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Abstract. We present a KAM theory for some dissipative systems (geometrically,
these are conformally symplectic systems, i.e. systems that transform a symplectic
form into a multiple of itself). For systems with n degrees of freedom depending on n

parameters we show that it is possible to find solutions with n-dimensional (Diophan-
tine) frequencies by adjusting the parameters.

We do not assume that the system is close to integrable, but we use an a-posteriori
format. Our unknowns are a parameterization of the solution and a parameter. We show
that if there is a sufficiently approximate solution of the invariance equation, which also
satisfies some explicit non–degeneracy conditions, then there is a true solution nearby.
We present results both in Sobolev norms and in analytic norms.

The a–posteriori format has several consequences: A) smooth dependence on the
parameters, including the singular limit of zero dissipation; B) estimates on the mea-
sure of parameters covered by quasi–periodic solutions; C) convergence of perturbative
expansions in analytic systems; D) bootstrap of regularity (i.e., that all tori which are
smooth enough are analytic if the map is analytic); E) a numerically efficient criterion
for the break–down of the quasi–periodic solutions.

The proof is based on an iterative quadratically convergent method and on suitable
estimates on the (analytical and Sobolev) norms of the approximate solution. The
iterative step takes advantage of some geometric identities, which give a very useful
coordinate system in the neighborhood of invariant (or approximately invariant) tori.
This system of coordinates has several other uses: A) it shows that for dissipative
conformally symplectic systems the quasi–periodic solutions are attractors, B) it leads
to efficient algorithms, which have been implemented elsewhere.

Details of the proof are given mainly for maps, but we also explain the slight modifi-
cations needed for flows and we devote the appendix to present explicit algorithms for
flows.
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1. Introduction

Kolmogorov–Arnol’d–Moser (hereafter KAM) theory represented a breakthrough in

the theory of the stability of nearly–integrable systems ([42], [5], [50]). Under very general

assumptions, KAM theory yields the persistence of quasi–periodic tori with Diophantine

frequencies for the perturbed system, provided the perturbing parameter satisfies small-

ness conditions. In this paper we prove a KAM theorem in a new geometric context which

has not been considered in the original formulation of KAM theory or in the successive

literature. In particular, we prove a KAM theorem for “conformally symplectic” systems

(maps and flows), namely systems which transport a symplectic form into a multiple of

itself. Conformally symplectic systems have several significant applications in physical

contexts, ranging from models of “Gaussian thermostats” in non–equilibrium statistical

mechanics ([67]) to models of spin–orbit interaction in celestial mechanics ([17, 19]). One

of the interests in studying conformally symplectic systems is motivated by the fact that

they appear in all mechanical systems with friction proportional to the velocity; we also

remark that any two dimensional diffeomorphism or flow is conformally symplectic with

respect to the symplectic form given by the area.

The analysis of the persistence of quasi–periodic solutions in Hamiltonian systems with

dissipation has been performed in [9] (see also [10]), where the authors prove the existence

of quasi–periodic orbits in a more general context than the conformally symplectic case

by paying the price of adding extra parameters (compare also with [53]). In [19] the

existence of quasi–periodic solutions has been proved in the specific case of the (quasi–

integrable) spin–orbit model. The KAM theorems presented in this paper are based

on an “a-posteriori” format: we formulate an invariance equation and we show that if

we can find a function that satisfies very approximately the invariance equation, and

which also satisfies some mild non–degeneracy conditions, then there is a true solution

close to our approximate guess. We stress that we do not necessarily assume that the

system is close to integrable; of course, when the system is close enough to integrable,

the solutions of the integrable system are approximate solutions, so that we recover the

formulation of KAM theorems for quasi–integrable systems. We remark that the a–

posteriori format was emphasized already in [52, 51, 68], where it was shown that the

a–posteriori technique allows us to deduce finitely differentiable results from analytic

ones or to obtain differentiability with respect to parameters [53]. In this paper, we also

present local uniqueness results as well as results on bootstrap of regularity: we show

that for analytic mappings all sufficiently smooth tori are actually analytic. As pointed
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in [15] the a–posteriori proof provides a numerically accessible criterion to compute the

breakdown of invariant tori. Hence, the results obtained here also justify a criterion for

the computation of the breakdown of invariant tori. Since the leading hypothesis of the

main theorem is the existence of a very approximate solution (irrespective of how it has

been obtained), the a–posteriori results can be used to validate approximate solutions

produced by a numerical calculation ([26, 25]).

Furthermore, the methods used in the present proof can be transformed into very efficient

numerical techniques to compute the invariant tori. As we will see, the iteration step

presented here is quadratically convergent as Newton’s method, but it does not require

to store, nor to invert a large matrix. If an approximate solution is discretized in N

Fourier coefficients and in N discrete points, the iterative steps presented here can be

implemented in algorithms that require only O(N) storage and O(N logN) operations.

It is striking to remark that the origin of both the efficiency of the algorithms and of the

KAM estimates is some geometric identity, leading to a change of variables which makes

the linearized equation to be constant coefficients.

Of course, the efficiency of the algorithms requires not only to specify the mathematical

steps, but also to provide practical details on how to construct the solution by applying

efficient operations. We have paid special attention to explaining the algorithmic details

both for mappings (Algorithm 32) and for flows (Algorithm 65). We also present some

algorithms to compute the breakdown threshold, similar to those developed in [13, 14, 15]

for conservative mappings. It is also important to mention the results in [11], which pro-

vide a numerical computation of the critical threshold for tori associated to the dissipative

standard map, based on the criterion developed in the present paper.

