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Abstract. We prove for a wide class of kernels K(x, y) that viscosity solutions of the integro-

differential equation ∫
Rn

δu(x, y)K(x, y)dy = f(x)

locally, belong to some Gevrey class if so does f . The fractional Laplacian equation is included

in this framework as a special case.
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1. Introduction

Recently, a great attention has been devoted to equations driven by nonlocal operators of frac-

tional type. From the physical point of view, these equations take into account long-range particle

interactions with a power-law decay. When the decay at infinity is sufficiently weak, the long-range

phenomena may prevail and the nonlocal effects persist even on large scales (see e.g. [5, 15]).

The probabilistic counterpart of these fractional equation is that the underlying diffusion is run

by a stochastic process with power-law tail probability distribution (the so-called Pareto or Lévy

distribution), see for instance [21, 19]. Since long relocations are allowed by the process, the diffu-

sion obtained is sometimes referred to with the name of anomalous (in contrast with the classical

one coming from Poisson distributions). Physical realizations of these models occur in different

fields, such as fluid dynamics (and especially quasi-geostrophic and water wave equations), dynam-

ical systems, elasticity and micelles, see, among the others [18, 6, 7, 16]. Also, the scale invariance

of the nonlocal probability distribution may combine with the intermittency and renormalization

properties of other nonlinear dynamics and produce complex patterns with fractional features. For
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instance, there are indications that the distribution of food on the ocean surface has scale invari-

ant properties (see see e.g. [20] and references therein) and it is possible that optimal searches

of predators reflect these patterns in the effort of locating abundant food in sparse environments,

also considering that power-law distribution of movements allow the individuals to visit more sites

than the classical Brownian situation (see e.g. [2, 9]).

The regularity theory of integro-differential equations has been extensively studied in continuous

and smooth spaces, see e.g. [17, 3, 1]. The purpose of this paper is to deal with the regularity

theory in a Gevrey framework. The proof combines a quantitative bootstrap argument of [1]

and the iteration scheme of [13, 12]. Here the bootstrap argument is more delicate than in the

classical case due to the nonlocality of the operator, since the value of the function in a small ball

is affected by the values of the function everywhere, not only in a slightly bigger ball; in particular

the derivatives of the function cannot be controlled in the whole space and a suitable truncation

argument is needed to bound derivatives of any order.

We recall that solutions of fractional equations are in general not better than Hölder continuous

up to the boundary. This provides additional conceptual difficulties even for the interior regularity

since a nonlocal term coming from far may complicate or invalidate the local estimates for the

higher order derivatives.

Before stating the main results of the paper, we recall the definition of Gevrey function. For a

detailed treatment of the theory of Gevrey functions and their relation with analytic functions we

refer to [10, 14]. Let Ω ∈ Rn be an open set, we define for any fixed real number σ ≥ 1 the class

Gσ(Ω) of Gevrey functions of order σ in Ω. This is the set of functions f in f ∈ C∞(Ω) such that

for every compact subset C of Ω there exist positive constants M and K such that for all i ∈ N

∥∥Dif
∥∥
L∞(C)

≤M Ki (i!)σ .

We remark that the spaces Gσ (Ω) form a nested family, in the sense that Gσ (Ω) ⊆ Gτ (Ω) whenever

σ ≤ τ and furthemore the inclusion is strict whenever the inequality is. Clearly the class G1 (Ω)

coincides with Cω(Ω), that of analytical functions. It should be stressed that both the inclusions

Cω(Ω) ⊂
⋂
σ>1

Gσ (Ω)
⋃
σ≥1

Gσ (Ω) ⊂ C∞(Ω)

are strict, see [14]. The notion Gevrey class of functions is quite useful in applications. For instance,

it possess a nice characterization in Fourier spaces. Moreover, cut-off functions are never analytic,

but they may be chosen to belong to a Gevrey space. Roughly speaking, for a smooth function f

the notion of Gevrey order measures ”how much” the Taylor series of f diverges.

As in [1] we consider a quite general kernel K = K(x, y) : Rn × (Rn\ {0})→ (0,+∞) satisfying

some structural assumptions. From now we assume that s ∈ (1/2, 1).

