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Abstract

We study Gevrey asymptotic properties of solutions to singularly perturbed singular nonlinear partial
differential equations of irregular type in the complex domain. We construct actual holomorphic solutions
of these problems with the help of the Borel-Laplace transforms. Using the Malgrange-Sibuya theorem,
we show that these holomorphic solutions have a common formal power series asymptotic expansion of
Gevrey order 1 in the perturbation parameter.
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1 Introduction

We study a family of singularly perturbed nonlinear partial differential equations of the form

(1) et?00°X(t,2,€) + (et + 1) X (t,2,€) = Z bk ks (z,)t°0F M X (¢, 2, €)
(s,ko0,k1)ES
+ P(t,z,e, X(t,2,€))

for given initial conditions
(2) (P1X)(t.0,¢) = pj(t.e) , 0<j<S-1,

where € is a complex perturbation parameter near the origin in C, S is some positive integer,
S is a finite subset of N3, the coefficients bio.ky (2, €) of the linear part belong to O{z,€} and
P(t,z,e,X) € O{z,€}[t, X], where O{z, ¢} denotes the space of holomorphic functions in (z,€)
near the origin in C2. The initial data ¢;(t,€) are assumed to be holomorphic functions on a
product of two sectors with finite radius centered at the origin in C2.

For all € # 0, this family belongs to a class of partial differential equations which have a so-
called irregular singularity at t = 0 (in the sense of [24]). Only a few results about the existence



of solutions and their asymptotic properties are known for partial differential equations with
irregular singularities, see for instance the papers [9], [10], [24], [26], [27], while partial differential
equations with fuchsian singularities have been studied to a large extent, see for instance [1],
[4], [14], [18], [23], [28], [32].

In a previous work, we have considered the situation when the coefficients of the linear part
do not depend on the time variable ¢ and when the nonlinear part P(t, z, ¢, X) is replaced by
an integro-differential convolution operator acting on X, see [21]. Here, we assume that the
following condition holds for the shape of the equation (1) : there exists a real number b > 1
such that

SZb(S—ko—i—Q)—i—kl , § > 2k,

for all (s, ko, k1) € S.
Our result comes within the framework of the asymptotic analysis of singular perturbations
of initial value problems of the form

(3) eLo(t,x, 0, Ox)[ult, z,€)] + Li[u(t,z,€)] =0

where Lo is a linear differential operator and L; is a nonlinear differential operator, for given
initial data (0%u)(t,0,€) = hj(t,€), 0 < j < v, belonging to some space of functions. Most of
the statements in the literature concern the situation when ¢ is a real parameter and when Lo
is an elliptic or hyperbolic second order operator acting on real functions spaces (for instance
infinitely smooth functions spaces C®°(R?) or Sobolev spaces H*(R%)). These results concern
sufficient conditions for a solution u(t, z,€) of (3) to have an asymptotic expansion of the form

n—1

ult,z, ) = 3 wilt,2)él + Ru(t,z,€)
=0

where bounds of the remainders R, are obtained, for all n > 1. The proofs use semi-group
operators methods, see [17], the maximum principle and energy integrals estimates, see [15],
[25], or fixed point theorems for the nonlinear equations, see [13], [15]. For a general survey on
singular perturbations for both asymptotic and numerical aspects, we refer to [19]. But, there
are very few informations on singularly perturbed partial differential equations with complex
parameter € and with solutions in spaces of analytic functions.

In this paper, we make the assumption that the coefficients in the equation (1) and the
initial data (2) are holomorphic functions. Our goal is the construction of actual holomorphic
solutions X (¢, z, €) of (1) and the statement of sufficient conditions for the existence and unicity
of an asymptotic expansion

n—1

X(ta 2, 6) = ZHk(tv Z>6k + Rn(ta 2, 6)
k=0

with precise bounds for the remainder R, of the form
[Rn(t,z,€)| < CM"nlle|"

for some constants C, M > 0, for all € on a sector, uniformly in (¢, z) on a product of a sector
and a small disc centered at 0, for all n > 1.

In a paper of C. Durand, J. Mozo and R. Schéfke, see [7], an analogous study has been
performed for nonlinear doubly singular differential equations of the form

51’23//(35’ 5) = f($,€, y($,5))



where f(z,¢,y) is a holomorphic map from C"*2 into C", for n > 1, extending some earlier
work for linear differential equations of W. Balser and J. Mozo, c.f. [3].

Following the same strategy as in [7], using the linear map ¢ — t/e, we transform the
problem (1) into an auxiliary regularly perturbed nonlinear partial differential equation which
has an irregular singularity at ¢ = 0, see (60). The effect of this transformation is that the
coeflicients of this new equation now have poles with respect to € at the origin. Notice that
these kind of singularities in the perturbation parameter did not appear in our previous study
[21].

The approach we follow is based on a resummation procedure of formal power series

Y (t, z,€) ZY (z,€)t"™/m!

m>0

with respect to the variable ¢, which are solutions of the constructed auxiliary problem (60).
This resummation method, called in the literature xk—summability, knows a great success in the
study of Gevrey asymptotic expansions of analytic solutions to linear and nonlinear differential
equations with irregular singularities, see [2], [5], [11], [16], [20], [29], [30].

We show that the Borel transform of order 1 of f/(t, z, €) with respect to t,

V(r, z,€) ZYZE

satisfies a nonlinear convolution integro-differential Cauchy problem, with rational coefficients
in 7, holomorphic in (7, z) near the origin and meromorphic in € with a pole at zero, see (73),
(74). Under well chosen initial data, we show that V (7, 2, €) defines a holomorphic function near
the origin with respect to (7,z) and on a punctured disc at zero with respect to € and can be
analytically continued to functions V;(7, z, €) defined on products U; x D(0, §) x &;, where {&; }ier
is a finite set of open sectors centered at the origin whose union form a good covering (Definition
4) and U, ¢ € I, are suitable open sectors with small opening and infinite radius. Moreover, the
functions Vj, i € I, have exponential growth rate with respect to (7, €), namely that there exist
constants C', K > 0 such that

(4) sup  |Vi(T,z,€)| < CefITV/I
2€D(0,6)

for all (7, z, €) in their domain of definition (Theorem 2). To obtain these estimates, we introduce
some Banach spaces (depending on the parameter €) of functions v(7,2) = > 5, vi(7)z!/l! €
O(U; U D(0,7)){z}, where v;(7) are bounded by exp(K;|7|/|e|), for some constant K; depending
onl > 0,on U;UD(,r), i € I, and we solve the nonlinear convolution differential Cauchy
problems (73), (74) within these spaces using a fixed point argument (Theorem 1).

We construct actual solutions Y;(¢,z,€), ¢ € I, of the auxiliary equation (60) as Laplace
transforms of the functions V;(7, z, €) with respect to 7, along a halfline L; = Ry e¥V~17 ¢ U;U{0}.
For each € € &;, the function (¢, z) — Y;(t, 2, €) is holomorphic on a domain U;  x D(0, ) where
U; ¢ is a sector of opening larger than r, in direction -, with radius h|e| for some constant h > 0
(Theorem 2). The crucial observation is that the functions defined by X;(¢, z, €) := Y;(et, z, €),
i € I, are holomorphic solutions of the initial singularly perturbed equation (1) on domains of
the form 7 x D(0,6) x &;, where 7 is a well chosen open sector centered at 0. Moreover, we
show that the functions G;(€) := X;+1(t, z,€) — X;(¢, 2, €), i € I, have exponentially small bounds
as € tends to 0 on &1 N E;, seen as E-valued functions, where E denotes the Banach space of
holomorphic and bounded functions on 7 x D(0,¢) equipped with the supremum norm. In the



proof, we use a deformation of the integration path in the integral representation of X; and the
estimates (4).

Using a cohomological criterion obtained by B. Malgrange and Y. Sibuya, we finally deduce
the main result of this paper, namely the existence of a formal series

~ gk
X0 =Y € Blld)
k>0

solution of equation (1), which is the 1-Gevrey asymptotic expansion of the functions X; on &,
forall ¢ € 1.

The layout of this paper is as follows.

In Section 2, we consider parameter depending nonlinear convolution differential Cauchy prob-
lems with singular coefficients. We construct solutions of these equations in parameter depending
Banach spaces of holomorphic functions on sectors with exponential growth.

In Section 3.1, we recall the definition of Borel-Laplace transforms and we give commutation
formulas with multiplication and integro-differential operators.

In Section 3.2, we study a nonlinear Cauchy problem with irregular singularity having coeffi-
cients with poles singularities. We solve this problem using Laplace transforms of the solutions
to the Cauchy problems introduced in Section 2.