The proofs of the existence of quasi–periodic solutions consist of several steps: start

from an approximate solution satisfying a suitable invariance equation, apply a Newton’s

method to get a better approximate solution, provide estimates for the norms of the

different quantities involved, show that the process can be iterated and that it converges.

Estimates are given using both analytic and Sobolev’s norms: in the former case we prove

the existence of analytic quasi–periodic solutions for analytic mappings, while the latter

allows to prove quasi–periodic orbits with Sobolev regularity and it applies to mappings

with finite regularity.

The KAM theorem is much simpler when looking for quasi–periodic orbits with fixed

frequency satisfying a Diophantine condition. However, for dissipative systems one ex-

pects the existence of attractors which may not be quasi–periodic tori or that, even if

they are quasi–periodic, they are characterized by a different frequency. In fact, very

simple examples [46] show that one cannot adjust the frequency by changing just the

initial conditions as it happens in the conservative setting. Therefore, following [53] we

will consider families depending on some parameters, so that part of the unknowns to
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seek are the parameters in the family which allow the existence of quasi–periodic solu-

tions with the prescribed frequency. Moreover, we establish smooth dependence of the

parameters and we show that the formalism extends differentiably to the Hamiltonian

case of zero dissipation. Indeed, we show that the attractors continue to the symplectic

case with C∞ regularity (see Theorem 58 and 59). We also establish the convergence of

Lindstedt series starting from a dissipative system (see Section 10).

For the sake of efficiency of exposition we present in great detail mainly results for

maps (for which the geometric reasons of the cancellations we use are easier to explain),

while in Appendix A we discuss the case of flows.

We finally remark that we provide estimates for the different algorithms, but we do

not intend to give an explicit expression for the constants, though their dependence

on parameters and norms is presented when necessary. For this reason, throughout this

paper C denotes a generic positive constant. In practical applications – eventually carried

out with the help of a computer – it is straightforward to write a sequence of functions

that gives the constants entering in one step as functions of the previous ones, even if

the final expression of the constants would be cumbersome to write.

The paper is organized as follows. In Section 2 we provide the geometric set–up by

defining conformally symplectic maps and flows. In Section 3 we formulate the invariance

equation and we present several geometric identities which lead to the existence of an

interesting system of coordinates in the neighborhood of an invariant torus. In Section 3.3

we use this system of coordinates to apply the theory of normally hyperbolic manifolds

[29, 30, 39], as well as to obtain results on the regularity of the manifolds and on the

behavior of perturbations near the quasi–periodic solutions. In particular, we show that

all the quasi–periodic solutions are local attractors.

In Section 4 we introduce spaces of analytic functions and Sobolev spaces, then we

estimate the solutions of linear difference equations in the analytic and in the Sobolev

norms. In Section 5, Theorem 20, which is the main result of this paper, establishes

the existence of solutions of the invariance equation, provided that we have approximate

solutions which satisfy the non–degeneracy conditions. In Section 5 we also state some

related results, like Theorem 28 on the local uniqueness of the solutions, Corollary 29

on the Lipschitz dependence on parameters of the solutions, and Corollary 31 on the

measure in parameter space covered by quasi–periodic attractors.

The proof of Theorem 20 is based on a Newton–like method. The iterative step for

the Newton’s method is formulated in Section 6. The key idea of the iterative step is

to adapt the system of coordinates near solutions of the invariance equations in order

to approximate the solution; this is accomplished in Section 7.1. The estimates for the

corrections applied in one iterative step are performed in Section 7. In Section 7.2 we

make precise the statement that the error after one step is quadratic in the original
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error. After these quadratic estimates, there are standard abstract theorems that show

that alternating the iteration with carefully chosen smoothings, the procedure converges.

There are many variants of these ideas. A theorem well adapted to these methods appears

in Appendix A of [15]. A slight improvement of it appears in Theorem 46 and we present

a complete proof. For the sake of completeness, in Section 7.6 we also present a short

proof of the convergence in the analytic case.

The proof of the uniqueness of the solution is presented in Section 8. In Section 9 we

discuss some consequences of the a–posteriori formalism, such as the bootstrap of regular-

ity and a criterion to compute the break–down threshold. The perturbative expansions,

namely the formal series solutions and their convergence, are discussed in Section 10.

The algorithm to compute the parametric representation of quasi–periodic solutions for

flows is presented in Appendix A.

2. Geometric preliminaries

We consider the phase spaceM = Tn×B, B ⊆ Rn (B being an open, simply connected

domain with a smooth boundary), endowed with the standard scalar product and a

symplectic form Ω.

Note that this does not entail any loss of generality, since we can takeM to be a subset

of another manifold. Clearly, if we aim to look for an invariant torus, we can find a

neighborhood of it of the formM and we will always work onM.

We do not assume that Ω has the standard form; this generality is useful in several

applications, for example when dealing with surfaces of section of Hamiltonian systems.

We denote by J = J(x) the matrix representing Ω at x, namely for any vectors u, v, one

has

Ωx(u, v) = (u, J(x)v) ,

where (·, ·) denotes the Euclidean scalar product. We consider systems described by

conformally symplectic mappings (see Section 2.1) or by conformally symplectic flows

(see Section 2.2), which are defined as follows.

