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Abstract

We study Gevrey asymptotic properties of solutions to singularly perturbed singular nonlinear partial
differential equations of irregular type in the complex domain. We construct actual holomorphic solutions
of these problems with the help of the Borel-Laplace transforms. Using the Malgrange-Sibuya theorem,
we show that these holomorphic solutions have a common formal power series asymptotic expansion of
Gevrey order 1 in the perturbation parameter.
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1 Introduction

We study a family of singularly perturbed nonlinear partial differential equations of the form

(1) εt2∂t∂
S
z X(t, z, ε) + (εt+ 1)∂Sz X(t, z, ε) =

∑
(s,k0,k1)∈S

bk0,k1(z, ε)ts∂k0t ∂
k1
z X(t, z, ε)

+ P (t, z, ε,X(t, z, ε))

for given initial conditions

(2) (∂jzX)(t, 0, ε) = ϕj(t, ε) , 0 ≤ j ≤ S − 1,

where ε is a complex perturbation parameter near the origin in C, S is some positive integer,
S is a finite subset of N3, the coefficients bk0,k1(z, ε) of the linear part belong to O{z, ε} and
P (t, z, ε,X) ∈ O{z, ε}[t,X], where O{z, ε} denotes the space of holomorphic functions in (z, ε)
near the origin in C2. The initial data ϕj(t, ε) are assumed to be holomorphic functions on a
product of two sectors with finite radius centered at the origin in C2.

For all ε 6= 0, this family belongs to a class of partial differential equations which have a so-
called irregular singularity at t = 0 (in the sense of [24]). Only a few results about the existence
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of solutions and their asymptotic properties are known for partial differential equations with
irregular singularities, see for instance the papers [9], [10], [24], [26], [27], while partial differential
equations with fuchsian singularities have been studied to a large extent, see for instance [1],
[4], [14], [18], [23], [28], [32].

In a previous work, we have considered the situation when the coefficients of the linear part
do not depend on the time variable t and when the nonlinear part P (t, z, ε,X) is replaced by
an integro-differential convolution operator acting on X, see [21]. Here, we assume that the
following condition holds for the shape of the equation (1) : there exists a real number b > 1
such that

S ≥ b(s− k0 + 2) + k1 , s ≥ 2k0,

for all (s, k0, k1) ∈ S.
Our result comes within the framework of the asymptotic analysis of singular perturbations

of initial value problems of the form

(3) εL2(t, x, ∂t, ∂x)[u(t, x, ε)] + L1[u(t, x, ε)] = 0

where L2 is a linear differential operator and L1 is a nonlinear differential operator, for given
initial data (∂jxu)(t, 0, ε) = hj(t, ε), 0 ≤ j ≤ ν, belonging to some space of functions. Most of
the statements in the literature concern the situation when ε is a real parameter and when L2

is an elliptic or hyperbolic second order operator acting on real functions spaces (for instance
infinitely smooth functions spaces C∞(Rd) or Sobolev spaces Hs(Rd)). These results concern
sufficient conditions for a solution u(t, x, ε) of (3) to have an asymptotic expansion of the form

u(t, x, ε) =
n−1∑
i=0

wi(t, x)εi +Rn(t, x, ε)

where bounds of the remainders Rn are obtained, for all n ≥ 1. The proofs use semi-group
operators methods, see [17], the maximum principle and energy integrals estimates, see [15],
[25], or fixed point theorems for the nonlinear equations, see [13], [15]. For a general survey on
singular perturbations for both asymptotic and numerical aspects, we refer to [19]. But, there
are very few informations on singularly perturbed partial differential equations with complex
parameter ε and with solutions in spaces of analytic functions.

In this paper, we make the assumption that the coefficients in the equation (1) and the
initial data (2) are holomorphic functions. Our goal is the construction of actual holomorphic
solutions X(t, z, ε) of (1) and the statement of sufficient conditions for the existence and unicity
of an asymptotic expansion

X(t, z, ε) =
n−1∑
k=0

Hk(t, z)εk +Rn(t, z, ε)

with precise bounds for the remainder Rn of the form

|Rn(t, z, ε)| ≤ CMnn!|ε|n

for some constants C,M > 0, for all ε on a sector, uniformly in (t, z) on a product of a sector
and a small disc centered at 0, for all n ≥ 1.

In a paper of C. Durand, J. Mozo and R. Schäfke, see [7], an analogous study has been
performed for nonlinear doubly singular differential equations of the form

εx2y′(x, ε) = f(x, ε, y(x, ε))
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where f(x, ε, y) is a holomorphic map from Cn+2 into Cn, for n ≥ 1, extending some earlier
work for linear differential equations of W. Balser and J. Mozo, c.f. [3].

Following the same strategy as in [7], using the linear map t 7→ t/ε, we transform the
problem (1) into an auxiliary regularly perturbed nonlinear partial differential equation which
has an irregular singularity at t = 0, see (60). The effect of this transformation is that the
coefficients of this new equation now have poles with respect to ε at the origin. Notice that
these kind of singularities in the perturbation parameter did not appear in our previous study
[21].

The approach we follow is based on a resummation procedure of formal power series

Ŷ (t, z, ε) =
∑
m≥0

Ym(z, ε)tm/m!

with respect to the variable t, which are solutions of the constructed auxiliary problem (60).
This resummation method, called in the literature κ−summability, knows a great success in the
study of Gevrey asymptotic expansions of analytic solutions to linear and nonlinear differential
equations with irregular singularities, see [2], [5], [11], [16], [20], [29], [30].

We show that the Borel transform of order 1 of Ŷ (t, z, ε) with respect to t,

V (τ, z, ε) =
∑
l≥0

Yl(z, ε)
τ l

(l!)2

satisfies a nonlinear convolution integro-differential Cauchy problem, with rational coefficients
in τ , holomorphic in (τ, z) near the origin and meromorphic in ε with a pole at zero, see (73),
(74). Under well chosen initial data, we show that V (τ, z, ε) defines a holomorphic function near
the origin with respect to (τ, z) and on a punctured disc at zero with respect to ε and can be
analytically continued to functions Vi(τ, z, ε) defined on products Ui×D(0, δ)×Ei, where {Ei}i∈I
is a finite set of open sectors centered at the origin whose union form a good covering (Definition
4) and Ui, i ∈ I, are suitable open sectors with small opening and infinite radius. Moreover, the
functions Vi, i ∈ I, have exponential growth rate with respect to (τ, ε), namely that there exist
constants C,K > 0 such that

(4) sup
z∈D(0,δ)

|Vi(τ, z, ε)| ≤ CeK|τ |/|ε|

for all (τ, z, ε) in their domain of definition (Theorem 2). To obtain these estimates, we introduce
some Banach spaces (depending on the parameter ε) of functions v(τ, z) =

∑
l≥0 vl(τ)zl/l! ∈

O(Ui ∪D(0, r)){z}, where vl(τ) are bounded by exp(Kl|τ |/|ε|), for some constant Kl depending
on l ≥ 0, on Ui ∪ D(0, r), i ∈ I, and we solve the nonlinear convolution differential Cauchy
problems (73), (74) within these spaces using a fixed point argument (Theorem 1).

We construct actual solutions Yi(t, z, ε), i ∈ I, of the auxiliary equation (60) as Laplace
transforms of the functions Vi(τ, z, ε) with respect to τ , along a halfline Li = R+e

√
−1γ ⊂ Ui∪{0}.

For each ε ∈ Ei, the function (t, z) 7→ Yi(t, z, ε) is holomorphic on a domain Ui,ε ×D(0, δ) where
Ui,ε is a sector of opening larger than π, in direction γ, with radius h|ε| for some constant h > 0
(Theorem 2). The crucial observation is that the functions defined by Xi(t, z, ε) := Yi(εt, z, ε),
i ∈ I, are holomorphic solutions of the initial singularly perturbed equation (1) on domains of
the form T × D(0, δ) × Ei, where T is a well chosen open sector centered at 0. Moreover, we
show that the functions Gi(ε) := Xi+1(t, z, ε)−Xi(t, z, ε), i ∈ I, have exponentially small bounds
as ε tends to 0 on Ei+1 ∩ Ei, seen as E-valued functions, where E denotes the Banach space of
holomorphic and bounded functions on T ×D(0, δ) equipped with the supremum norm. In the
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proof, we use a deformation of the integration path in the integral representation of Xi and the
estimates (4).

Using a cohomological criterion obtained by B. Malgrange and Y. Sibuya, we finally deduce
the main result of this paper, namely the existence of a formal series

X̂(ε) =
∑
k≥0

Hk
εk

k!
∈ E[[ε]]

solution of equation (1), which is the 1-Gevrey asymptotic expansion of the functions Xi on Ei,
for all i ∈ I.

The layout of this paper is as follows.
In Section 2, we consider parameter depending nonlinear convolution differential Cauchy prob-
lems with singular coefficients. We construct solutions of these equations in parameter depending
Banach spaces of holomorphic functions on sectors with exponential growth.
In Section 3.1, we recall the definition of Borel-Laplace transforms and we give commutation
formulas with multiplication and integro-differential operators.
In Section 3.2, we study a nonlinear Cauchy problem with irregular singularity having coeffi-
cients with poles singularities. We solve this problem using Laplace transforms of the solutions
to the Cauchy problems introduced in Section 2.
In Section 4.1, we construct actual solutions Xi, i ∈ I, of our initial equation (1) and we show
that the cocycle Gi = Xi+1 −Xi is exponentially small with respect to ε as E-valued function.
In Section 4.2, we state the main result of this paper, that is the existence of a formal series
X̂(ε) ∈ E[[ε]], solution of (1) which is the 1-Gevrey asymptotic expansion of the functions Xi,
i ∈ I.

2 A global Cauchy problem with singular complex parameter

2.1 Weighted Banach spaces of holomorphic functions on sectors

We denote by D(0, r) the open disc centered at 0 with radius r > 0 in C. Let Sd be an open
sector of infinite or finite radius in direction d ∈ R and E be an open sector with finite radius
rE , both centered at 0 in C. By convention, these sectors do not contain the origin in C. For
any open set D ⊂ C, we denote by O(D) the vector space of holomorphic functions on D. In
this section 2, we denote Ω = (Sd ∪D(0, r))× E .

Definition 1 Let b > 1 a real number and let rb(β) =
∑β

n=0 1/(n + 1)b for all integers β ≥ 0.
Let ε ∈ E and σ > 0 be a real number. We denote by Eβ,ε,σ,Ω the vector space of all functions
v ∈ O(Sd ∪D(0, r)) such that

||v(τ)||β,ε,σ,Ω := sup
τ∈Sd∪D(0,r)

|v(τ)|(1 +
|τ |2

|ε|2
) exp

(
− σ

|ε|
rb(β)|τ |

)
is finite. Let δ > 0 be a real number. We denote by G(ε, σ, δ,Ω) the vector space of all functions
v(τ, z) =

∑
β≥0 vβ(τ)zβ/β! that belong to O(Sd ∪D(0, r)){z} such that

||v(τ, z)||(ε,σ,δ,Ω) :=
∑
β≥0

||vβ(τ)||β,ε,σ,Ω
δβ

β!

is finite. One can check that the normed space (G(ε, σ, δ,Ω), ||.||(ε,σ,δ,Ω)) is a Banach space.
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Remark: These norms are appropriate modifications of the norms defined by O. Costin in [12]
and those of C. Stenger and the author introduced in the work [22].

