for all (z,¢) € D(0,0/2) x (D(0,€p) \ {0}). Therefore, the integral of
T+ V(7,2,€) exp(—tT/e) along the segment

0, T/ T tansliot e 01

followed by an arc of circle with radius 7y/2 connecting

%6\/—71(71'+1+arg(10g(ée\/—710i+1))) and @6\/—71(71'4‘31'%(10%(26\/?191‘)))
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and along the segment

70 V=1(yitarg(log(LeV 1))

[ 2 € € ’ ]
is equal to zero. Hence, using the representation (129) we can rewrite the difference Xy dipr Ei1
Xu, & as a sum of three integrals,

_tr
(152) XUdi+175¢+1 (t,z,€) — XUdi,&' (t,z,€) = / VUdi+175i+1 (1,2,€)e” < dr
LTO/27'Yi+1’t
it tr
_/ VUd_7gi(T,Z,€)€_€dT+/ V(r,z,€)e” cdr
Leg/2mit C(70/2:7iYit15t)
where
t /=16,
L _ (70 oV T (itarg(log( L/ ~174)) e\/fmm]
T0/2,Yist ) O'/,C(b) y
t —16;
L _ (70 V=T(yiq1+arg(log(LeV " ¥it1))) ﬁ7¢+1M
T0/2,Vig1,t — [ 92 € € )€ O'”C(b) ]

and C(70/2,7i,Vi+1,t) is an arc of circle with radius 79/2 connecting

%eﬁ(vﬁarg(log(éemgi D) with 10V =1(vis1+arg(log(teY~it1)))

with a well chosen orientation.

Using the same arguments as in the proof of (145), we get a constant dy > 0 such that

CQ(di+175i+1)60

it
) Tedr| <
Eit1 (T,Z, 6)6 T‘ > 452,u7_

(153) | Vo,

T
5o BT
1 exp(—0d270 el ),

L‘ro/2,w+17t

T C o€
‘ VUdVgi(TaZ,e)eit?dT’ < M

KT
5 eXp(—(ngof)
Ly 2t doap €]

forallt € TN{|t| > pr}, alle € &N Eiyr1.
On the other hand, following a similar outline from the proof of (150) yields a constant
0o > 0 with

5o T
T0 _ %270
e~ 20

(154) | V(7,2 €)e” < dr| < (11 — vl +)Ca

—€
TO 760
C(10/2,YiyYit1,t) 2

for all t € T N{|t| > pr}, with [t| > (62 + o(())/d], for all e € Ei 41 NE;.
Finally, taking into account (152), (153), (154), we get the estimates (151). O

Lemma 13 Ifd;1,d; € [-7, —7/2) U (7 /2, 7] and if moreover Ug, NUq,,, # 0, then there exist
constants h > p7, K;, M; > 0 and L; > 1 such that

M,
(ta Z, 6) - XUdi,gi (ta 2, 6)| S Kl exp(_iZ log 7)

el

(155) sup | X

Ud; i
teTN{|t|>h},2€D(0,6/2) T

forallee &N Eiyq.
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Proof Let di1,d; € [—7,—7/2) U (7/2,7] and we assume moreover that Uy, N Uy, , # 0.
In that case, the function 7 — V/(7,2,€) which is holomorphic on D(0,7y) for all (z,¢) €
D(0,6/2) x (D(0,€p) \ {0}) can be analytically continued on the domain Ug,,, U Ug, (which is
now a sector since Uy, N Ug,,, # 0) by a function VUdi_‘_luUdi’gimng(T,Z,6) on (Ug,,, UUyg,) x
D(0,6/2) x (€;NE&i+1) which coincides with Vi, ¢, (7, 2, €) on Ug, x D(0,0/2) x £;NE;11 and with
VUdHl,giH(T, z,€) on Uy, x D(0,6/2) x (& N&;41) and which satisfies moreover the estimates
(156) ’VUdi+1UUdivgimgi+1 (77 2y 6)’
il

o((b
< oL+ 1) e ( T+ exp(o/c(ole))

for all (7, z,¢€) € (Ug,,, UUqg;) X D(0,0/2) x (£; N E;y1) for some constant Coq, 4, ,.,.6:11) > 0-
Using (139), we can choose p7 > 0 large enough and some constants 0 < C15 < C16 < o’ /o’
with

