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1. Introduction

Solvability conditions for linear and nonlinear ellipticgiblems with non Fred-
holm operators were studied extensively in recent yearsstMbthe articles on
the subject concern a single equation of the second order [$2], [13], [14],
[17], [18], [20]). One of the few exceptions was the lineadZZahn-Hilliard prob-
lem studied in [16]. This equation of the fourth order can tédily related to
the system of two nonhomogeneous equations of second drberfirst equation
in it would be the standard Poisson equation having an ekpltution decaying
fast enough at infinity under the appropriate assumptiongsoright side . The
second equation in the system would be the nonhomogenedwddiwer equa-
tion. In [19] we exploit the similar ideas to obtain the sdiifgly conditions for
the linearized Cahn-Hilliard equation of the sixth orderlving the bi-Laplacian
operator. Work [21] deals with establishing the existentcstationary solutions
for certain systems of nonlinear integro-differential atjons involving operators
without Fredholm property. In [23] we seek the standing wes@tions of certain



systems of nonlinear, nonlocal equations using the fixegtpechnique for the map
involving non Fredholm operators.

One of the important questions about equations with nodein operators
concerns their solvability. We will study it in the followgnsetting. Letf, be a
sequence of functions in the image of the operatpsuch thatf,, — f in L*(R%)
asn — oo. Denote byu,, a sequence of functions frof?(R¢) such that

Au, = fn, n € N.

Since the operatad does not satisfy the Fredholm property, then the sequence
may not be convergent. We will call a sequengesuch thatdu,, — f a solution in
the sense of sequences of equation= f (see [10]). If this sequence converges to
a functionug in the norm of the space, theg is a solution of this equation. Solution
in the sense of sequences is equivalent in this sense toulésmution. However,
in the case of non-Fredholm operators this convergence wotayoihd or it can occur
in some weaker sense. In this case, solution in the sensquéisees may notimply
the existence of the usual solution. In this work we will findfgient conditions
of equivalence of solutions in the sense of sequences andistied solutions. In
the other words, the conditions on sequengesinder which the corresponding
sequences,, are strongly convergent.
In the first part of the present article we consider the systetwo Schrodinger

type equations, solvability conditions for which were obéal in [15], namely
Au+ a(x)u 4+ au+ b(x)v = f(x), (1.1)

Av + c(z)v + v = g(x), '

wherea, 3 > 0 are constantsy € R3, the potential functiona(z) andc(x) are
considered to be shallow and short-range and satisfy thdittmms analogous to
those used in works [12], [13], [14].

Assumption 1. The potential function(z) : R?* — R satisfies the estimate

C

alz)| < ———==—
olo)] < e

with somes > 0 andx = (1, 72, z3) € R? a.e. such that
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and the requirements faf(x) here are exactly the same as fdr).



HereC' stands for a finite positive constant angl, s is given on p.98 of [6] is
the constant in the Hardy-Littlewood-Sobolev inequality

3 3
’/RS o |x— |2 d:cdy’ <CHLSHfl”L 3 oy’ f1 € L2(R?).

Here and further down the norm of a functigne LP(R3), 1 < p < oo is desig-
nated ag| f1.»rs). We will be using

(), @)z = [ ila) o) (13)

with a slight abuse of notations when the functions involirethis inner product
are not necessarily square integrable. For instangg(if) € L'(R?) and fy(z) is
bounded, like the functions involved in the orthogonalityditions of Theorems 4
and 8, then the integral in the right side of (1.3) still makesse. The sphere of
radiusr in the space of three dimensions centered at the origin willénoted by
S3. For system (1.1) we write down the corresponding sequehsgstems with
neN:

{Au+a(:c)u+au+bn(:c)v = fu(z), (1.4)

Av + c(z)v + Pv = g, (2).

Let us make the appropriate assumptions on the right sidish@ncoefficients of
(1.4).

Assumption 2. Letn € N, f,(z) : R® - R, f,(z) € L*(R?) and|z|f,(x) €
LY(R?), such thatf, () — f(z)in L*(R?) and |z|f,(z) — |z|f(z) in L'(R?) as
n — oo. The requirements fay,, () andg(x) here are exactly the same ones as for

fo(z) and f(z).

Assumption 3.Letn € N, b,(z) : R* = R, b,(z) € L*(R?) and|z|b,(z) €
L*(R?), such that, (x) — b(z) in L=(R?) and |z|b,(z) — |z|b(x) in L*(R?) as
n — oQ.

