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ABSTRACT. In this paper we obtain sharp Lieb-Thirring inequalities for a
Schrödinger operator on semi-axis with a matrix potential and show how they
can be used to other related problems. Among them are spectral inequalities on
star graphs and spectral inequalities for Schrödinger operators on half-spaces with
Robin boundary conditions.

1. INTRODUCTION

Let us consider a self-adjoint Schrödinger operator in L2(Rd)

H = −∆− V, (1.1)

where V is a real-valued function. If the potential function V decays rapidly
enough, then the spectrum of the operator H typically is absolutely continuous
on [0,∞). If V has a non-trivial positive part, then H might have finite or infinite
number of negative eigenvalues {−λn(H)}. If the number of negative eigenvalues
is infinite, the point zero is the only possible accumulating point. The inequalities∑

n

λγn ≤
Rγ,d

(2π)d

∫∫
R2d

(|ξ|2 − V (x))γ− dξdx ≤ Lγ,d

∫
Rd

V
γ+ d

2
− dx (1.2)

are known as Lieb-Thirring bounds. Here and in the following, V± = (|V | ± V )/2

denote the positive and negative parts of the function V .

It is known that the inequality (1.2) holds true with some finite constants if and only
if γ ≥ 1/2, d = 1; γ > 0, d = 2 and γ ≥ 0, d ≥ 3. There are examples showing
that (1.2) fails for 0 ≤ γ < 1/2, d = 1 and γ = 0, d = 2.

Almost all the cases except for γ = 1/2, d = 1 and γ = 0, d ≥ 3 were justified
in the original paper of E.H.Lieb and W.Thirring [LT]. The critical case γ = 0,
d ≥ 3 is known as the Cwikel-Lieb-Rozenblum inequality, see [Cw, L, Roz]. It
was also proved in [Fe, LY, Con] and very recently by R. Frank [Fr] using Rumin’s
approach. The remaining case γ = 1/2, d = 1 was verified by T.Weidl in [W1].

The sharp value of the constants Rγ,d = 1 in (1.2) are known for the case γ ≥ 3/2

in all dimensions and it was first proved in [LT] and [AizL] for d = 1 and later in
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[LW1, LW2] for any dimension. In this case

Lγ,d = Lclγ,d := (2π)−d
∫
Rd

(1− |ξ|2)γ+ dξ.

The only other case where the sharp value of the constant Rγ,d is known is the case
R1/2,1 = 2.

In this paper we consider a one-dimensional systems of Schrödinger operators act-
ing in L2(R+,CN), R+ = (0,∞), defined by

Hϕ(x) =
(
− d2

dx2
⊗ I− V (x)

)
ϕ(x), ϕ′(0)−Sϕ(0) = 0, (1.3)

where I is the N ×N identity matrix, V is a Hermitian N ×N matrix-function and
S is a N ×N Hermitian matrix.
Assuming that the potential V generates only a discrete negative spectrum, we de-
note by {−λn} the negative eigenvalues ofH.

One of the main results of this paper is the following

Theorem 1.1. Let TrV 2 ∈ L1(R+), V ≥ 0. Then the negative spectrum of the
operator H defined in (1.3) is discrete and the following Lieb-Thirring inequality
for its eigenvalues {−λn} holds

3

4
λ1 TrS +

1

2
(2κ1 −N)λ

3/2
1 +

∞∑
n=2

κnλ3/2n

≤ 3

16

∫ ∞
0

TrV 2(x) dx+
1

4
TrS3, (1.4)

where κn is the multiplicity of the eigenvalue −λn.

Examples.
1. Let V ≡ 0 and N = 1. Then the boundary value problem

−ϕ′′(x) = −λϕ(x), ϕ′(0)− σϕ(0) = 0, σ < 0,

has only one L2-solution

ϕ(x) = C e−
√
λx, −

√
λ = σ.

In this case the inequality (1.4) becomes saturated, 3
4
σ3 − 1

2
σ3 ≤ 1

4
σ3.