In Section 4.1, we construct actual solutions X;, ¢ € I, of our initial equation (1) and we show
that the cocycle G; = X;11 — X; is exponentially small with respect to € as E-valued function.
In Section 4.2, we state the main result of this paper, that is the existence of a formal series
X (€) € E[[€]], solution of (1) which is the 1-Gevrey asymptotic expansion of the functions Xj,
1el.

2 A global Cauchy problem with singular complex parameter

2.1 Weighted Banach spaces of holomorphic functions on sectors

We denote by D(0,r) the open disc centered at 0 with radius 7 > 0 in C. Let Sz be an open
sector of infinite or finite radius in direction d € R and £ be an open sector with finite radius
re, both centered at 0 in C. By convention, these sectors do not contain the origin in C. For
any open set D C C, we denote by O(D) the vector space of holomorphic functions on D. In
this section 2, we denote Q = (Sq U D(0,7)) x &.

Definition 1 Let b > 1 a real number and let ry(3) = 25:0 1/(n+1)® for all integers 3 > 0.
Let e € € and 0 > 0 be a real number. We denote by Eg .5 q the vector space of all functions
v € O(SqUD(0,r)) such that

[[o(7)]

2
peapi=  SUp |v<T>r<1+"Zbexp(—grbwrr)

T7€S4UD(0,r)

is finite. Let § > 0 be a real number. We denote by G(e,0,0,) the vector space of all functions
v(T,2) = Y550 v3(7)2P /B! that belong to O(SqU D(0,7)){z} such that

58
(6,0,6,Q) = Z HUB(T)Hﬂ,E,O',QE

B8=0

[lv(7, 2)]

is finite. One can check that the normed space (G(e,0,0,Q),||.|

(e.0,0,0)) 15 a Banach space.



Remark: These norms are appropriate modifications of the norms defined by O. Costin in [12]
and those of C. Stenger and the author introduced in the work [22].

In the next proposition, we study the rate of growth of the functions belonging to the latter
Banach spaces.

Proposition 1 Let v(1,2) € G(¢,0,6,Q2). Let 0 < 6y < 1. There exists a constant C > 0
depending on ||v||(c 50y and 81 such that

T 2 g
) o(r,2)] < €1+ 1) exp( 2 )

forall T € SqUD(0,r), all z € C such that ‘(Sﬁ < 61, where (b) = >0 1 1/(n+1)°.

Proof Let v(7,2) = > 455 vg(7)2? /B! be in G(e,0,5,Q). By definition, there exists a constant
c1 > 0 (depending on |[v][(c +.5,0)) such that

’T|2 _ o 1
)] < a1+ 7)o (Ll ) 915)°

for all >0, all 7 € SgU D(0,r). Let 0 < 01 < 1. From the definition of ((b), we deduce that
i

(6) o, z>r<c11+'7' T e(gn@)rhE)” < all+ i) e |(|)! i
£>0

for all z € C such that % <o < 1,all 7 € SgUD(0,r). Finally, from (6), we deduce the
estimates (5). O

In the next proposition, we study some parameter depending linear operators acting on the
space G(€,0,6,Q).

Proposition 2 Let s1, $o, k1, ko > 0 be positive integers. Assume that the condition
(7) ko > b($1 + k1 + 2)

hold. Then, for all € € &, the operator (751 /€%2)0-%107*2 is a bounded linear operator from
(G(e,0,6,0), |[1(c,0,5,0)) nto itself. Moreover, there exists a constant C; > 0 (depending on
b,o,s1, k1, k), which does not depend on € € £, such that

75 _
(8) =07 M07520(7, 2) |(eos) < Crlel™ T17526%2 [o(7, 2) | (e 000

for allv € G(e,0,6,Q), alle € €.

Proof Let v(7, z) € G(¢,0,0,12). By definition, we have

T ki ke 5
(9) H €52 87' az (T z H (e,0,6,Q2) — E H €52 7- U,B*kz (T>HB,€,O‘,QE'
B>k2



Lemma 1 The following inequality holds

(81 + ]{71)671

s1+k1 1 b(s1+k1)
eyt

Tsl —k
(10) |5 07 ™ vp—ra (7)]

s < lefrrhe: (<

ki +2)e !
+((51 + ;kj' )6 )Sl+k1+2(6+ 1)b(81+k1+2)> ||Uﬂ—k2(7—)”,3—k2,e,cr,ﬂ
2
for all B> ks.
Proof By definition, we have that 9! VB—ky (T fo VB—ky (T1)dT1, for all 7 € SqUD(0, 7). Using

the parametrization 71 = hy7 with 0 < h; < 1 we get that
1
0 pota(r) = [ v ()
0
where Mj(h1) = 1. More generally, for all k; > 2, we have by definition

. Thy—1
07" vk, (T / / / VB—ly (Thy ) ATk, ATy —1 - - - dTy

for all 7 € S U D(0,7). Using the parametrization 7; = h;j7j_1, 71 = hi7, with 0 < h; <1, for
2 < j < kp, we can write

Oy Fvg_p, (1) ZTkl/ / VB—ky (Mg == - h1T) My, (R, ... gy )dhy, dhy, —q - - - dhy
0 0

where My, (h1,...,hg,) is a monomial in hy, ..., hg, whose coefficient is equal to 1. Using these
latter expressions, we now write

T
A1) |59 Mg, (7)]

31+k1 h chyT|? o
/ / VB—k; hk1' th)( ‘ h ’ ’2 ! | ) €xp (_‘e‘rb(ﬁ_lﬁ)‘hlﬂ "'th’)

exp (Hrb(ﬁ — k2)|hk1 tee hﬂ")
L+ |y - ha7[?/]ef?

My, (h1,. .., hy, )dhy, - - - dhq].
So that

Tk 7|2
(12) |6T287 Uﬁ—kz(T)\(ler)eXp -

et I

< Jvg—ky (T)|| g=ks.e,0.00 e (1+ W)exp <_|Ue\(”’(m —1p(B — ’f?))lTl) :

By construction of 7,(3) we have that

k
(13) ro(8) =68 — k2) 2 m

for all 8 > ko. From (12) and (13), we get that

S1 2
1) |0 0 (I + T exw (~ @)

e
’ ‘S1+k1

7|2 < ok >
< _ €,0, L+ 3 el
< ”Uﬂ kg( )||ﬁ ko,€,0,Q |6| 2 ( |€|2)6XP |6| (ﬁ+1)b|7—|




for all 8 > ko. Now, we recall the following classical estimates. Let m1,ms > 0 two real numbers.
Then, we have

(15) sup ™! exp(—max) = (—l)mle_m1
x>0 mao
We deduce that

|7-|81+k’1 ﬂ o ko
= TR g mr e

_ ki)e ! (s1+ k1 +2)e !
< Je|s1thi—s2 (s1+ k1 s1+k1 1)b(s1+k1) s1+k1+2 1)b(s1+k142)
N (e R e AR

(16)

for all 7 € S3U D(0,r). From the estimates (14) and (16), we deduce the inequality (10) O
From the equality (9) and Lemma 1, we get that

T ki A—ko
(17) Hga‘r az 0(7—72)”(6,0,5,9)

< Z |6|81+k1_32 ((W)81+k1(ﬂ+1)b(s1+k1)

5>k ok

1 _ |
_|_((81 + kl + 2)6 )81+k1+2(ﬂ + 1)b(sl+k1+2) (ﬁ k2)
O'kiz ﬁ'

O
X |05k (T)]| 5—ks,e,0,9 B—ka)!

From the assumptions (7), we get a constant Co > 0 (depending on b, s1, k1, k2) such that
— ko)! — ko)!
(18) (3 + 1)b(81+k1)(ﬂﬂ'2) <Cy , (B+ 1)b(81+k1+2)u < Oy,

Ié]
for all 5 > ko. Finally, from the estimates (17) and (18), we get the inequality (8). O

Proposition 3 Let s1,s2,k1 > 0 be positive integers and 0,6 > 0 be real numbers such that
o > 6. Then, there exists a constant C; > 0 (depending on 0,6, 1, k1), which does not depend
on € € €, such that

751

(19) |’6T28;klv(7—72)”(6,0,6,ﬂ) < Chlel* 1752 o (T, 2) | (e 5.50)

for allv € G(e,5,6,Q), alle € E.

Proof Let v(7, z) € G(¢,5,9,9). By definition, we have

T —k1 —k1 618
(20) 1220500, Mlcmsen = SIS0 vl oy
B>0

Lemma 2 The following inequality holds

751

(21) [l 07" os(7)]

T

_ 51+ ke !
(s1+ k1 +2)e”

o—0

+(

1
>51+'“+2) o) 5

for all B> 0.