By means of the decay of the potential functions at infinigtes explicitly in
Assumption 1, for the Schrodinger operators involved mldft sides of equations
of systems (1.1) and (1.4)

he =—A—a(x)—a and lg:=—-A—c(x)—p, a,>0 (1.5)

on L?(R?), their essential spectra concide with the semi-gxes co) and[— 3, )
respectively (see e.g. [4]), such that andl; do not possess finite dimensional
isolated kernels. Therefore, the Fredholm alternativerira fails to work for equa-
tions of systems (1.1) and (1.4). The operatgrand, correspond to the case when
the constantsa and; vanish.



Due to Assumption 1, the Schrodinger operatarsand/z defined in (1.5) are
self-adjoint and unitarily equivalent toA — o and—A — 3 on L?(R?) respectively
via the wave operators (see [1], [5], [8], Lemma 2.3 of [1d]heir functions of
the continuous spectra satisfy

lO(pk(x) - kQ@k($)a ke Rgv hOT/q(x) - Qan(x)a qc Rgv (16)
the Lippmann-Schwinger equations for the perturbed plaaeew (see e.g. [7]

p.98)
eilm 1 / 6i\k||a:—y|
x) = s+— | —(c dy,
or(z) nF an Je T (con) (y)dy

(@) elar 1 / ei\qu—y\( Yor
x)= 5t — T\ )
7761 (27_(_)5 47'(' R3 ‘SC—’y| 7761 y y
the orthogonality relations with, ¢ € R3:

(Pr(@), pg(2))r2rey = 6(k — @), (m(x),mg(2))r2msy = 6(k —¢q)  (1.7)

and form the complete systems ifi(R?). The functionsp,(x) andn,(x) corre-
spond to the case when the wave vectors are equal to zero. Migewising the
appropriate Sobolev space for vector functions equippdl thve norm

2 2
1, u2) (o ey = D Nkl Freeey = D {llunllFaqesy + [ Aue] o) - (1.8)
k=1 k=1

Our first main result is as follows.

Theorem 4.Let Assumptions 1, 2 and 3 hold.Af> 0, let

(gn(2), r(®)) 2@y =0, k€ Sf/g a.e. (1.9)
hold forn € N. If 3 =0, let
(gn(), 00())2m3) =0, n€N. (1.10)

Then the second equation in (1.4) admits a unique solutigriz) € H?(R?).
Furthermore, ifa > 0, let

(fu(z) = bp(z)vo (), ng(%)) r2msy =0, ¢ € S?/a a.e. (1.112)
hold forn € N. If « = 0, let
(fal(x) = by ()vom (), m0()) 23y = 0, n € N. (1.12)

Then systems (1.4) and (1.1) possess unique solutiensvy.,)’ € H?*(R? R?)
and (ug,v9)T € H?*(R3 R?) respectively, such thdtug ., vo.,)" — (ug,ve)” in
H?*(R3,R?*) asn — oo.



In the second part of the article we consider

ezkx 1 ei|kafy\
= - — F dy, keR3 1.13
6o = oy e [ o PE W, ke®, @19

which is the generalized Lippmann-Schwinger equatiorsdtstions will satisfy
—Ag, + F(&k(x), ) = k& (x), keR’. (1.14)

Understanding the properties of solutions of equation& df3) type plays a crucial
role when studying problems of nonlinear optics (see e.d). [9et us make the
following assumption on the term involved in the integraitpz (1.13), which in
principal can be nonlinear.

Assumption 5. FunctionF'(u, z) : C x R®* — C is such that
|F(uy, ) — F(ug, )| < p(x)|us —ug| for anyuis € C, z € R?

with the scalar function(z) : R? — R* satisfying inequality (1.2) and'(0, z) =
0 for anyz € R3.

The following functional space appeared actively in thel&si of the spectral
properties of non Fredholm operators (see e.g. [18])

W22 (R3) = {w(z) : R®* = C | w, Vw, Aw € L=(R?)}. (1.15)

We will be using (1.15) in the present work as well. Note tHal$) differs from
the standardl’>>(IR3) space since here we do not require all the partial derivative
up to the second order of a function to be bounded. Our secamdl result is as
follows.

Theorem 6. Let Assumption 5 hold. Then for eathe R* equation (1.13)
admits a unique nontrivial solutiof),(z) € W2 (R?).