(157) 015log|f|<|1og< F9)|<C'1610g|*| 015log\f\<rlog< r91+1)|<01610g|*|

for allt € TN {|t| > pur}, all e € & N E; 1. The integral of

7= VU, WUy, £ingii (T; 2, €) exp(—tT /)
along the segment

0. O118 el =T(ris +argllogtevToisny))

O |

. . . 5log |t .
followed by an arc of circle with radius Ol%?'f' connecting

C1a 1081l /=i,y argtion( iV 1)) g C110BIEl T argtion(tevmiey)
"¢ (b) a"((b)

and along the segment

(Crslog || [£] /Tt arston(tev=To1y)) 0
a”¢(b)
is equal to zero. Therefore, using the representation (129) we can rewrite the difference Xy dip1 €
Xu, & as a sum of three integrals,

_tr
(158) XUdi+17gi+l (t,z,€) — XUdl-fi (t,z,¢) = / VUdi+1UUdi75imSi+l (1,2,€)e” < dr

L
Cisloglfl
¢ (b) Vi1

_tr
- VUdi+1UUdi EiNEit1 (T7 2, 6>6 <dr

L
Cis log\%|

oCl)

t

_tr
* / Cy5log | L] VUdi+1UUdivgimgi+1 (T’ % 6)6 < dr
C( //C(b) sVisVit+1,s )

where

t /—16;
Lo _[01510g’ | v TG +arglog(tev=To0))) vy log(ce” ™)
01510?‘17\)g| virt HC( ) ) U//C(b)
o'”{ y Iy
t \/_19i+1)

Lopsrogit| _[Cl5log| | eV 1(vir1targ(log(ze Fel“))),e\/?l%rll()g(?e
15”2><gb) VYit1,t HC( ) O-//C(b)

]

i+1



C1s log|£| . . . . C1s lOg‘él :
and C (W’ Vi, Yi+1,t) is an arc of circle with radius — ) connecting

Cis 108 || = rangtion(e/ ) yieg, 18108 Ll vt +argontey o)
"¢ (b) "¢ (b)

with a well chosen orientation.

We provide estimates for the first integral

_iT
I = | VUdi+1UUdivgiﬁgi+l(T7 z,€)e” < dr|

L
Ci5log | L] o
O'I,C(b> Vi1

From the estimates (156) and (157) we deduce that

Ciglog | L] h2 C(b)
T (0) _ o
(159) I < /c15 g £ Cods,dsr,E,60) (1 + W) ! eXP(Wh + exp(0'¢(b)h))
PURON

< exp(—Re( hexp(v (311 + arg(log( Le¥ )b

From (141), (157) and (159), we deduce that

Ciglog | L]
t o'Cig a’T¢(b) h
(160) I, < CQ(di,dm,&,sm)exP(lgl o )/Cl5log|£ exp(—(1]t] —O’C(b))q)dh
a!’¢(b)
t e Clﬁ €]
= C, ex _—
Q(di,dit1,Ei,Ei+1) p(| | )5i|t| — O'C(b)
015 log | | / C’16 10g | |
x | exp(—(81|t] — a¢(b exp(—(01|t] — o (b .
(cexpl- (3t = a0(o) ) = exp(— (6 - o) s )
From the choice of Cis in (157), we can select a constant 0 < dy < §7/2 such that
a((b) It 2C16_y pry Cis
161 t —) 7 < §7log
( ) ’|>5/1_252 ) (60) 2 (GO)UNC(b)

for all t € T N{|t| > p1} (whenever p7 is large enough). Hence, we deduce that

(162) exp(! ) exp( (5ilt|—”C<b))Ci’5<1€i|| ||)
5o Cls |t| t _52015MT10g‘M?T’
< exp(— o¢(b) | | log|~l) ( a”¢(b) el )

for all t € T N{|t| > pur}, all e € & N ;1. Taking into account (160) and (162), we deduce

Cg(divdi+lvgiy‘€i+l)€0 (— 52Ch5 7 log ‘M?T’

163 L <
(163) ! 26047 o"C(b) el

)

forallt € TN{Jt| > pr}, alle € &N Eiya.