2.1. Conformally symplectic mappings. We introduce the notion of conformally

symplectic maps, which guarantees that at least locally the symplectic form can be

multiplied by a non–zero function to get a symplectic structure (see [67]).

Definition 1. We say that a diffeomorphism f onM is conformally symplectic, if there

exists a function λ :M→ R such that1

f ∗Ω = λΩ . (2.1)

1By f∗ we denote the pull–back via f .
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When n = 1, any diffeomorphism is conformally symplectic with λ(x) = σ| det(Df(x))|,

σ = +1,−1 depending on whether the diffeomorphism is orientation preserving or re-

versing. When n ≥ 2, the only possible λ is a constant function. In fact, taking the

exterior derivatives of the l.h.s. of (2.1) one obtains

d(f ∗Ω) = f ∗dΩ = 0 ,

while from the r.h.s. of (2.1) one obtains:

d(λΩ) = dλ ∧ Ω + λ ∧ dΩ = dλ ∧ Ω ,

from which it follows that dλ = 0 for n ≥ 2; since the manifold M is simply connected,

one obtains that λ is constant.

Throughout this paper we will always consider the case λ equal to a constant, unless

explicitly stated.

Note that if f is conformally symplectic, so it is the j–th iterate f j. Indeed, when λ is

constant one gets

(f j)∗Ω = λjΩ .

In general, one has:

(f j)∗Ω = λ ◦ f j−1(x) · · ·λ(x)Ω(x) .

We remark that there exist more general definitions of conformally symplectic diffeo-

morphisms ([7]), but we prefer to use the formulation (2.1) as it will be apt for several

applications to physical problems.

An example of a conformally symplectic system that has appeared often in practice is

the dissipative standard map, which is a 2–parameter family of maps, say fµ,ε, given by

fµ,ε(I, ϕ) = (Ī , ϕ̄) with

Ī = (I + εV ′(ϕ) + µ)λ

ϕ̄ = ϕ+ Ī ,
(2.2)

where V (ϕ) is a periodic, analytic function and V ′(ϕ) denotes its first derivative. Notice

that for the mapping (2.2) one has that J =

(
0 1
−1 0

)
. The map (2.2) has been

extensively investigated in the literature (see, e.g., [20, 55, 56, 57]). The conservative

case is obtained setting λ = 1 and µ = 0.

For completeness we introduce also the following definition of exact conformally sym-

plectic map, which applies also when studying the limit λ = 1.

Definition 2. If Ω = dα, we say that a diffeomorphism f is exact conformally symplec-

tic, if there exists a single–valued function P such that

f ∗α = λα + dP .
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The function P is called the primitive function of f . In the conservative case, it was ex-

tensively studied in [33]. Many of the properties of the primitive function for conservative

systems have analogues in the conformally symplectic case.

Note also that, given a symplectic form, there can be several α’s. The exact symplecto-

morphisms do no change, but their primitive functions depend on what is the α chosen.

As an example, if we take α = Idϕ, we see that in the standard map, f ∗α = Īdϕ̄ = λIdϕ+

dP (I, ϕ)+λµdϕ+λ2µdI+λ2µεV ′′(ϕ)dϕ with P (I, ϕ) = λεV (ϕ)+(λ2/2)I2+λ2εV ′(ϕ)I+

ε2(λ2/2)V ′2(ϕ). Therefore the standard map (2.2) is exact conformally symplectic if and

only if µ = 0. This can be seen more easily noting that the standard map can be written

as S = Se ◦ Sc, where Se(I, ϕ) = (I, I + ϕ), Sc(I, ϕ) = (λ(I + εV ′(ϕ) + µ), ϕ). It is easy

to see that Se is always exact symplectic, while Sc is exact conformally symplectic when

and only when µ = 0.

Remark 3. It should be clear that the results of this paper generalize to a somewhat more

general context. In fact, if the phase space decomposes as

M =M1 × · · · ×Mj , Ω = Ω1 ⊗ · · · ⊗ Ωj , j ≥ 1 ,

it suffices to assume that

f ∗Ω = λ1Ω1 ⊗ · · · ⊗ λjΩj

with λj constants. This general set–up appears naturally in physical applications. It

corresponds to j particles moving by a Hamiltonian interaction supplemented by a fric-

tion. Each particle experiences a frictional force proportional to its velocity, where the

friction coefficient of each particle might be different. As we will see in Section 2.2, the

friction coefficient of each particle is related to λ. The main ingredient is that the auto-

matic reducibility discussed in Section 3.1 generalizes to the above context (compare with

Remark 8).

2.2. Conformally symplectic flows.

Definition 4. We say that a vector field X is a conformally symplectic flow, if there

exists a function η : R2n → R such that for the symplectic form Ω, we have:

LXΩ = ηΩ ,

where LX denotes the Lie derivative.

If η is constant, then the time t flow Φt satisfies

(Φt)
∗Ω = exp(ηt)Ω .

In the case that Ω = dα, there is a particularly interesting characterization of conformally

symplectic flows. Denoting by iX the contraction with the vector field X, one has

d(η α) = η dα = LXΩ = iXdΩ + d(iXΩ) = d(iXΩ) ,
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so that ηα and iXΩ differ by a closed form. We say that the vector field X is exact

conformally symplectic, when there exists a function H such that

iXΩ = ηα + dH . (2.3)

When Ω is the standard form, say Ω =
∑n

j=1 dϕj ∧ dIj, then α = I dϕ, so that equation

(2.3) becomes

İ = −
∂H

∂ϕ
− ηI

ϕ̇ =
∂H

∂I
;

(2.4)

notice that equations (2.4) are a generalization of the standard Hamilton’s equations in

symplectic geometry. In the 2–dimensional case, if div(X) = η and η is a constant, then

the flow Xt changes the volume by a factor exp(ηt). One important class of examples,

extensively studied in the literature, is formed by systems with a dissipation proportional

to the velocity and subject to an external forcing through a potential force. In such a

case, the time t map (obtained taking the solution of the flow at discrete times) will be

conformally symplectic.