The final part of the article is devoted to the studies of tHausion equation
with convection, solvability conditions for which were aslished in [18]. Let us
consider

Au+v.Vu+c(z)u = f(r), x€R’ (1.16)

wherep(z) is the liquid pressure and the velocity fieldr) = —Vp(z).

Assumption 7. The liquid pressure is a functiop(z) : R* — R, such that
p(z) € WH=(RR3).

Similarly to the first part of the article, we write down theysence of equations
corresponding to (1.16) as

Au+v.Vu+c(z)u = f.(z), z€R) neN. (1.17)



The homogeneous equation formally adjoint for both (1.18) @.17) will be
Aw — div(vw) + ¢(z)w = 0. (1.18)

Analogously to [18], let us introduce the change of varialdtar both equations
(1.16) and (1.17) as

p(z)

u(z) = z(x)e 2, (1.19)

which will relate these equations to

H,>=G and H,z =G, (1.20)

respectively. Here the right sides

p(x) p(x)

and Gp(z) = —fo(x)e 2.

According to [18], the Schrodinger operator involved ie thft sides of equations
(1.20) is given byH,, := —A + Wy (x) — a with a shallow and short-range potential

2 A
Woy(x) == @ - 7p — ¢(x) + a and a constant > 0. Similarly to the first part

of the article, due to the assumptions on the scalar potettimfunctions of the
continuous spectrum satisfy

(—A + Wo(@))m(x) = B p(z), kR,
the Lippmann-Schwinger integral equation

eikx 1 ei|ka—y\

(27) (Wove)(y)dy, k€ R,

() =

[SI[oY

4r R3 |37_y‘

the orthogonality relations analogous to (1.7) and form dbmplete system in
L?(R3). Our final main result is as follows.

Theorem 8. Let Assumption 7 holdy € N, functionsf, (x) satisfy Assump-
tion 2, the potentialVy () satisfies Assumption 1 and for an arbitrary solution of
problem (1.18)v(x) € W?(R3) the orthogonality conditions

(fa(@),w(z))r2m@sy =0 (1.21)

hold. Then equations (1.17) and (1.16) admit unique sahstig,(z) € H?*(R?)
andu(x) € H*(R?) respectively, such that,(x) — u(z) in H*(R?) asn — oo.

Understanding the spectral properties of non Fredholmabpes is very im-
portant, for instance when establishing the existence itaicefunctional spaces
of stationary and travelling wave solutions of reactioffeion equations (see e.g.
[2], [3], [11], [18]).



2. Solvability in the sense of sequences for a system of eqjigais

Proof of Theorem 4By means of Theorem 4 of [22] via orthogonality rela-
tions (1.9) and (1.10) the second equations in systemsdhatj1.1) admit unique
solutionsv ,(z) € H*(R?), n € N anduy(z) € H?*(R?) respectively, such that
vo.n(x) = vo(z) in H*(R?) asn — oo. Hence we can rewrite the first equation in
system (1.4) as

Au+a(x)u+ oau = fp(x) — by(x)vgn(z), neN (2.22)
and the first equation in system (1.1) as
Au+ a(z)u + au = f(x) — b(z)vo(x). (2.23)

Note that the right side of (2.22) belongsité(R?) due to Assumptions 2 and 3 and
the fact thaw, ,,(z) € L*(R?). Let us estimate the norm from above as

1brvo,n — buol|r2@s) < [|(bn — b)vollr2@e) + [1b(von — vo)llL2re).  (2.24)
Clearly, for the first term in the right side of (2.24) we hakie upper bound
1B = D)o nll2@s) < [1Bn — bllzoe @) 0ol 2ms) = 0, n — o0

due to Assumption 3 and the fact that,(z) — vo(x) in L*(R?). For the second
term in the right side of (2.24) we have the trivial inequalit

16(vo,n — Vo)l 223y < ||b]| oo sy ||vom — vol|z2@sy = 0, n — 00

using Assumption 3 as well. Therefore, for the norm of théedénce of the right
sides of equations (2.22) and (2.23) we have the bound

[ fro = bnvon — [f — bvolll2@sy < [ fu — fllz2@s) + |bvo — bpvonllL2@sy — 0
asn — oo via Assumption 2 and the norm estimates obtained above.eHenc
fu(x) = bn(x)von(z) = f(2) = b(z)vo(2)

in L?(R3) asn — oo. By means of the Schwarz inequality along with Assumptions
2 and 3 foryy,(x) € L*(R?) we arrive at

[2|(fr — bnvon) L @sy < |[|2| fallzr@sy + (7|00 | 2@®3)l[von || 228y < 00,

such thatz|(f,.(z) — b,(z)vo.(z)) € L*(R?). We estimate the norm of the differ-
ence as

Nl — l2lbvo| i sy < [12](Bn — B)tonllores) + zlbleion — v0) 11 es).



