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1. Introduction

Solvability conditions for linear and nonlinear elliptic problems with non Fred-
holm operators were studied extensively in recent years. Most of the articles on
the subject concern a single equation of the second order (see [12], [13], [14],
[17], [18], [20]). One of the few exceptions was the linearized Cahn-Hilliard prob-
lem studied in [16]. This equation of the fourth order can be trivially related to
the system of two nonhomogeneous equations of second order.The first equation
in it would be the standard Poisson equation having an explicit solution decaying
fast enough at infinity under the appropriate assumptions onits right side . The
second equation in the system would be the nonhomogeneous Schrödinger equa-
tion. In [19] we exploit the similar ideas to obtain the solvability conditions for
the linearized Cahn-Hilliard equation of the sixth order involving the bi-Laplacian
operator. Work [21] deals with establishing the existence of stationary solutions
for certain systems of nonlinear integro-differential equations involving operators
without Fredholm property. In [23] we seek the standing wavesolutions of certain



systems of nonlinear, nonlocal equations using the fixed point technique for the map
involving non Fredholm operators.

One of the important questions about equations with non-Fredholm operators
concerns their solvability. We will study it in the following setting. Letfn be a
sequence of functions in the image of the operatorA, such thatfn → f in L2(Rd)
asn → ∞. Denote byun a sequence of functions fromH2(Rd) such that

Aun = fn, n ∈ N.

Since the operatorA does not satisfy the Fredholm property, then the sequenceun

may not be convergent. We will call a sequenceun such thatAun → f a solution in
the sense of sequences of equationAu = f (see [10]). If this sequence converges to
a functionu0 in the norm of the space, thenu0 is a solution of this equation. Solution
in the sense of sequences is equivalent in this sense to the usual solution. However,
in the case of non-Fredholm operators this convergence may not hold or it can occur
in some weaker sense. In this case, solution in the sense of sequences may not imply
the existence of the usual solution. In this work we will find sufficient conditions
of equivalence of solutions in the sense of sequences and theusual solutions. In
the other words, the conditions on sequencesfn under which the corresponding
sequencesun are strongly convergent.

In the first part of the present article we consider the systemof two Schrödinger
type equations, solvability conditions for which were obtained in [15], namely

{

∆u+ a(x)u+ αu+ b(x)v = f(x),

∆v + c(x)v + βv = g(x),
(1.1)

whereα, β ≥ 0 are constants,x ∈ R3, the potential functionsa(x) andc(x) are
considered to be shallow and short-range and satisfy the conditions analogous to
those used in works [12], [13], [14].

Assumption 1.The potential functiona(x) : R3 → R satisfies the estimate

|a(x)| ≤ C

1 + |x|3.5+ε

with someε > 0 andx = (x1, x2, x3) ∈ R3 a.e. such that
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and the requirements forc(x) here are exactly the same as fora(x).



HereC stands for a finite positive constant andcHLS is given on p.98 of [6] is
the constant in the Hardy-Littlewood-Sobolev inequality
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Here and further down the norm of a functionf1 ∈ Lp(R3), 1 ≤ p ≤ ∞ is desig-
nated as‖f1‖Lp(R3). We will be using

(f1(x), f2(x))L2(R3) :=

∫

R3

f1(x)f̄2(x)dx, (1.3)

with a slight abuse of notations when the functions involvedin this inner product
are not necessarily square integrable. For instance, iff1(x) ∈ L1(R3) andf2(x) is
bounded, like the functions involved in the orthogonality conditions of Theorems 4
and 8, then the integral in the right side of (1.3) still makessense. The sphere of
radiusr in the space of three dimensions centered at the origin will be denoted by
S3
r . For system (1.1) we write down the corresponding sequence of systems with

n ∈ N :
{

∆u+ a(x)u+ αu+ bn(x)v = fn(x),

∆v + c(x)v + βv = gn(x).
(1.4)

Let us make the appropriate assumptions on the right sides and the coefficients of
(1.4).