An example that has been studied several times in the literature is the spin–orbit problem

[18], used to model the rotation of an oblate satellite around a planet. It is described by

the equations

İ = −
∂V (ϕ, t)

∂ϕ
+ λI + µ

ϕ̇ = I ,
(2.5)

where V (ϕ + 1, t) = V (ϕ, t), V (ϕ, t) = V (ϕ, t+ 1); the term µ appears from (2.4) with

a trivial change of variables. All the vector fields (2.5) are conformally symplectic for

the form Ω = dϕ ∧ dI. They are exact conformally symplectic, if and only if µ = 0.

They correspond to the (local) Hamiltonian Hµ = 1
2
I2 + V (ϕ, t) − µϕ. Note that, even

if Hµ is locally well defined, it is a globally defined function if and only if µ = 0 (in old

function language, Hµ is multi–valued when µ 6= 0). Hence, the flow is exact conformally

symplectic precisely when µ = 0. The conservative case corresponds to λ = 0 and µ = 0.

As it is well known, for conservative vector fields there are homotopically non–trivial

invariant tori if and only if they are exact. Note that (2.2) is a discrete analogue of (2.5).

3. Formulation of the invariance problem

We denote by ω ∈ Rn the frequency of motion, which we assume to satisfy the Diophan-

tine condition

|ω · q − p| ≥ ν|q|−τ , p ∈ Z , q ∈ Z
n\{0} , (3.1)
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for suitable positive real constants ν ≤ 1, τ ≥ 1. The corresponding set of Diophantine

vectors is denoted by Dn(ν, τ). If the dimension of the space is obvious, we will omit the

subindex n.

Given a family fµ (that satisfies some non–degeneracy assumptions to be specified later),

we look for a value µ, say µ = µ∗, and an embedding K : Tn → M, such that the

following invariance equation is satisfied:

fµ∗ ◦K(θ) = K(θ + ω) . (3.2)

For example, setting ε = 0 in (2.2) we can see that, for any λ, one gets

K(θ) = (θ, ω) , µ∗ = (ω − ωλ)/λ .

Notice that if (K,µ∗) satisfy (3.2), then fµ∗(Range(K)) = Range(K) and, since K is an

embedding, Range(K) is diffeomorphic to Tn. Notice also that if (3.2) holds, then for

any σ ∈ T
n the sequence {xn} = K(σ + nω) is an orbit of the map fµ∗ ; therefore, the

dynamics of fµ∗ |Range(K) is diffeomorphic to a rotation.

Remark 5. The solutions of (3.2) are never unique. Defining the shift Tσ such that

Tσ(θ) = θ + σ, it is easy to see that if (K,µ∗) is a solution of (3.2), then (K ◦ Tσ, µ∗)

is also a solution for every σ ∈ Tn. Henceforth, also equation (3.2) admits n–parameter

families of solutions (obtained by choosing a different phase of the solution), though they

correspond to the same geometric invariant object in phase space. We remark that in Sec-

tion 8 we will show that this is the only non–uniqueness of the problem in a neighborhood.

In particular, the geometric tori are locally unique.

The problem of global uniqueness has been considered in [2], which contains global re-

sults for some particular systems – modifications of geodesic flows – with strong enough

dissipation. The paper [2] shows that, under these circumstances, there is a unique La-

grangian manifold invariant under the flow. The paper [2] does not consider whether the

motion in this manifold is given by a rotation.

Remark 6. For a family of conformal vector fields Xµ, fixing ω ∈ D(ν, τ), the invariance

equation means to look for a value µ∗ and an embedding K, such that

Xµ∗ ◦K(θ) = (ω · ∂θ)K(θ) .

The following result, stating that invariant tori are Lagrangian, is already known for tori

invariant by exact symplectic maps (or flows) (see, e.g., [23]), but we state it here for tori

invariant by conformally symplectic mappings. Later, in Lemma 36, we will show that

approximately invariant tori are approximately Lagrangian.

Proposition 7. Let n ≥ 2, let f be conformally symplectic with |λ| 6= 1 and let K satisfy

(3.2). Then, one has

K∗Ω = 0 . (3.3)
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If λ = 1, assuming furthermore that ω is irrational and that f is exact, then (3.3) holds.

The case n = 1 is trivial, since in a 1-dimensional manifold one can only define trivial

2-forms.

Proof. One easily obtains that

(f ◦K)∗Ω = K∗f ∗Ω = λK∗Ω

and that

(K ◦ Tω)∗Ω = T ∗
ωK

∗Ω .

In coordinates we see that if K∗(Ω) ≡
∑
Aij(θ) dθi ∧ dθj (for suitable functions Aij =

Aij(θ)), then we have Aij(θ+ ω) = λAij(θ). If λ > 1, we note that Aij(θ) = λ−n(Aij(θ+

nω)). Since Aij is bounded, we obtain (3.3) taking the limit as n→∞, while if λ < 1 we

take the limit as n→ −∞. For the (slightly more complicated) symplectic case, compare

with [68], [23]. From K∗Ω = T ∗
ω(K∗Ω) we deduce that, in coordinates, K∗Ω is constant,

since the rotation is irrational. If Ω ≡ dα, we obtain that K∗Ω = d(K∗α) and the only

constant form which is an exact differential is identically zero.