Via the Schwarz inequality along with Assumption 3 fer,(z) € L*(R*) and
vo.n(T) = vo(x) in L*(R3) asn — oo we obtain

12](bn — b)vonllLr sy < ||2]bn — [2]0]| 23y |vom || L2rsy = 0, 1 — o0,
|z[b(von — vo) |13y < |2[b]| L2m3)l|von — vol|L2m3y — 0, n — oo,
such thatz|b, (z)vo n(z) — |z|b(x)ve(z) in L (R?) asn — oco. Evidently,
12| (fr = brvon) = || (f = bvo)llres) < [l[2]fn — 2] flLr@s)+
+[[|z|bve — |2|bpvonllL1(®s) — 0
asn — oo due to Assumption 2 and the estimate above. Thus,
|2 (fn(2) = bn(2)v0,0(2)) = |2|(f(2) = b(x)vo())

in L'(R?) asn — oo and orthogonality relations (1.11) and (1.12) hold acauydo
our assumption. Theorem 4 of [22] implies that equationd2Pand (2.23) admit
unique solutions,,(z) € H*(R?), n € Nanduy(z) € H?*(R?) respectively, such
thatug,(z) — up(z) in H*(R?) asn — oo. Norm definition (1.8) implies that
(to.n,v0.)T = (ug,v0)” In H*(R3, R?) asn — oc. |

3. The existence of solutions for the generalized Lippmanrschwinger equation
Proof of Theorem 60bviously, by means of Assumption 5 we have

|F(u,2)| < p(x)|u|, foranyuecC, xR (3.25)

In order to study the existence of solutions of (1.13), weokhtice the auxiliary
problem

W= [ ra) i, keR. @20
ulr) = - — v(y), , S . .
(2m)z AT Jps |z —yl e

Let us choose an arbitrany(x) € L*>°(R?). Then via (3.25) for the right side of
(3.26) we have the estimate from above in the absolute value a

1

wy)
(27)2

[z —y|

1
# bl sunas | Ay <,

which is guaranteed by Lemma 2.1 of [12] fofz) satisfying inequality (1.2)
due to Assumption 5. Therefore, the left side of equatio2gBis determined
uniquely andu(z) € L*(R?). Hence, the auxiliary problem (3.26) defines the map
T : L>(R?) — L>®(R3) with u(z) = Tv(x).



Let us choose arbitrarily; »(z) € L*(R?®). Thenu;s(x) := Twvis(z) €
L>(R?), such that

1 [ eilkllz—y]

ur(x) —ug(z) = ——

A Jps H{F(Ul(y), y) — F(va(y),y) tdy.

Assumption 5 yields

1 1(y)
— — dy.
urle) = walw)| < - | 2750 () - )y
Therefore,
1 wy)
||TU1 — TUQHLOO(R?’) S ESUQEE]RS /RS |l‘ — y|dy||1)1 — UQHLoo(R?»), (327)

wherep(x) satisfies inequality (1.2) via Assumption 5. Lemma 2.1 of ] [di%es
us that the constant involved in the right side of estimat2qB

1
EsupxeRg/ . “(_ 3/|d <1, (3.28)
such that the map : L>(R*) — L>*(R3) is a strict contraction and therefore, ad-
mits a unique fixed poing,(z) € L>(R?), which is the unique solution ih>(R?)

of problem (1.13) for a givek € R3. Note that this solution is nontrivial since via
Assumption 5 for any: € R3 we haveF (0, z) = 0. Inequality (3.25) yields

|F(&r(x), 2)] < pl)|&(x)], (3.29)

whereu(z) € L*(R3) since it has to satisfy inequality (1.2) according to our as-
sumption. ThusF(&(x),x) € L>=(R?). From equation (1.14) we easily deduce
that A&, (z) € L°(R?) as well. Atrivial calculation using (1.13) yields that ()
equals to

et 1 [z\knm W LY . LY g — il L } Flea(y), y)dy

(27)2 AT Jrs |z — |z —yf?
By means of (3.29) along with (3.28) we have
F :
F(&). )l ) HngLw(Rg)su%m/ )y < .
g [T — R |7 =y
Evidently,