Assumption 2. Letn ∈ N, fn(x) : R
3 → R, fn(x) ∈ L2(R3) and |x|fn(x) ∈

L1(R3), such thatfn(x) → f(x) in L2(R3) and |x|fn(x) → |x|f(x) in L1(R3) as
n → ∞. The requirements forgn(x) andg(x) here are exactly the same ones as for
fn(x) andf(x).

Assumption 3. Letn ∈ N, bn(x) : R
3 → R, bn(x) ∈ L∞(R3) and |x|bn(x) ∈

L2(R3), such thatbn(x) → b(x) in L∞(R3) and |x|bn(x) → |x|b(x) in L2(R3) as
n → ∞.

By means of the decay of the potential functions at infinity stated explicitly in
Assumption 1, for the Schrödinger operators involved in the left sides of equations
of systems (1.1) and (1.4)

hα := −∆− a(x)− α and lβ := −∆− c(x)− β, α, β ≥ 0 (1.5)

onL2(R3), their essential spectra concide with the semi-axes[−α,∞) and[−β,∞)
respectively (see e.g. [4]), such thathα and lβ do not possess finite dimensional
isolated kernels. Therefore, the Fredholm alternative theorem fails to work for equa-
tions of systems (1.1) and (1.4). The operatorsh0 andl0 correspond to the case when
the constantsα andβ vanish.



Due to Assumption 1, the Schrödinger operatorshα andlβ defined in (1.5) are
self-adjoint and unitarily equivalent to−∆−α and−∆−β onL2(R3) respectively
via the wave operators (see [1], [5], [8], Lemma 2.3 of [12]).Their functions of
the continuous spectra satisfy

l0ϕk(x) = k2ϕk(x), k ∈ R
3, h0ηq(x) = q2ηq(x), q ∈ R

3, (1.6)

the Lippmann-Schwinger equations for the perturbed plane waves (see e.g. [7]
p.98)

ϕk(x) =
eikx

(2π)
3
2

+
1

4π

∫
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ei|k||x−y|

|x− y| (cϕk)(y)dy,

ηq(x) =
eiqx

(2π)
3
2

+
1

4π

∫

R3

ei|q||x−y|

|x− y| (aηq)(y)dy,

the orthogonality relations withk, q ∈ R3:

(ϕk(x), ϕq(x))L2(R3) = δ(k − q), (ηk(x), ηq(x))L2(R3) = δ(k − q) (1.7)

and form the complete systems inL2(R3). The functionsϕ0(x) andη0(x) corre-
spond to the case when the wave vectors are equal to zero. We will be using the
appropriate Sobolev space for vector functions equipped with the norm

‖(u1, u2)
T‖2H2(R3,R2) :=

2
∑

k=1

‖uk‖2H2(R3) =

2
∑

k=1

{‖uk‖2L2(R3) + ‖∆uk‖2L2(R3)}. (1.8)

Our first main result is as follows.

Theorem 4.Let Assumptions 1, 2 and 3 hold. Ifβ > 0, let

(gn(x), ϕk(x))L2(R3) = 0, k ∈ S3√
β

a.e. (1.9)

hold forn ∈ N. If β = 0, let

(gn(x), ϕ0(x))L2(R3) = 0, n ∈ N. (1.10)

Then the second equation in (1.4) admits a unique solutionv0,n(x) ∈ H2(R3).
Furthermore, ifα > 0, let

(fn(x)− bn(x)v0,n(x), ηq(x))L2(R3) = 0, q ∈ S3√
α a.e. (1.11)

hold forn ∈ N. If α = 0, let

(fn(x)− bn(x)v0,n(x), η0(x))L2(R3) = 0, n ∈ N. (1.12)

Then systems (1.4) and (1.1) possess unique solutions(u0,n, v0,n)
T ∈ H2(R3,R2)

and (u0, v0)
T ∈ H2(R3,R2) respectively, such that(u0,n, v0,n)

T → (u0, v0)
T in

H2(R3,R2) asn → ∞.