We suppose that K is close to the kernel of the fractional Laplacian in the sense that
there exist a0, r0 and η ∈ (0, a0/4) such that∣∣∣∣ |y|n+2sK(x, y)

2− 2s
− a0

∣∣∣∣ ≤ η for all x ∈ B1, y ∈ Br0\ {0}.
(1.1)
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Since we are interested in the Gevrey regularity, in order to ensure that our solution are C∞ we

assume that K ∈ C∞ (B1 × (Rn\ {0})) and moreover
for all k ∈ N ∪ {0} there exist Hk > 0 such that∥∥Dµ

xD
θ
yK(·, y)

∥∥
L∞(B1)

≤ Hk

|y|n+2s+|θ|

for all µ, θ ∈ Nn, |µ|+ |θ| = k, y ∈ Br0\ {0}.

(1.2)

Furthermore, since we need a quantitative asymptotic control on the tails of the derivatives of K,

we assume that {
there exist ν ≥ 0 and Λ > 0 such that

Hk ≤ Λk (k!)
ν

for all k ∈ N ∪ {0}.
(1.3)

We adopt the following notation for the second increment

δu(x, y) = u(x+ y) + u(x− y)− 2u(x).

Our first result is about the Gevrey regularity of the integro-differential operators with a general

kernel K.

Theorem A. Suppose f is in Gτ (B6) and suppose that u ∈ L∞(Rn) is a viscosity solution of∫
Rn
δu(x, y)K(x, y)dy = f(x) inside B6 (1.4)

with s ∈ (1/2, 1). Assume that K : B1 × (Rn\ {0}) → (0,+∞) satisfies assumptions (1.1), (1.2),

and (1.3) for η sufficiently small.

Then there exists a 0 < R < 5 wich depends only on n, f , and ‖u‖L∞(Rn) such that u ∈ Gσ (BR)

for each σ ≥ max{1 + ν, τ} and R ≤ R.

Furthermore we specialize the analysis to the case of the fractional Laplacian kernel and obtain

the following

Theorem B. Suppose f is in Gτ (B6) and suppose that u ∈ L∞(Rn) is a viscosity solution of

(−∆)su(x) = f(x) inside B6 (1.5)

with s ∈ (1/2, 1).

Then there exists a 0 < R < 5 wich depends only on n, f , and ‖u‖L∞(Rn) such that u ∈ Gσ (BR)

for each σ ≥ max{2, τ} and R ≤ R.

We remark that most of the difficulties in our problems come from having the equation in a

domain rather than in the whole of the space and from the fact that we look for local, rather than

global, estimates. For instance, if a summable u satisfies

(−∆)su(x) + f(x) = 0

for every x ∈ Rn and f belongs to some Gevrey class, then so is u, and this can be proved directly

via Fourier methods, see e.g Theorem 1.6.1 of [14].

Concerning the Gevrey exponent σ = max{1 + ν, τ} in Theorem A, we think that it is an

interesting open problem to establish whether or not such exponent is optimal or it can be lowered,

for instance, to the value max{ν, τ} (in our case, the exponent value σ is due to a nonlocal boundary

effect and the worst factor comes from the higher derivatives of the kernel).
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2. Incremental quotients

In this section we recall some basic facts and results about incremental quotients.

Given k ∈ N, we observe that, for any a ∈ R, there are exactly k + 1 integers belonging to the

interval (a, a+ k+ 1] (and, moreover, they are consecutive, this can be easily proved by induction

over k). In particular, taking a := −(k + 1)/2, we have that there are exactly k + 1 integers

belonging to the interval (−(k + 1)/2, (k + 1)/2]. We call these integers j1, . . . , jk+1.

Now, we consider V ∈ Mat ((k + 1)× (k + 1)) to be the matrix

Vm,i := ji
m−1 for any i,m = 1, . . . , k + 1.

Then, we consider the vector c(k) = (c
(k)
1 , . . . , c

(k)
k+1) ∈ Rk+1 as the unique solution of

V c = (0, . . . , 0, k!). (2.1)

We remark that V is invertible, being a Vandermonde matrix, and therefore the definition of c(k)

is well posed.

With this notation, given h > 0, v ∈ Sn−1, and a function u, we consider the h-incremental

quotient of u of order k in direction v, that is

T vhu(x) :=

k+1∑
i=1

c
(k)
i u(x+ jihv). (2.2)

We remark that T vhu(x)/hk behaves like ∂kvu(x), as next result shows:

Lemma 2.1. Let r > (k + 1)h > 0 and u ∈ Ck(Br(x)). Then

T vhu(x) = hk∂kvu(x) + o(hk).