2. Let N = 2, V ≡ 0 and

S =

(
σ 0

0 −ασ

)
, σ < 0
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2a) If α ≥ 0 then the boundary value problem (1.3) has one negative eigenvalue
−λ of multiplicity one satisfying the identity −

√
λ = σ. In this case 2κ1 −N = 0

and the inequality (1.4) becomes

3λTrS = 3λσ (1− α) ≤ (1− α3)σ3 = TrS3,

or

3(α− 1) ≤ α3 − 1.

which holds true for any α ≥ 0.
2b) If −1 < α < 0, then the problem (1.3) has two eigenvalues satisfying −

√
λ1 =

σ and −
√
λ2 = −ασ and (1.4) is reduced to

3(α− 1)− 4α3 ≤ α3 − 1.

2c) Finally, if α = −1, then −
√
λ1 = σ is of multiplicity κ1 = 2 and (1.4) becomes

identity.

Note that if TrS3 ≤ 0, then the inequality (1.4) implies

3

4
λ1 TrS +

1

2
(2κ1 −N)λ

3/2
1 +

∞∑
n=2

κnλ3/2n ≤ 3

16

∫ ∞
0

TrV 2(x) dx. (1.5)

The latter allows us to use the standard Aizenman-Lieb arguments [AizL] and de-
rive

Corollary 1.2. Let TrS3 ≤ 0, V ≥ 0 and TrV γ+1/2(x) ∈ L1(0,∞). Then for any
γ ≥ 3/2 we have

B(γ − 3/2, 2)

B(γ − 3/2, 5/2)

3

4
λ
γ−1/2
1 TrS +

1

2
(2κ1 −N)λγ1 +

∞∑
n=2

κnλγn

≤ Lclγ,1

∫ ∞
0

Tr (V (x))γ+1/2 dx,

where by B(p, q) we denote the classical Beta function

B(p, q) =

∫ 1

0

(1− t)q−1tp−1 dt.

Corollary 1.3. If S = 0, then (1.3) can be identified with the Neumann boundary
value problem and we obtain

1

2
(2κ1 −N)κ1λ

γ
1 +

∞∑
n=2

κnλγn ≤ Lclγ,1

∫ ∞
0

Tr (V (x))γ+1/2 dx, γ ≥ 3/2.
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Remark.
Note that in the scalar case N = 1 we obtain

1

2
λγ1 +

∞∑
n=2

λγn ≤ Lclγ,1

∫ ∞
0

V γ+1/2(x) dx, γ ≥ 3/2, (1.6)

which means that the semi-classical inequality holds true for all eigenvalues start-
ing from n = 2 and that in the latter inequality the Neumann boundary condition
affects only the first eigenvalue.

If V ≥ 0 is a diagonal N × N matrix-function, then the operator H could be
interpreted as a Schrödinger operator on a star graph with N edges; the matrix S

describes a vertex coupling without the Dirichlet component [Ku]. In such a case
we obtain:

Theorem 1.4. Let V ≥ 0 be a diagonal N × N matrix-function and let S be a
Hermitian matrix. Then the operator (1.3) can be identified with a Schrödinger op-
erator on a star graph withN semi-infinite edges and its negative spectrum satisfies
the inequality (1.4).

If both V ≥ 0 and S are diagonal N × N matrices, then the negative spectrum of
the operatorH is the union of the eigenvalues from each channel and we obtain

Theorem 1.5. Let V ≥ 0, TrV 2 ∈ L1(0,∞) and let V and S be diagonal N ×
N matrices with entries vj and σj , j = 1, . . . N , respectively. Then the negative
eigenvalues of the operatorH defined in (1.3), satisfy the inequality

3

4

N∑
j=1

λj1 σj +
1

2

N∑
j=1

λ
3/2
j1 +

N∑
j=1

∞∑
n=2

λ
3/2
jn ≤

3

16

∫ ∞
0

TrV 2(x) dx+
1

4
TrS3, (1.7)

where −λjn are negative eigenvalues of operators hj defined by

hjψ(x) =
d2

dx2
ψ(x)− vj(x)ψ(x), ψ′(0)− σjψ(0) = 0.