35
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Using similar estimates as above, one can also get the following estimates: there exists do > 0
such that

_iT
(164) | / VUdi+1UUdi,gimgi+l (7—7 2, 6)6 € dT’
LC15log\£| L,
EUIONS

< CQ(di,di+1,51‘,,5i+1)60 (_ 52015MT IOg ‘MTT| )

- 2027 a”C(b) el
forallt € TN{|t| > pr}, alle € &N Eiya.
In the last part, we consider the third integral
_tr
=1 [ g Ve s 0 dr)

”C(b) sYiVi415

From (156), we deduce that
Yir1-+arg(log(£eV 1))
(165) —[3 < ‘ XCQ d;dit1,:,E;
vitarg(log(LeV=1%)) (i )
oCislog | Cislog |t

X eXp(T”E + eXp(g’Te))

o |t t
1¢1C15 1oz | | cos(0+arg(t)—arg(e)) C1s log |g’

ERELIO) do
e "¢ (b) |
i
Using (139), the arc of circle C(%(gbge‘,”ﬁ,’ﬂ_i_l,t) can be chosen in such a way that cos(f +
arg(t) — arg(e)) > 01, for all

0c m+arg<1og< V=0, %+1+arg<log< VIO i g < i,

V=i V=10

0 € [Vir1 + arg(log( ¥ + arg(log( if i1 <,

forallt € TN{|t| > pr}, all e € & N E;y1. From (165) and using (139) we deduce that

t 0015 C’15log| |
(166) I3 < (|viv1 — il +7T)CQ(di,di+1,Si,€i+1)exp(|€| ) = R0

s exp(—(8}11] — oc(p)) S121oB el

=IOk

for all t € T N{|t| > p7} and for all € € Ei 41 NE;.
From the choice of Cy5 in (157), we can select a constant 0 < dy < ¢7/3 such that

a((b) pry Cis
] > 5 —30; (60 og(— 0 )0”C(b)

(167)

for all t € T N{|t| > ur} (whenever uy is large enough). Therefore, we get that

705 02C
(168)  exp(|.|* >exp<—03<(15>

02015 | 11 10g (BT < 1

-] log |- D<exp(\ \ o7 )exp( RO s
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for all t € T N{|t| > pur} and for all € € &1 N E;. Moreover, from (25), we deduce that

Ci5log || 62C15 T t Ci5log || 02C15 pr t
€ _ Z 2y <« 22 o lel _ = Z
(169) O'//C(b) Xp( U,/C(b)|€|log‘€‘) — U//C(b) eXp( O'//C(b) 60 Og|€|)
< G5 sup:cexp(—éQClSMTx) _ e’
— 0"¢(b) x>0 a""¢(b)eo Oo i

for all t € TN {|t| > pr} and for all € € 11 N E;. From (166), (168), (169), we get that

0 (= 2685 L1001,
wel Bt
Oo i P a"((b) e Bl

1

(170) I3 < (|vit1 — %l + )0, disr £1,6001)

€pe

0° o« ( 52015 MTl |Ml|)
dopr

PYoc) 1 8

< (i1 =il + ™) Codidyir 5,600)

for all t € T N{|t| > p7} and for all € € £ 11 NE;.
Finally, gathering (158), (163), (164) and (170), we deduce that the estimates (155) hold. O

a

5 Existence of formal series solutions in the complex parameter
for the singularly perturbed problem and asymptotic expan-
sions with two levels