In the next proposition, we study the rate of growth of the functions belonging to the latter
Banach spaces.

Proposition 1 Let v(τ, z) ∈ G(ε, σ, δ,Ω). Let 0 < δ1 < 1. There exists a constant C > 0
depending on ||v||(ε,σ,δ,Ω) and δ1 such that

(5) |v(τ, z)| ≤ C(1 +
|τ |2

|ε|2
)−1 exp(

σζ(b)
|ε|
|τ |)

for all τ ∈ Sd ∪D(0, r), all z ∈ C such that |z|δ < δ1, where ζ(b) =
∑∞

n=0 1/(n+ 1)b.

Proof Let v(τ, z) =
∑

β≥0 vβ(τ)zβ/β! be in G(ε, σ, δ,Ω). By definition, there exists a constant
c1 > 0 (depending on ||v||(ε,σ,δ,Ω)) such that

|vβ(τ)| ≤ c1(1 +
|τ |2

|ε|2
)−1 exp

(
σ

|ε|
rb(β)|τ |

)
β!(

1
δ

)β

for all β ≥ 0, all τ ∈ Sd ∪D(0, r). Let 0 < δ1 < 1. From the definition of ζ(b), we deduce that

(6) |v(τ, z)| ≤ c1(1 +
|τ |2

|ε|2
)−1

∑
β≥0

exp(
σ

|ε|
rb(β)|τ |)(δ1)β ≤ c1(1 +

|τ |2

|ε|2
)−1 exp(

σζ(b)
|ε|
|τ |) 1

1− δ1
,

for all z ∈ C such that |z|δ < δ1 < 1, all τ ∈ Sd ∪ D(0, r). Finally, from (6), we deduce the
estimates (5). 2

In the next proposition, we study some parameter depending linear operators acting on the
space G(ε, σ, δ,Ω).

Proposition 2 Let s1, s2, k1, k2 ≥ 0 be positive integers. Assume that the condition

(7) k2 ≥ b(s1 + k1 + 2)

hold. Then, for all ε ∈ E, the operator (τ s1/εs2)∂−k1τ ∂−k2z is a bounded linear operator from
(G(ε, σ, δ,Ω), ||.||(ε,σ,δ,Ω)) into itself. Moreover, there exists a constant C1 > 0 (depending on
b, σ, s1, k1, k2), which does not depend on ε ∈ E, such that

(8) ||τ
s1

εs2
∂−k1τ ∂−k2z v(τ, z)||(ε,σ,δ,Ω) ≤ C1|ε|s1+k1−s2δk2 ||v(τ, z)||(ε,σ,δ,Ω)

for all v ∈ G(ε, σ, δ,Ω), all ε ∈ E.

Proof Let v(τ, z) ∈ G(ε, σ, δ,Ω). By definition, we have

(9) ||τ
s1

εs2
∂−k1τ ∂−k2z v(τ, z)||(ε,σ,δ,Ω) =

∑
β≥k2

||τ
s1

εs2
∂−k1τ vβ−k2(τ)||β,ε,σ,Ω

δβ

β!
.
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Lemma 1 The following inequality holds

(10) ||τ
s1

εs2
∂−k1τ vβ−k2(τ)||β,ε,σ,Ω ≤ |ε|s1+k1−s2

(
(
(s1 + k1)e−1

σk2
)s1+k1(β + 1)b(s1+k1)

+(
(s1 + k1 + 2)e−1

σk2
)s1+k1+2(β + 1)b(s1+k1+2)

)
||vβ−k2(τ)||β−k2,ε,σ,Ω

for all β ≥ k2.

Proof By definition, we have that ∂−1
τ vβ−k2(τ) =

∫ τ
0 vβ−k2(τ1)dτ1, for all τ ∈ Sd∪D(0, r). Using

the parametrization τ1 = h1τ with 0 ≤ h1 ≤ 1, we get that

∂−1
τ vβ−k2(τ) = τ

∫ 1

0
vβ−k2(h1τ)M1(h1)dh1

where M1(h1) = 1. More generally, for all k1 ≥ 2, we have by definition

∂−k1τ vβ−k2(τ) =
∫ τ

0

∫ τ1

0
· · ·
∫ τk1−1

0
vβ−k2(τk1)dτk1dτk1−1 · · · dτ1

for all τ ∈ Sd ∪D(0, r). Using the parametrization τj = hjτj−1, τ1 = h1τ , with 0 ≤ hj ≤ 1, for
2 ≤ j ≤ k1, we can write

∂−k1τ vβ−k2(τ) = τk1
∫ 1

0
· · ·
∫ 1

0
vβ−k2(hk1 · · ·h1τ)Mk1(h1, . . . , hk1)dhk1dhk1−1 · · · dh1

where Mk1(h1, . . . , hk1) is a monomial in h1, . . . , hk1 whose coefficient is equal to 1. Using these
latter expressions, we now write

(11) |τ
s1

εs2
∂−k1τ vβ−k2(τ)|

= |τ
s1+k1

εs2

∫ 1

0
· · ·
∫ 1

0
vβ−k2(hk1 · · ·h1τ)(1 +

|hk1 · · ·h1τ |2

|ε|2
) exp

(
− σ

|ε|
rb(β − k2)|hk1 · · ·h1τ |

)

×
exp

(
σ
|ε|rb(β − k2)|hk1 · · ·h1τ |

)
1 + |hk1 · · ·h1τ |2/|ε|2

Mk1(h1, . . . , hk1)dhk1 · · · dh1|.

So that

(12) |τ
s1

εs2
∂−k1τ vβ−k2(τ)|(1 +

|τ |2

|ε|2
) exp

(
− σ

|ε|
rb(β)|τ |

)
≤ ||vβ−k2(τ)||β−k2,ε,σ,Ω

|τ |s1+k1

|ε|s2
(1 +

|τ |2

|ε|2
) exp

(
− σ

|ε|
(rb(β)− rb(β − k2))|τ |

)
.

By construction of rb(β) we have that

(13) rb(β)− rb(β − k2) ≥ k2

(β + 1)b

for all β ≥ k2. From (12) and (13), we get that

(14) |τ
s1

εs2
∂−k1τ vβ−k2(τ)|(1 +

|τ |2

|ε|2
) exp

(
− σ

|ε|
rb(β)|τ |

)
≤ ||vβ−k2(τ)||β−k2,ε,σ,Ω

|τ |s1+k1

|ε|s2
(1 +

|τ |2

|ε|2
) exp

(
− σ

|ε|
k2

(β + 1)b
|τ |
)
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for all β ≥ k2. Now, we recall the following classical estimates. Let m1,m2 > 0 two real numbers.
Then, we have

(15) sup
x≥0

xm1 exp(−m2x) = (
m1

m2
)m1e−m1

We deduce that

(16)
|τ |s1+k1

|ε|s2
(1 +

|τ |2

|ε|2
) exp

(
− σ

|ε|
k2

(β + 1)b
|τ |
)

≤ |ε|s1+k1−s2
(

(
(s1 + k1)e−1

σk2
)s1+k1(β + 1)b(s1+k1) + (

(s1 + k1 + 2)e−1

σk2
)s1+k1+2(β + 1)b(s1+k1+2)

)
for all τ ∈ Sd ∪D(0, r). From the estimates (14) and (16), we deduce the inequality (10) 2

From the equality (9) and Lemma 1, we get that

(17) ||τ
s1

εs2
∂−k1τ ∂−k2z v(τ, z)||(ε,σ,δ,Ω)

≤
∑
β≥k2

|ε|s1+k1−s2
(

(
(s1 + k1)e−1

σk2
)s1+k1(β + 1)b(s1+k1)

+(
(s1 + k1 + 2)e−1

σk2
)s1+k1+2(β + 1)b(s1+k1+2)

)
(β − k2)!

β!

× ||vβ−k2(τ)||β−k2,ε,σ,Ωδk2
δβ−k2

(β − k2)!

From the assumptions (7), we get a constant C2 > 0 (depending on b, s1, k1, k2) such that

(18) (β + 1)b(s1+k1) (β − k2)!
β!

≤ C2 , (β + 1)b(s1+k1+2) (β − k2)!
β!

≤ C2,

for all β ≥ k2. Finally, from the estimates (17) and (18), we get the inequality (8). 2

Proposition 3 Let s1, s2, k1 ≥ 0 be positive integers and σ, σ̃ > 0 be real numbers such that
σ > σ̃. Then, there exists a constant C̃1 > 0 (depending on σ, σ̃, s1, k1), which does not depend
on ε ∈ E, such that

(19) ||τ
s1

εs2
∂−k1τ v(τ, z)||(ε,σ,δ,Ω) ≤ C̃1|ε|s1+k1−s2 ||v(τ, z)||(ε,σ̃,δ,Ω)

for all v ∈ G(ε, σ̃, δ,Ω), all ε ∈ E.

Proof Let v(τ, z) ∈ G(ε, σ̃, δ,Ω). By definition, we have

(20) ||τ
s1

εs2
∂−k1τ v(τ, z)||(ε,σ,δ,Ω) =

∑
β≥0

||τ
s1

εs2
∂−k1τ vβ(τ)||β,ε,σ,Ω

δβ

β!
.

Lemma 2 The following inequality holds

(21) ||τ
s1

εs2
∂−k1τ vβ(τ)||β,ε,σ,Ω ≤ |ε|s1+k1−s2

(
(
(s1 + k1)e−1

σ − σ̃
)s1+k1

+(
(s1 + k1 + 2)e−1

σ − σ̃
)s1+k1+2

)
||vβ(τ)||β,ε,σ̃,Ω

for all β ≥ 0.
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Proof Using the same notations as in the proof of Lemma 1, we can write

(22) |τ
s1

εs2
∂−k1τ vβ(τ)|

= |τ
s1+k1

εs2

∫ 1

0
· · ·
∫ 1

0
vβ(hk1 · · ·h1τ)(1 +

|hk1 · · ·h1τ |2

|ε|2
) exp

(
− σ̃

|ε|
rb(β)|hk1 · · ·h1τ |

)

×
exp

(
σ̃
|ε|rb(β)|hk1 · · ·h1τ |

)
1 + |hk1 · · ·h1τ |2/|ε|2

Mk1(h1, . . . , hk1)dhk1 · · · dh1|.