Proof Using the same notations as in the proof of Lemma 1, we can write
T4
(22) |73—k1%(7)|

roith hi - a7 g
S e [ vt ey P g (i

exp (ro(8)lhw, -+ bl
1+ |hg, - ha]?/]€|?

My, (hi,. .., hi,)dhg, -~ dhy].

Using the fact that r,(3) > 1, for all 5 > 0, we deduce that

T 2 g
23) |0 os(nl(L+ ) expl- Zr@)r)
s1+k1 T 2 r
<llop(llaean ™o+ T expl(r =) el
’ ‘S1+k1 m o - 5
S |’Uﬁ( )H/@ﬁUQ ’ ’ 2 (1 + e‘g)exp( ’€| |T|)

for all 8 > 0. From the inequality (15), we deduce that

|T]S1+kl 7| o—0
24 14+ +—5 —
(24) e (1+ ‘6‘2)6Xp( " 1)
< ’€|51+k1_82 ((81 + k1>€71 )sl-i-k‘l + ((81 —+ kl + 2)671 )81+k1+2
- oc—o0 oc—0
for all 7 € S3U D(0,r). From (23) and (24) we deduce the inequality (21). O
Finally, from the equality (20) and Lemma 2, we deduce the estimates (19). O

In the next proposition, we study linear operators of multiplication by bounded holomorphic
functions.

Proposition 4 Let h(7, z,€) be a holomorphic function on (Sq U D(0,r)) x D(0,p) x &, for
some p > 0, bounded by some constant M > 0. Let 0 < 6 < p. Then, the linear operator of
multiplication by h(t, z,€) is continuous from (G(e,0,6,Q),|.||(c0.50)) into itself, for all € € €.
Moreover, there exists a constant Cy (depending on M,d,p), independent of €, such that

(25) |R(7, 2, €)v(T, 2)|[(e.o5.0) < Collv(T, 2)|l(c.05.0)
for allv(r,2) € G(e,0,0,9), for alle € £.

Proof Let h(7,z,€) = > 55 ha(T, €)2% /3! be holomorphic on (S; U D(0,7)) x D(0,p) x € such
that there exists M > 0 with

sup |h(T, z,€)| < M.
T7€S4UD(0,r),2€ D(0,p),e€€

Let v(7,2) = 3 550 v3(7)27 /B! € G(e, 0,6,8). By construction, we have that

g 88

(26) Hh(T,Z,G)’U(T, Z)H(e,o,&Q) < Z( Z Hhﬂl(Tv 6)1)52( )Hﬁ,ﬁaﬂﬂ ',82 ),3' .

B>0 B1+p2=0



From the Cauchy formula, we have

sup |hs(r,e)] < M( )%‘
T7€S4UD(0,r),ec€

for any § < &' < p, for all 8 > 0. By definition, we deduce that

B, S M B! ( )m”v%( )Hﬁmﬁﬂ,ﬂ

@7) kg (7, €)vp, (T)l|g o0 < MBS )ﬁlll%( )|

for all 81, B2 > 0 such that 8; + 2 = 3. From (26) and (27), we deduce that

(7, 2, €)o(7, )| (€. 080) < M(Z(g)ﬂ)l\v(ﬂ 2)

=0

(6707679)

which yields (25). O
In the next proposition, we give norm estimates for the convolution product.

Proposition 5 Let f,g be in G(e,0,6,Q2). Then, the function

(Fea)r2) = [ fr = s.2)g(s.2)ds
belongs to G(e,0,6,2). Moreover, there exists a (universal) constant C3 > 0 such that

(28) 1(f * ) (7 2 (eo0.0) < Cslelll (7, 2) (.05 19(T, )l (c.0.5.0)
forall f,g € G(e,0,0,9).

Proof Let

=" fa()P/B, g(rz) =Y ga(r)P/ !

B8>0 B3>0

in G(e,0,0,Q). By construction of f % g, we have that

@9) 1| [ 5 =5 2)a(s il lmsoy < T 3

B>0 B1+B2=0

5B
sl [ 17 = 905,515l cr) 5
Lemma 3 There exists a (universal) constant Cs > 0 such that

(30) H/ fo. (T = 8)g8,(8)ds||g.e.o0 < Cslell| £, (T)][1,e,0.2198: (T)| 821,002
for all 8 >0 and all 81, P2 > 0 with 51 + B2 = 6.

Proof We write

i [ — s I~ s ex T—35
[ g =9 0ast =1 [ gt -9+ T p( () \)
‘ 2

om0t e (-2 )

e (@l —sl +n(B)ls))
(1+ ) (1 + =)

el

s|




10
for all 7 € S;U D(0,r). We deduce that

(31) |/ T (7 = 8)gp, (s)ds| < || £, (T)l11,e,0.01198, (T)l| g2.e,0,2

lrlexp (S5 ra(B1)(1 = h) + ro(B2)))
X / EE EE dh
0 (l—i—w(l—h) )(1+Wh2)
In the next step we will show that there exists a constant C'5 > 0 such that

?

<m>1wu¢@mﬁ»:u+éamm7%mmm>

rlexp (27 (r —h)+r h
x/~1|| p (F5ro(B1)(1 = ) + 7 (52) 0dh<kK&
0

u+mu—mm I h2)

for all 7 € S;UD(0,r), all e € &, for all B > 0, all 51,52 > 0 with 1 + B2 = 5. Indeed, from
the fact that r, is increasing, we first have that

(33) m(B1)(1 — h) +1(B2)h < r4(5)
for all 0 < h <1, all 1,82 > 0 with 51 + B2 = 3. Then, from (33), we get that
(34) MﬂMﬁﬂxﬂ<JWHm—/l L+ fir ah
T e - -+ )
for all 7 € S;UD(0,7), all € € €. On the other hand, we have that
55) ﬂMMwbzfl 1+l "
X o (L+ PRI h)2) (1 + [rPR?)

From Corollary 4.9 of [12], we know that the right hand side of (35) is a bounded function of
|7| on R;. We deduce that there exists a (universal) constant Cs > 0 such that

(36) Tzl le) _ g ZUellTlle) )

sup ————= = su <
>0 el 7|>0 e

for all e € £. We get from (34) and (36) that the inequality (32) holds. Finally, the inequality
(30) follows from (31) and (32). O

From (29) and (30), we get that (28) holds with the constant Cs from Lemma 3. O

Corollary 1 Let ki,so > 0 be positive integers. Then, for all € € £, the operator (1/¢%2)0-
is a bounded linear operator from (G(e,0,0,Q),[|.||(c,0,5,0)) into itself. Moreover, there exists a
constant Cy > 0 (depending on o, k1) such that

(37) Hia k1 (T7 Z)H(e,a,&,ﬂ) < C4’6|k1752”1)(7', Z)

527'

(670.767Q)

for allv(r,2) € G(e,0,0,9), all € € £.
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Proof Let v(7, z) € G(¢,0,0,Q). We denote by ¢ the function equal to 1 on C. By definition,
we put X?f:l = xc and X(?:l means the convolution product of xc, | — 1 times for [ > 2. By
definition, we can write 97 %1v(7,2) = (xc(7))*™ * v(7,2z). From Proposition 5, there exists a
(universal) constant C3 > 0 such that

(38) 1671 o(r, 2)|

k k k
(0.02) < O3t e Ixe (M .50 [10(T: 2| c.0.59)

By Definition 1 and using the formula (15), we have that

7| o 2¢~1
3 el = sw 1+ e (~ el ) < 14 ()
T7€S4UD(0,r) ’6’ ‘6‘ g
From the estimates (38) and (39), we get the inequality (37). O

2.2 A global Cauchy problem

We keep the same notations as in the previous section. In the following, we introduce some
definitions. Let A; and Ay be finite subsets of N2.

For all (ko, k1) € A1, we denote by I(;, k) a finite subset of N2, For all (s1,59) € Lo ey )s We
denote by as, s, ko.k1 (T 2, €) some bounded holomorphic function on (SqU.D(0,7)) x D(0, p) x &,
for some p > 0. For all (ko, k1) € A1, we consider

a(ko,kl)(T, Z, 6) = Z sy .59.k0 k1 (7_7 z, 6)7’816752

(s1,82) €L (kg k)

which are holomorphic functions on (S; U D(0,r)) x D(0,p) x &.

For all (lp,11) € A2, we denote by J,;,) a finite subset of N. For all m; € Jy,,), we denote
by ®m, 10,1, (T, 2, €) some bounded holomorphic function on (Sq U D(0,7)) x D(0, p) x £. For all
(lp,11) € As, we consider

—m
Q(lg,11) (T7 2, 6) = E Qmy,lo b (1,2, 6)6 !
m1€Jg 1)

which are holomorphic functions on (Sq U D(0,7)) x D(0,p) x £. Let S > 1 be an integer. For
all 0 < j < .S —1, we consider a function 7 +— Vj(, €) that belongs to Ey s q, for some ¢ > 0
and all e € €.