Remark. Note that the inequality (1.7) is much more precise than (1.4) due to the
diagonal structure of the operator H. In (1.7) all N first eigenvalues generated by
each channel are affected by the Robin boundary conditions, whereas in (1.4) only
the first one, see Example 2b).

Finally we give an example how our results could be applied for spectral estimates
of multi-dimensional Schrödinger operators.
Let Rd

+ = {x = (x1, x
′) : x1 > 0, x′ ∈ Rd−1} and let H be a Schrödinger operator

in L2(Rd
+) with the Neumann boundary conditions

Hψ = −∆ψ − V ψ = −λψ, ∂

∂x1
ψ(0, x′) = 0. (1.8)

The following result could be obtained by a “lifting” argument with respect to di-
mension, see [L], [LT]:
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Theorem 1.6. Let V ≥ 0 and V ∈ Lγ+d/2, γ ≥ 3/2. Then for the negative
eigenvalues {−λn} of the operator (1.8) we have∑

n

λγn ≤ Lclγ,d

∫
Rd
+

V γ+d/2(x) dx+
1

2
Lclγ,d−1

∫
Rd−1

µ
γ+(d−1)/2
1 (x′) dx′

≤ 2Lclγ,d

∫
Rd
+

V γ+d/2 dx. (1.9)

Here µ1(x
′) is the ground state energy for the operator −d2/dx21 − V (x1, x

′) in
L2(R+) with the Neumann boundary condition at zero.

Remark. A similar inequality could be obtained by extending the operator (1.8)
to the whole space L2(Rd) with the symmetrically reflected potential. However,
applying then the known Lieb-Thirring inequalities, we would have the constant
2γ+d/2 instead of 2 in (1.9).

2. SOME AUXILIARY RESULTS

In this Section we assume that the matrix-function V is compactly supported,
suppV ⊂ [a, b] for some a, b : 0 < a < b < ∞ and adapt the arguments from
[BL] to the case of semiaxis.
We begin with stating a well-known fact concerning the ground state of the operator
(1.3).

Lemma 2.1. Let −λ < 0 be the ground state energy of the operator H and let
ϕ(x) = {ϕk}Nk=0 be a L2(R+,CN)-vector-function satisfying the equation

Hϕ(x) = − d2

dx2
ϕ(x)− V (x)ϕ(x) = −λϕ(x), ϕ′(0)−Sϕ(0) = 0, (2.1)

and such that the 2N vector (ϕ(0), ϕ′(0)) is not trivial. Then ϕ(x) 6= 0, x ∈ R+,
and the ground state energy multiplicity is at most N .

Proof. Suppose that ϕ(x0) = 0 for some x0 > 0. Consider the continuous function

ϕ̃(x) =

{
ϕ(x), x < x0

0, x ≥ x0.

This function is non-trivial, belongs to the Sobolev space H1(R+,CN) and satisfies∫
R+

(
|ϕ̃′|2 − (V ϕ̃, ϕ̃)CN

)
dx =

∫ x0

0

(
|ϕ′|2 − (V ϕ, ϕ)CN

)
dx

=

∫ x0

0

(−ϕ′′ − V ϕ, ϕ)CN dx = −λ
∫ x0

0

|ϕ|2 dx = −λ
∫
R+

|ϕ̃|2 dx.

Therefore ϕ̃ minimizes the closed quadratic form associated with H. Thus by the
variational principle ϕ̃ belongs to the domain of H and solves the Cauchy problem
pointwise. However, since ϕ̃(x) = 0 for x ≥ x0 it also solves the backward Cauchy
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problem with zero initial data at x0 and by uniqueness must vanish everywhere.
This contradicts the non-triviality of ϕ̃ for x < x0. �

Similarly to [BL] let us introduce a (not necessary L2) fundamental N ×N -matrix-
solution M(x) of the equation (2.1), where −λ is the ground state energy for the
operatorH, so M satisfies the equation