Using the fact that rb(β) ≥ 1, for all β ≥ 0, we deduce that

(23) |τ
s1

εs2
∂−k1τ vβ(τ)|(1 +

|τ |2

|ε|2
) exp(− σ

|ε|
rb(β)|τ |)

≤ ||vβ(τ)||β,ε,σ̃,Ω
|τ |s1+k1

|ε|s2
(1 +

|τ |2

|ε|2
) exp(−(σ − σ̃)

rb(β)
|ε|
|τ |)

≤ |vβ(τ)||β,ε,σ̃,Ω
|τ |s1+k1

|ε|s2
(1 +

|τ |2

|ε|2
) exp(−σ − σ̃

|ε|
|τ |)

for all β ≥ 0. From the inequality (15), we deduce that

(24)
|τ |s1+k1

|ε|s2
(1 +

|τ |2

|ε|2
) exp(−σ − σ̃

|ε|
|τ |)

≤ |ε|s1+k1−s2
(

(
(s1 + k1)e−1

σ − σ̃
)s1+k1 + (

(s1 + k1 + 2)e−1

σ − σ̃
)s1+k1+2

)
for all τ ∈ Sd ∪D(0, r). From (23) and (24) we deduce the inequality (21). 2

Finally, from the equality (20) and Lemma 2, we deduce the estimates (19). 2

In the next proposition, we study linear operators of multiplication by bounded holomorphic
functions.

Proposition 4 Let h(τ, z, ε) be a holomorphic function on (Sd ∪ D(0, r)) × D(0, ρ) × E, for
some ρ > 0, bounded by some constant M > 0. Let 0 < δ < ρ. Then, the linear operator of
multiplication by h(τ, z, ε) is continuous from (G(ε, σ, δ,Ω), ||.||(ε,σ,δ,Ω)) into itself, for all ε ∈ E.
Moreover, there exists a constant C2 (depending on M ,δ,ρ), independent of ε, such that

(25) ||h(τ, z, ε)v(τ, z)||(ε,σ,δ,Ω) ≤ C2||v(τ, z)||(ε,σ,δ,Ω)

for all v(τ, z) ∈ G(ε, σ, δ,Ω), for all ε ∈ E.

Proof Let h(τ, z, ε) =
∑

β≥0 hβ(τ, ε)zβ/β! be holomorphic on (Sd ∪D(0, r))×D(0, ρ)× E such
that there exists M > 0 with

sup
τ∈Sd∪D(0,r),z∈D(0,ρ),ε∈E

|h(τ, z, ε)| ≤M.

Let v(τ, z) =
∑

β≥0 vβ(τ)zβ/β! ∈ G(ε, σ, δ,Ω). By construction, we have that

(26) ||h(τ, z, ε)v(τ, z)||(ε,σ,δ,Ω) ≤
∑
β≥0

(
∑

β1+β2=β

||hβ1(τ, ε)vβ2(τ)||β,ε,σ,Ω
β!

β1!β2!
)
δβ

β!
.
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From the Cauchy formula, we have

sup
τ∈Sd∪D(0,r),ε∈E

|hβ(τ, ε)| ≤M(
1
δ′

)ββ!

for any δ < δ′ < ρ, for all β ≥ 0. By definition, we deduce that

(27) ||hβ1(τ, ε)vβ2(τ)||β,ε,σ,Ω ≤Mβ1!(
1
δ′

)β1 ||vβ2(τ)||β,ε,σ,Ω ≤Mβ1!(
1
δ′

)β1 ||vβ2(τ)||β2,ε,σ,Ω

for all β1, β2 ≥ 0 such that β1 + β2 = β. From (26) and (27), we deduce that

||h(τ, z, ε)v(τ, z)||(ε,σ,δ,Ω) ≤M(
∑
β≥0

(
δ

δ′
)β)||v(τ, z)||(ε,σ,δ,Ω)

which yields (25). 2

In the next proposition, we give norm estimates for the convolution product.

Proposition 5 Let f ,g be in G(ε, σ, δ,Ω). Then, the function

(f ∗ g)(τ, z) =
∫ τ

0
f(τ − s, z)g(s, z)ds

belongs to G(ε, σ, δ,Ω). Moreover, there exists a (universal) constant C3 > 0 such that

(28) ||(f ∗ g)(τ, z)||(ε,σ,δ,Ω) ≤ C3|ε|||f(τ, z)||(ε,σ,δ,Ω)||g(τ, z)||(ε,σ,δ,Ω)

for all f, g ∈ G(ε, σ, δ,Ω).

Proof Let
f(τ, z) =

∑
β≥0

fβ(τ)zβ/β! , g(τ, z) =
∑
β≥0

gβ(τ)zβ/β!

in G(ε, σ, δ,Ω). By construction of f ∗ g, we have that

(29) ||
∫ τ

0
f(τ − s, z)g(s, z)ds||(ε,σ,δ,Ω) ≤

∑
β≥0

(
∑

β1+β2=β

β!
β1!β2!

||
∫ τ

0
fβ1(τ − s)gβ2(s)ds||β,ε,σ,Ω)

δβ

β!
.

Lemma 3 There exists a (universal) constant C3 > 0 such that

(30) ||
∫ τ

0
fβ1(τ − s)gβ2(s)ds||β,ε,σ,Ω ≤ C3|ε|||fβ1(τ)||β1,ε,σ,Ω||gβ2(τ)||β2,ε,σ,Ω

for all β ≥ 0 and all β1, β2 ≥ 0 with β1 + β2 = β.

Proof We write

|
∫ τ

0
fβ1(τ − s)gβ2(s)ds| = |

∫ τ

0
fβ1(τ − s)(1 +

|τ − s|2

|ε|2
) exp

(
− σ

|ε|
rb(β1)|τ − s|

)
× gβ2(s)(1 +

|s|2

|ε|2
) exp

(
− σ

|ε|
rb(β2)|s|

)

×
exp

(
σ
|ε|(rb(β1)|τ − s|+ rb(β2)|s|)

)
(1 + |s|2

|ε|2 )(1 + |τ−s|2
|ε|2 )

ds|
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for all τ ∈ Sd ∪D(0, r). We deduce that

(31) |
∫ τ

0
fβ1(τ − s)gβ2(s)ds| ≤ ||fβ1(τ)||β1,ε,σ,Ω||gβ2(τ)||β2,ε,σ,Ω

×
∫ 1

0

|τ | exp
(
σ|τ |
|ε| (rb(β1)(1− h) + rb(β2)h)

)
(1 + |τ |2

|ε|2 (1− h)2)(1 + |τ |2
|ε|2 h

2)
dh.

In the next step we will show that there exists a constant C3 > 0 such that

(32) I(|τ |, |ε|, β, β1, β2) = (1 +
|τ |2

|ε|2
) exp(− σ

|ε|
rb(β)|τ |)

×
∫ 1

0

|τ | exp
(
σ|τ |
|ε| (rb(β1)(1− h) + rb(β2)h)

)
(1 + |τ |2

|ε|2 (1− h)2)(1 + |τ |2
|ε|2 h

2)
dh ≤ |ε|C3

for all τ ∈ Sd ∪D(0, r), all ε ∈ E , for all β ≥ 0, all β1, β2 ≥ 0 with β1 + β2 = β. Indeed, from
the fact that rb is increasing, we first have that

(33) rb(β1)(1− h) + rb(β2)h ≤ rb(β)

for all 0 ≤ h ≤ 1, all β1, β2 ≥ 0 with β1 + β2 = β. Then, from (33), we get that

(34) I(|τ |, |ε|, β, β1, β2) ≤ J(|τ |, |ε|) =
∫ 1

0

(1 + |τ |2
|ε|2 )|τ |

(1 + |τ |2
|ε|2 (1− h)2)(1 + |τ |2

|ε|2 h
2)
dh

for all τ ∈ Sd ∪D(0, r), all ε ∈ E . On the other hand, we have that

(35)
J(|ε||τ |, |ε|)
|ε|

=
∫ 1

0

(1 + |τ |2)|τ |
(1 + |τ |2(1− h)2)(1 + |τ |2h2)

dh.

From Corollary 4.9 of [12], we know that the right hand side of (35) is a bounded function of
|τ | on R+. We deduce that there exists a (universal) constant C3 > 0 such that

(36) sup
|τ |≥0

J(|τ |, |ε|)
|ε|

= sup
|τ |≥0

J(|ε||τ |, |ε|)
|ε|

≤ C3

for all ε ∈ E . We get from (34) and (36) that the inequality (32) holds. Finally, the inequality
(30) follows from (31) and (32). 2

From (29) and (30), we get that (28) holds with the constant C3 from Lemma 3. 2

Corollary 1 Let k1, s2 ≥ 0 be positive integers. Then, for all ε ∈ E, the operator (1/εs2)∂−k1τ

is a bounded linear operator from (G(ε, σ, δ,Ω), ||.||(ε,σ,δ,Ω)) into itself. Moreover, there exists a
constant C4 > 0 (depending on σ, k1) such that

(37) || 1
εs2
∂−k1τ v(τ, z)||(ε,σ,δ,Ω) ≤ C4|ε|k1−s2 ||v(τ, z)||(ε,σ,δ,Ω)

for all v(τ, z) ∈ G(ε, σ, δ,Ω), all ε ∈ E.
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Proof Let v(τ, z) ∈ G(ε, σ, δ,Ω). We denote by χC the function equal to 1 on C. By definition,
we put χ∗1C = χC and χ∗lC means the convolution product of χC, l − 1 times for l ≥ 2. By
definition, we can write ∂−k1τ v(τ, z) = (χC(τ))∗k1 ∗ v(τ, z). From Proposition 5, there exists a
(universal) constant C3 > 0 such that

(38) ||∂−k1τ v(τ, z)||(ε,σ,δ,Ω) ≤ Ck13 |ε|
k1 ||χC(τ)||k1(ε,σ,δ,Ω)||v(τ, z)||(ε,σ,δ,Ω)

By Definition 1 and using the formula (15), we have that

(39) ||χC(τ)||(ε,σ,δ,Ω) = sup
τ∈Sd∪D(0,r)

(1 +
|τ |2

|ε|2
) exp

(
− σ

|ε|
|τ |
)
≤ 1 + (

2e−1

σ
)2

From the estimates (38) and (39), we get the inequality (37). 2

2.2 A global Cauchy problem

We keep the same notations as in the previous section. In the following, we introduce some
definitions. Let A1 and A2 be finite subsets of N2.
For all (k0, k1) ∈ A1, we denote by I(k0,k1) a finite subset of N2. For all (s1, s2) ∈ I(k0,k1), we
denote by as1,s2,k0,k1(τ, z, ε) some bounded holomorphic function on (Sd∪D(0, r))×D(0, ρ)×E ,
for some ρ > 0. For all (k0, k1) ∈ A1, we consider

a(k0,k1)(τ, z, ε) =
∑

(s1,s2)∈I(k0,k1)

as1,s2,k0,k1(τ, z, ε)τ s1ε−s2

which are holomorphic functions on (Sd ∪D(0, r))×D(0, ρ)× E .
For all (l0, l1) ∈ A2, we denote by J(l0,l1) a finite subset of N. For all m1 ∈ J(l0,l1), we denote
by αm1,l0,l1(τ, z, ε) some bounded holomorphic function on (Sd ∪D(0, r))×D(0, ρ)× E . For all
(l0, l1) ∈ A2, we consider

α(l0,l1)(τ, z, ε) =
∑

m1∈J(l0,l1)

αm1,l0,l1(τ, z, ε)ε−m1

which are holomorphic functions on (Sd ∪D(0, r))×D(0, ρ)× E . Let S ≥ 1 be an integer. For
all 0 ≤ j ≤ S − 1, we consider a function τ 7→ Vj(τ, ε) that belongs to E0,ε,σ̃,Ω, for some σ̃ > 0
and all ε ∈ E .