�

For further applications, it will be important to generalize the Lagrangian character of

invariant tori to quasi–invariant tori, namely tori which satisfy the invariance equation

(3.2) up to a small error term. The precise formulation of the results for quasi–invariant

systems requires quantitative measures of the quasi–invariance as well as some results on

the solutions of the difference equations as it will be done in Section 4.

3.1. Automatic reducibility. A key argument for our results is that in the neighbor-

hood of an invariant torus, there is an explicit change of coordinates that makes the

linearization of the invariance equation into a constant coefficient equation. We also note

that this system of coordinates makes it also particularly simple to study the long term

behavior of the variational equations, hence we can use this system of coordinates to

obtain dynamical information such as Lyapunov exponents. The geometric interpreta-

tion of these identities is illustrated in Figure 1. These geometric effects were already

observed in [22, 23] for the case of symplectic mappings.

In this section, we explain in detail the geometric reason for the so–called automatic

reducibility of invariant tori. Later, in Section 3.4, we will present a generalization to

approximately invariant tori.

As we will see, this system of coordinates for approximately invariant solutions is crucial

to obtain a Newton’s step that has quadratic convergence, but “tame” estimates in the

sense of Nash-Moser implicit function theorems. We think it is worth to start by covering

first the exactly invariant case, since then all the arguments are geometrically natural.

Furthermore, we point out that we will use the coordinates in the exactly invariant
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K( )θ

K(       )θ+ω
DK( )θ

V( )θ

V(       )θ+ω

DK(       )θ+ωD
f 
(K

( 
))
V
( 
)

θ

θ

μ

λ

Figure 1. Geometric explanation of automatic reducibility, where V (θ) is
perpendicular toDK(θ) and such that the area of the shaded parallelogram
is unitary.

case for other purposes, namely: A) to compute the Lyapunov exponents (Section 3.3),

B) to establish local uniqueness (Section 8), C) to show that there exist perturbation

theories to all orders, to establish their convergence and to develop fast algorithms for

their computation (Section 10). Further applications appear in [12].

3.2. An adapted system of coordinates for solutions of (3.2). Taking the deriva-

tive of (3.2) (we write µ instead of µ∗ to make the formulas less cluttered), we obtain:

D
(
fµ ◦K

)
DK −DK ◦ Tω = 0 . (3.4)

Geometrically, the above equation (3.4) means that each of the vector fields ∂iK gets

transported by Dfµ into itself. Note that the range of DK(θ) is the tangent space of

Range(K) at K(θ). Since the range of a matrix does not change if we multiply it on the

right, we find it convenient to introduce the normalization

N(θ) ≡ (DK(θ)TDK(θ))−1 . (3.5)

Let us define the function V (θ) as

V (θ) ≡ J−1 ◦K(θ)DK(θ)N(θ) .
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Expressing K∗Ω in coordinates2, the fact that K is Lagrangian is written as (see [23],

[6])

DKT (θ)J ◦K(θ)DK(θ) = 0 . (3.6)

Due to the Lagrangian character of the invariant torus, we have

Range
(
DK(θ)

)
∩ Range

(
J−1 ◦K(θ)DK(θ)

)

= J−1 ◦K(θ)
[
Range

(
J ◦K(θ)DK(θ)

)
∩ Range

(
DK(θ)

)]

= {0} .

Hence, we have that Range
(
DK(θ)

)
⊕Range

(
J−1 ◦K(θ)DK(θ)

)
is a 2n–dimensional

vector space, which coincides with the whole tangent space. Therefore can write

Dfµ ◦K(θ)V (θ) = V (θ + ω)A(θ) +DK(θ + ω)S(θ) , (3.7)

where, setting

P (θ) ≡ DK(θ)N(θ) , (3.8)

we will see that A(θ) and S(θ) are given by

A(θ) ≡ λ Id ,

S(θ) ≡ P (θ + ω)TDfµ ◦K(θ)J−1 ◦K(θ)P (θ)−N(θ + ω)Tγ(θ + ω)N(θ + ω)A(θ)
(3.9)

and

γ(θ) ≡ DK(θ)TJ−1 ◦K(θ)DK(θ) . (3.10)

When J is complex, J−1 = −J , the Lagrangian character of the torus is the same as

γ(θ) = 0. The same conclusion leading to γ(θ) ≡ 0 happens also when J2 is a multiple of

the identity (which is what happens when one considers symplectic polar coordinates).

To prove (3.9) we just multiply (3.7) by appropriate factors and use geometric identities

that come from the invariance and from the geometric properties of the torus (notably

the Lagrangian character). For later purposes, it is important to remark that exactly

the same procedure works for approximately invariant tori; in that case, of course, we

will obtain that the identifications happen up to errors in the invariance and in the

Lagrangian character (which will, in turn, be controlled by the error in the invariance).