5.1 A Ramis-Sibuya theorem with two levels

Definition 4 Let (E,||.||g) be a Banach space over C. We denote E[[¢]] the space of all formal
Series Y s ai€e® with coefficients ay, in E for all integers k > 0. Let f : € — E be a holomorphic
function on a bounded open sector £ centered at 0. Let f(e) = > iso are® € E[[e]] be a formal
series. -

1) We say that f has the formal series f as 1—Gevrey asymptotic expansion if, for any closed
proper subsector W C £ centered at 0, there exist C, M > 0 such that

N-1
(171) 1£(e) = D are"[le < CMN(N/e)V|e[™
k=0

forall N > 1, alle e W.
2) We say that f has the formal series f as 17— Gevrey asymptotic expansion if, for any
closed proper subsector W C & centered at 0, there exist C; M > 0 such that

N-1
(172) 1f(€) = > ane®|ls < CM™N(N/log N)N|e[V
k=0

for all N > 2, alle € W. In particular, the formal series f is itself of 17— Gevrey type, meaning
that there exist two constants C', M’ > 0 such that ||ag||g < C'M'*(k/logk)* for all k > 2.
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In this section, we give a new version of the classical Ramis-Sibuya theorem (see [17], Theorem
X1-2-3) that involves two kinds of Gevrey levels, the 1—Gevrey order and the 1T —Gevrey order.

Theorem (RS) Let (E, ||.||g) be a Banach space over C and {&;}o<i<,—1 be a good covering in
C*, see Definition 3. For all 0 < i < v — 1, let G; be a holomorphic function from &; into the
Banach space (E, ||.||g) and let the cocycle A;(e) = Git1(€) — Gi(e) be a holomorphic function
from the sector Z; = &+1 N &; into E (with the convention that £, = & and G, = Gy). We
make the following assumptions.

1) The functions G;(¢) are bounded as € € &; tends to the origin in C, for all 0 < < v — 1.

2) For some finite subset I; C {0,...v—1} and for all i € I;, the functions A;(€) are exponentially
flat on Z;, for all 0 < ¢ < v — 1. This means that there exist constants K;, M; > 0 such that

(173) 1A (e)||g < Kie M/l

for all € € Z;.

3) Foralli € I ={0,...,v— 1} \ I, the functions A;(e) are super-exponentially flat on Z;, for
all 0 < i < v — 1. This means that there exist constants K;, M; > 0 and L; > 1 such that

M; L;
(174) [[Ai(6)|le < K; eXP(—g log H)

for all € € Z;.

Then, there exist a convergent power series a(e) € E{¢} near ¢ = 0 and two formal series
G*'(¢€),G?(¢) € E][¢]] such that G;(e) owns the following decomposition

Gi(e) = ale) + Gi(e) + Gi(e)

where G1(e) is holomorphic on & and has G'(e) as 1—Gevrey asymptotic expansion on &,
G?(e) is holomorphic on &; and carries G?(¢) as 1T —Gevrey asymptotic expansion on &;, for all
0<i:<v—1.

Proof We consider two holomorphic cocycles Al(e) and A?(e) defined on the sectors Z; in the

following way:
A if i € I 0 if i € I
Al = 2O TR g - e
0 itiely Ai(e) ifiely

forall e € Z;, all 0 < i < v — 1. We will need the following two lemma.

Lemma 14 For all 0 <i < v — 1, there exist bounded holomorphic functions ¥} : & — C such
that

(175) Aj(€) = Wiy (e) = i (e)

(2

for all € € Z;, where by convention Wl(e) = W(e). Moreover, there exist coefficients ), € E,
m > 0, such that for each 0 <1 < v —1 and any closed proper subsector W C &;, centered at 0,
there exist two constants K, M; > 0 with

M-—1 M
(176) 1%/ (6) = > ohe™le < Kz(Ml)M(;)MIGIM
m=0

foralle e W, all M > 1.