We consider the following Cauchy problem

(40) ∂Sz V (τ, z, ε) =
∑

(k0,k1)∈A1

a(k0,k1)(τ, z, ε)∂
−k0
τ ∂k1z V (τ, z, ε)

+
∑

(l0,l1)∈A2,l1≥2

α(l0,l1)(τ, z, ε)∂
−l0
τ ((V (τ, z, ε))∗l1)

where V ∗1 = V and V ∗l1 , l1 ≥ 2, stands for the convolution product of V (l1 − 1 times with
respect to τ), for given initial conditions

(41) (∂jzV )(τ, 0, ε) = Vj(τ, ε) , 0 ≤ j ≤ S − 1.

We state the main result of this section.
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Theorem 1 We make the following assumptions.

A1) For all (k0, k1) ∈ A1, all (s1, s2) ∈ I(k0,k1), we have

S ≥ b(s1 + k0 + 2) + k1 , s1 + k0 ≥ s2,

A2) For all (l0, l1) ∈ A2, all m1 ∈ J(l0,l1), we have

l0 + l1 ≥ m1 + 1 , l1 ≥ 2.

We put

w(τ, z, ε) =
S−1∑
j=0

Vj(τ, ε)
zj

j!
.

Then, there exist constants I > 0, R > 0 and δ > 0 (independent of ε) such that if we assume
that

S−1−h∑
j=0

||Vj+h(τ, ε)||0,ε,σ̃,Ω
δj

j!
≤ I,

for all 0 ≤ h ≤ S − 1, for all ε ∈ E, the problem (40) and (41) has a unique solution V (τ, z, ε)
in the space G(ε, σ, δ,Ω), for some σ > σ̃, for all ε ∈ E, which satisfies moreover the estimates

||V (τ, z, ε)||(ε,σ,δ,Ω) ≤ δSR+ I,

for all ε ∈ E.

Proof For all ε ∈ E , we define a map Aε from O(Sd ∪D(0, r)){z} into itself by

Aε(U(τ, z)) =
∑

(k0,k1)∈A1

a(k0,k1)(τ, z, ε)∂
−k0
τ ∂k1−Sz U(τ, z)

+
∑

(k0,k1)∈A1

a(k0,k1)(τ, z, ε)∂
−k0
τ ∂k1z w(τ, z, ε)

+
∑

(l0,l1)∈A2

α(l0,l1)(τ, z, ε)∂
−l0
τ ((∂−Sz U(τ, z) + w(τ, z, ε))∗l1)

In the next lemma, we show that Aε is a Lipschitz shrinking map from and into a small ball in
a neighborhood of the origin of G(ε, σ, δ,Ω), for some σ > σ̃.

Lemma 4 Under the conditions A1), A2), let a real number I be such that

S−1−h∑
j=0

||Vj+h(τ, ε)||0,ε,σ̃,Ω
δj

j!
≤ I,

for all 0 ≤ h ≤ S − 1, for all ε ∈ E. Then, for a good choice of I > 0,
a) there exist real numbers 0 < δ < ρ, σ > σ̃ and R > 0 (not depending on ε) such that

(42) ||Aε(U(τ, z))||(ε,σ,δ,Ω) ≤ R

for all U(τ, z) ∈ B(0, R), for all ε ∈ E, where B(0, R) is the closed ball centered at 0 with radius
R in G(ε, σ, δ,Ω),
b) we have

(43) ||Aε(U1(τ, z))−Aε(U2(τ, z))||(ε,σ,δ,Ω) ≤
1
2
||U1(τ, z)− U2(τ, z)||(ε,σ,δ,Ω)

for all U1, U2 ∈ B(0, R), for all ε ∈ E.
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Proof First of all, for all 0 ≤ h ≤ S − 1, 0 ≤ j ≤ S − 1− h, we have that

||Vj+h(τ, ε)||j,ε,σ̃,Ω ≤ ||Vj+h(τ, ε)||0,ε,σ̃,Ω.

We deduce that ∂hzw(τ, z, ε) ∈ G(ε, σ̃, δ,Ω) and that

(44) ||∂hzw(τ, z, ε)||(ε,σ̃,δ,Ω) ≤
S−1−h∑
j=0

||Vj+h(τ, ε)||0,ε,σ̃,Ω
δj

j!
≤ I

for all 0 ≤ h ≤ S − 1.

We first show the estimates (42).

Let σ > σ̃, R > 0 and U(τ, z) ∈ G(ε, σ, δ,Ω) with ||U ||(ε,σ,δ,Ω) ≤ R. From Propositions 2,4
we get that there exists a constant d1 > 0 (independent of ε) such that

(45) ||as1,s2,k0,k1(τ, z, ε)τ s1ε−s2∂−k0τ ∂k1−Sz U(τ, z)||(ε,σ,δ,Ω)

≤ d1|ε|s1+k0−s2δS−k1 ||U(τ, z)||(ε,σ,δ,Ω) ≤ d1|ε|s1+k0−s2δS−k1R,

for all (k0, k1) ∈ A1, all (s1, s2) ∈ I(k0,k1). From Propositions 3,4 and the inequality (44) we get
that there exists a constant d̃1 > 0 (independent of ε) such that

(46) ||as1,s2,k0,k1(τ, z, ε)τ s1ε−s2∂−k0τ ∂k1z w(τ, z, ε)||(ε,σ,δ,Ω)

≤ d̃1|ε|s1+k0−s2 ||∂k1z w(τ, z, ε)||(ε,σ̃,δ,Ω) ≤ d̃1|ε|s1+k0−s2I,

for all (k0, k1) ∈ A1, all (s1, s2) ∈ I(k0,k1). On the other hand, since the convolution product is
commutative, from the binomal formula, we can write

(∂−Sz U(τ, z) + w(τ, z, ε))∗l1 = (∂−Sz U(τ, z))∗l1 + (w(τ, z, ε))∗l1

+
∑

l11+l21=l1,l11≥1,l21≥1

l1!
l11!l21!

(∂−Sz U(τ, z))∗l
1
1 ∗ (w(τ, z, ε))∗l

2
1

for all l1 ≥ 2. From Propositions 2,5 we get a constant d2 > 0 (independent of ε) such that

(47) ||(∂−Sz U(τ, z) + w(τ, z, ε))∗l1 ||(ε,σ,δ,Ω)

≤ d2|ε|l1−1(δSl1Rl1 + I l1 +
∑

l11+l21=l1,l11≥1,l21≥1

l1!
l11!l21!

δSl
1
1Rl

1
1I l

2
1) = d2|ε|l1−1(δSR+ I)l1

for all 2 ≤ l1 ≤ max{l ∈ N/(l0, l) ∈ A2}. From Proposition 4 and Corollary 1, we get a constant
d3 > 0 (independent of ε) such that

(48) ||αm1,l0,l1(τ, z, ε)ε−m1∂−l0τ ((∂−Sz U(τ, z) + w(τ, z, ε))∗l1)||(ε,σ,δ,Ω)

≤ d3|ε|l0−m1 ||(∂−Sz U(τ, z) + w(τ, z, ε))∗l1 ||(ε,σ,δ,Ω)

for all (l0, l1) ∈ A2, all m1 ∈ J(l0,l1). From (47) and (48), we get that

(49) ||αm1,l0,l1(τ, z, ε)ε−m1∂−l0τ ((∂−Sz U(τ, z) + w(τ, z, ε))∗l1)||(ε,σ,δ,Ω)

≤ d2d3|ε|l0+l1−m1−1(δSR+ I)l1
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for all (l0, l1) ∈ A2, all m1 ∈ J(l0,l1). Now, we choose δ,R, I > 0 such that

(50)
∑

(k0,k1)∈A1

∑
(s1,s2)∈I(k0,k1)

|ε|s1+k0−s2(d1δ
S−k1R+ d̃1I)

+
∑

(l0,l1)∈A2

∑
m1∈J(l0,l1)

d2d3|ε|l0+l1−m1−1(δSR+ I)l1 ≤ R

for all ε ∈ E . From the inequalities (45), (46), (49), we deduce that ||Aε(U(τ, z))||(ε,σ,δ,Ω) ≤ R,
for all ε ∈ E .

We prove now the estimates (43).

Let R > 0 and let U1, U2 ∈ B(0, R). From Propositions 2,4 we get that there exists a
constant d4 > 0 (independent of ε) such that

(51) ||as1,s2,k0,k1(τ, z, ε)τ s1ε−s2∂−k0τ ∂k1−Sz (U1(τ, z)− U2(τ, z)||(ε,σ,δ,Ω)

≤ d4|ε|s1+k0−s2δS−k1 ||U1(τ, z)− U2(τ, z)||(ε,σ,δ,Ω)

for all (k0, k1) ∈ A1, all (s1, s2) ∈ I(k0,k1). As in the part a), we can write from the binomial
formula

(52)
(∂−Sz U1(τ, z)+w(τ, z, ε))∗l1−(∂−Sz U2(τ, z)+w(τ, z, ε))∗l1 = (∂−Sz U1(τ, z))∗l1−(∂−Sz U2(τ, z))∗l1

+
∑

l11+l21=l1,l11≥1,l21≥1

l1!
l11!l21!

((∂−Sz U1(τ, z))∗l
1
1 − (∂−Sz U2(τ, z))∗l

1
1) ∗ (w(τ, z, ε))∗l

2
1

for all l1 ≥ 2. On the other hand, we have that

(53) (∂−Sz U1(τ, z))∗2 − (∂−Sz U2(τ, z))∗2

= (∂−Sz U1(τ, z)− ∂−Sz U2(τ, z)) ∗ (∂−Sz U1(τ, z) + ∂−Sz U2(τ, z))

and, for all l ≥ 3, we can write

(54) (∂−Sz U1(τ, z))∗l − (∂−Sz U2(τ, z))∗l =
(
∂−Sz U1(τ, z)− ∂−Sz U2(τ, z)

)
∗
(

(∂−Sz U1(τ, z))∗l−1 + (∂−Sz U2(τ, z))∗l−1

+
l−2∑
k=1

(∂−Sz U2(τ, z))∗k ∗ (∂−Sz U1(τ, z))∗l−k−1

)
.

Using (53) and (54), from Propositions 2,5, we get a constant d5 > 0 (independent of ε) such
that

(55)
||(∂−Sz U1(τ, z))∗l − (∂−Sz U2(τ, z))∗l||(ε,σ,δ,Ω) ≤ (d5|ε|l−1δSlRl−1)||U1(τ, z) − U2(τ, z)||(ε,σ,δ,Ω)

for all 1 ≤ l ≤ max{l1 ∈ N/(l0, l1) ∈ A2}. From (52), (55), we get a constant d6 > 0 (independent
of ε) such that

(56) ||(∂−Sz U1(τ, z) + w(τ, z, ε))∗l1 − (∂−Sz U2(τ, z) + w(τ, z, ε))∗l1 ||(ε,σ,δ,Ω)

≤ d6|ε|l1−1(δSl1Rl1−1 +
∑

l11+l21=l1,l11≥1,l21≥1

l1!
l11!l21!