Multiplying the left hand side of (3.7) by DK(θ + ω)TJ ◦K(θ + ω) and using (3.4) we

2Recall that K∗(Ω)(u, v) = Ω(DK u, DK v) for any vectors u, v, applying the general formulas of
pull–back for forms, [1].
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obtain

DK(θ + ω)TJ ◦K(θ + ω)Dfµ ◦K(θ)J−1 ◦K(θ)DK(θ)N(θ)

= λDK(θ + ω)TDf−T
µ ◦K(θ)DK(θ)N(θ)

= λDK(θ)TDK(θ)N(θ)

= λ Id ,

(3.11)

where in the first line we have used the fact that fµ is conformally symplectic3, namely

Dfµ ◦K(θ)TJ ◦K(θ + ω)Dfµ ◦K(θ) = λJ ◦K(θ) . (3.12)

Moreover, from the right hand side of (3.7) one has

DK(θ + ω)TJ ◦K(θ + ω)
[
J−1 ◦K(θ + ω)DK(θ + ω)N(θ + ω)A(θ) +DK(θ + ω)S(θ)

]

= DK(θ + ω)TDK(θ + ω)N(θ + ω)A(θ)

= A(θ) ,

where we have used the definition of N and the Lagrangian character of the torus (see

(3.6)). To compute S(θ) we multiply (3.7) by P (θ + ω)T = N(θ + ω)TDK(θ + ω)T and

we obtain

P (θ + ω)TDfµ ◦K(θ)V (θ) = P (θ + ω)TV (θ + ω)A(θ) + P (θ + ω)TDK(θ + ω)S(θ)

= N(θ + ω)Tγ(θ + ω)N(θ + ω)A(θ) + S(θ) ,

where, in the last line, we have just used the definition of γ(θ) (see (3.10)) and that

P (θ + ω)TDK(θ + ω) = Id. This completes the proof of (3.9).

Defining M(θ) as the 2n × 2n matrix obtained juxtaposing the two 2n × n matrices

DK(θ), V (θ), namely

M(θ) = [DK(θ) | J−1 ◦K(θ) DK(θ)N(θ)] , (3.13)

we obtain

Dfµ ◦K(θ)M(θ) = M(θ + ω)

(
Id S(θ)
0 λ Id

)
. (3.14)

The geometric reason why (3.14) is true is illustrated in Figure 1. We note that the vec-

tor field DK(θ) gets transported; geometrically V (θ) is a vector orthogonal to DK(θ),

normalized so that the area of the parallelogram formed by them is equal to 1. Equiva-

lently, the area of the parallelogram formed by DK(θ+ω) and V (θ+ ω) is also equal to

1. The action of the derivative Dfµ on the parallelogram contracts the area by a factor

λ; due to (3.7), the projection of Dfµ ◦K(θ)V (θ) onto V (θ + ω) has to be λ times the

length of V (θ + ω).

3The conformally symplectic condition is equivalent to saying that Ωf(x)(Df(x)u, Df(x)v) =
λΩx(u, v) for any vectors u, v. Therefore, (Df(x)u, J ◦ f(x)Df(x)v) = λ(u, J(x)v); being valid for
any vectors u, v, one gets Df(x)T J ◦ f(x)Df(x) = λJ(x), which gives (3.12) taking x = K(θ).
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Remark 8. The above construction generalizes to the case discussed in Remark 3 in

which we consider different particles, each with its own friction coefficient. More pre-

cisely, we consider θ = (θ1, . . . , θj) and similarly K(θ) = (K1(θ), . . . , Kj(θ)), where

Ki takes values in the i–th copy of the manifold and it describes the motion of the

i–th particle. We note that taking derivatives of the invariance equation we still ob-

tain Dfµ ◦ K(θ)Dθi
Ki(θ) = Dθi

Ki(θ + ω). Note also that, because the symplectic

form is a product, we can define a symplectic conjugate v(θ) = (v1(θ1), . . . , vj(θj)) with

vi(θi) = J−1
i ◦Ki(θ)Dθi

Ki(θ)Ni(θ). The same geometric argument used in the text shows

that we have

Dfµ ◦K(θ)vi(θi) = λivi(θ + ω) + Si(θ)Dθi
Ki(θ + ω)

Dfµ ◦K(θ)M(θ) = M(θ + ω)

(
Id S(θ)
0 Λ

)
,

where Λ is a diagonal matrix with entries λ1, . . . , λj.

Remark 9. One can make further changes of variables so that the matrix S in (3.14)

takes a simpler form. For example we can consider

M̃(θ) = M(θ)

(
Id B(θ)
0 Id

)
, (3.15)

for a suitable matrix B to be determined as follows. Using (3.14) and (3.15) we see that

Dfµ ◦K(θ)M̃(θ) = M(θ + ω)

(
Id S(θ)
0 λ Id

)(
Id B(θ)
0 Id

)

= M̃(θ + ω)

(
Id −B(θ + ω)
0 Id

)(
Id S(θ)
0 λ Id

)(
Id B(θ)
0 Id

)

= M̃(θ + ω)

(
Id −λB(θ + ω) + S(θ) +B(θ)
0 λ Id

)

= M̃(θ + ω)U(θ + ω) ,

(3.16)

where the last equality defines U(θ + ω). Hence, if we use the theory of solutions of

cohomology equations when |λ| 6= 1, we can choose B(θ) in such a way that

0 = −λB(θ + ω) + S(θ) +B(θ) , (3.17)

Since (3.17) does not involve any small divisors, the solution B is as smooth as S. The

geometric meaning of the construction above is that, when |λ| 6= 1, we choose a coordinate

system in which there is a contracting invariant space transversal and complementary to

the tangent of the tori.