In the second part of the article we consider

ξk(x) =
eikx

(2π)
3
2

− 1

4π

∫

R3

ei|k||x−y|

|x− y| F (ξk(y), y)dy, k ∈ R
3, (1.13)

which is the generalized Lippmann-Schwinger equation. Itssolutions will satisfy

−∆ξk + F (ξk(x), x) = k2ξk(x), k ∈ R
3. (1.14)

Understanding the properties of solutions of equations of (1.13) type plays a crucial
role when studying problems of nonlinear optics (see e.g. [9]). Let us make the
following assumption on the term involved in the integral part of (1.13), which in
principal can be nonlinear.

Assumption 5.FunctionF (u, x) : C× R3 → C is such that

|F (u1, x)− F (u2, x)| ≤ µ(x)|u1 − u2| for any u1,2 ∈ C, x ∈ R
3

with the scalar functionµ(x) : R3 → R+ satisfying inequality (1.2) andF (0, x) =
0 for anyx ∈ R3.

The following functional space appeared actively in the studies of the spectral
properties of non Fredholm operators (see e.g. [18])

W̃ 2,∞(R3) := {w(x) : R3 → C | w,∇w,∆w ∈ L∞(R3)}. (1.15)

We will be using (1.15) in the present work as well. Note that (1.15) differs from
the standardW 2,∞(R3) space since here we do not require all the partial derivatives
up to the second order of a function to be bounded. Our second main result is as
follows.

Theorem 6. Let Assumption 5 hold. Then for eachk ∈ R3 equation (1.13)
admits a unique nontrivial solutionξk(x) ∈ W̃ 2,∞(R3).

The final part of the article is devoted to the studies of the diffusion equation
with convection, solvability conditions for which were established in [18]. Let us
consider

∆u+ v.∇u+ c(x)u = f(x), x ∈ R
3, (1.16)

wherep(x) is the liquid pressure and the velocity fieldv(x) = −∇p(x).

Assumption 7. The liquid pressure is a functionp(x) : R3 → R, such that
p(x) ∈ W 2,∞(R3).

Similarly to the first part of the article, we write down the sequence of equations
corresponding to (1.16) as

∆u+ v.∇u+ c(x)u = fn(x), x ∈ R
3, n ∈ N. (1.17)



The homogeneous equation formally adjoint for both (1.16) and (1.17) will be

∆w − div(vw) + c(x)w = 0. (1.18)

Analogously to [18], let us introduce the change of variables for both equations
(1.16) and (1.17) as

u(x) := z(x)e
p(x)
2 , (1.19)

which will relate these equations to

Haz = G and Haz = Gn (1.20)

respectively. Here the right sides

G(x) := −f(x)e−
p(x)
2 and Gn(x) := −fn(x)e

− p(x)
2 .

According to [18], the Schrödinger operator involved in the left sides of equations
(1.20) is given byHa := −∆+W0(x)− a with a shallow and short-range potential

W0(x) :=
(∇p)2

4
− ∆p

2
− c(x) + a and a constanta ≥ 0. Similarly to the first part

of the article, due to the assumptions on the scalar potential, the functions of the
continuous spectrum satisfy

(−∆+W0(x))γk(x) = k2γk(x), k ∈ R
3,

the Lippmann-Schwinger integral equation

γk(x) =
eikx

(2π)
3
2

− 1

4π

∫

R3

ei|k||x−y|

|x− y| (W0γk)(y)dy, k ∈ R
3,

the orthogonality relations analogous to (1.7) and form thecomplete system in
L2(R3). Our final main result is as follows.

Theorem 8. Let Assumption 7 hold,n ∈ N, functionsfn(x) satisfy Assump-
tion 2, the potentialW0(x) satisfies Assumption 1 and for an arbitrary solution of
problem (1.18)w(x) ∈ W̃ 2,∞(R3) the orthogonality conditions

(fn(x), w(x))L2(R3) = 0 (1.21)

hold. Then equations (1.17) and (1.16) admit unique solutionsun(x) ∈ H2(R3)
andu(x) ∈ H2(R3) respectively, such thatun(x) → u(x) in H2(R3) asn → ∞.