δSl
1
1Rl

1
1−1I l

2
1)||U1(τ, z)− U2(τ, z)||(ε,σ,δ,Ω)

= d6|ε|l1−1R−1((δSR+ I)l1 − I l1)||U1(τ, z)− U2(τ, z)||(ε,σ,δ,Ω)
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for all 2 ≤ l1 ≤ max{l ∈ N/(l0, l) ∈ A2}. From Proposition 4 and Corollary 1 we get a constant
d7 > 0 (independent of ε) such that

(57)
||αm1,l0,l1(τ, z, ε)ε−m1∂−l0τ ((∂−Sz U1(τ, z) + w(τ, z, ε))∗l1 − (∂−Sz U2(τ, z) + w(τ, z, ε))∗l1)||(ε,σ,δ,Ω)

≤ d7|ε|l0−m1 ||(∂−Sz U1(τ, z) + w(τ, z, ε))∗l1 − (∂−Sz U2(τ, z) + w(τ, z, ε))∗l1 ||(ε,σ,δ,Ω)

for all (l0, l1) ∈ A2, all m1 ∈ J(l0,l1). From (56), (57), we get that

(58)
||αm1,l0,l1(τ, z, ε)ε−m1∂−l0τ ((∂−Sz U1(τ, z) + w(τ, z, ε))∗l1 − (∂−Sz U2(τ, z) + w(τ, z, ε))∗l1)||(ε,σ,δ,Ω)

≤ d6d7|ε|l0+l1−m1−1R−1((δSR+ I)l1 − I l1)||U1(τ, z)− U2(τ, z)||(ε,σ,δ,Ω)

for all (l0, l1) ∈ A2, all m1 ∈ J(l0,l1). Now, we choose δ,R, I > 0 such that

(59)
∑

(k0,k1)∈A1

∑
(s1,s2)∈I(k0,k1)

d4|ε|s1+k0−s2δS−k1

+
∑

(l0,l1)∈A2

∑
m1∈J(l0,l1)

d6d7|ε|l0+l1−m1−1R−1((δSR+ I)l1 − I l1) ≤ 1/2

for all ε ∈ E . From the inequalities (51), (58), we deduce that

||Aε(U1(τ, z))−Aε(U2(τ, z))||(ε,σ,δ,Ω) ≤
1
2
||U1(τ, z)− U2(τ, z)||(ε,σ,δ,Ω),

for all ε ∈ E . Finally, we choose δ,R, I > 0 is such a way that the conditions (50) and (59) hold
simultaneously. This yields Lemma 4. 2

Now, let the assumptions A1), A2) hold. We choose the constants I,R, δ as in the lemma 4.
Assume that

S−1−h∑
j=0

||Vj+h(τ, ε)||0,ε,σ̃,Ω
δj

j!
≤ I,

for all 0 ≤ h ≤ S − 1, for all ε ∈ E . From Lemma 4 and the classical shrinking map theorem on
complete metric spaces, we deduce that the map Aε has a unique fixed point (called U(τ, z, ε)) in
the closed ball B(0, R) ⊂ G(ε, σ, δ,Ω), for all ε in E , which means that Aε(U(τ, z, ε)) = U(τ, z, ε)
with ||U ||(ε,σ,δ,Ω) ≤ R. Finally, we get that the function

V (τ, z, ε) = ∂−Sz U(τ, z, ε) + w(τ, z, ε)

satisfies the Cauchy problem (40), (41), for all τ ∈ Sd ∪ D(0, r), all z ∈ D(0, δ), all ε ∈ E .
Moreover, from Proposition 2, we deduce that

||V (τ, z, ε)||(ε,σ,δ,Ω) ≤ δSR+ I,

for all ε ∈ E . 2
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3 Analytic solutions in a complex parameter of a singular Cauchy
problem

3.1 Laplace transform and asymptotic expansions

We recall the definition of Borel summability of formal series with coefficients in a Banach space,
see [2].

Definition 2 A formal series

X̂(t) =
∞∑
j=0

aj
j!
tj ∈ E[[t]]

with coefficients in a Banach space (E, ||.||E) is said to be 1−summable with respect to t in the
direction d ∈ [0, 2π) if

i) there exists ρ ∈ R+ such that the following formal series, called formal Borel transform of
X̂ of order 1

B(X̂)(τ) =
∞∑
j=0

ajτ
j

(j!)2
∈ E[[τ ]],

is absolutely convergent for |τ | < ρ,

ii) there exists δ > 0 such that the series B(X̂)(τ) can be analytically continued with respect
to τ in a sector Sd,δ = {τ ∈ C∗ : |d − arg(τ)| < δ}. Moreover, there exist C > 0, and K > 0
such that

||B(X̂)(τ)||E ≤ CeK|τ |

for all τ ∈ Sd,δ.

If this is so, the vector valued Laplace transform of order 1 of B(X̂)(τ) in the direction d is
defined by

Ld(B(X̂))(t) = t−1

∫
Lγ

B(X̂)(τ)e−(τ/t)dτ,

along a half-line Lγ = R+e
iγ ⊂ Sd,δ ∪ {0}, where γ depends on t and is chosen in such a way

that cos(γ − arg(t)) ≥ δ1 > 0, for some fixed δ1, for all t in a sector

Sd,θ,R = {t ∈ C∗ : |t| < R , |d− arg(t)| < θ/2},

where π < θ < π+ 2δ and 0 < R < δ1/K. The function Ld(B(X̂))(t) is called the 1−sum of the
formal series X̂(t) in the direction d. The function Ld(W )(t) is a holomorphic and a bounded
function on the sector Sd,θ,R. Moreover, the function Ld(W )(t) has the formal series X̂(t) as
Gevrey asymptotic expansion of order 1 with respect to t on Sd,θ,R. This means that for all
θ1 < θ, there exist C,M > 0 such that

||Ld(W )(t)−
n−1∑
p=0

ap
p!
tp||E ≤ CMnn!|t|n

for all n ≥ 1, all t ∈ Sd,θ1,R.

In the next proposition, we give some well known identities for the Borel transform that will
be useful in the sequel.
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Proposition 6 Let X̂(t) =
∑

n≥0 ant
n/n! and Ĝ(t) =

∑
n≥0 bnt

n/n! be formal series in E[[t]].
We have the following equalities as formal series in E[[τ ]]:

(τ∂2
τ + ∂τ )(B(X̂)(τ)) = B(∂tX̂(t))(τ), ∂−1

τ (B(X̂))(τ) = B(tX̂(t))(τ),

τB(X̂)(τ) = B((t2∂t + t)X̂(t))(τ),
∫ τ

0
(BX̂)(τ − s)(BĜ)(s)ds = B(tX̂(t)Ĝ(t))(τ).

Proof By a direct computation, we have the following expansions from which the proposition 6
follows.

∂tX̂(t) =
∑
n≥0

an+1
tn

n!
, (τ∂2

τ + ∂τ )(B(X̂)(τ)) =
∑
n≥0

an+1
τn

(n!)2
, tX̂(t) =

∑
n≥1

nan−1
tn

n!
,

∂−1
τ (B(X̂))(τ) =

∑
n≥1

nan−1
τn

(n!)2
, (t2∂t + t)X̂(t) =

∑
n≥1

n2an−1
tn

n!
, τB(X̂)(τ) =

∑
n≥1

n2an−1
τn

(n!)2
,

tX̂(t)Ĝ(t) =
∑
n≥1

(
∑

l+m=n−1

n!
l!m!

albm)
tn

n!
,

∫ τ

0
(BX̂)(τ−s)(BĜ)(s)ds =

∑
n≥1

(
∑

l+m=n−1

n!
l!m!

albm)
τn

(n!)2

2

3.2 Analytic solutions of a singular Cauchy problem with irregular singular-
ities

Let S ≥ 1 be an integer. Let S be a finite subset of N3, N be a finite subset of N2 and let
bs,k0,k1(z, ε), cl0,l1(z, ε) be holomorphic bounded functions on a polydisc D(0, ρ) ×D(0, ε0), for
some ρ, ε0 > 0, for all (s, k0, k1) ∈ S, all (l0, l1) ∈ N .

Definition 3 Let V (τ, ε) be a holomorphic function on some punctured polydisc

Ωτ0,ε0 = D(0, τ0)× (D(0, ε0) \ {0})

where 0 < τ0 < 1 and ε0 > 0. We make the assumption that the function τ 7→ V (τ, ε) belongs to
E0,ε,σ̃,Ωτ0,ε0

, for some σ̃ > 0, all ε ∈ D(0, ε0)\{0}. Let d ∈ [0, 2π) with d 6= π. Let Ud be a closed
sector centered at 0, with bisecting direction d, with infinite radius and with small opening such
that −1 /∈ Ud. Let E be an open sector centered at 0 such that E ⊂ D(0, ε0). We denote by

Ω(d, E) = (Ud ∪D(0, τ0))× E .

We assume that the function (τ, ε) 7→ V (τ, ε) can be extended to an analytic function (τ, ε) 7→
VUd,E(τ, ε) on (Ud ∪D(0, τ0)) × E and that the function τ 7→ VUd,E(τ, ε) belongs to E0,ε,σ̃,Ω(d,E),
for all ε ∈ E. We say that the set {V, VUd,E , σ̃} is admissible.

We consider the following singular Cauchy problem

(60)
t2∂t∂

S
z YUd,E(t, z, ε) + (t+ 1)∂Sz YUd,E(t, z, ε) =

∑
(s,k0,k1)∈S

bs,k0,k1(z, ε)εk0−sts(∂k0t ∂
k1
z YUd,E)(t, z, ε)

+
∑

(l0,l1)∈N

cl0,l1(z, ε)ε−(l0+l1−1)tl0+l1−1Y l1
Ud,E(t, z, ε)
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for given initial conditions

(61) ∂jzYUd,E(t, 0, ε) = YUd,E,j(t, ε) , 0 ≤ j ≤ S − 1.

The initial conditions YUd,E,j(t, ε), 0 ≤ j ≤ S − 1 are defined as follows: for all 0 ≤ j ≤ S − 1,
let {Vj , VUd,E,j , σ̃} be an admissible set. Let

Vj(τ, ε) =
∑
m≥0

χm,j(ε)
(m!)2

τm

be its Taylor expansion with respect to τ on D(0, τ0), for all ε ∈ D(0, ε0) \ {0}. We consider the
formal series

Ŷj(t, ε) =
∑
m≥0

χm,j(ε)
m!

tm

for all ε ∈ D(0, ε0) \ {0}. We define YUd,E,j(t, ε) as the 1−sum (in the sense of Definition 2) of
Ŷj(t, ε) in direction d. From the fact that the function τ 7→ VUd,E,j(τ, ε) belongs to E0,ε,σ̃,Ω(d,E),
we get that t 7→ YUd,E,j(t, ε) defines a holomorphic function for all t ∈ Ud,θ,h|ε|, all ε ∈ E , where

Ud,θ,h|ε| = {t ∈ C : |t| < h|ε| , |d− arg(t)| < θ/2},

for some θ > π and some constant h > 0 (independent of ε), for all 0 ≤ j ≤ S − 1.