In the case that λ = 1, we cannot solve (3.17), but we can have that the the left hand side

of (3.17) is a constant. Hence we can arrange that U(θ) in (3.16) becomes a constant

upper diagonal matrix with Id in the diagonal.
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3.3. Relation with the regularity theory of normally hyperbolic manifolds.

Remark 9 has important consequences for the dynamics, which we will now discuss. To

simplify the exposition, we present only the case |λ| < 1; the case |λ| > 1 follows from

this one by considering the inverse map.

The main observation is that Remark 9 has the dynamical interpretation that we can

find a frame of reference in which the linearized dynamics is given by a constant diagonal

matrix with eigenvalues 1, λ, each of them with multiplicity n. This says, in particular,

that the manifolds are normally hyperbolic. From Remarks 8 and 9 we have that for

j > 0:

Df j
µ ◦K(θ) = M̃(θ + jω)

(
Id 0
0 λj Id

)
M̃−1(θ) ,

where M̃ is the matrix in Remark 9. We have, therefore, shown that there exists a

decomposition

TK(θ)M = Range(DK(θ))⊕ Es
K(θ) (3.18)

(we use the standard notation from differential geometry, where TxA denotes the tangent

space of the manifold A at the point x), where Es
x is the eigenspace corresponding

to the eigenvalue λ in the constant system of coordinates. We have also shown that

Range(DK(θ))) = TK(θ)K(Tn) and that DK corresponds to the eigenvalue 1.

By construction, the splitting in (3.18) is invariant under Dfµ and we have that there is

a constant C such that for all j ∈ Z,

C−1λj|v| ≤ |Df j
µ ◦K(θ)v| ≤ Cλj |v| ⇐⇒ v ∈ Es

K(θ)

C−1|v| ≤ |Df j
µ ◦K(θ)v| ≤ C|v| ⇐⇒ v ∈ TK(θ)K(Tn) .

(3.19)

The constants C are estimated by the norms of ‖M̃‖L∞, ‖M̃−1‖L∞.

The properties (3.19) imply the assumptions of the theory of normal hyperbolicity with

rate conditions (see, e.g., [29, 30]). Indeed, the standard definition of normal hyperbolicity

only requires the analogue of (3.19) with the exponential estimates of Df j
µ|Es for positive

j; the definition of normal hyperbolicity can accommodate also an unstable space and

some (small) rate of growth of the derivative on the tangent space. Hence, applying the

theory of normally hyperbolic manifolds, we obtain several consequences, among them,

the following result.

Proposition 10. If fµ is conformally symplectic, |λ| < 1 and K satisfies (3.2), then the

manifold K(Tn) is an attractor.

We can prove Proposition 10 in several ways ). For example, it suffices to appeal to the

results in [29] on the dynamics on stable manifolds (in our case, the stable manifold is

the whole space). The most direct proof is to show that if we consider the map expressed

in the coordinates given by the frame constructed in Remark 9, we have that it is given
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by

(I, ϕ)→ (λI, ϕ+ ω) +R(I, ϕ) ,

where |R(I, ϕ)| ≤ C|I|2, |DR(I, ϕ)| ≤ C|I|. In such circumstances, it is clear that for

I in a small neighborhood, I decreases exponentially under the forward iteration. Note

that in Proposition 10 we do not need to assume any non–resonance property on ω. The

only thing that we need is the possibility to construct the frame in Remark 9, which

depends only on the fact that K(Tn) is a manifold and that it is Lagrangian, without

assuming irrationality of the rotation when |λ| < 1.

Several further developments on the behavior near quasi–periodic solutions are ob-

tained in [12].

We now develop several other consequences of the theory of normally hyperbolic manifolds

for our case.

Proposition 11. When |λ| < 1 the tori K = K(Tn) are as differentiable as the map,

when measured in the Cr regularity classes, r ∈ N (similarly for |λ| > 1, considering the

inverse mapping.)

The reason why Proposition 11 is true is that in Remark 9 we have seen that there is a

continuous splitting TxM = TxK ⊕ E
s
x. When v ∈ TxK, we have |Df j(x)v| ≤ C|v| for

all j ∈ Z. When v ∈ Es
x we have: |Df j(x)v| ≤ Cλj|v| for all j ∈ N. In the language of

[29, 30], we have different growth rates in the tangent space and in the complementary

distribution, which are given by ρc = 1, ρs = λ. In those papers, one can find that the

manifold is Cℓ, where ℓ = min(− log(ρs)/ log(ρc), r) where r is the regularity of the map.

In our case, ℓ = r. Note that the theory of regularity of [29, 30] does not require any

Diophantine property of the rotation.

Remark 12. Of course, the function K, conjugating the motion on the manifold to a

rotation, may be less differentiable than the manifold K, because the conjugation of a

smooth map to a rotation may be less smooth than the map itself. The Diophantine

properties of the rotation play an essential role in this loss of differentiability, but also

the dimension n plays a role.

When the dimension n = 1, we have the powerful results of [37, 63, 41], which show that

the conjugating map is Cr−τ−ǫ, ǫ > 0 sufficiently small, independently from the map;

when n ≥ 2, the smooth conjugacy to rotations has other obstructions [38].