We consider the following Cauchy problem

(40) 8§V(T,Z,€): Z a(kmkl)(r,z,e)@;kf’@flV(T,z,e)
(ko,k1)€AL

+ Z a(lo,ll)(T’Zve)a;lo((V(TaZ7€))*ll)

(lo,l1)€A2,l1 >2

where V*! = V and V*1, [; > 2, stands for the convolution product of V' (I; — 1 times with
respect to 7), for given initial conditions

(41) (2V)(7,0,¢) = Vj(r,e) , 0<j<S—1.

We state the main result of this section.



12

Theorem 1 We make the following assumptions.
A1) For all (ko, k1) € A1, all (s1,52) € Ly k), we have
S>b(si+ko+2)+k , s1+ko> sa,
A2) For all (lp, 1) € Az, all my € Jy, ), we have
lo+lizm+1 , [ >2.
We put

S—1 Zj
w(T, z,€) = Z Vj(r, E)F
=0 '

Then, there exist constants I > 0, R > 0 and § > 0 (independent of €) such that if we assume

that
S—1—h

kY
> Visa(mOllocsasy < 1.
j=0 J:

for all0 < h < S —1, for all e € &, the problem (40) and (41) has a unique solution V (7, z,¢€)

in the space G(€,0,0,2), for some o > &, for all € € £, which satisfies moreover the estimates
HV(T’ 2, 6)”(6,0,6,9) < 5SR + Ia

foralle € £.

Proof For all € € £, we define a map A, from O(S;U D(0,7)){z} into itself by

A(U(1,2)) = Z a(ko’kl)(r,z,e)a;kof)fl*SU(T, 2)
(ko,k1)€A1

+ Z a(k07k1)(7_7Z7€)8T_koa§1w(7—7zye)
(k'O:kl)e.Al

+ Z a(lo,ll)(TaZ7E)a;l0((az_SU(7-a Z) +w(7_a Zs 6))*11)
(lo,l1)€A2

In the next lemma, we show that A is a Lipschitz shrinking map from and into a small ball in
a neighborhood of the origin of G(e, 0, d, ), for some o > 7.

Lemma 4 Under the conditions A1), A2), let a real number I be such that

S—1-h

kY
> Via(mOllocsas < 1.
j=0 J:

for all0 < h < S —1, forall e € £. Then, for a good choice of I > 0,
a) there exist real numbers 0 < § < p, 0 > & and R > 0 (not depending on €) such that

(42) AU (T, 2)ll(e.o00) < R

for allU(r,z) € B(0,R), for all e € £, where B(0, R) is the closed ball centered at 0 with radius
R in G(e,0,0,),
b) we have

1
(43) [Ae(UL(T, 2)) = Ac(Ua(7: 2))l(e.0,6.0) < 5lIUL(T,2) = V(7. 2)l|(e0.6.9)

for all Uy,Us € B(0, R), for all e € £.
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Proof First of all, foral 0 < A< S —1,0<5<.5—1—h, we have that

Visn(T,)lj.e6.0 < [[Virn(T,€)ll0.c6.0-
We deduce that 0w (T, z,€) € G(e,5,6,Q) and that

S—1-h

&7
(44) |0kw(r, 2, €)lless0) < D ij+h(7'75)||0,e,&,ﬂﬁ§1
j=0

forall0<h<S-—1.
We first show the estimates (42).

Let 0 > &, R > 0 and U(7,2) € G(¢,0,6,9Q) with [[U[|(¢0,50) < R. From Propositions 2,4
we get that there exists a constant d; > 0 (independent of €) such that

(45) ||a81,52,/€o,k1 (T7 Z, 6)7—816_82 a;koafl_SU(T’ Z) ||(e,a,(5,Q)

< die[ 7285 U (7, 2) | (o 5.0) < dule T TROT265 MR,

for all (ko, k1) € Au, all (s1,52) € I (4 k). From Propositions 3,4 and the inequality (44) we get
that there exists a constant d; > 0 (independent of €) such that

(46) ||a81,82,k0,k1 (T’ Zs 6)7816782 8;% aflw(T? Zs 6)‘ (6,0,6,)

< d1‘6‘81+k0_82|’8§1w(7', Z, 6)||(675_757Q) < Jl‘e‘sl-i-ko—szI’

for all (ko, k1) € A1, all (s1,82) € [y r,)- On the other hand, since the convolution product is
commutative, from the binomal formula, we can write

(075U (7, 2) + w(r, 2, )™ = (07°U (1, 2))™" + (w(r, 2, €)™

1! _ 1 2
Y U@ (w(rz0)
2=y i >1,2>1 L

for all [ > 2. From Propositions 2,5 we get a constant d2 > 0 (independent of €) such that

(47) (075U (7, 2) + w(7,2,€) | (c.059)

Ih!
S dg‘ﬁ‘ll_l(dsllRll +Il1 + § 11'1l2'65l%Rl%Il%) — d2’€’ll_1<5SR+I>l1
Bi2=iy 1 >1,2>1

for all 2 <1 < max{l € N/(lo,l) € Az}. From Proposition 4 and Corollary 1, we get a constant
d3 > 0 (independent of €) such that

(48) Haml,lo,ll (7’, 2, 6>67m1 8;10 ((a;SU(T7 Z) + ’U)(T, 2, 6))*11)”(6,0,6,9)
< dsle|>"™ (9, °U (7, 2) + w(r, 2, )" |

(€,0,6,82)

for all (lo, 1) € Az, all my € Jjy, ). From (47) and (48), we get that

lo,l1

(49) Haml,lmll (7—’ Zs E)E_ml a;l() (((92_SU(T, Z) + ’LU(T, 2y 6))*l1)H(6,0,5,Q)
< dyds|e|P TGS R4 1B
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for all (lp, 1) € Az, all my € Jjj,1,)- Now, we choose 4, R, I > 0 such that

(50) > S et (d 65 MR 4 diT)

(ko,k1) €A1 (51,52) €L (kg kp)
£ Y Y ddgfeft IR D <R
(lo,l1)€A2 m1€J(g 1y

for all € € £. From the inequalities (45), (46), (49), we deduce that ||Ac(U(7,2))|[(c000) < R,
for all e € £.

We prove now the estimates (43).
Let R > 0 and let U;,Us € B(0,R). From Propositions 2,4 we get that there exists a
constant dg > 0 (independent of €) such that
(51) Ha81,52,7€0,k1 (7—7 2y 6)7_81 € 87_—]60 651_8((]1 (7—7 z) - U (T7 Z) H(e,a,&ﬂ)
< dye RO 65 MU (7, 2) — Ua(7, 2)

(6707579)

for all (ko, k1) € A, all (s1,82) € (k). As in the part a), we can write from the binomial
formula

(52)
(075U (1, 2) +w(r, 2, €)) " — (075U (1, 2) +w(r, 2, €)™ = (075U (7, 2))™1 — (87 °Us(7, 2))*™

11! _ w1 _ w1 %2
Y U )) — (0750 2) ™) # (w(r 2, )
Bi2=iyi>102>1 1]
for all Iy > 2. On the other hand, we have that
(53) (0 °U1(r,2))** — (0 °Ua(r, 2))*
= (075U (7, 2) — 075U (1, 2)) % (875U (7, 2) + 075U (7, 2))
and, for all [ > 3, we can write
(54) (925U (1,2))*" — (075Us(7, 2))" = (875U (7, 2) — 825U (7, 2))
« (075017, 2) "~ + (075 Ua(r, 2)) 1

+Z 07 " Us (7, 2))™* (a;SUl(T,z))*l—’f—1>.