We have the following result.

Theorem 2 Let the initial data (61) be constructed as above. We make the following assump-
tion.

B) For all (s, k0, k1) ∈ S, we have that

S ≥ b(s− k0 + 2) + k1 , s ≥ 2k0

and for all (l0, l1) ∈ N , we have that l1 ≥ 2.

Then, there exist two constants I, δ > 0 (independent of ε) such that if we assume that

(62)
S−1−m∑
j=0

||Vj+m(τ, ε)||0,ε,σ̃,Ωτ0,ε0
δj

j!
≤ I

for all 0 ≤ m ≤ S − 1, for all ε ∈ D(0, ε0) \ {0}, and

(63)
S−1−m∑
j=0

||VUd,E,j+m(τ, ε)||0,ε,σ̃,Ω(d,E)
δj

j!
≤ I,

for all 0 ≤ m ≤ S − 1, for all ε ∈ E, the problem (60), (61) has a solution (t, z) 7→ YUd,E(t, z, ε)
which is holomorphic and bounded on the set Ud,θ,h′|ε|×D(0, δ/2), for some h′ > 0 (independent
of ε), for all ε ∈ E. The function YUd,E(t, z, ε) can be written as the Laplace transform of
order 1 in the direction d of a function τ 7→ VUd,E(τ, z, ε) which is holomorphic on the domain
(Ud ∪ D(0, τ0)) × D(0, δ/2) × E and satisfies the estimates : there exists a constant CΩ(d,E)

(independent of ε) such that

(64) |VUd,E(τ, z, ε)| ≤ CΩ(d,E)(1 +
|τ |2

|ε|2
)−1 exp(

σζ(b)
|ε|
|τ |)



19

for all (τ, z, ε) ∈ (Ud ∪ D(0, τ0)) × D(0, δ/2) × E. Moreover, the function VUd,E(τ, z, ε) is the
analytic continuation of a function V (τ, z, ε) which is holomorphic on a punctured polydisc
D(0, τ0)×D(0, δ/2)×(D(0, ε0)\{0}) and verifies the following estimates : there exists a constant
CΩτ0,ε0

> 0 (independent of ε) such that

(65) |V (τ, z, ε)| ≤ CΩτ0,ε0
(1 +

|τ |2

|ε|2
)−1 exp(

σζ(b)
|ε|
|τ |)

for all τ ∈ D(0, τ0), all z ∈ D(0, δ/2), all ε ∈ D(0, ε0) \ {0}.

Proof We consider a formal series

Ŷ (t, z, ε) =
∑
m≥0

Ym(z, ε)
tm

m!
∈ O(D(0, ρ))[[t]]

solution of the problem (60), with initial conditions

∂jz Ŷ (t, 0, ε) = Ŷj(t, ε) , 0 ≤ j ≤ S − 1,

for all ε ∈ D(0, ε0) \ {0}. Let V (τ, z, ε) be the Borel transform of Ŷ with respect to τ ,

V (τ, z, ε) =
∑
m≥0

Ym(z, ε)
τm

(m!)2
.

In the first step of the proof, we show that V (τ, z, ε) defines a holomorphic function on a
punctured polydisc D(0, τ0)×D(0, δ/2)× (D(0, ε0) \ {0}), which satisfies the estimates (65).

From the identities of Proposition 6, we get that V (τ, z, ε) satisfies the following singular
Cauchy problem

(66) (τ + 1)∂Sz V (τ, z, ε) =
∑

(s,k0,k1)∈S

bs,k0,k1(z, ε)εk0−s∂−sτ (τ∂2
τ + ∂τ )k0∂k1z V (τ, z, ε)

+
∑

(l0,l1)∈N

cl0,l1(z, ε)ε−(l0+l1−1)∂−l0τ V ∗l1(τ, z, ε)

with initial conditions

(67) (∂jzV )(τ, 0, ε) = Vj(τ, ε) , 0 ≤ j ≤ S − 1.

for all τ ∈ D(0, τ0), all z ∈ D(0, ρ), all ε ∈ D(0, ε0) \ {0}. In the next step, we rewrite the
equation (66), using the following two lemma.

Lemma 5 For all k0 ≥ 1, there exist constants ak,k0 ∈ N, k0 ≤ k ≤ 2k0, such that

(68) (τ∂2
τ + ∂τ )k0u(τ) =

2k0∑
k=k0

ak,k0τ
k−k0∂kτ u(τ)

for all holomorphic functions u : Ω→ C on an open set Ω ⊂ C.
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Proof Let the polynomials pk,k0(τ), for all k0 ≥ 1, all 0 ≤ k ≤ 2k0 defined by the following
recursion : p0,1(τ) ≡ 0, p1,1(τ) ≡ 1, p2,1(τ) = τ ,

(69) p0,k0+1(τ) := (τ∂2
τ + ∂τ )p0,k0(τ) , p1,k0+1(τ) := (τ∂2

τ + ∂τ )p1,k0(τ) + (2τ∂τ + 1)p0,k0 ,

pk,k0+1 := (τ∂2
τ + ∂τ )pk,k0(τ) + (2τ∂τ + 1)pk−1,k0(τ) + τpk−2,k0(τ),

p2k0+1,k0+1(τ) := (2τ∂τ + 1)p2k0,k0(τ) + τp2k0−1,k0(τ) , p2k0+2,k0+1(τ) := τp2k0,k0(τ)

for all 2 ≤ k ≤ 2k0. By a direct computation, we get that

(τ∂2
τ + ∂τ )k0u(τ) =

2k0∑
k=0

pk,k0(τ)∂kτ u(τ),

for all holomorphic functions u : Ω → C on an open set Ω ⊂ C. By induction on k0, we can
show that the polynomials pk,k0(τ) have the following simple shape. We have that pk,k0(τ) ≡ 0,
for 0 ≤ k ≤ k0 − 1, and pk,k0(τ) = ak,k0τ

k−k0 , where ak,k0 , k0 ≤ k ≤ 2k0, are integers defined by
the recusion

(70) a1,1 := 1, a2,1 := 1, ak0+1,k0+1 := ak0+1,k0 + ak0,k0

ak,k0+1 := ak,k0(k − k0)2 + ak−1,k0(1 + 2(k − 1− k0)) + ak−2,k0

a2k0+1,k0+1 := (2k0 + 1)a2k0,k0 + a2k0−1,k0 , a2k0+2,k0+1 := a2k0,k0

for all k such that k0 + 2 ≤ k ≤ 2k0, for any k0 ≥ 1. 2

Lemma 6 Let a, b, c ≥ 0 be positive integers such that a ≥ b and a ≥ c. We put δ = a+ b− c.
Then, for all holomorphic functions u : Ω → C, the function ∂−aτ (τ b∂cτu(τ)) can be written in
the form

∂−aτ (τ b∂cτu(τ)) =
∑

(b′,c′)∈Oδ

αb′,c′τ
b′∂c

′
τ u(τ)

where Oδ is a finite subset of Z2 such that for all (b′, c′) ∈ Oδ, b′ − c′ = δ, b′ ≥ 0, c′ ≤ 0, and
αb′,c′ ∈ Z.

Proof For all integers b ≥ 0 and c ∈ Z, using b integrations by parts, we get b + 1 integers
αb, . . . , α0 ∈ Z (depending on b) such that

(71)
∫ τ

0
sb∂csu(s)ds =

b−1∑
k=0

αb−kτ
b−k∂(c−(k+1))

τ u(τ) + α0

∫ τ

0
∂c−bs u(s)ds

for all τ ∈ Ω. For all a, b ≥ 0, c ∈ Z integers, we define

Ia,b,c(τ) = ∂−aτ (τ b∂cτu(τ))

for all τ ∈ Ω. Using the expression (71), we get that Ia,b,c(τ) satisfies the following recursion
formula:

(72) Ia,b,c(τ) =
b−1∑
k=0

αb−kIa−1,b−k,c−k−1(τ) + α0Ia,0,c−b(τ)
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for all a ≥ 1, b ≥ 0, c ∈ Z integers and τ ∈ Ω.
First of all, we observe that if the condition a + b − c = δ is satisfied for the term Ia,b,c,

then we have that (a − 1) + (b − k) − (c − k − 1) = δ, for the terms Ia−1,b−k,c−k−1(τ) on the
right handside of the equality (72), for all 0 ≤ k ≤ b− 1 and also for the term Ia,0,c−b(τ). Using
the recursion (72), one can check that if a ≥ b and a ≥ c, then Ia,b,c(τ) can be expressed as a
linear combination with coefficients in Z of terms of the form I0,b′,c′(τ) where b′ ≥ 0 and c′ ≤ 0.
Moreover, from the observation above, if one assumes that a+ b− c = δ, then we also have that
b′ − c′ = δ for all the terms I0,b′,c′(τ) appearing in the linear combination. 2

Using the lemma 5,6 and the assumption B) in Theorem 2, we can rewrite the Cauchy
problem (66), (67) in the form

(73) ∂Sz V (τ, z, ε) =
∑

(s,k0,k1)∈S

bs,k0,k1(z, ε)
τ + 1

εk0−s(
∑

(r,p)∈Os−k0

αr,pτ
r∂−pτ ∂k1z V (τ, z, ε))

+
∑

(l0,l1)∈N

cl0,l1(z, ε)
τ + 1

ε−(l0+l1−1)∂−l0τ V ∗
l1 (τ, z, ε)

where Os−k0 is a finite subset of N2 such that for all (r, p) ∈ Os−k0 , we have r + p = s− k0 and
αr,p ∈ Z, with the given initial conditions

(74) (∂jzV )(τ, 0, ε) = Vj(τ, ε) , 0 ≤ j ≤ S − 1.

From the assumption B) in Theorem 2, we get that the assumptions A1), A2) of Theorem 1
are fulfilled for the equation (73). From Theorem 1, we deduce that there exist two constants
I, δ > 0 such that if the inequality (62) holds, then the Cauchy problem (73), (74) has a solution
V (τ, z, ε) ∈ G(ε, σ, δ,Ωτ0,ε0) for some σ > σ̃ with a constant R > 0 (independent of ε) such that
||V ||(ε,σ,δ,Ωτ0,ε0 ) ≤ δSR+ I. From the proposition 1, we get the estimates (65).

In the second step of the proof, we show that the function V (τ, z, ε) can be analytically
continued to a function VUd,E(τ, z, ε) on (Ud ∪D(0, τ0))×D(0, δ/2)× E satisfying the estimates
(64).