Proof. By Taylor’s Theorem

u(x+ jihv) =

k−1∑
`=0

∂`vu(x)

`!
j`ih

` +
∂kvu(x+ ξi)

k!
jki h

k

for some ξi ∈ Rn with |ξi| ≤ (k + 1)h. Then we have

T vhu(x) =

k+1∑
i=1

k−1∑
`=0

∂`vu(x)

`!
c
(k)
i j`ih

` +

k+1∑
i=1

c
(k)
i

∂kvu(x+ ξi)

k!
jki h

k

=

k+1∑
i=1

k∑
m=1

∂`vu(x)

`!
c
(k)
i Vm,ih

m−1 +

k+1∑
i=1

c
(k)
i

∂kvu(x+ ξi)

k!
Vk+1,ih

k

=

k∑
m=1

∂`vu(x)

`!
(V c(k))mh

m−1 + (V c(k))k+1
∂kvu(x)

k!
hk

+

k+1∑
i=1

c
(k)
i

∂kvu(x+ ξi)− ∂kvu(x)

k!
Vk+1,ih

k

This and (2.1) imply

T vhu(x) = hk∂kvu(x) + hk
k+1∑
i=1

c
(k)
i

∂kvu(x+ ξi)− ∂kvu(x)

k!
Vk+1,i (2.3)
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and this gives the desired results. �

We observe that T vh (T ṽhu) = T ṽh (T vhu), hence we can extend the notation in (2.2) to the multi-

index case. Namely, if k = (k1, . . . , k`) ∈ N` and v = (v1, . . . , v`) ∈ (Sn−1)`, we define

T vhu(x) := T v1h (. . . (T v`h u(x)) . . . )

=

k1+1∑
i1=1

· · ·
k`+1∑
i`=1

c
(k1)
i1

. . . c
(k`)
i`

u(x+ ji1hv1 + · · ·+ ji`hv`)

and this definition is, in fact, independent of the order. In this way, we have the following multi-

index version of Lemma 2.1:

Lemma 2.2. Let r > (k + 1)h > 0 and u ∈ Ck(Br(x)). Then

T vhu(x) = h|k|∂kvu(x) + o(h|k|).

To prove Theorem A we will need the following integral analogue of Lemma 2.2. From now on,

we will adopt the convention that for any kernel K(x, y)

T γhK(x, y)

denotes the incremental quotient with respect to y (i.e. letting fixed x).

Proposition 2.3. Let 0 < ε < r and K ∈ C∞(B1 × Rn\Br−ε) satisfying condition (1.2). Then

for each γ ∈ Nn

lim
h→0

∫
r<|y|

1

h|γ|
|T γhK(x, y)| dy =

∫
r<|y|

∣∣Dγ
yK(x, y)

∣∣ dy .
Proof. For ε > h(|γ|+ 1) > 0 we set

fh(x, y) =
1

h|γ|
|T γhK(x, y)| ,

it follows from Lemma 2.1 that fh(x, y) converges pointwise in Ω to

f(x, y) =
∣∣Dγ

yK(x, y)
∣∣ .

The idea is to show that there exists a g ∈ L1(Ω) such that fh(y) ≤ g(y). From (2.3) it follows

that there exists ξi ∈ Rn with |ξi| ≤ h(|γ|+ 1) and positive constants A and Ai such that

fh(x, y) ≤ |Dγ
yK(x, y)|+

|γ|+1∑
i=1

c
(|γ|)
i

∣∣Dγ
yK(x, y + ξi)−Dγ

yK(x, y)
∣∣

|γ|!
V|γ|+1,i

≤ A
∣∣Dγ

yK(x, y)
∣∣+

|γ|+1∑
i=1

Ai
∣∣Dγ

yK(x, y + ξi)
∣∣ .
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From condition (1.2) and ε < r we have∣∣Dγ
yK(x, y + ξi)

∣∣ ≤ H|γ|

|y + ξi|n+2s+|γ|

≤
H|γ|

(|y| − |ξi|)n+2s+|γ|

≤
H|γ|

(|y| − ε)n+2s+|γ| .

Since this last estimate is independent of h, the proposition follows from the Lebesgue dominated

convergence theorem. �

3. An a priori estimate

In this section we deduce the following a priori estimate of Friedrichs type for solutions of (1.4).

It will be the key tool in proving the Gevrey regularity of the solutions of the equation.