Using (53) and (54), from Propositions 2,5, we get a constant d; > 0 (independent of €) such
that

(55)
102U (7, 2))™ = (8°U2(7, ) ||(eos) < (dsle/ T 6 RD||Ui(7, 2) = Ua(7,2)l|(c.000)

forall 1 <l <max{l; € N/(lp,l1) € Az}. From (52), (55), we get a constant dg > 0 (independent
of €) such that

(56) H( SUl(T Z) + w(T z 6))*l1 - (a;SU2(T Z) + w(Tv 2 6))*I1H(6,0,6,Q)

- - l! -
Sdele TR 3 R U(7,2) — (s
Bi2=l 121 b 1

=dgle|"TRTY((8FR + D)1 — IM)||Uy (7, 2) — Us(r, 2)

(6707699)
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for all 2 < l; <max{l € N/(lp,l) € Az}. From Proposition 4 and Corollary 1 we get a constant
d7 > 0 (independent of €) such that

(57)
||am1,l0,l1 (T’ Zs e)e_mla:lo((az_SUl (T7 Z) + w(Tv 2, 6))*11 - (az_SU2(T7 Z) + w(Tv Z, 6))*l1)||(e,0,5,§2)
< drle| (875U (7, 2) + w(T, 2, €)™ = (9 %Ua(7, 2) + w(T, 2, €))*|

(€,0,0,92)
for all (lo,l1) € A, all my € Jjy, 1,)- From (56), (57), we get that
(58)

||04m1,l0,l1 (7_7 Zs 6)€_mla;l0((8z_SU1 (7-7 Z) + ’LU(T, 2y 6))*l1 - (az_SUQ (7-7 Z) + ’LU(T, 2, 6))*l1)||(e,a,5,9)

< dodq|e[Ot MR (SR + 1) — IM)||U (7, 2) — Ua(7, 2)]

(6703579)
for all (lo, 1) € Az, all my € Jjj,1,). Now, we choose 0, R, I > 0 such that

59) > Yo dylefrtRoms2gSh

(ko,k1)eA1 (Sl,SQ)EI(kO’;“)

+ > > dedple/oth M RIS R4 I — 1) < 1/2
(lo)l1)€A2 m1€J(1y 1q)

for all € € £. From the inequalities (51), (58), we deduce that

1
HAE(Ul(Tﬂ Z)) - AE(UQ(T72))H(€,0‘,§,Q) < iHUl(Tv Z) - UQ(Tﬂ Z)‘

(€,0,0,82)»

for all € € £. Finally, we choose 0, R, I > 0 is such a way that the conditions (50) and (59) hold
simultaneously. This yields Lemma 4. O

Now, let the assumptions A1), A2) hold. We choose the constants I, R,d as in the lemma 4.

Assume that
S—1—h

j
> Wen(r.llocan’y <1
j=0 I
forall 0 < h < S —1, for all e € £. From Lemma 4 and the classical shrinking map theorem on
complete metric spaces, we deduce that the map A, has a unique fixed point (called U(7, z,¢€)) in
the closed ball B(0, R) C G(e,0,0,12), for all € in £, which means that A.(U(7,z,¢)) = U(T, z,€)
with [|U]](c0.60) < R. Finally, we get that the function

V(T) 2, 6) = 8Z_SU(7—7 2, 6) + w(T’ 2, 6)

satisfies the Cauchy problem (40), (41), for all 7 € Sz U D(0,7), all z € D(0,0), all € € €.
Moreover, from Proposition 2, we deduce that

V(7 2,6)|l(e,0,50) < R+ 1,

for all e € £. O
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3 Analytic solutions in a complex parameter of a singular Cauchy
problem

3.1 Laplace transform and asymptotic expansions

We recall the definition of Borel summability of formal series with coefficients in a Banach space,

see [2].

Definition 2 A formal series
[e.9]

A a; .
Xt)y=>" ﬁtﬂ e E[[#]]
j=0
with coefficients in a Banach space (E,||.||g) is said to be 1—summable with respect to t in the

direction d € [0, 2) if

R i) there exists p € Ry such that the following formal series, called formal Borel transform of
X of order 1

BUX)(r) = Y 5 e Br]l,

21

[\

is absolutely convergent for |T| < p,

i) there exists § > 0 such that the series B(X)(T) can be analytically continued with respect
to T in a sector Sg5 = {T € C* : |d — arg(7)| < d}. Moreover, there exist C > 0, and K > 0
such that
1B(X)(7)||e < CeXIT

forall T € Sg;.

If this is so, the vector valued Laplace transform of order 1 of B(X)(7) in the direction d is
defined by

LABX)) =t [ BX)(r)eDar,
LV
along a half-line L, = R e C Sa,s U {0}, where v depends on t and is chosen in such a way
that cos(y — arg(t)) > 61 > 0, for some fixed ¢y, for all ¢ in a sector

Sd,gyR = {t eC*: ‘t‘ <R , ‘d— arg(t)| < 9/2},

where 7 < § < m+28 and 0 < R < 6,/K. The function £4(B(X))(t) is called the 1—sum of the
formal series X (t) in the direction d. The function £4(W)(t) is a holomorphic and a bounded
function on the sector Sqg r. Moreover, the function £4(W)(t) has the formal series X(t) as
Gevrey asymptotic expansion of order 1 with respect to ¢t on Sgg r. This means that for all
A1 < 0, there exist C', M > 0 such that

n—1
1£9W)(8) = Y 2| < CM™ e
p!
p=0
foralln > 1, allt € Sq¢, R

In the next proposition, we give some well known identities for the Borel transform that will
be useful in the sequel.
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Proposition 6 Let X(t) = > n>0ant™/n! and G(t) = > n>0 bnt™/nl be formal series in E[[t]].
We have the following equalities as formal series in E[[T]]:

(102 + 0,)(B(X)(1)) = B(&: X (1)) (1), 071 (B(X))(1) = B(X (t))(7),
T&Xﬂﬂ—B“ﬂ&+ﬂXﬁ”h)/(&@@>wﬂ&%®MS—B@2

0

()G (D)(7).

Proof By a direct computation, we have the following expansions from which the proposition 6
follows.

Zan+1 7-8 +8 Zan+l A(t) = Znanflga

n>0 n>0 n>1
8; Znan 1 t28t+t Zn A 1 l’ Zn G 1
n>1 n>1 n>1
S A n! (T A n! T
tX(H)G(t) = Z( Z malbm)ﬁ7 (BX)(7—s)(BG)(s)ds = Z( Z malbm)w
n>1 l+m=n—1 © /0 n>1 l+m=n—1 ’

a

3.2 Analytic solutions of a singular Cauchy problem with irregular singular-
ities
Let S > 1 be an integer. Let S be a finite subset of N3, A be a finite subset of N? and let

bs ko k1 (2, €), Cio.11 (2, €) be holomorphic bounded functions on a polydisc D(0, p) x D(0, ¢), for
some p, €p > 0, for all (s, ko, k1) € S, all (lp,l1) € N.

Definition 3 Let V(1,€) be a holomorphic function on some punctured polydisc

Q.0 = D(0,70) x (D(0,€0) \ {0})

where 0 < 79 < 1 and ¢y > 0. We make the assumption that the function T +— V (7, €) belongs to
E0,6,6,0r ., for some & >0, all e € D(0,€0) \{0}. Let d € [0,2m) with d # m. Let Uy be a closed
sector centered at 0, with bisecting direction d, with infinite radius and with small opening such
that —1 ¢ Uy. Let € be an open sector centered at 0 such that € C D(0,¢ep). We denote by

O(d, &) = (U U D(0, 1)) x E.

We assume that the function (T,€) — V(7,€) can be extended to an analytic function (T,€) —
Viuge(r,€) on (UgU D(0,70)) x € and that the function T — Vi, e(7,¢€) belongs to Ey 5 a(d6)
for all e € £. We say that the set {V, Vi, ¢,5} is admissible.

We consider the following singular Cauchy problem

(60)
t2atazSYUd,5(tv z,€) + (t+ 1)azSYUd,5(tv z,€) = Z bs ko k1 (25 6)6k0_5ts(8508§1 Yu,e)(t, z,¢€)
(s,ko,k1)ES
+ Z clo’ll(z,e)e_(l°+l1_1)tl°+l1_1Y[l]z’g(t,z,e)
(lo,ll)EN
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for given initial conditions
(61) agYUd’g(t, 0, 6) = YUd,S,j(ta 6) , 0<j<85-1.

The initial conditions Y7, ¢ ;(t,€), 0 < j < S — 1 are defined as follows: for all 0 < j < 5 —1,
let {V}, Vu,.€.,0} be an admissible set. Let

Xm,j (6) m

Vj(7-> 6) = (m,)g

m>0

be its Taylor expansion with respect to 7 on D(0, 79), for all € € D(0,¢p) \ {0}. We consider the
formal series

Yi(te) = an’i'(e) "
m>0 )

for all e € D(0,€9) \ {0}. We define Yy, ¢ (¢, €) as the 1—sum (in the sense of Definition 2) of
Yj(t, €) in direction d. From the fact that the function 7 — Vi, ¢ (7, €) belongs to Ey ¢ 5 0(a.6);
we get that ¢ — Yy, ¢ j(t,€) defines a holomorphic function for all t € Uy g pe, all € € £, where

Ud,@,h|e| = {t eC: |t‘ < h|6| ) |d - arg(t)| < 9/2}>

for some @ > 7w and some constant A > 0 (independent of €), for all 0 < j7 < § —1.

We have the following result.

Theorem 2 Let the initial data (61) be constructed as above. We make the following assump-
tion.