Indeed, by construction, the function V (τ, z, ε) solves also the problem

(75) ∂Sz V (τ, z, ε) =
∑

(s,k0,k1)∈S

bs,k0,k1(z, ε)
τ + 1

εk0−s(
∑

(r,p)∈Os−k0

αr,pτ
r∂−pτ ∂k1z V (τ, z, ε))

+
∑

(l0,l1)∈N

cl0,l1(z, ε)
τ + 1

ε−(l0+l1−1)∂−l0τ V ∗
l1 (τ, z, ε)

with the given initial conditions

(76) (∂jzV )(τ, 0, ε) = VUd,E,j(τ, ε) , 0 ≤ j ≤ S − 1.

for all τ ∈ D(0, τ0), all z ∈ D(0, δ/2), all ε ∈ E . Due to the assumption B) in Theorem 2,
the assumptions A1), A2) of Theorem 1 are fulfilled for the equation (75). From Theorem 1,
we get two constants I, δ > 0 such that if the inequality (63) holds, then the Cauchy problem
(75), (76) has a unique solution VUd,E(τ, z, ε) ∈ G(ε, σ, δ,Ω(d, E)) for some σ > σ̃ with a constant
R > 0 (independent of ε) such that ||VUd,E ||(ε,σ,δ,Ω(d,E)) ≤ δSR + I. From the unicity, VUd,E
coincides with V on the domain D(0, τ0) ×D(0, δ/2) × E . Moreover, the estimates (64) follow
from Proposition 1.
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From the first and the second step of the proof, we deduce that the formal series Ŷ (t, z, ε)
constructed before is 1-summable with respect to t in the direction d as series in the Banach
space O(D(0, δ/2)), for all ε ∈ E . We denote by YUd,E(t, z, ε) it’s 1-sum, which is a holomorphic
function with respect to t on a domain Ud,θ,h′|ε|, due to Definition 2 and the estimates (64).
Moreover, from the algebraic properties of the κ−summability procedure, see [2] section 6.3, we
deduce that YUd,E(t, z, ε) is a solution of the Cauchy problem (60), (61). 2

4 Formal series solutions and Gevrey asymptotic expansions in
a complex parameter for a doubly singular Cauchy problem

4.1 Analytic solutions in a complex parameter for a singularly perturbed
Cauchy problem

We recall the definition of a good covering.

Definition 4 For all 0 ≤ i ≤ ν − 1, we consider open sectors Ei centered at 0, with radius ε0
and opening π+δi, with δi > 0, such that Ei∩Ei+1 6= ∅, for all 0 ≤ i ≤ ν−1 (with the convention
that Eν = E0) and such that ∪ν−1

i=0 Ei = U \ {0}, where U is some neighborhood of 0 in C. Such a
set of sectors {Ei}0≤i≤ν−1 is called a good covering in C∗.

Definition 5 Let {Ei}0≤i≤ν−1 be a good covering in C∗. Let T be an open sector centered at 0
with radius rT and consider a family of open sectors

Udi,θ,ε0rT := {t ∈ C : |t| < ε0rT , |di − arg(t)| < θ/2},

where di ∈ [0, 2π), for 0 ≤ i ≤ ν − 1, where θ > π, which satisfy the following properties:

1) For all 0 ≤ i ≤ ν − 1, arg(di) 6= π.
2) For all 0 ≤ i ≤ ν − 1, for all t ∈ T , all ε ∈ Ei, we have that εt ∈ Udi,θ,ε0rT .

We say that the family {{Udi,θ,ε0rT }0≤i≤ν−1, T } is associated to the good covering {Ei}0≤i≤ν−1.

Let S ≥ 1 be an integer. Let S be a finite subset of N3, N be a finite subset of N2 and let
bs,k0,k1(z, ε), cl0,l1(z, ε) be holomorphic bounded functions on a polydisc D(0, ρ) ×D(0, ε0), for
some ρ > 0, for all (s, k0, k1) ∈ S, all (l0, l1) ∈ N . Let {Ei}0≤i≤ν−1 be a good covering in C∗.

For all 0 ≤ i ≤ ν − 1, we consider the following singularly perturbed Cauchy problem

(77) εt2∂t∂
S
z Xi(t, z, ε) + (εt+ 1)∂Sz Xi(t, z, ε) =

∑
(s,k0,k1)∈S

bs,k0,k1(z, ε)ts(∂k0t ∂
k1
z Xi)(t, z, ε)

+
∑

(l0,l1)∈N

cl0,l1(z, ε)tl0+l1−1X l1
i (t, z, ε)

for given initial conditions

(78) ∂jzXi(t, 0, ε) = ϕi,j(t, ε) , 0 ≤ j ≤ S − 1,

where the functions ϕi,j(t, ε) are constructed as follows. We consider a family of sectors
{{Udi,θ,ε0rT }0≤i≤ν−1, T } associated to the good covering {Ei}0≤i≤ν−1. For all 0 ≤ i ≤ ν − 1,
let Udi be an open sector of infinite radius centered at 0, with bisecting direction di and with
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opening ni > θ− π. We choose θ and ni in such a way that −1 /∈ Udi , for all 0 ≤ i ≤ ν − 1. For
all 0 ≤ i ≤ ν − 1, all 0 ≤ j ≤ S − 1, we define

ϕi,j(t, ε) = YUdi ,Ei,j(εt, ε)

where YUdi ,Ei,j(t, ε) is constructed as the initial condition of the problem (60), (61) in section
3.2, with the help of admissible sets {Vj , VUdi ,Ei,j , σ̃}, for all 0 ≤ i ≤ ν − 1, all 0 ≤ j ≤ S − 1.
By construction, the function ϕi,j(t, ε) is a holomorphic and bounded function on T ×Ei, for all
0 ≤ i ≤ ν − 1, all 0 ≤ j ≤ S − 1, for well chosen radius rT and opening θ.

Proposition 7 Let the initial data (78) constructed as above. We make the following assump-
tion.

B) For all (s, k0, k1) ∈ S, we have that

S ≥ b(s− k0 + 2) + k1 , s ≥ 2k0

and for all (l0, l1) ∈ N , we have that l1 ≥ 2.

Then, there exist two constants I, δ > 0 (independent of ε) such that if we assume that

(79)
S−1−m∑
j=0

||Vj+m(τ, ε)||0,ε,σ̃,Ωτ0,ε0
δj

j!
≤ I

for all 0 ≤ m ≤ S − 1, for all ε ∈ D(0, ε0) \ {0}, and

(80)
S−1−m∑
j=0

||VUdi ,Ei,j+m(τ, ε)||0,ε,σ̃,Ω(di,Ei)
δj

j!
≤ I,

for all 0 ≤ m ≤ S − 1, for all ε ∈ Ei, for all 0 ≤ i ≤ ν − 1, the problem (77), (78) has a
solution Xi(t, z, ε) which is holomorphic and bounded on a set (T ∩D(0, h′)) ×D(0, δ/2) × Ei,
for all 0 ≤ i ≤ ν − 1, for some h′ > 0. Moreover, there exist constants 0 < h′′ ≤ h′, Ki,Mi > 0
(independent of ε) such that

(81) sup
t∈T ∩D(0,h′′),z∈D(0,δ/2)

|Xi+1(t, z, ε)−Xi(t, z, ε)| ≤ Kie
−Mi|ε|

for all ε ∈ Ei ∩ Ei+1, for all 0 ≤ i ≤ ν − 1 (where by convention Xν = X0).

Proof For 0 ≤ i ≤ ν − 1, we consider the Cauchy problem (60), (61) for the initial conditions

(∂jzYUdi ,Ei)(t, 0, ε) = YUdi ,Ei,j(t, ε),

for 0 ≤ j ≤ S − 1. From our hypotheses, the assumptions of Theorem 2 are satisfied for this
problem, which then has a solution (t, z) 7→ YUdi ,Ei(t, z, ε) which is holomorphic and bounded on
the set Udi,θ,h′|ε| ×D(0, δ/2), for some h′ > 0 (independent of ε), for all ε ∈ Ei. Now, we put

Xi(t, z, ε) = YUdi ,Ei(εt, z, ε)

which defines a holomorphic and bounded function on (T ∩D(0, h′)) ×D(0, δ/2) × Ei, for 0 ≤
i ≤ ν − 1. By construction, one can check that Xi(t, z, ε) satisfies the problem (77), (78) on
(T ∩D(0, h′))×D(0, δ/2)× Ei, for all 0 ≤ i ≤ ν − 1.
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In the second part of the proof, we will show the estimates (81). Let i an integer such that
0 ≤ i ≤ ν − 1. From Theorem 2, we can write

Xi(t, z, ε) = (εt)−1

∫
Lγi

VUdi ,Ei(τ, z, ε)e
− τ
εtdτ,

Xi+1(t, z, ε) = (εt)−1

∫
Lγi+1

VUdi+1
,Ei+1(τ, z, ε)e−

τ
εtdτ

where Lγi = R+e
√
−1γi ⊂ Udi ∪ {0}, Lγi+1 = R+e

√
−1γi+1 ⊂ Udi+1

∪ {0}, and VUdi ,Ei (resp.
VUdi+1

,Ei+1) is a holomorphic function on (Udi ∪ D(0, τ0)) × D(0, δ/2) × Ei (resp. on (Udi+1
∪

D(0, τ0))×D(0, δ/2)×Ei+1) for which the estimates (64) hold and which is moreover an analytic
continuation of a function V (τ, z, ε) which satisfy the estimates (65).

From the fact that τ 7→ V (τ, z, ε) is holomorphic on D(0, τ0) for all (z, ε) ∈ D(0, δ/2) ×
(D(0, ε0) \ {0}), the integral of τ 7→ V (τ, z, ε) along the union of a segment starting from 0
to (τ0/2)e

√
−1γi+1 , an arc of circle with radius τ0/2 connecting (τ0/2)e

√
−1γi+1 and (τ0/2)e

√
−1γi

and a segment starting from (τ0/2)e
√
−1γi to 0, is equal to zero. So that, we can rewrite the

difference Xi+1 −Xi as a sum of three integrals,

(82) Xi+1(t, z, ε)−Xi(t, z, ε) = (εt)−1

(∫
Lτ0/2,γi+1

VUdi+1
,Ei+1(τ, z, ε)e−

τ
εtdτ

−
∫
Lτ0/2,γi

VUdi ,Ei(τ, z, ε)e
− τ
εtdτ +

∫
C(τ0/2,γi,γi+1)

V (τ, z, ε)e−
τ
εtdτ

)

where Lτ0/2,γi = [τ0/2,+∞)e
√
−1γi , Lτ0/2,γi+1

= [τ0/2,+∞)e
√
−1γi+1 and C(τ0/2, γi, γi+1) is an

arc of circle with radius τ0/2 connecting (τ0/2)e
√
−1γi with (τ0/2)e

√
−1γi+1 with a well chosen

orientation.

We give estimates for I1 = |(εt)−1
∫
Lτ0/2,γi+1

VUdi+1
,Ei+1(τ, z, ε)e−

τ
εtdτ |. By construction, the

direction γi+1 (which depends on εt) is chosen in such a way that cos(γi+1 − arg(εt)) ≥ δ1, for
all ε ∈ Ei+1 ∩ Ei, all t ∈ T ∩D(0, h′), for some fixed δ1 > 0. From the estimates (64), we get

(83) I1 ≤ |εt|−1

∫ +∞

τ0/2
CΩ(di+1,Ei+1)(1 +

r2

|ε|2
)−1e

σζ(b)r
|ε| e

− r
|ε||t| cos(γi+1−arg(εt))

dr

≤ |εt|−1

∫ +∞

τ0/2
CΩ(di+1,Ei+1)e

(σζ(b)− δ1|t| )
r
|ε|dr

=
CΩ(di+1,Ei+1)

δ1 − σζ(b)|t|
e
−((

δ1
|t|−σζ(b))

τ0
2

) 1
|ε| ≤

CΩ(di+1,Ei+1)

δ2
e
− δ2τ0/2|ε|h′

for all t ∈ T ∩D(0, h′), with |t| < (δ1−δ2)/(σζ(b)), for some 0 < δ2 < δ1, and for all ε ∈ Ei+1∩Ei.