Lemma 3.1. Let u be a solution of (1.4) with s ∈
(
1
2 , 1
)

and f ∈ C∞(B6). Then for any

0 < r < r + δ < 5 and p ≥ 0 the following estimate holds∥∥∇p+2u
∥∥
L∞(Br)

≤ C
[

1

δ

∥∥∇p+1u
∥∥
L∞(Br+δ)

+
1

δ2
‖∇pu‖L∞(Br+δ)

+δ2s−1
∥∥∇p+1f

∥∥
L∞(Br+δ)

+
Hp+12p

δp+2
‖u‖L∞(Rn)

]
,

where C is a constant depending only on n and s.

We note that the estimate above corresponds to Lemma 5.7.1 of [12]. It should be stressed that

while in the local case the estimate for a generic p is easily deduced from the estimate for p = 0

by differentiating the equation, in the nonlocal case we have to be more accurate in order to take

account of the long range interactions. In particular to obtain this estimate we will exploit the

bootstrap machinery developed in the [1] to prove the C∞ regularity of solutions.

Proof. First of all we recall that by Theorem 5 of [1] viscosity solutions of (1.4) are of class C∞.

Now we choose a C∞ cutoff function η(x) ≥ 0 such that

η(x) =

{
1 B4

0 Rn\B5

and

‖∇η(x)‖L∞(B5)
≤ 2 . (3.1)

Now for γ ∈ Nn with |γ| = p and ei a unit vector we set γ∗ = γ+ei and define for each 0 < h < 1
p+2

w(x) =
1

hp+1
T γ∗h u(x) .

By linearity w(x) = w1(x) + w2(x) where

w1(x) =
1

hp+1
T eih (η T γh u(x)) ,
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and

w2(x) =
1

hp+1
T eih ((1− η) T γh u(x)) .

Our goal is to get a good estimate of

∣∣∣∣∫
Rn
δw1(x, y)K(x, y)dy

∣∣∣∣ inside B1

using the technique of [1]. We stress the fact that w2(x) ≡ 0 for x ∈ B1 since η ≡ 1 there.

∣∣∣∣∫
Rn
δw1(x, y)K(x, y)dy

∣∣∣∣ =

∣∣∣∣∫
Rn
δw(x, y)K(x, y)dy −

∫
Rn
δw2(x, y)K(x, y)dy

∣∣∣∣
≤
∣∣∣∣∫

Rn
δw(x, y)K(x, y)dy

∣∣∣∣+

∣∣∣∣∫
Rn
δw2(x, y)K(x, y)dy

∣∣∣∣
=

∣∣∣∣ 1

hp+1
T γ∗h f(x)

∣∣∣∣+

∣∣∣∣∫
Rn
δw2(x, y)K(x, y)dy

∣∣∣∣ .
(3.2)

Using the discrete integration by parts and recalling that x ∈ B1 we get the inequality

∣∣∣∣∫
Rn
δw2(x, y)K(x, y)dy

∣∣∣∣ =

∣∣∣∣∫
Rn

[w2(x+ y) + w2(x− y)− 2w2(x)] K(x, y) dy

∣∣∣∣
=

∣∣∣∣∫
Rn

[w2(x+ y) + w2(x− y)] K(x, y) dy

∣∣∣∣
≤
∣∣∣∣∫

Rn
w2(x+ y) K(x, y) dy

∣∣∣∣+

∣∣∣∣∫
Rn
w2(x− y) K(x, y) dy

∣∣∣∣
=

∣∣∣∣∫
Rn

[
1

hp+1
T eih ((1− η) T γh u(x+ y))

]
K(x, y) dy

∣∣∣∣
+

∣∣∣∣∫
Rn

[
1

hp+1
T eih ((1− η) T γh u(x− y))

]
K(x, y) dy

∣∣∣∣
=

∣∣∣∣∫
Rn

[
1

hp+1
((1− η) T γh u(x+ y))

]
T ei−hK(x, y) dy

∣∣∣∣
+

∣∣∣∣∫
Rn

[
1

hp+1
((1− η) T γh u(x− y))

]
T ei−hK(x, y) dy

∣∣∣∣ .
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Now, exploiting the properties of the cutoff function η we get the following estimate

∣∣∣∣∫
Rn
δw2(x, y)K(x, y)dy

∣∣∣∣ ≤
∣∣∣∣∣∣∣

∫
4<|x+y|<5

[
1

hp+1
((1− η) T γh u(x+ y))

]
T ei−hK(x, y) dy

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

4<|x−y|<5

[
1

hp+1
((1− η) T γh u(x− y))