39

Proof The proof is a consequence of Lemma XI-2-6 from [17] which provides the so-called
classical Ramis-Sibuya theorem in Gevrey classes. O

Lemma 15 For all 0 <i < v —1, there exist bounded holomorphic functions \IIZ2 : & — C such
that

(177) AF(e) = W7, (e) — Wi (e)

for all € € Z;, where by convention W2(e) = Wi(e). Moreover, there exist coefficients ¢2, € E,
m > 0, such that for each 0 <1 < v —1 and any closed proper subsector W C &;, centered at 0,
there exist two constants K, M; > 0 with

M
1 T2(e 2 o< K (M M| M
(178) |r 290 e < K ()
foralle e W, all M > 2.

Proof We will follow the same arguments as in Lemma XI-2-6 from [17] with appropriate
modifications in the asymptotic expansions of the functions constructed with the help of the
Cauchy-Heine transform.

For all 0 <[] < v — 1, we choose a segment

C = {teV1 t€0,r]} CENEL.

These v segments divide the open punctured disc D(0,7) \ {0} into v open sectors &, ..., E, 1
where .
E={eeC/0_1 <arg(e) <Olef<r} , 0<I<v-—1,

where by convention §_1 = 6,_1. Let

V(e

=i [,

for all € € &, for 0 <1 < v —1, be defined as a sum of Cauchy-Heine transforms of the functions
A%(e). By deformation of the paths C;_; and C; without moving their endpoints and letting the
other paths Cp,, h # [ — 1,1 untouched (with the convention that C_; = C,,_1), one can continue
analytically the function ¥? onto &. Therefore, U7 defines a holomorphic function on &, for all
0<i<vy-1.

Now, take € € & N &4 In order to compute U7, (¢) — U7 (e), we write

o 2
(179) \1/,2(6):27“/1_71 3 ?’_(i)d Z /C _edf,

h 0,h£l

1 A7 (8)
V() = ) g [ 2
2/ =1 Jg, € —€ 277\/ h%ﬂ c —e
where the paths C, and C; are obtained by deforming the same path C; without moving its
endpoints in such a way that:
(a) Crc&ENEyy and Cp C & NEL,
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(b) Ty 41 = O+ C’l is a simple closed curve with positive orientation whose interior contains
€.
Therefore, due to the residue formula, we can write

1 AF(€)
2/ —1 o £

for all € € & N &4, for all 0 <1 < v — 1 (with the convention that W2 = ¥3).

In a second step, we derive asymptotic properties of \112. We fixan 0 <[ <v—1and a
proper closed sector VW contained in &;. Let C (resp. Ci_ 1) be a path obtained by deforming
Cy (resp. Cj_1) without ~moving the endpoints in order that W is contained in the interior of
the simple closed curve Crq+ v — C (which is itself contained in &), where ~; is a circular arc

(180) U7y (e) — Vi(e) = d¢ = A(e)

joining the two points reV=101-1 and reV—10, We get the representation

-1 [ AN, ALL(©)
2myV/—1 Jg, € —¢ 2mv/—1Je,_, §—¢

(181) Wi(e) = d¢

27” Lot /Cn 5_6
for all e € W. One assumes that the path C; is given as the union of a segment L; = {teﬁwl Jt €
[0,71]} where 71 < r and w; > 6; and a curve I, = {44(7)/7 € [0,1]} such that 1;(0) = rieV 1w,
(1) = reV=1 and r; < |(r)| < r for all 7 € [0,1). We also assume that there exists a
positive number o < 1 with |e| < ory for all e € W. By construction of the path I';, we get that

the function € o F fr Af (5 =~d¢ defines an analytic function on the open disc D(0,71).

It remains to give estimates for the 1ntegral F / L 5) ~d€. Let M > 0 be an integer.
From the usual geometric series expansion, one can write

(182) 1 A?(S)dg %O‘Q my M+lp (€)

e m€ € s €

o1 ), e 2 I, 1,M+1
where
1 A7 (&)

183 2 / d , E l d
(183) Ym = 271_\/7 gmtl § Lar(€) = 2m/—1 L EMHL(E —¢) :
for all e € W.