We give estimates for I2 = |(εt)−1
∫
Lτ0/2,γi

VUdi ,Ei(τ, z, ε)e
− τ
εtdτ |. By construction, the di-

rection γi (which depends on εt) is chosen in such a way that there exists a fixed δ1 > 0 with
cos(γi − arg(εt)) ≥ δ1, for all ε ∈ Ei+1 ∩ Ei, all t ∈ T ∩ D(0, h′). From the estimates (64), we
deduce as before that

(84) I2 ≤
CΩ(di,Ei)

δ2
e
− δ2τ0/2|ε|h′
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for all t ∈ T ∩D(0, h′), with |t| < (δ1−δ2)/(σζ(b)), for some 0 < δ2 < δ1, and for all ε ∈ Ei+1∩Ei.

Finally, we get estimates for I3 = |εt|−1|
∫
C(τ0/2,γi,γi+1) V (τ, z, ε)e−

τ
εtdτ |. From the estimates

(65), we have

(85) I3 ≤ |εt|−1|
∫ γi+1

γi

CΩτ0,ε0
(1 +

(τ0/2)2

|ε|2
)−1e

σζ(b)τ0
2|ε| e

− τ0
2|ε||t| cos(θ−arg(εt)) τ0

2
dθ|

By construction, the arc of cicle C(τ0/2, γi, γi+1) is chosen in such a way that that cos(θ −
arg(εt)) ≥ δ1, for all θ ∈ [γi, γi+1] (if γi < γi+1)), θ ∈ [γi+1, γi] (if γi+1 < γi)), for all t ∈ T , all
ε ∈ Ei ∩ Ei+1. From (85), we deduce that

(86) I3 ≤ |γi+1 − γi|CΩτ0,ε0

τ0

2
1
|εt|

e
−((

δ1
|t|−σζ(b))

τ0
2

) 1
|ε| ≤ |γi+1 − γi|CΩτ0,ε0

τ0

2
1
|εt|

e
− δ2τ0/4|εt| e

− δ2τ0/4|ε|h′

for all t ∈ T ∩D(0, h′), with |t| < (δ1−δ2)/(σζ(b)), for some 0 < δ2 < δ1, and for all ε ∈ Ei+1∩Ei.
Using the inequality (86) and the estimates (15), we deduce that

(87) I3 ≤ |γi+1 − γi|CΩτ0,ε0

2e−1

δ2
e
− δ2τ0/4|ε|h′

for all t ∈ T ∩D(0, h′), with |t| < (δ1 − δ2)/(σζ(b)) and for all ε ∈ Ei+1 ∩ Ei.

Finally, collecting the inequalities (83), (84), (87), we deduce from (82), that

|Xi+1(t, z, ε)−Xi(t, z, ε)| ≤
CΩ(di+1,Ei) + CΩ(di,Ei)

δ2
e
− δ2τ0/2|ε|h′ + |γi+1 − γi|CΩτ0,ε0

2e−1

δ2
e
− δ2τ0/4|ε|h′

for all t ∈ T ∩D(0, h′), with |t| < (δ1 − δ2)/(σζ(b)), for some 0 < δ2 < δ1, for all ε ∈ Ei+1 ∩ Ei,
for all 0 ≤ i ≤ ν − 1. So that the estimates (81) hold. 2

4.2 Existence of formal series solutions in the complex parameter for the
singularly perturbed problem

We keep the same notations as in the previous subsection. In this subsection, we establish the
existence of formal power series

X̂(t, z, ε) ∈ O((T ∩D(0, h′′))×D(0, δ/2))[[ε]]

which are solutions of (77) and satisfy the property that the solutions Xi(t, z, ε) of the problem
(77), (78) have X̂ as Gevrey asymptotic expansion of order 1 on Ei, for 0 ≤ i ≤ ν − 1.

The proof is based on a cohomological criterion for summability of formal series with coef-
ficients in a Banach space, see [2], page 121, which is known as the Malgrange-Sibuya theorem
in the literature.

Theorem (MS) Let (E, ||.||E) be a Banach space over C and {Ei}0≤i≤ν−1 be a good covering
in C∗. For all 0 ≤ i ≤ ν − 1, let Gi be a holomorphic function from Ei into the Banach space
(E, ||.||E) and let the cocycle ∆i(ε) = Gi+1(ε)−Gi(ε) be a holomorphic function from the sector
Zi = Ei+1 ∩ Ei into E (with the convention that Eν = E0 and Gν = G0). We make the following
assumptions.

1) The functions Gi(ε) are bounded as ε ∈ Ei tends to the origin in C, for all 0 ≤ i ≤ ν − 1.



26

2) The functions ∆i(ε) are exponentially flat on Zi, for all 0 ≤ i ≤ ν− 1. This means that there
exist constants Ci, Ai > 0 such that

||∆i(ε)||E ≤ Cie−Ai/|ε|

for all ε ∈ Zi, all 0 ≤ i ≤ ν − 1.

Then, for all 0 ≤ i ≤ ν − 1, the functions Gi(ε) are the 1−sums on Ei of a 1−summable
formal series Ĝ(ε) in ε with coefficients in the Banach space E.

We are now ready to state the main result of this paper.

Theorem 3 Let us assume that the hypotheses of Proposition 7 hold and that the functions
ϕi,j(t, ε), 0 ≤ i ≤ ν − 1, 0 ≤ j ≤ S − 1, constructed in (78) satisfy the estimates (79) and (80)
for some constants I, δ > 0. Then, there exists a formal series

X̂(t, z, ε) =
∑
k≥0

Hk(t, z)
εk

k!
∈ E[[ε]]

where the functions Hk belong to the Banach space E = O((T ∩D(0, h′′))×D(0, δ/2)) of holo-
morphic and bounded functions on the set (T ∩D(0, h′′))×D(0, δ/2) equipped with the supremum
norm, for some h′′ > 0, which solves the doubly singular equation

(88) εt2∂t∂
S
z X̂(t, z, ε) + (εt+ 1)∂Sz X̂(t, z, ε) =

∑
(s,k0,k1)∈S

bs,k0,k1(z, ε)ts(∂k0t ∂
k1
z X̂)(t, z, ε)

+
∑

(l0,l1)∈N

cl0,l1(z, ε)tl0+l1−1X̂ l1(t, z, ε)

and has the E−valued functions ε 7→ Xi(t, z, ε) constructed in Proposition 7 as 1−sums on Ei,
for all 0 ≤ i ≤ ν − 1.

Proof Let us consider the tuple of functions (Xi(t, z, ε))0≤i≤ν−1 constructed in the proposition
7. For all 0 ≤ i ≤ ν − 1, we define Gi(ε) := (t, z) 7→ Xi(t, z, ε), which is, by construction,
a holomorphic and bounded function from Ei into the Banach space E = O((T ∩ D(0, h′′)) ×
D(0, δ/2)), where T , h′′, δ are defined in Proposition 7. From the estimates (81), we get that
the cocycle ∆i(ε) = Gi+1(ε)−Gi(ε) is exponentially flat on Zi = Ei+1 ∩ Ei, for all 0 ≤ i ≤ ν − 1.

From the theorem (MS) stated above, there exists a formal series Ĝ(ε) ∈ E[[ε]] such that the
functions Gi(ε) are the 1−sums on Ei of Ĝ(ε) as E−valued functions. We put

Ĝ(ε) =: X̂(t, z, ε) =
∑
k≥0

Hk(t, z)
εk

k!
.

It remains to show that the formal series X̂(t, z, ε) satisfies the equation (88). Since the
Gi(ε) are the 1−sums of Ĝ(ε) we have that

(89) lim
ε→0,ε∈Ei

sup
(t,z)∈(T ∩D(0,h′′))×D(0,δ/2)

|∂lεXi(t, z, ε)−Hl(t, z)| = 0

for all 0 ≤ i ≤ ν − 1, all l ≥ 0. Let an integer i such that 0 ≤ i ≤ ν − 1. By construction, the
function Xi(t, z, ε) satisfies the equation (77). Taking the derivative of order l with respect to
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ε of the left and the right hand side of the equation (77) and using the Leibniz rule, we deduce
that ∂lεXi(t, z, ε) satisfies the following equation

(90) εt2∂t∂
S
z ∂

l
εXi(t, z, ε) + (εt+ 1)∂Sz ∂

l
εXi(t, z, ε) + lt2∂t∂

S
z ∂

l−1
ε Xi(t, z, ε) + lt∂Sz ∂

l−1
ε Xi(t, z, ε)

=
∑

(s,k0,k1)∈S

(
∑

h1+h2=l

l!
h1!h2!

∂h1
ε bs,k0,k1(z, ε)ts∂k0t ∂

k1
z ∂

h2
ε Xi(t, z, ε))

+
∑

(l0,l1)∈N

(
∑

h0+...+hl1=l

l!
h0! · · ·hl1 !

∂h0
ε (cl0l1(z, ε))tl0+l1−1Πl1

j=1∂
hj
ε Xi(t, z, ε))

for all l ≥ 1, all (t, z, ε) ∈ (T ∩D(0, h′′)) ×D(0, δ/2) × Ei. Letting ε tends to zero in (90) and
using (89) yields the recursion

(91) t2∂t∂
S
z (
Hl−1(t, z)
(l − 1)!

) + t∂Sz (
Hl−1(t, z)
(l − 1)!

) + ∂Sz (
Hl(t, z)

l!
)

=
∑

(s,k0,k1)∈S

(
∑

h1+h2=l

(∂h1
ε bs,k0,k1)(z, 0)

h1!
ts∂k0t ∂

k1
z (

Hh2(t, z)
h2!

))

+
∑

(l0,l1)∈N

(
∑

h0+...+hl1=l

(∂h0
ε cl0l1)(z, 0)

h0!
tl0+l1−1Πl1

j=1

Hhj (t, z)
hj !

)

for all l ≥ 1, all (t, z) ∈ (T ∩D(0, h′′))×D(0, δ/2). Since bs,k0,k1(z, ε) and cl0,l1(z, ε) are analytic
with respect to ε at 0, we have that

(92) bs,k0,k1(z, ε) =
∑
h≥0

(∂hε bs,k0,k1)(z, 0)
h!

εh , cl0,l1(z, ε) =
∑
h≥0

(∂hε cl0,l1)(z, 0)
h!

εh

for all (z, ε) near the origin in C2. Finally, one can check from the recursion (91) and (92) that
the formal series X̂(t, z, ε) =

∑
k≥0Hk(t, z)εk/k! solves the equation (88). 2
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