]
T ei−hK(x, y) dy

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

5<|x+y|

1

hp+1
u(x+ y) T γ∗−hK(x, y) dy

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

5<|x−y|

1

hp+1
u(x− y) T γ∗−hK(x, y) dy

∣∣∣∣∣∣∣ .
Using the triangle inequality we conclude that

∣∣∣∣∫
Rn
δw2(x, y)K(x, y)dy

∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣
∫

2<|y|
|x+y|<5

[
1

hp+1
((1− η) T γh u(x+ y))

]
T ei−hK(x, y) dy

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
∫

2<|y|
|x−y|<5

[
1

hp+1
((1− η) T γh u(x− y))

]
T ei−hK(x, y) dy

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

3<|y|

1

hp+1
u(x+ y) T γ∗−hK(x, y) dy

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∫

3<|y|

1

hp+1
u(x− y) T γ∗−hK(x, y) dy

∣∣∣∣∣∣∣
≤ 2

∥∥∥∥ 1

hp
T γh u

∥∥∥∥
L∞(B5)

∫
2<|y|

1

h

∣∣T ei−hK(x, y)
∣∣ dy + 2 ‖u‖L∞(Rn)

∫
3<|y|

1

hp+1

∣∣T γ∗−hK(x, y)
∣∣ dy .

Inserting the inequality above into (3.2) we obtain the desired estimate inside B1∣∣∣∣∫
Rn
δw1(x, y)K(x, y)dy

∣∣∣∣ ≤ ∣∣∣∣ 1

hp+1
T γ∗h f(x)

∣∣∣∣+ 2 ‖u‖L∞(Rn)

∫
3<|y|

1

hp+1

∣∣T γ∗−hK(x, y)
∣∣ dy

+ 2

∥∥∥∥ 1

hp
T γh u

∥∥∥∥
L∞(B5)

∫
2<|y|

1

h

∣∣T ei−hK(x, y)
∣∣ dy . (3.3)

Furthermore, thanks to the discrete Leibnitz rule we have that

w1(x) =
1

hp+1
[η(x+ hei)T

γ∗
h u(x) + T eih η(x)T γh u(x)]
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and this implies

‖w1‖L∞(Rn) ≤
∥∥∥∥ 1

hp+1
T γ∗h u

∥∥∥∥
L∞(B5(hei))

+

∥∥∥∥ 1

h
T eih η

∥∥∥∥
L∞(B5)

∥∥∥∥ 1

hp
T γh u

∥∥∥∥
L∞(B5)

(3.4)

where B5(hei) is the ball of radius 5 centered at hei.

Thanks to (3.3), (3.4), and Theorem 61 of [4] we get the following estimate for w1

‖w1‖C1,α(B1)
≤ C

(
‖w1‖L∞(Rn) +

∥∥∥∥∫
Rn
δw1(x, y)K(x, y)dy

∥∥∥∥
L∞(B2)

)

≤ C

(
‖w‖L∞(B5(hei))

+

∥∥∥∥ 1

h
T eih η

∥∥∥∥
L∞(B5)

∥∥∥∥ 1

hp
T γh u

∥∥∥∥
L∞(B5)

+

∥∥∥∥ 1

hp+1
T γ∗h f

∥∥∥∥
L∞(B2)

+2

∥∥∥∥ 1

hp
T γh u

∥∥∥∥
L∞(B5)

∫
2<|y|

1

h

∣∣T ei−hK(x, y)
∣∣ dy + 2 ‖u‖L∞(Rn)

∫
3<|y|

1

hp+1

∣∣T γ∗−hK(x, y)
∣∣ dy

 ,

where, from now on, C will denote a positive constant depending only on n and s. This means that

in calculations we will reabsorb constant factors inside C. Letting h→ 0, from (1.2), Proposition

2.3, and (3.1) we conclude that

‖Dγ∗u‖C1,α(B1)
≤ C

(
‖Dγ∗u‖L∞(B5)

+ 2 ‖Dγu‖L∞(B5)
+ ‖Dγ∗f‖L∞(B2)

+H1 ‖Dγu‖L∞(B5)
+

Hp+1

22s+p+1
‖u‖L∞(Rn)

)
.