B) For all (s, ko, k1) € S, we have that
SZb(s—k‘o—i—Q)—l-k‘l , s> 2kg
and for all (lp,11) € N, we have that l; > 2.

Then, there exist two constants I,6 > 0 (independent of €) such that if we assume that

S—1-m

(62) Y WVism(r o)l

J=0

J
0,6,6,27,¢0 F <I

forall0 <m < S —1, forall e € D(0,¢p) \ {0}, and

S—1—-m

(63) > AVugejim(re)

j=0

&7
10,6,6,0(d,€) T <I,

for all0 <m < S —1, for all e € £, the problem (60), (61) has a solution (t,z) — Yy, £(t, 2, €)
which is holomorphic and bounded on the set Uqg || x D(0,0/2), for some h' > 0 (independent
of €), for all e € €. The function Yy, e(t,z,€) can be written as the Laplace transform of
order 1 in the direction d of a function T — Vi, £(T, z,€) which is holomorphic on the domain
(Uag U D(0,79)) x D(0,0/2) x € and satisfies the estimates : there exists a constant Cq(q )
(independent of €) such that
"

(64) |VUd,5(T7 2, 6)‘ < Cﬂ(d,é‘)(l + W) exp(
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for all (1,z,¢) € (Ug U D(0,79)) x D(0,6/2) x E. Moreover, the function Vi, g(7,z,¢€) is the
analytic continuation of a function V(7,z,€) which is holomorphic on a punctured polydisc
D(0,79) xD(0,0/2) x (D(0,€9)\{0}) and verifies the following estimates : there exists a constant
Ca > 0 (independent of €) such that

TO>€0

72 o
(65) Vi(r.ze) < Ca, . (1+ Uﬂ Lexp(Z P )y

for all T € D(0,79), all z € D(0,5/2), all e € D(0,¢) \ {0}.

Proof We consider a formal series

Y(t,z,€) = Y Vin(z,€)— € O(D(0, p))|[t]]

m>0
solution of the problem (60), with initial conditions
Y (t,0,€) = (te), 0<j<85—-1,

for all € € D(0,€) \ {0}. Let V (7, z,€) be the Borel transform of ¥ with respect to 7,

V(r,z,€) ZY Z,€)

m>0

In the first step of the proof, we show that V(r,z,¢) defines a holomorphic function on a
punctured polydisc D(0,79) x D(0,5/2) x (D(0,¢€p) \ {0}), which satisfies the estimates (65).

From the identities of Proposition 6, we get that V (7, z,€) satisfies the following singular
Cauchy problem

(66) (T+1)V(r,z,6) = D> bopgu (2,600 (702 + 0,) 00V (7, 2, ¢)

(s,ko,/ﬂ)es
+ Nz e oDy (7 5 )
(lo,h)e./\/
with initial conditions
(67) (@IV)(7,0,¢) =Vj(re) , 0<j<S—1

for all 7 € D(0,79), all z € D(0,p), all € € D(0,¢9) \ {0}. In the next step, we rewrite the
equation (66), using the following two lemma.

Lemma 5 For all kg > 1, there exist constants ap, € N, ko < k < 2ko, such that

2ko
(68) (102 4 0,)u(r) = Y ap g, Hodku(r)

k=ko

for all holomorphic functions u : Q2 — C on an open set Q) C C.
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Proof Let the polynomials py ,(7), for all kg > 1, all 0 < k < 2k defined by the following
recursion : po1(7) =0, p11(7) =1, p2.1(7) =T,

(69) Poko+1(T) = (TO2 + 0 )Poko (T) , P11 (T) 1= (702 + 07 )p1ko (T) + (2707 + 1)po o
Phsot1 = (TO2 + 0 )Pk (T) + (2707 + 1)pr—1,16 (T) + TP—2,10 (T),
P2ko+1,ko+1(T) = (2707 + 1)D2kg ko (T) + TP2ko—1,k0 (T) 5 P2kot2,k0+1(T) = TP2ko ko (T)

for all 2 < k < 2ky. By a direct computation, we get that

2ko

(102 + 0-)*u(r) = Y pro (1) ul7),
k=0

for all holomorphic functions u : £ — C on an open set 2 C C. By induction on kg, we can
show that the polynomials py, i, (7) have the following simple shape. We have that py, 5, (7) = 0,
for 0 <k < ko—1, and pyk,(7) = ahkork*ko, where ay, ., ko < k < 2kg, are integers defined by
the recusion

(70) a1,1 = 1,a21 1= 1, Qky1,kg+1 = Qhigt1,ko T Tk ko
Ak ko1 2= koo (b — K0)? + @110 (1 +2(k — 1 — ko)) + a—2.k,

2ko+1.ko+1 = (2ko + 1)aoky ko + G2ko—1.k0 > @2ko+2k0+1 = Q2%k0.ko

for all k such that ko + 2 < k < 2k, for any kg > 1. O

Lemma 6 Let a,b,c > 0 be positive integers such that a > b and a > c. We put 6 =a+b— c.
Then, for all holomorphic functions u : Q@ — C, the function 07%(7°0%u(7)) can be written in
the form
oo (rtoru(r) = Y ay oo u(r)
(¥, eOs
where Oy is a finite subset of Z? such that for all (b',c) € Os, ¥ —c =68, >0, ¢ <0, and
Qy o € Z.

Proof For all integers b > 0 and ¢ € Z, using b integrations by parts, we get b + 1 integers
Qs - - -, g € Z (depending on b) such that

(71) / sP0%u(s)ds = Z ap_pr? ROl D)y () 4 ao/ 9 bu(s)ds
0 k=0 0

for all 7 € Q. For all a,b > 0, ¢ € Z integers, we define
Lope(r) = 07 (r°07u(T))

for all 7 € Q. Using the expression (71), we get that I, .(7) satisfies the following recursion
formula:

b—1
(72) Iopo(m) = Z Ayt dla—1p—kc—k—1(T) + 0lg0.c—p(T)
k=0
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foralla > 1,b >0, ¢ € Z integers and 7 € Q2.

First of all, we observe that if the condition a +b — ¢ = 9§ is satisfied for the term Iy,
then we have that (¢ — 1)+ (b — k) — (c — k — 1) = 0, for the terms I,y g c—k—1(7) on the
right handside of the equality (72), for all 0 < k < b —1 and also for the term I, g .—(7). Using
the recursion (72), one can check that if @ > b and a > ¢, then I, .(7) can be expressed as a
linear combination with coefficients in Z of terms of the form Iy (1) where ¥’ > 0 and ¢/ < 0.
Moreover, from the observation above, if one assumes that a +b — ¢ = §, then we also have that
V' — ¢ =6 for all the terms Iy ~(7) appearing in the linear combination. O

Using the lemma 5,6 and the assumption B) in Theorem 2, we can rewrite the Cauchy
problem (66), (67) in the form

(73) 5V (7, z,€) = Z Mek(’*s( Z QT O PONV (1, 2, €))

1
(Ska)kl)es T+ (rzp)eos ko
+ Z clo’ll+216 (lo+l1—1)a;l0V*l1(T,z,e)
(lo,ll)EN T

where O_y, is a finite subset of N2 such that for all (r,p) € Os_k,, we have r + p = s — ko and
oy p € Z, with the given initial conditions

(74) (2V)(7,0,¢) = Vj(1,e) , 0<j<S—1.

From the assumption B) in Theorem 2, we get that the assumptions A1), A2) of Theorem 1
are fulfilled for the equation (73). From Theorem 1, we deduce that there exist two constants
1,6 > 0 such that if the inequality (62) holds, then the Cauchy problem (73), (74) has a solution
V(r,z,€) € G(€,0,0,Qx, ¢ ) for some o > & with a constant R > 0 (independent of €) such that
IV l(0.6.0m.c9) < §°R + I. From the proposition 1, we get the estimates (65).

In the second step of the proof, we show that the function V(7,z,€) can be analytically
continued to a function Vi, £(7, 2,€) on (Ug U D(0,79)) x D(0,0/2) x & satisfying the estimates
(64).