Gathering (174) and (183), we get some constants Kj, M; > 0 and L; > 1 such that

dr

Ky [7exp(—ftlog2t) K [T exp(—Tlog %)
2m rmtl ~ 27 Tm+1
K,

T or

(184) lafle <
+o<>
/ u™ ! exp(—Mjulog(Liu))du = Ajm

Lemma 16 There exist two constants Kl, M; > 0 such that

)m

m

(185) Apm < Ky(My)™(

logm

for all m > 2.
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Proof Since L; > 1, one gets that 4;,, < %Bl,m where

—+o00
By = / u™ ! exp(—Myulog(u))du
0
for all m > 1. We consider now the function

+oo
L(t) = /0 exp(—Mjulog(u)) exp(tu)du

which defines an entire function on C. Now, we follow the example 2.6 p. 125 of [11] (see also
Example 7.5 p. 83 from [29]), in order to give the leading term behaviour of L(t) as t tends to
infinity using the Laplace method. For all ¢t € C, we have that

+o0
()] < (1) = /O exp(~ Myulog(u)) exp(|t]u)du.

The function f(u) = |[tjlu — Mjulog(u) reaches his unique maximum at u = exp(‘MAl -1) =¢.

Now, we make the change of variable u = £s in the integral I(|t|) which yields

+oo
I(|t]) = 5/0 eSMi(s—slog(s)) 74

Now, the function h(s) = M;(s — slogs) takes its unique maximum value at s = 1, with
h(1) = M; and h”(1) = —M;. From Proposition 2.5 p. 125 in [11] (Laplace method), we get
that
oo 27
(186) ¢ / (EM(s=s108(5)) g5, (27 y1/2¢1/2,6M
M,
0 l

as £ tends to +o0o (where f(£) ~ ¢g(§) means that f and g are equivalent as & — +00). Therefore,
we get a constant K; > 0 such that
o 1Ly 14
(187) |L(t)| < Kje? M exp(Me™ )
for all t € C, which means that L(¢) has at most super-exponential growth at infinity.
From the Cauchy formula, for all £ > 2, one can write the derivative of order k of L at 0 in

the form o L)
L®(0) = / —>2d
O 2v—=1r Jo.ry EF! :

for any circle C(0, R) centered at 0 with radius R > 0. Now, take the particular radius R =
Milog k. From (187) and the Stirling formula, we get two constants Kj, M; > 0 such that

k

(188) LBO) < K (i

)k

for all k& > 2. On the other hand, by derivation under the sign [, one also gets an other
expression for the Taylor coefficients of L at 0,

(189) L®(0) = By

for all k£ > 0. Gathering (188) and (189) yields the lemma. O
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Moreover, as above, one can choose a positive number n > 0 (depending on W) such that
€ — €| > [¢]sin(n) for all £ € L; and all € € W. Again by (174), (183) and Lemma 16 we obtain
two constants K;, M; > 0 with

Ki 7 esp(-Milogh)
TM+2

dr < ffl(Ml)Mﬂ(m

190 E <
(190) Bt m41(6)|[m < 27 sin(n)
for all e e W.

Using comparable arguments, one can give estimates of the form (182), (184), (185) and
(190) for the other integrals

S AL@, o[ %
2/ =1 Je,_, €—¢ To2m/—1Jg, £—c¢

dg

for all h # 1,1 — 1.
As a consequence, for any 0 < [ < v — 1, there exist coeflicients 9012,m € E, m > 0 and two

constants Kl, Ml > 0 such that

—

M—
(191) 197(6) = > pime™lle < Ku(M)™ (M log M)™M ||
m=0

for all M > 2, all e € W.
From (174) and (180), we have in particular that there exist two constants Kj, M; > 0 with