(3.5)

By a scaling argument, from (3.5) we get the following estimate valid for any σ ∈ (0, 1]

∥∥∇p+2u
∥∥
L∞(Bσ)

≤ C
[

1

σ

∥∥∇p+1u
∥∥
L∞(B5σ)

+
1

σ2
‖∇pu‖L∞(B5σ)

+σ2s−1 ∥∥∇p+1f
∥∥
L∞(B2σ)

+
Hp+1

2p
1

σp+2
‖u‖L∞(Rn)

]
this implies, by covering, the following global estimate, valid for 0 < r < r + δ ≤ 5∥∥∇p+2u

∥∥
L∞(Br)

≤ C
[

1

δ

∥∥∇p+1u
∥∥
L∞(Br+δ)

+
1

δ2
‖∇pu‖L∞(Br+δ)

+δ2s−1
∥∥∇p+1f

∥∥
L∞(Br+δ)

+
Hp+1 2p

δp+2
‖u‖L∞(Rn)

]
.

which is the desired estimate. �

4. General kernels

In this section we will adapt the iteration scheme of [13, 12] to obtain Gevrey regularity of

solutions of (1.4). The main idea here is to introduce some rescaled companions of the L∞ norms

in order to exploit effectively the estimate of Lemma 3.1.
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Rescaling the norms. As in [12, 13] we introduce the following

Definition 4.1. For f and u in C∞ (BR), we define the quantities

Ms
R,p(f) = sup

R/2<r<R

(R− r)2s+p+1
∥∥∇p+1f

∥∥
L∞(Br)

, p ∈ N ∪ {0}

N∗R,p(u) = sup
R/2<r<R

(R− r)p+2
∥∥∇p+2u

∥∥
L∞(Br)

, p ∈ {−2,−1} .

It is apparent from this definition that a function u ∈ C∞ (BR) will be also in Gσ (BR) if and

only if there exist positive constants M and K such that the following inequality holds for any

p ≥ −2

N∗R,p(u) ≤M ·Kp · [p!]σ, (4.1)

where [p!] is defined as {
p! if p ≥ 0

1 if p < 0.

Thus the strategy for proving the Main Theorem will consist in showing the validity of (4.1) for

solutions of (1.4). The following lemma will be the induction step of the proof.

Lemma 4.2. Let u be a solution of (1.4) with f ∈ C∞(B6). Then there exist positive constants

E and F depending only on s and n such that the estimate

N∗R,p(u) ≤ E
[
pN∗R,p−1(u) + p(p− 1) N∗R,p−2(u) + Ms

R,p(f) + F p Hp+1 p! ‖u‖L∞(Rn)

]
holds for any p ≥ 0.

Proof. By Theorem 5 of [1] we have that u ∈ C∞ (BR). Plugging the estimate of Lemma 3.1 into

the definition of N∗R,p(u) we obtain the following

N∗R,p(u) ≤ C sup
R/2<r<R

(R− r)p+2

[
1

δ

∥∥∇p+1u
∥∥
L∞(Br+δ)

+
1

δ2
‖∇pu‖L∞(Br+δ)

+δ2s−1
∥∥∇p+1f

∥∥
L∞(Br+δ)

+
Hp+12p

δp+2
‖u‖L∞(Rn)

]
.

(4.2)

By Definition 4.1 we get the inequalities∥∥∇p+1u
∥∥
L∞(Br+δ)

≤ 1

(R− r − δ)p+1
N∗R,p−1(u)

‖∇pu‖L∞(Br+δ)
≤ 1

(R− r − δ)p
N∗R,p−2(u)∥∥∇p+1f

∥∥
L∞(Br+δ)

≤ 1

(R− r − δ)2s+p+1
Ms
R,p(f)

(4.3)

and inserting them into (4.2) we have

N∗R,p(u) ≤ C sup
R/2<r<R

[
(R− r)p+2

δ(R− r − δ)p+1
N∗R,p−1(u) +

(R− r)p+2

δ2(R− r − δ)p
N∗R,p−2(u)

+
δ2s−1(R− r)p+2

(R− r − δ)2s+p+1
Ms
R,p(f) + Hp+12p

(R− r)p+2

δp+2
‖u‖L∞(Rn)

]
.
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Now we eliminate the dependence on r by setting

δ =
R− r
p

,

in this way we get the following estimate

N∗R,p(u) ≤ C
[

pp+2

(p− 1)p+1
N∗R,p−1(u) +

pp+2

(p− 1)p
N∗R,p−2(u)

+
pp+2

(p− 1)2s+p+1
Ms
R,p(f) + Hp+12ppp+2 ‖u‖L∞(Rn)

]
≤ C

[
p

(
p

p− 1

)p+1

N∗R,p−1(u) + p(p− 1)

(
p

p− 1

)p+1

N∗R,p−2(u)

+p1−2s
(

p

p− 1

)p+1+2s

Ms
R,p(f) + Hp+12ppp+2 ‖u‖L∞(Rn)

]
.