Indeed, by construction, the function V' (7, z, €) solves also the problem

(75) 5V (1, z,€) = Z Mekoﬂ( Z T OTPONV (1, 2, €))

1
(s,ko,k1)€S T (r,p)€O0s_k,
+ Z Clojl—’—zl 6 (lo+l1—1)8;l0 V*ll (7_’ 2, 6)
(lo,ll EN
with the given initial conditions
(76) (2V)(1,0,€) = Vi, ei(me) , 0<j<S—1

for all 7 € D(0,7), all z € D(0,§/2), all e € £. Due to the assumption B) in Theorem 2,
the assumptions A1), A2) of Theorem 1 are fulfilled for the equation (75). From Theorem 1,
we get two constants I,d > 0 such that if the inequality (63) holds, then the Cauchy problem
(75), (76) has a unique solution Vi, £(7, 2,€) € G(€,0,9,Q(d, £)) for some o > & with a constant
R > 0 (independent of €) such that ||Vi, ell(cos006) < 6°R + I. From the unicity, Vi, ¢
coincides with V' on the domain D(0,79) x D(0,0/2) x £. Moreover, the estimates (64) follow
from Proposition 1.
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From the first and the second step of the proof, we deduce that the formal series }A/(t, Z,€)
constructed before is 1-summable with respect to ¢ in the direction d as series in the Banach
space O(D(0,0/2)), for all e € £. We denote by Yy, ¢(t, 2, €) it’s 1-sum, which is a holomorphic
function with respect to t on a domain Ugg js|c|, due to Definition 2 and the estimates (64).
Moreover, from the algebraic properties of the k—summability procedure, see [2] section 6.3, we
deduce that Y77, ¢(t, 2, €) is a solution of the Cauchy problem (60), (61). O

4 Formal series solutions and Gevrey asymptotic expansions in
a complex parameter for a doubly singular Cauchy problem

4.1 Analytic solutions in a complex parameter for a singularly perturbed
Cauchy problem

We recall the definition of a good covering.

Definition 4 For all 0 < i < v — 1, we consider open sectors &; centered at 0, with radius €
and opening 7+ 0;, with 6; > 0, such that ENE; 41 # 0, for all 0 < i < v—1 (with the convention
that &, = &) and such that UY_} & = U\ {0}, where U is some neighborhood of 0 in C. Such a

set of sectors {&;}o<i<y—1 is called a good covering in C*.

Definition 5 Let {&;}o<i<y—1 be a good covering in C*. Let T be an open sector centered at 0
with radius r7 and consider a family of open sectors

Ud, 0.corr =t €C:|t| <eorr , |di —arg(t)| < 6/2},

where d; € [0,27), for 0 <i < v —1, where § > m, which satisfy the following properties:
1) For all0 <i<v—1, arg(d;) # 7.
2) For all0 <i<v—1, forallt € T, all € € &, we have that et € Ug, p.¢or -

We say that the family {{Uq, g.cory yo<i<v—1,7T } is associated to the good covering {&;}o<i<y—1.
Let S > 1 be an integer. Let S be a finite subset of N3, A/ be a finite subset of N and let
bs ko k1 (2, €), Clo.1, (2, €) be holomorphic bounded functions on a polydisc D(0, p) x D(0, €), for

some p > 0, for all (s, ko, k1) € S, all (lp,11) € N. Let {& }o<i<y—1 be a good covering in C*.
For all 0 < ¢ < v — 1, we consider the following singularly perturbed Cauchy problem

(77) e®005 Xi(t, 2,€) + (et + DO Xi(tz,6) = > by, (2, O (00 X,)(t, 2,€)

(s,ko,k1)€S
+ Y cpn(z Ot TIX (¢ 2 )
(lo,lh)eEN
for given initial conditions
(78) Xi(t,0,€) = pij(t,e) , 0<j<S—1,

where the functions ; ;(t, €) are constructed as follows. We consider a family of sectors
{{U4,.0.e0r1 Yo<i<v—1,7T } associated to the good covering {& }o<i<y—1. For all 0 < i < v —1,
let Uy, be an open sector of infinite radius centered at 0, with bisecting direction d; and with
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opening n; > 6 — 7. We choose 6 and n; in such a way that —1 ¢ Uy,, for all 0 <i < v — 1. For
all0<i<v—1,all0< 5 <5 —1, we define
pij(t e) = YUdz-y&',j(eu €)

where Yy, ¢,(t,€) is constructed as the initial condition of the problem (60), (61) in section
3.2, with the help of admissible sets {V}, Vi, ¢,,6}, forall 0 <i<v—-1,all0 <5 <S5 -1,
By construction, the function ¢; ;(t,€) is a hollomorphic and bounded function on 7 x &;, for all
0<i<v-—1,all0<j <8 -1, for well chosen radius r7 and opening 6.

Proposition 7 Let the initial data (78) constructed as above. We make the following assump-
tion.

B) For all (s, ko, k1) € S, we have that
SZb(S—ko—I-Q)—I-k‘l , 8> 2kg
and for all (lp,11) € N, we have that l; > 2.

Then, there exist two constants I,6 > 0 (independent of €) such that if we assume that

S—1—-m

(79) Y WVism(r o)l

J=0

0,6,5,2rg.¢0 i <I

for all0 <m < S —1, for all e € D(0,¢€p) \ {0}, and

S—1—-m 5]

(80) Z ’ ‘VUdi Eij+m (T, €)

Jj=0

|0,e7&,Q(di,8i)ﬁ <I,

for all0 < m < S—1, for all e € &, for all 0 < i < v — 1, the problem (77), (78) has a
solution X;(t, z,€) which is holomorphic and bounded on a set (T N D(0,h’)) x D(0,6/2) x &,
for all0 < i <wv—1, for some h' > 0. Moreover, there exist constants 0 < h' < h', K;, M; > 0
(independent of €) such that

M;
(81) sup | Xit1(t, z,€) — Xi(t, z,€)| < Kje Tel
teTND(0,h""),2€D(0,5/2)

foralle € &N Eixq, for all 0 < i < v —1 (where by convention X, = Xg).

Proof For 0 < i < v — 1, we consider the Cauchy problem (60), (61) for the initial conditions
(8£YU¢11- &)(t,0,€) = YUdi &gt €),

for 0 < j < S —1. From our hypotheses, the assumptions of Theorem 2 are satisfied for this
problem, which then has a solution (¢, z) — Yy, ¢, (t, 2, €) which is holomorphic and bounded on
the set Uy, g p/|e| X D(0,6/2), for some h' > 0 (independent of ), for all € € &;. Now, we put

Xz(ta 2, 6) - YUdivgi (Et’ 2 6)

which defines a holomorphic and bounded function on (7 N D(0,k")) x D(0,6/2) x &;, for 0 <
i < v — 1. By construction, one can check that X;(¢, z, €) satisfies the problem (77), (78) on
(T ND(0,Rh")) x D(0,6/2) x &, for all 0 <i <wv—1.
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In the second part of the proof, we will show the estimates (81). Let ¢ an integer such that
0 <7 <wv—1. From Theorem 2, we can write

Xt = (@) [ Vi (rn e,

Vi

-
H_l,ng(T, z,€)e” etdr

Xit1(t, 2, €) = (ft)lf Vu,
L

Vi1

where L., = RyeV=1i ¢ Uy U {0}, L., = RyeV T+ Ug,,, U {0}, and Vi, &, (resp.
VUdi+1:€i+l) is a holomorphic function on (Uyz, U D(0, 7)) x D(0,6/2) x & (resp. on (Ud1+1
D(0,79)) x D(0,0/2) x E+1) for which the estimates (64) hold and which is moreover an analytic
continuation of a function V (7, z, €) which satisfy the estimates (65).

From the fact that 7 — V/(7,2,€) is holomorphic on D(0,7) for all (z,e) € D(0,d/2) x
(D(0,€9) \ {0}), the integral of 7 +— V(7,z,¢) along the union of a segment starting from 0
to (19/2)eY 141 an arc of circle with radius 70/2 connecting (70/2)eY 1%+t and (79/2)eV 17
and a segment starting from (7p/ 2)eﬁ7i to 0, is equal to zero. So that, we can rewrite the
difference X;11 — X; as a sum of three integrals,

(82) Xi+1(t7 2, 6) - Xi(tv 2, 6) = (675)71 (/ VUdi+1 Eit1 (7-7 Z, E)eiidT
LTO/QNZ‘H
_/ VUd_7gi(T,Z,€)€7§dT +/ V(T,Z,E)G;d7>
Lro/2.7 ' C(10/2,7iyYi+1)
where LTO/Q,% = [7-0/27 +Oo)e\/j1%7 LTO/Q,'yiJrl = [70/27+OO)€\/j17i+1 and 0(70/2771'771'4-1) is an

arc of circle with radius 7/2 connecting (70/2)e¥ =1 with (79/2)e¥ =1+ with a well chosen
orientation.