£(y)
su dy < o0,
Prews /RS o — g2



which is guaranteed by Lemma A3 of [18] withz) € L>=(R?) N L3 (R?) due to
Assumption 5. Then (3.29) yields

wdy < 1€kl oo (ms Sup.EE]R3/

dy < 00

RS Iaf—yl2

and thereforeVe, () € L (R?). Thus,&(z) € W?>°(R?), which completes the
proof of the theorem. [ |

4. Solvability in the sense of sequences for the diffusion agtion with convection

Proof of Theorem 8Under the assumptions of Theorem 8 by means of Theorem
3 of [18] equation (1.17) admits a unique solutiop(z) € H?*(R?), n € N.
Assumption 2 along with part a) of Lemma 7 of [22] under orthioglity conditions
(1.21) imply

(f(2), w(z))r2@s) = 0.

Via Theorem 3 of [18], equation (1.16) has a unique solution) € H?(R3).
Clearly, G,,(z) € L*(R?), n € N as a product of two functions one of which is
square integrable and another is bounded by Assumption 7thEanorm of the
difference of the right sides of equations (1.20) we havariki@al equality

||Gn — GHLQ(]RS) = \// |fn |26 p( )dl’

Its right side can be bounded above due to Assumption 7 by

Cllfn(x) = f(@)l|2@s) = 0

asn — oo by Assumption 2. Here and further dowhwill stand for a finite positive
constant. Henc€',(z) — G(z) in L*(R?) asn — oo. By applying Assumptions 2
and 7 we easily deriver|G,,(z) € L'(R?), n € Nand

I[#]Gn () = |2|G ()] 1 gy = /R3 ][ fu(2) = fz)[e™ > do <

< O] falx) =[] f(2)]| L1 @) — 0
asn — oo, such thatz|G,(z) — |z|G(x) in L'(R?) asn — oco. Let us define

wi(z) =€ 2

V()

with k& € 53 a.e. if the constant > 0 andk = 0 if « = 0. As discussed in [18],

functlonswk( ) € W2>(R?) and are solutions of problem (1.18). Therefore, by
means of (1.21)

(fu(®), wi(®))L2@sy =0, n €N,



which implies
(Gr(2),v(2)) 23y =0, ke Sf/a a.e., n €N

whena > 0 and

(Gn(l‘), VO(x))LQ(R?’) =0, neN
whena = 0. Then via Theorem 4 of [22], the first and the second equations
in (1.20) admit unique solutions(z) € H?*(R3) andz,(z) € H*(R?), n € N
respectively and,, (z) — z(z) in H*(R3) asn — oo. Let us use (1.19) along with
Assumption 7 to estimate

|tn — vl L2(rsy = \// |20 (2) — 2(2)|2eP@dx < C| 2z, — 2| 2@s) = 0
R3
asn — oo. From (1.19) we easily deduce

Au, = €2 Az, + €2V 2z, Vp + e%z—"Ap + eg%(Vp)Q, (2.30)

Au = egAz+6§V2.Vp+e%§Ap+e§Z(Vp)2. (2.31)

The estimates below will be based on Assumption 7.

le2 Az, — €2 Az 2ms) = \/ |Az, () — Az(x)|2er@dx <
R3
< CHAZn — AZ”LQ(RS) —0
asn — oo. Since
€5V 2,.Vp — 2V 2.Vp| < C|Vz, — Vz|,
using the Schwarz inequality we obtain

€2V 2. Vp — e2V2.Vpl 2@s) < C|Vzn — V2@ <

< O\ /I8z0 — Azl o120 — 2llz2asy = 0

asn — oo. Obviously,
|eg%nAp - eggAm < Clz, — 2,

such that . ;
b <n b
H€2 ?Ap — e2 §Ap”L2(]R3) S CHZn — ZHLQ(RS) — 0



asn — oo. Finally,
P Zn 2 p 2 2
ez (Vp)" —e2 2(Vp)*| < Cla — 2],

which yields

P Zn p 2
”62 Z(Vp)Q —e2 Z(vp)QHLQ(RS) S CHzn — Z”LQ(RS) — 0
asn — oo. ldentities (2.30) and (2.31) along with the estimates iokthabove
give usAu, — Awin L*(R?) asn — oo. Thus, we arrive ati,,(z) — u(z) in
H?*(R?) asn — oo. |
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