The proof follows from the fact that 2s > 1 and
(

p
p−1

)p
is bounded. �

Proof of Theorem A. By Theorem 5 of [1] we know that u is of class C∞ inside the ball B6, this

implies that the quantities N∗R,p(u) are well defined and finite for any p ≥ −2 and R < 6. Since

Gτ (B6) ⊂ C∞ (B6) also Ms
R,p(f) is well defined for all p, moreover there exist positive numbers L

and A such that for any R ≤ 6 the derivatives of f satisfy

‖∇pf‖L∞(BR) ≤ L
(
A

R

)p
(p!)τ .

This implies that

Ms
R,p(f) = sup

R/2<r<R

(R− r)2s+p+1
∥∥∇p+1f

∥∥
L∞(Br)

≤ L
(
R

2

)2s (
A

2

)p+1

((p+ 1)!)τ .

From Lemma 4.2 it follows that

N∗R,p(u) ≤ E
[
pN∗R,p−1(u) + p(p− 1) N∗R,p−2(u) + F p (p!)2 ‖u‖L∞(Rn)

+L

(
R

2

)2s (
A

2

)p+1

((p+ 1)!)τ

]
.

(4.4)

Theorem A will proved by showing that we can choose K and M so that (4.1) holds. For this, we

are going to proceed by induction on p. Clearly we can choose K and M so that (4.1) holds for

p = −2 and p = −1, then we suppose that this choice holds up to p− 1 with p > 0 and we prove
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it for p. From (4.4) we have that

N∗R,p(u) ≤ E
[
M ·Kp−1 · p[(p− 1)!]σ +M ·Kp−2 · p(p− 1)[(p− 2)!]σ

+F p (p!)2 ‖u‖L∞(Rn) + L

(
R

2

)2s (
A

2

)p+1

((p+ 1)!)τ

]

= M ·Kp · [p!]σ E
[

1

K
p1−σ +

1

K2
(p(p− 1))1−σ +

1

M

(
F

K

)p
(p!)2−σ ‖u‖L∞(Rn)

+
L

M Kp

(
R

2

)2s (
A

2

)p+1

(p+ 1)τ (p!)τ−σ

]
.

If we choose σ ≥ max{2, τ} the inequality above implies that

N∗R,p(u) = M ·Kp · [p!]σ E
[

1

K
+

1

K2
+

1

M

(
F

K

)p
‖u‖L∞(Rn)

+
L

M Kp

(
R

2

)2s (
A

2

)p+1

(p+ 1)τ

]
.

At this point we are left to show that it is possible to choose M and K in such a way that

E

[
1

K
+

1

K2
+

1

M

(
F

K

)p
‖u‖L∞(Rn) +

L

M Kp

(
R

2

)2s (
A

2

)p+1

(p+ 1)τ

]
≤ 1, (4.5)

for all p. It is clear that this is always the case, more precisely, since K appears always at the

denominator with the highest exponent in p, it is possible to choose K (depending on E, F ,

‖u‖L∞(Rn), and A) so that (4.5) holds for all M ≥ 1.

5. The fractional Laplacian

In this section we will prove Theorem B. The proof will follow from Theorem A and a technical

estimate on the derivatives of the fractional Laplacian kernel.

An estimate on derivatives of radial homogeneous functions. We recall a result of Morii, Sato, and

Sawano [11] and prove the crucial technical estimate.

First of all, let u ∈ C∞, for all k ∈ N ∪ {0} we introduce pointwise the following quantity

Jku(x) =

∑
|α|=k

(Dαu(x))
2

1/2

.

It is clear that for any α ∈ Nn such that |α| = k

|Dαu(x)| ≤ Jku(x), (5.1)

the advantage in using this quantity is that in [11] is shown that it is well-behaved with respect to

the differentiation of radially homogeneous functions.
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For any real number ν we introduce the Pochhammer symbol

(ν)k =


k−1∏
j=0

(ν − j) for ν ∈ R, k ∈ N

1 for ν ∈ R, k = 0

which can be used to define the generalized binomial coefficient(
ν

k

)
=

(ν)k
k!

for ν ∈ R, k ∈ N ∪ {0} .

We remark that in the sequel we will make use of the following relations to compare the Pochham-

mer symbol with the factorial

(ν + l)l =

l∏
j=1

(ν + j) ,

(ν − l)l =

l∏
j=1

(ν − 2l + j) .