− d2

dx2
M(x)− V (x)M(x) = −λM(x), M ′(0)−SM(0) = 0. (2.2)

Denoting M(0) = A and M ′(0) = B, B −SA = 0, we shall always assume that
the matrix A is invertible.
By using Lemma 2.1 we obtain that the matrix-function M(x) is invertible for any
x ∈ R+ and thus we can consider

F (x) = M ′(x)M−1(x). (2.3)

Lemma 2.2. The matrix function F (x) satisfies the following properties:

• F (x) is Hermitian for any x ∈ R+.
• F (x) is independent of the choice of the matrices A,B, satisfying the equa-

tion B −SA = 0 and

F (0) = BA−1 = S.

• F satisfies the matrix Riccati equation

F ′(x) + F 2(x) + V (x) = λI. (2.4)

Proof. From the Wronskian identity
d

dx
W (x) :=

d

dx

(
M∗(x)M ′(x) − (M∗(x))′M(x)

)
= 0

we obtain
W (x) = M∗(x)M ′(x)− (M∗(x))′M(x) = const.

Since M(0) = A and M ′(0) = B, using the fact that S is Hermitian we find

W (0) = M∗(0)M ′(0)− (M∗(0))′M(0)

= A∗
(
BA−1 − (A∗)−1B∗

)
A = A∗(S−S∗)A = 0.

Thus
W (x) = M∗(x)M ′(x)− (M∗(x))′M(x) = 0.

Multiplying the latter identity by M−1 from the right and by (M−1)∗ from the left
we obtain F (x) = F ∗(x). Moreover

F ′ + F 2 = (M ′M−1)′ + (M ′M−1)2

= M ′′M−1−M ′M−1M ′M−1 +M ′M−1M ′M−1 = (λ−V )MM−1 = λ I−V.
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�

Next, we analyze the behavior of the matrices F (x) and their eigenvalues and eigen-
vectors as x→∞ . For x > b any solution of the differential equation (2.2) can be
written as

M(x) = cosh(
√
λ(x− b))M(b) +

1√
λ

sinh(
√
λ(x− b))M ′(b)

=

(
cosh(

√
λ(x− b))I +

1√
λ

sinh(
√
λ(x− b))F (b)

)
M(b). (2.5)

With the help of this representation we show

Lemma 2.3. For all x ≥ b it holds F (x) = f(x, F (b)), where

f(x, µ) =
√
λ

√
λ tanh(

√
λ(x− b)) + µ√

λ+ µ tanh(
√
λ(x− b))

. (2.6)

Proof. In view of (2.5) we have

M ′(x) =
(√

λ sinh(
√
λ(x− b))I + cosh(

√
λ(x− b))F (b)

)
M(b),

(M(x))−1 = (M(b))−1
(

cosh(
√
λ(x− b))I +

1√
λ

sinh(
√
λ(x− b))F (b)

)−1
.

It remains to insert these expressions in the definition F (x) = M ′(x)(M(x))−1 and
to apply the spectral theorem for the Hermitian matrix F (b). �

Note that f(x, µ) is strictly monotone in µ. As a direct consequence of Lemma
2.3 we conclude, that the eigenvectors of the matrix F (x) are independent of x for
x ≥ b as vectors in CN . Moreover, the eigenvalues of F may or may not depend on
x outside the support of V depending on if they correspond to growing or decaying
solutions.

Corollary 2.4. Each eigenvalue µk of F (b) gives rise to a continuous eigenvalue
branch µk(x) = f(x, µk(b)). In particular, we have

µk(x) = −
√
λ iff µk(b) = −

√
λ,

and
lim
x→∞

µk(x) =
√
λ iff µk(b) 6= −

√
λ.

The limit in the last expression is achieved exponentially fast.