Understanding the spectral properties of non Fredholm operators is very im-
portant, for instance when establishing the existence in certain functional spaces
of stationary and travelling wave solutions of reaction-diffusion equations (see e.g.
[2], [3], [11], [18]).



2. Solvability in the sense of sequences for a system of equations

Proof of Theorem 4.By means of Theorem 4 of [22] via orthogonality rela-
tions (1.9) and (1.10) the second equations in systems (1.4)and (1.1) admit unique
solutionsv0,n(x) ∈ H2(R3), n ∈ N andv0(x) ∈ H2(R3) respectively, such that
v0,n(x) → v0(x) in H2(R3) asn → ∞. Hence we can rewrite the first equation in
system (1.4) as

∆u+ a(x)u+ αu = fn(x)− bn(x)v0,n(x), n ∈ N (2.22)

and the first equation in system (1.1) as

∆u+ a(x)u+ αu = f(x)− b(x)v0(x). (2.23)

Note that the right side of (2.22) belongs toL2(R3) due to Assumptions 2 and 3 and
the fact thatv0,n(x) ∈ L2(R3). Let us estimate the norm from above as

‖bnv0,n − bv0‖L2(R3) ≤ ‖(bn − b)v0,n‖L2(R3) + ‖b(v0,n − v0)‖L2(R3). (2.24)

Clearly, for the first term in the right side of (2.24) we have the upper bound

‖(bn − b)v0,n‖L2(R3) ≤ ‖bn − b‖L∞(R3)‖v0,n‖L2(R3) → 0, n → ∞

due to Assumption 3 and the fact thatv0,n(x) → v0(x) in L2(R3). For the second
term in the right side of (2.24) we have the trivial inequality

‖b(v0,n − v0)‖L2(R3) ≤ ‖b‖L∞(R3)‖v0,n − v0‖L2(R3) → 0, n → ∞

using Assumption 3 as well. Therefore, for the norm of the difference of the right
sides of equations (2.22) and (2.23) we have the bound

‖fn − bnv0,n − [f − bv0]‖L2(R3) ≤ ‖fn − f‖L2(R3) + ‖bv0 − bnv0,n‖L2(R3) → 0

asn → ∞ via Assumption 2 and the norm estimates obtained above. Hence

fn(x)− bn(x)v0,n(x) → f(x)− b(x)v0(x)

in L2(R3) asn → ∞. By means of the Schwarz inequality along with Assumptions
2 and 3 forv0,n(x) ∈ L2(R3) we arrive at

‖|x|(fn − bnv0,n)‖L1(R3) ≤ ‖|x|fn‖L1(R3) + ‖|x|bn‖L2(R3)‖v0,n‖L2(R3) < ∞,

such that|x|(fn(x)− bn(x)v0,n(x)) ∈ L1(R3). We estimate the norm of the differ-
ence as

‖|x|bnv0,n − |x|bv0‖L1(R3) ≤ ‖|x|(bn − b)v0,n‖L1(R3) + ‖|x|b(v0,n − v0)‖L1(R3).



Via the Schwarz inequality along with Assumption 3 forv0,n(x) ∈ L2(R3) and
v0,n(x) → v0(x) in L2(R3) asn → ∞ we obtain

‖|x|(bn − b)v0,n‖L1(R3) ≤ ‖|x|bn − |x|b‖L2(R3)‖v0,n‖L2(R3) → 0, n → ∞,

‖|x|b(v0,n − v0)‖L1(R3) ≤ ‖|x|b‖L2(R3)‖v0,n − v0‖L2(R3) → 0, n → ∞,

such that|x|bn(x)v0,n(x) → |x|b(x)v0(x) in L1(R3) asn → ∞. Evidently,

‖|x|(fn − bnv0,n)− |x|(f − bv0)‖L1(R3) ≤ ‖|x|fn − |x|f‖L1(R3)+

+‖|x|bv0 − |x|bnv0,n‖L1(R3) → 0

asn → ∞ due to Assumption 2 and the estimate above. Thus,

|x|(fn(x)− bn(x)v0,n(x)) → |x|(f(x)− b(x)v0(x))