We recall that for any x ∈ R, bxc is the largest integer not greater than x and dxe is the smallest

integer not less than x.

The following theorem is an explicit estimate on the derivatives of the fractional Laplacian

kernel.

Theorem 5.1 (Theorems 1.1 and 1.2 of [11]). Let n ∈ N, then for any k ∈ Z and a ∈ R

Jk|x|a =
λa,kn
|x|k−a

,

where the constant λa,kn is defined as

λa,kn =

√√√√√√k!

bk/2c∑
l=0

(k − 2l)! l!

(
n− 3

2
+ l

)
l

 k−l∑
m=dk/2e

22m−k+l
(
a/2

m

)(
m

k −m

)(
k −m
l

)2
 .

The following proposition is a rough but manageable estimate of λa,kn .

Proposition 5.2. Let a be a nonpositive real number, then there exists a positive constant Λ

depending on a and n such that

λa,kn ≤ Λk k!

Proof. The idea of the proof is to show that it is possible to bound the terms of the sum with

quantities depending only on k.

First of all we show that there exist constants A > 0 and B, depending only on n, such that(
n− 3

2
+ l

)
l

≤ A lB l! . (5.2)
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Indeed we have that

(
n−3
2 + l

)
l

l!
=

l∏
j=1

(
n− 3

2j
+ 1

)

≤ exp

 l∑
j=1

n− 3

2j


= exp

n− 3

2

l∑
j=1

1

j


and (5.2) follows from the fact that

∑l
i=1

1
j = O(log l).

The next step is to show that for l ∈ [0, bk/2c]

(k − 2l)! l!

(
n− 3

2
+ l

)
l

≤ A (k/2)
B
k! . (5.3)

From (5.2) we have that

(k − 2l)! l!

(
n− 3

2
+ l

)
l

=
k!

(k)l(k − l)l
l!

(
n− 3

2
+ l

)
l

≤ Ak! lB
(l!)2

(k)l(k − l)l
,

furthermore since l ∈ [0, bk/2c] it holds that

(l!)
2

(k)l(k − l)l
=

l∏
j=1

(
j

k − 2l + j

)(
j

k + 1− j

)

=

l∏
j=1

(
k − 2l

j
+ 1

)−1(
k + 1

j
− 1

)−1
≤ 1

this implies (5.3).

We are left to show that the following quantity

k−l∑
m=dk/2e

22m−k+l
(
a/2

m

)(
m

k −m

)(
k −m
l

)
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is controlled by a exponential of k. For this we apply the same technique used to prove (5.2):∣∣∣∣∣∣
k−l∑

m=dk/2e

22m−k+l
(
a/2

m

)(
m

k −m

)(
k −m
l

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
k−l∑

m=dk/2e

22m−k+l
(a/2)m

k! l! (k −m− l)!

∣∣∣∣∣∣
≤

k−l∑
m=dk/2e

22m−k+l
|(a/2)m|

k! l! (k −m− l)!

≤
k−l∑

m=dk/2e

2k
(−a/2 + k)k

k!

≤ A′ (k/2) kB
′
2k

= A′ kB
′+1 2k−1

(5.4)

for two constants A′ and B′ depending only on n and a.

Piecing together the estimates (5.3) and (5.4) we conclude that there exist constants A, A′, B, and

B′ (with A > 0) depending only on n and a, such that

λa,kn ≤

√√√√k!

bk/2c∑
l=0

[
A (k/2)

B
k! (A′ kB′+1 2k−1)

2
]

≤ k!A′
√
Ak

2+B+B′
2 2k−1−B/2,

now we conclude the proof by choosing a positive constant Λ big enough. �

Proof of Theorem B. It is well known that for s ∈ (0, 1) the fractional Laplacian (−∆)s is a

translation invariant integro-differential operator like those considered in Theorem A. The kernel

of the fractional Laplacian K0 is defined as

K0(y) = −1

2
cn,s

1

|y|n+2s

here cn,s denotes a normalization constant, see for instance [8] for survey on the topic.

Now it is clear that K0 satisfies (1.1) for each η > 0. From (5.1), Theorem 5.1, and Proposition

5.2 it follows that for each γ ∈ Nn with |γ| = k ∈ N there exists a positive constant Λ depending

only on n, and s such that

|DγK0(y)| ≤ 1

2
cn,s Λk

k!

|y|n+2s+k
,

thus K0 satisfies also (1.2) and (1.3) with ν = 1 and Theorem B follows.
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