(192) 192, (6) — V3| < Kie /1

forall e € §N&y4q and all 0 < 1 < v — 1. From Theorem XI-3-2 in [17], we deduce that

\IJIQ_H(G) — ¥?(e) has the formal series 0 as 1—Gevrey asymptotic expansion. From the unicity

of the asymptotic expansions on sectors, we deduce that all the formal series Zmzo cpl%mem,
0 <1< wv-—1, are equal to some formal series denoted G?(e) = Ym0 Phe™ € Elle]]. The
Lemma, 15 follows. O

We consider now the bounded holomorphic functions
aile) = Gile) — WH(e) — U¥(e)
forall 0 <i<wv-—1,all € € &. By definition, for ¢ € I1 or i € I», we have that
ai+1(€) — ai(e) = Giyi(e) — Gie) — Aj(e) — Af(e) = Giya(e) — Gile) = Aye) = 0

for all € € Z;. Therefore, each a;(e) is the restriction on &; of a holomorphic function a(e) on
D(0,7) \ {0}. Since a(e) is moreover bounded on D(0,7) \ {0}, the origin turns out to be a
removable singularity for a(e) which, as a consequence, defines a convergent power series on
D(0,r).

Finally, one can write the following decomposition

Gie) = ale) + ¥ (e) + ¥ (e)
for all € € &, all 0 < i < v — 1. Moreover, a(e) is a convergent power series, W} (e) has the
series Gl (¢) = > m>0 @l €™ as 1—Gevrey asymptotic expansion on & and ¥?(e) carries the series

G?(e) = Y omz0 Pime™ as 1T —Gevrey asymptotic expansion on &, for all 0 < i < v — 1. The
theorem (RS) follows. O
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5.2 Existence of formal series solutions in the complex parameter for the
singularly perturbed problem

We are now ready to state the main result of this paper.

Theorem 2 Let us assume that the conditions (115), (116), (117), (118) hold. Then, there
exists a formal series

X(t,z,¢€) ZHktz—eE[[]]

k>0

where the functions Hy belong to the Banach space E = O((T N {|t| > h}) x D(0,6/2)) of
holomorphic and bounded functions on the set (T N{[t| > h}) x D(0,0/2) equipped with the
supremum norm, for some d,h > 0, which solves the singular equation

(193) €005 X (t,z,€) + adS X (L, z, €)

br(z, € - N
= Y ek ) beno+ Y alzoX !tz
k=(s,ko,k1,k2)€A1 leAs

and owns the following properties. The formal series X can be decomposed into a sum of three
terms

X(t,z,€) = a(t, z,€) + X (t, 2, €) + X2(t, z,€)
where a(t, z,€) € E{e} is a convergent series near € = 0 and X'(t,z,€), X%(t, z,€) belong to
E[le]]. Moreover, for all0 < i < v —1, the E—valued function e — Xy, ¢,(t,z,€) constructed in
Theorem 1 shares a similar decomposition '

XUdiygi(L Z, 6) = a(t727 6) + Xllfd.,gi(t7 Z, 6) + Xl%d.,gi(tv 2, 6)

where € — Xéd (t,2,€) is a E—valued function owning Xl(t z,€) as 1—Gevrey asymptotic
expansion on & and where € — XUdv g (t,2,€) is a E—valued function having X2(t,z,e) as

17— Gevrey asymptotic expansion on &;.

Proof Let us consider the tuple of functions (X, ¢, (t, 2, €))o<i<y—1 constructed in Theorem
1. For all 0 <i < v —1, we define G;(e) := (¢, 2) s Xu, & /(t,z,€), which is, by construction,
a holomorphic and bounded function from & into the Banach space E = O((T n{|t| > h}) x
D(0,0/2)), where T, h,d are defined in Theorem 1.