Remark. There is a one-to-one correspondence between the κ1-dimensional space
of ground states for H and a κ1-dimensional eigenspace of F (b) corresponding to
the eigenvalue −

√
λ. Indeed, since M(x) is a fundamental system of the solutions

of the Cauchy problem (2.1) and F (b) is invertible, any particular solution ϕ of
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(2.1) can be represented as ϕ(x) = F (x)(F (b))−1 ν with some ν ∈ CN . Hence, by
(2.5)

ϕν(x) = cosh(
√
λ(x− b)) ν +

1√
λ

sinh(
√
λ(x− b))F (b) ν

=
1

2
√
λ
e
√
λ(x−b)

(√
λν + F (b) ν

)
− 1

2
√
λ
e−
√
λ(x−b)

(√
λν − F (b) ν

)
. (2.7)

This function becomes an L2-eigenfunction ofH, if and only if F (b) ν = −
√
λ ν.

3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1.1 .
Let now −λ1 be the ground state energy of the operator H with multiplicity κ1 ≤
N , let M1(x) be a fundamental system of solutions corresponding the eigenvalue
−λ1 and F1 = M1

′M−1
1 . We consider the operator

Q1 =
d

dx
⊗ I− F1(x)

and its adjoint

Q∗1 = − d

dx
⊗ I− F1(x)

inL2(R+,CN). Using Riccati’s equation (2.4) we obtain the following factorization
of the original operatorH

Q∗1Q1 = − d2

dx2
⊗ I + F1

′(x) + (F1(x))2 = H + λ1I.

Consider

Q1Q
∗
1 = − d2

dx2
⊗ I− V (x)− 2F1

′(x) + λ1I = H− 2F1
′(x) + λ1I.

Note that non-zero eigenvalues of Q∗1Q1 and Q1Q
∗
1 are same. However, while the

vector-eigenfunctions ϕ defined in (2.7) satisfy the boundary conditions

ϕ′(0)−Sϕ(0) = 0,

the vector-eigenfunctions of Q1Q
∗
1 satisfy the Dirichlet boundary condition at 0.

Indeed, if ϕ is a vector-eigenfunction of Q∗1Q1 satisfying ϕ′(0) −Sϕ(0) = 0 then
ψ = Q1ϕ is an eigenfunction of Q1Q

∗
1 and

ψ(0) = (Q1ϕ)(0) = ϕ′(0)− F1(0)ϕ(0) = 0.

Next, let us verify that the kernel kerQ∗1 is trivial, and consequently, 0 6∈
spec(Q1Q

∗
1). Indeed, assume for a moment that there is a non-trivial vector-function

ψ satisfying the Dirichlet boundary conditions at x = 0 and such that

Q1Q
∗
1ψ = 0. (3.1)

Then
(Q1Q

∗
1ψ, ψ) = ‖Q∗1ψ‖ = 0.
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However, Q∗1φ = 0 if and only if ψ′(x) = F (x)ψ(x) for all x ∈ R+ and, in
particular, ψ′(0) = F (0)ψ(0) = 0. Since ψ satisfies the equation (3.1) together
with ψ(0) = ψ′(0) = 0 we obtain that ψ ≡ 0.

Hence, the negative spectra of H and H − 2F1
′ coincide except for the spectral

value of the ground state energy, which does not belong to the spectrum ofH−2F1
′

anymore. We emphasize that even in the case of a κ1-fold degenerate ground state
−λ1 = −λ2 = · · · = −λκ1 of H, this commutation method removes all these
eigenvalues −λ1,−λ2, . . . ,−λκ1 .

Therefore the spectral problem for the operator (1.3) is reduced to the operator in
L2(R+)

H1ψ =
(
− d2

dx2
⊗ I − V (x)− 2F1

′
)
ψ = −λψ ψ(0) = 0.

Let us extend V by zero to the negative semi-axis. Using then the variational prin-
ciple we can apply the well-known Lieb-Thirring inequalities for 1D Schrödinger
operators with matrix-valued potentials (see [LW1], [BL]) and obtain

∞∑
n=2

κn λ3/2n ≤ 3

16

∫ ∞
0

Tr (V (x) + 2F1
′(x))2 dx

=
3

16

∫ ∞
0

Tr
(
V 2(x) + 4F ′1(x)

(
V (x) + F ′1(x)

))
dx.