in L1(R3) asn → ∞ and orthogonality relations (1.11) and (1.12) hold according to
our assumption. Theorem 4 of [22] implies that equations (2.22) and (2.23) admit
unique solutionsu0,n(x) ∈ H2(R3), n ∈ N andu0(x) ∈ H2(R3) respectively, such
thatu0,n(x) → u0(x) in H2(R3) asn → ∞. Norm definition (1.8) implies that
(u0,n, v0,n)

T → (u0, v0)
T in H2(R3,R2) asn → ∞.

3. The existence of solutions for the generalized Lippmann-Schwinger equation

Proof of Theorem 6.Obviously, by means of Assumption 5 we have

|F (u, x)| ≤ µ(x)|u|, for any u ∈ C, x ∈ R
3. (3.25)

In order to study the existence of solutions of (1.13), we introduce the auxiliary
problem

u(x) =
eikx

(2π)
3
2

− 1

4π

∫

R3

ei|k||x−y|

|x− y| F (v(y), y)dy, k ∈ R
3. (3.26)

Let us choose an arbitraryv(x) ∈ L∞(R3). Then via (3.25) for the right side of
(3.26) we have the estimate from above in the absolute value as

1

(2π)
3
2

+
1

4π
‖v‖L∞(R3)supx∈R3

∫

R3

µ(y)

|x− y|dy < ∞,

which is guaranteed by Lemma 2.1 of [12] forµ(x) satisfying inequality (1.2)
due to Assumption 5. Therefore, the left side of equation (3.26) is determined
uniquely andu(x) ∈ L∞(R3). Hence, the auxiliary problem (3.26) defines the map
T : L∞(R3) → L∞(R3) with u(x) = Tv(x).



Let us choose arbitrarilyv1,2(x) ∈ L∞(R3). Thenu1,2(x) := Tv1,2(x) ∈
L∞(R3), such that

u1(x)− u2(x) = − 1

4π

∫

R3

ei|k||x−y|

|x− y| {F (v1(y), y)− F (v2(y), y)}dy.

Assumption 5 yields

|u1(x)− u2(x)| ≤
1

4π

∫

R3

µ(y)

|x− y| |v1(y)− v2(y)|dy.

Therefore,

‖Tv1 − Tv2‖L∞(R3) ≤
1

4π
supx∈R3

∫

R3

µ(y)

|x− y|dy‖v1 − v2‖L∞(R3), (3.27)

whereµ(x) satisfies inequality (1.2) via Assumption 5. Lemma 2.1 of [12] gives
us that the constant involved in the right side of estimate (3.27)

1

4π
supx∈R3

∫

R3

µ(y)

|x− y|dy < 1, (3.28)

such that the mapT : L∞(R3) → L∞(R3) is a strict contraction and therefore, ad-
mits a unique fixed pointξk(x) ∈ L∞(R3), which is the unique solution inL∞(R3)
of problem (1.13) for a givenk ∈ R3. Note that this solution is nontrivial since via
Assumption 5 for anyx ∈ R3 we haveF (0, x) = 0. Inequality (3.25) yields

|F (ξk(x), x)| ≤ µ(x)|ξk(x)|, (3.29)

whereµ(x) ∈ L∞(R3) since it has to satisfy inequality (1.2) according to our as-
sumption. Thus,F (ξk(x), x) ∈ L∞(R3). From equation (1.14) we easily deduce
that∆ξk(x) ∈ L∞(R3) as well. A trivial calculation using (1.13) yields that∇ξk(x)
equals to

eikx

(2π)
3
2

ik − 1

4π

∫

R3

[

ei|k||x−y| x− y

|x− y|2 i|k| − ei|k||x−y| x− y

|x− y|3
]

F (ξk(y), y)dy.