From the estimates (121), we get that the cocycle A;(e) = Git1(€) — Gi(€) is exponentially
flat on Z; = ;41 NE;, for all 0 < i < v — 1. Moreover, if d;,d; 1 € [-m,—7/2) U (7/2, 7] and if
Ug, NUq;,, # 0, then from (122) we deduce that A;(e) = Giy1(e) — Gi(e) is super-exponentially
flat on Z;. Hence, from the theorem (RS) stated above, there exist a formal series G(e) € E[[¢]]
which is the sum of a convergent series a(e) € E{e} and two formal series G (€), G2(¢) € E[[¢]]
such that G;(e€) gets the corresponding decomposition

(194) Gi(e) = ale) + Gi(e) + G?(e)

for all € € &;, where Gil(e) is holomorphic on &; and has Gl(e) as 1—Gevrey asymptotic expan-
sion on & and where G?(e) defines a holomorphic function on & owning G?(¢) as 17 —Gevrey
asymptotic expansion on &;, for all 0 <i < v — 1.



44

We put
G(e) =: X(t,z,€) ZHktzk‘

k>0
It remains to show that the formal series X (£, z, €) satisfies the equation (193). Let 0 <i < v —1
such that d; € (—r/2,7/2). From (194), Gi(e) has in particular G(e) as 1—Gevrey asymptotic
expansion on & (since 1T —Gevrey asymptotic implies 1—Gevrey asymptotic on sectors). As a
result, we get
(195) lim sup 10! Xy, &t z,€) — Hy(t, 2)] =0
€20,6€8i (¢ 2)e(TN{|t|>h})xD(0,6/2) !
for all I > 0. By the construction given in Theorem 1, the function Xy, ¢, (t, 2, €) satisfies the
equation (100). '
Now, we take the derivative of order | with respect to € of the left and the right hand
side of the equation (100). From the Leibniz rule and the classical chain rule, we get that
o Xy 05 (t, z, €) satisfies the following equation

(196) e@tﬁfaéXUdi,gi(t,z,e)+l@t8;96£_1XUd (t,2,€) + a0l 0 Xy, &,(t, 2 €)

- T S e

E:(57k07k17k2)€¢41 h1+h2 l
hal  hot, ohoo+k h
x Z | ok 21(a1t21+ Oakla 22XUd (4 kae, 2, €)
_ ha1lhop!
h21+h2,2=ho

), O Xy, et ze)

8?’0011(2,6
LD IRED DI ol =1 !

lheAs h0+"'+h11 =]

for all 1 > 1, all (t,z,¢) € (T N{|t| > h}) x D(0,6/2) x &;. Letting € tends to zero in (196) and
using (195) yields the recursion

Hy_1(t,z) Hi(t,z) 1 (0Mb)(2,0)
S =1\l S I\ o e O
(197) 00 (W> + a0y ( 0 ) = Z pres Z —
k=(s,ko,k1,k2)€A1 h1+ho=l
1
X @ 00k ) )
L _, haathgp! :
2,1+h2 2=hs

Ly oy @0y, M)

ho! J h;!
l1€As h0+"‘+h11=l 0 J

for all I > 1, all (¢,2) € (T N{|t| > h}) x D(0,6/2).
Since bg(z, €) and ¢, (2, €) are analytic with respect to € at 0, we have that

[by) (2 hey ) (2
(198) bz, e) = S ERE0 (o 5 Pen)(z0)

h! h!
h>0 h>0

On the other hand, by taking the Taylor expansion of the function (8tk° OF Hy) (€, 2) at the point
& =t, we get that

(Ot ok Hy) (8, Z)kh h
26

(199) (008 Hy)(t + ko, 2) = -

h>0
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for all € near the origin, for all k& > 0. Therefore, one can write

(O 05 Hi) (2, 2) €

h! 2k

(200) (Df°OE X)(t + koe, z,6) = >y
k>0 h>0

I ¢ ako+l
sy B )6,
;115!
1>0 l1+12=1
as a formal power series in e. Finally, using the recursion (197) together with the expansions
(198), (200), one checks that the formal series X (¢, z, €) solves the equation (193). O
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