We give estimates for I = |(et)™! [} Vi & (T2 2, €)e~<dr|. By construction, the

T0/2:7i41 i+1’
direction ;41 (which depends on et) is chosen in such a way that cos(v;+1 — arg(et)) > 1, for
alle € &1 NE;, allt € TN D(0,h), for some fixed §; > 0. From the estimates (64), we get

oo 2 ol (byr

(83) I < ‘6t|_1 , Cﬂ(di+1,5i+1)(1+‘:?)_1€ Tl e—ﬁcos(%ﬂ—arg(d))dr
T0
L [ (¢~
< let|” Cdisr,641)€ il 1el dp
7’0/2
_ Q&) ~(B-ocon D o Codinr Einn) ~ 002
61 — a¢(b)|t] - 52

forallt € TND(0, 1), with |t| < (61 —02)/(a((D)), for some 0 < d2 < &1, and for all € € £ 11 NE;.

We give estimates for I = |(et)™! [, Vu,, & &, (7,2, €)e"wdr|. By construction, the di-

0 /2 ¥
rection 7; (which depends on €t) is chosen in such a way that there exists a fixed d; > 0 with

cos(y; — arg(et)) > 01, for all e € ;11 NE;, all t € T N D(0,h'). From the estimates (64), we
deduce as before that

Ca,.e) — 2702

4 I <
(84) 2 < —5
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for allt € TND(0,h"), with |t| < (61 —02)/(a¢(D)), for some 0 < Jy < 1, and for all € € &1 NE;.

Finally, we get estimates for I3 = |et| ™! fC’(To/Q i) V (7, z,€)e" e dr|. From the estimates
(65), we have

Yit1 2 2 ol (b)T .
(85) I3 < ’€t|—1| / CQTO 60(1 + (70/2) )_16 ol 06 37 Htl cos(f—arg(et)) d«g‘
g ’ €]

i

By construction, the arc of cicle C(79/2,7i,7i+1) is chosen in such a way that that cos(6 —

arg(et)) > 51, for all 0 € [%‘,%4_1} (if vi < 'yi+1)), 0 e [%4_1,%] (if Yie1 < ’)/Z')), for all ¢t € T, all
e €& NEiq1. From (85), we deduce that

[ 70y 1 1 _d2mg/4 _d279/4
(o P75 < it1 —7ilCay, DO e e e

86) I3 < |v C
( ) 3 = |’YZ+1 ,.Y'L| QTO €0 2 |€t‘

i
for allt € TND(0,h"), with |t| < (61 —02)/(a¢(D)), for some 0 < Jy < 1, and for all € € &1 NE;.
Using the inequality (86) and the estimates (15), we deduce that

-1 9970 /4

e leln/

(87) I3 < |vit1 —7ilCa

T0,€0 52
for all t € T N D(0,R'), with [t| < (61 — d2)/(0¢(b)) and for all € € E41 NE;.
Finally, collecting the inequalities (83), (84), (87), we deduce from (82), that

Oﬂ(d + CQ E; _9279/2 e 1 d270/4
z+17 ) (d )
52 4 h’i-i-l - fyi‘CQTO’EO 52 e

|Xi+1(t7276) - Xi(t,z,6)| <

forallte 7T n D(O,hl), with ’t’ < (51 — (52)/(J<(b)), for some 0 < do < 47, for all € € 5Z‘+1 né&,
for all 0 <i < v — 1. So that the estimates (81) hold. O

4.2 Existence of formal series solutions in the complex parameter for the
singularly perturbed problem

We keep the same notations as in the previous subsection. In this subsection, we establish the
existence of formal power series

X(t,z,€) € O((T N D(0, ")) x D(0,5/2))[[€]]

which are solutions of (77) and satisfy the property that the solutions X;(t, z, €) of the problem
(77), (78) have X as Gevrey asymptotic expansion of order 1 on &, for 0 <i < v — 1.

The proof is based on a cohomological criterion for summability of formal series with coef-
ficients in a Banach space, see [2], page 121, which is known as the Malgrange-Sibuya theorem
in the literature.

Theorem (MS) Let (E,||.||g) be a Banach space over C and {&;}o<i<,—1 be a good covering
in C*. For all 0 < ¢ < v —1, let G; be a holomorphic function from &; into the Banach space
(E,||.]|r) and let the cocycle A;(e) = Gi11(€) — Gi(€) be a holomorphic function from the sector
Z; = &Ei+1 N & into E (with the convention that £, = & and G, = Gy). We make the following
assumptions.

1) The functions G;(e) are bounded as € € & tends to the origin in C, for all 0 <i <wv — 1.
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2) The functions A,(e) are exponentially flat on Z;, for all 0 < i < v — 1. This means that there
exist constants C;, A; > 0 such that

1A (e)|[ < Cre= 4/l

forallee Z;,all 0 <i<v-—1.

Then, for all 0 < ¢ < v — 1, the functions G;(¢) are the 1—sums on &; of a 1—summable
formal series G(e) in € with coefficients in the Banach space E.

We are now ready to state the main result of this paper.

Theorem 3 Let us assume that the hypotheses of Proposition 7 hold and that the functions
ij(te), 0<i<v—1,0<j<S—1, constructed in (78) satisfy the estimates (79) and (80)
for some constants 1,6 > 0. Then, there exists a formal series

X(t,z,¢€) ZHktz—eE[[]]

k>0

where the functions Hy belong to the Banach space E = O((7 N D(0,h")) x D(0,8/2)) of holo-
morphic and bounded functions on the set (TN D(0,h"))x D(0,8/2) equipped with the supremum
norm, for some h" > 0, which solves the doubly singular equation

(88) et?007X(t,z,€) + (et + D)X (tz,6) = > bopoy (2,7 (9f°0F X) (¢, 2, €)
(s,ko,kl)es

+ Y cpn(z Ot TIX (¢ 2 )
(lo,h)e./\/

and has the E—valued functions € — X;(t, z,€) constructed in Proposition 7 as 1—sums on &;,
forall0<i<v-—1.

Proof Let us consider the tuple of functions (X;(t, 2, €))o<i<y—1 constructed in the proposition
7. For all 0 < ¢ < v —1, we define G;(e) := (t,2) — X;(t,2,€), which is, by construction,
a holomorphic and bounded function from &; into the Banach space E = O((7 N D(0,h")) x
D(0,6/2)), where T,h" § are defined in Proposition 7. From the estimates (81), we get that
the cocycle A;(e€) = Giy1(€) — Gi(€) is exponentially flat on Z; = 1 NE;, forall 0 <i <wv—1.

From the theorem (MS) stated above, there exists a formal series G(€) € E[[e]] such that the
functions Gj;(e) are the 1—sums on &; of G(€) as E—valued functions. We put

Gle) =: X(t, z,€) ZHktz ok
k>0

It remains to show that the formal series X (t,z,€) satisfies the equation (88). Since the
Gi(e) are the 1—sums of G(e) we have that

(89) lim sup 0! X;(t, 2, €) — Hy(t,2)| = 0
¢—0,6€8i (1, 2)e(TND(0,h"))x D(0,6/2)

forall 0 <i<wv-—1,alll>0. Let an integer ¢ such that 0 < i < v — 1. By construction, the
function X;(¢, z, €) satisfies the equation (77). Taking the derivative of order [ with respect to
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e of the left and the right hand side of the equation (77) and using the Leibniz rule, we deduce
that 9L X;(t, 2, €) satisfies the following equation

(90)  et?0,050' X;(t, z,€) + (et + 1D X;(t, z, €) + 1t20,0° 0" L Xy (t, 2, €) + 1tD 1 X4(L, 2, €)

l!
= 2 (2 gt (2 90000 02 Xt 2, €))
(s,ko.k1)ES hatho=l 1%

I ) N
+ 2 0D a0 e (5 )T TN 0 Xt 2, €)
(lo,l1)EN ho+...4+hy =l 0 I

for all I > 1, all (¢, z,¢) € (T N D(0,h")) x D(0,0/2) x &;. Letting € tends to zero in (90) and
using (89) yields the recursion

H(t,2)

Hlfl(t, Z) Hl,l(t,z)) +as( y )
N [!

(-1 (-1
_ Z ( Z <aglb5’k°’k1)(z’O)tsﬁfoafl(m))

hl! hg!
(s,ko,k1)€S hi+ho=l

ho H (¢t
+ Z ( Z (86 cl0l1)(zv0)tlo+llfll—[§'1:1 hj( ,Z))

ho! Bl
(lo,1)EN ho+...4hy, =l 0 j

(91) 28,05( )+ td3(

for all 1 > 1, all (¢,2) € (TND(0,h")) x D(0,6/2). Since bs i, i, (2, €) and ¢, 1, (2, €) are analytic
with respect to € at 0, we have that

8?()5 Z,O a?C Z,O
@ b =Y B0 g 5 E)E0,

h>0 h>0

for all (z,€) near the origin in C2. Finally, one can check from the recursion (91) and (92) that
the formal series X (t,z,€) = > ;50 Hi(2, 2)€e¥ /k! solves the equation (88). O
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