By means of (3.29) along with (3.28) we have
∫

R3

|F (ξk(y), y)|
|x− y| dy ≤ ‖ξk‖L∞(R3)supx∈R3

∫

R3

µ(y)

|x− y|dy < ∞.

Evidently,

supx∈R3

∫

R3

µ(y)

|x− y|2dy < ∞,



which is guaranteed by Lemma A3 of [18] withµ(x) ∈ L∞(R3) ∩ L
4
3 (R3) due to

Assumption 5. Then (3.29) yields
∫

R3

|F (ξk(y), y)|
|x− y|2 dy ≤ ‖ξk‖L∞(R3)supx∈R3

∫

R3

µ(y)

|x− y|2dy < ∞

and therefore,∇ξk(x) ∈ L∞(R3). Thus,ξk(x) ∈ W̃ 2,∞(R3), which completes the
proof of the theorem.

4. Solvability in the sense of sequences for the diffusion equation with convection

Proof of Theorem 8.Under the assumptions of Theorem 8 by means of Theorem
3 of [18] equation (1.17) admits a unique solutionun(x) ∈ H2(R3), n ∈ N.
Assumption 2 along with part a) of Lemma 7 of [22] under orthogonality conditions
(1.21) imply

(f(x), w(x))L2(R3) = 0.

Via Theorem 3 of [18], equation (1.16) has a unique solutionu(x) ∈ H2(R3).
Clearly,Gn(x) ∈ L2(R3), n ∈ N as a product of two functions one of which is
square integrable and another is bounded by Assumption 7. For the norm of the
difference of the right sides of equations (1.20) we have thetrivial equality

‖Gn −G‖L2(R3) =

√

∫

R3

|fn(x)− f(x)|2e−p(x)dx.

Its right side can be bounded above due to Assumption 7 by

C‖fn(x)− f(x)‖L2(R3) → 0

asn → ∞ by Assumption 2. Here and further downC will stand for a finite positive
constant. HenceGn(x) → G(x) in L2(R3) asn → ∞. By applying Assumptions 2
and 7 we easily derive|x|Gn(x) ∈ L1(R3), n ∈ N and

‖|x|Gn(x)− |x|G(x)‖L1(R3) =

∫

R3

|x||fn(x)− f(x)|e− p(x)
2 dx ≤

≤ C‖|x|fn(x)− |x|f(x)‖L1(R3) → 0

asn → ∞, such that|x|Gn(x) → |x|G(x) in L1(R3) asn → ∞. Let us define

wk(x) := e−
p(x)
2 γk(x)

with k ∈ S3√
a

a.e. if the constanta > 0 andk = 0 if a = 0. As discussed in [18],

functionswk(x) ∈ W̃ 2,∞(R3) and are solutions of problem (1.18). Therefore, by
means of (1.21)

(fn(x), wk(x))L2(R3) = 0, n ∈ N,



which implies

(Gn(x), γk(x))L2(R3) = 0, k ∈ S3√
a a.e., n ∈ N

whena > 0 and
(Gn(x), γ0(x))L2(R3) = 0, n ∈ N

when a = 0. Then via Theorem 4 of [22], the first and the second equations
in (1.20) admit unique solutionsz(x) ∈ H2(R3) and zn(x) ∈ H2(R3), n ∈ N

respectively andzn(x) → z(x) in H2(R3) asn → ∞. Let us use (1.19) along with
Assumption 7 to estimate

‖un − u‖L2(R3) =

√

∫

R3

|zn(x)− z(x)|2ep(x)dx ≤ C‖zn − z‖L2(R3) → 0

asn → ∞. From (1.19) we easily deduce

∆un = e
p

2∆zn + e
p

2∇zn.∇p+ e
p

2
zn

2
∆p+ e

p

2
zn

4
(∇p)2, (2.30)

∆u = e
p

2∆z + e
p

2∇z.∇p + e
p

2
z

2
∆p+ e

p

2
z

4
(∇p)2. (2.31)

The estimates below will be based on Assumption 7.