Using the Riccati equation (2.4), the fact that the matrix limx→∞ F (x) has the eigen-
value −

√
λ1 of multiplicity κ1 and the eigenvalue

√
λ1 of multiplicity N − κ1 and

that F (0) = S, we finally arrive at

∞∑
n=2

κn λ3/2n ≤ 3

16

∫ ∞
0

Tr
(
V 2(x) + 4F ′1(x)(λ1 − F 2

1 (x)
)
dx

=
3

16

∫ ∞
0

TrV 2(x) dx+
3

4
λ1TrF1(x)

∣∣∣∞
0
− 1

4
TrF 3

1 (x)
∣∣∣∞
0

=
3

16

∫ ∞
0

TrV 2(x) dx+
3

4
λ1

(
− κ1

√
λ1 + (N − κ1)

√
λ1 − TrS

)
− 1

4

(
− κ1λ

3/2
1 + (N − κ1)λ

3/2
1 − TrS3

)
=

3

16

∫ ∞
0

TrV 2(x) dx− 1

2
(2κ1 −N)λ

3/2
1 −

3

4
λ1 TrS +

1

4
TrS3.

Finally using standard arguments we can consider the closure of the latter inequality
from the class of compactly supported potentials to the class L2(R+,CN × CN).
The proof of Theorem 1.1 is complete.

Proof of Corollary 1.2.
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Let us denote by λn = λn(V ) the eigenvalues of the Schrödinger operator with the
potential V . Then by using the variational principle and the inequality (1.5) we find
that for any γ > 3/2

B(γ − 3/2, 2)
3

4
TrSλ

γ−1/2
1 (V )

+ B(γ − 3/2, 5/2)
(1

2
(2κ1 −N)λγ1(V ) +

∞∑
n=2

κnλγn(V )
)

=

∫ ∞
0

(3

4
TrS (λ1(V )− t)+

+
1

2
(2κ1 −N)(λ1(V )− t)3/2+ +

∞∑
n=2

κn(λn(V )− t)3/2+

)
tγ−5/2 dt

≤
∫ ∞
0

(3

4
TrS (λ1((V − t)+)

+
1

2
(2κ1 −N)(λ1((V − t)+)3/2 +

∞∑
n=2

κn(λn((V − t)+)3/2
)
tγ−5/2 dt

≤ 3

16

∫ ∞
0

∫ ∞
0

Tr (V (x)− t)2+ tγ−5/2 dtdx

= B(γ − 3/2, 3)
3

16

∫ ∞
0

TrV γ+1/2(x) dx.

Dividing by B(γ − 3/2, 5/2) and noting that

3

16

B(γ − 3/2, 3)

B(γ − 3/2, 5/2)
= Lclγ+1/2,1

we complete the proof.

Proof of Theorem 1.6.
Let {µj(x′)} be eigenvalues of the Neumann problem for the Schrödinger operator

− d2

dx21
ψ(x1, x

′)− V (x1, x
′)ψ(x1, x

′) = −µ(x′)ψ(x1, x
′)

considering x′ as a parameter.
For any γ ≥ 3/2 and d ≥ 1 let us apply the operator version of the Lieb-Thirring
inequality (see [LW1]) with respect to Rd−1 and obtain

∑
n

λγn ≤ Lclγ,d−1

∫
Rd−1

∑
j

µ
γ+(d−1)/2
j (x′) dx′.
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By using (1.6) we find∑
j

µ
γ+(d−1)/2
j (x′) ≤ 1

2
µ
γ+(d−1)/2
1 (x′) + Lclγ+(d−1)/2,1

∫ ∞
0

V γ+d/2(x1, x
′) dx1

≤ 2Lclγ+(d−1)/2,1

∫ ∞
0

V γ+d/2(x1, x
′) dx1.

Noticing that

Lclγ,d−1L
cl
γ+(d−1)/2,1 = Lclγ,d

we obtain the proof.
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