‖e p

2∆zn − e
p

2∆z‖L2(R3) =

√

∫

R3

|∆zn(x)−∆z(x)|2ep(x)dx ≤

≤ C‖∆zn −∆z‖L2(R3) → 0

asn → ∞. Since

|e p

2∇zn.∇p− e
p

2∇z.∇p| ≤ C|∇zn −∇z|,

using the Schwarz inequality we obtain

‖e p

2∇zn.∇p− e
p

2∇z.∇p‖L2(R3) ≤ C‖∇zn −∇z‖L2(R3) ≤

≤ C

√

‖∆zn −∆z‖L2(R3)‖zn − z‖L2(R3) → 0

asn → ∞. Obviously,

|e p

2
zn

2
∆p− e

p

2
z

2
∆p| ≤ C|zn − z|,

such that
‖e p

2
zn

2
∆p− e

p

2
z

2
∆p‖L2(R3) ≤ C‖zn − z‖L2(R3) → 0



asn → ∞. Finally,

|e p

2
zn

4
(∇p)2 − e

p

2
z

4
(∇p)2| ≤ C|zn − z|,

which yields

‖e p

2
zn

4
(∇p)2 − e

p

2
z

4
(∇p)2‖L2(R3) ≤ C‖zn − z‖L2(R3) → 0

asn → ∞. Identities (2.30) and (2.31) along with the estimates obtained above
give us∆un → ∆u in L2(R3) asn → ∞. Thus, we arrive atun(x) → u(x) in
H2(R3) asn → ∞.
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[11] V. Volpert, B. Kazmierczak, M. Massot, Z.Peradzynski,Solvability condi-
tions for elliptic problems with non-Fredholm operators, Appl.Math.,29, No.
2 (2002), 219–238.

[12] V. Vougalter, V. Volpert, Solvability conditions for some non Fredholm oper-
ators, Proc. Edinb. Math. Soc. (2),54, No. 1 (2011), 249–271.

[13] V. Vougalter, V. Volpert.On the solvability conditions for some non Fredholm
operators, Int. J. Pure Appl. Math.,60, No. 2 (2010), 169–191.

[14] V. Vougalter, V. Volpert.Solvability relations for some non Fredholm opera-
tors, Int. Electron. J. Pure Appl. Math.,2, No. 1 (2010), 75–83.

[15] V. Vougalter, V. Volpert.Solvability conditions for some systems with non
Fredholm operators, Int. Electron. J. Pure Appl. Math.,2, No. 3 (2010), 183–
187.

[16] V. Volpert, V. Vougalter.On the solvability conditions for a linearized Cahn-
Hilliard equation, Rend. Istit. Mat. Univ. Trieste,43, (2011), 1–9.

[17] V. Vougalter, V. Volpert.On the existence of stationary solutions for some non-
Fredholm integro-differential equations, Doc. Math.,16, (2011), 561–580.

[18] V. Vougalter, V. Volpert.On the solvability conditions for the diffusion equa-
tion with convection terms, Commun. Pure Appl. Anal.,11, No. 1 (2012),
365–373.

[19] V. Vougalter, V. Volpert.Solvability conditions for a linearized Cahn-Hilliard
equation of sixth order, Math. Model. Nat. Phenom.,7, No. 2 (2012), 146–
154.

[20] V. Vougalter, V. Volpert.Solvability conditions for some linear and nonlinear
non-Fredholm elliptic problems, Anal. Math. Phys.,2, No.4 (2012), 473–496.

[21] V. Volpert, V. Vougalter.On the existence of stationary solutions for some sys-
tems of non-Fredholm integro-differential equations, Disc., Nonlin. and Com-
plex.,1, No.2 (2012), 85–98.

[22] V. Volpert, V. Vougalter.Solvability in the sense of sequences for some non
Fredholm operators, Preprint (2013).

[23] V. Vougalter. Solvability conditions for some systems of nonlinear non-
Fredholm elliptic equations, Disc., Nonlin. and Complex.,2, No.2 (2013),
1–6.