Remark 13. Assume that n = 1, the rotation is Diophantine and that the map is

analytic, while the conjugacy has to be Cr for any r; then, we can apply the bootstrap of

regularity result provided in Theorem 53 to conclude that K is actually analytic and so

are the decompositions into spectral bundles.
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Remark 14. Very often one considers families depending on other parameters, so that

the tori exist for some values of the parameter and not for others. The above consider-

ations show that, when n = 1, the rotation is Diophantine and the mapping is analytic,

then the conjugacy K has to remain analytic up to the breakdown. The only possibility

left by the previous considerations is that the sufficiently smooth norms of the conjugacy

K blow up (this was studied in [11]). Furthermore, since the conjugacy cannot break

down if the manifolds remain smooth (and this is implied by the hyperbolicity), the only

possibility is that the hyperbolicity also breaks down.

On the other hand, the automatic reducibility shows that the Lyapunov exponent is iden-

tically λ. Hence, the only way that hyperbolicity can break down is that the angle between

the stable space and the tangent to the manifold goes to zero, so that the stable bundle

merges with the tangent space. Breakdown of hyperbolicity by the merging of bundles was

studied in [36, 35]. In the problem at hand, it has been studied numerically in [16].

Remark 15. When n ≥ 2, to study the breakdown of the solutions of (3.2), one has also

to consider, besides the breakdown of normal hyperbolicity, the phenomenon that happens

at the breakdown of the smooth conjugacy of the maps of the circle to rotations. However,

this boundary is very poorly understood, even at the level of numerical experiments (except

for some particular classes such as linear skew products).

3.4. Automatic reducibility for approximately invariant tori. Of course, in the

applications for iterative methods, we want to deal with approximately invariant tori, not

with exactly invariant ones. The goal of this section is to show that, for approximately

invariant tori, the automatic reducibility found for invariant tori still holds up to an error

that can be estimated by the error in the invariance equation. The precise estimates will

be given once we introduce appropriate function spaces to measure the errors.

The procedure to establish these results is very similar to that of Section 3.1. Some

of the identities used in Section 3.1 will hold only approximately, but it is important

that we can estimate the error by that of the invariance equation. Because these errors

in the reducibility are estimated by the error in the invariance, we will show that they

do not affect the quadratic convergence of the algorithm, so that for the purposes of

the Newton’s step, the system can be considered as reducible. We emphasize that the

calculations leading to (3.14) just rely on

a) taking derivatives of the invariance equation and then applying algebraic manip-

ulations, which use

b) the conformally symplectic properties of the map,

c) the fact that the torus is Lagrangian.

In the case of an approximate invariant torus, we follow exactly the same algebraic

manipulations (they are not geometrically natural and they require to use coordinates);

however, a), c) are only approximate identities and we show that (3.14) holds with an
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error which can be estimated by the error in the invariance equation. Whenever the

rotation number is Diophantine or λ 6= 1, we show that the following expression holds:

Dfµ ◦K(θ)M(θ) = M(θ + ω)

(
Id S(θ)
0 λ Id

)
+R(θ) , (3.20)

for a suitable error function R = R(θ), which will be bounded in Section 7.

The explicit expression for R can be found as follows. Let (3.2) be satisfied with an error

E = E(θ), say

fµ ◦K(θ)−K(θ + ω) = E(θ) ; (3.21)

by differentiating (3.21) we obtain

Dfµ(K(θ))DK(θ)−DK(θ + ω) = DE(θ) . (3.22)

We will denote by

EL(θ) ≡ DK(θ)TJ ◦K(θ)DK(θ) , (3.23)

the error in the Lagrangian character of the torus, which will be later (see Lemma 36 b))

bounded by the error in the invariance equation.

If EL is sufficiently small in the C0 sense (which, as we will see in Section 7, follows

from the smallness in the invariance error), then the spaces DK(θ) and V (θ) ≡ J−1 ◦

K(θ)DK(θ)N(θ) (where N is defined in (3.5)) are transversal and we can write as in

(3.7) any vector in a unique way as a linear combination of the columns of DK(θ) and

V (θ). Hence, there exist uniquely determined functions Ã(θ), S̃(θ), such that we can

write

Dfµ ◦K(θ)V (θ) = V (θ + ω)Ã(θ) +DK(θ + ω)S̃(θ) . (3.24)

Of course, in the approximately invariant case, Ã and S̃ will not have the expressions

given in (3.9). Indeed, we want to estimate Ã(θ) − A(θ), S̃(θ) − S(θ), where A, S are

given in (3.9). Recall that, by the definition of R in (3.20), and by (3.22), (3.13), we have

R(θ) = [DE(θ) | V (θ + ω)(Ã(θ)− A(θ)) +DK(θ + ω)(S̃(θ)− S(θ))] . (3.25)

We now proceed to compute Ã, S̃, so that we can give expressions for the error in

reducibility. Multiplying (3.24) on the left by DK(θ+ ω)TJ ◦K(θ + ω), we obtain as in

(3.11), just λ Id since the calculation does not need any modification. Equating to this

the multiplication of the r.h.s. of (3.24) by the same factor produces

λ Id = Ã(θ) + EL(θ + ω)S̃(θ) , (3.26)

where EL is the error in the Lagrangian character defined in (3.23). Multiplying on the

left both sides of (3.24) by P (θ + ω)T with P defined in (3.8), we obtain:

P (θ+ω)TDfµ ◦K(θ)J−1 ◦K(θ)P (θ) = N(θ+ω)Tγ(θ+ω)N(θ+ω)Ã(θ)+ S̃(θ) . (3.27)
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We see that (3.26), (3.27) can be considered as equations for Ã, S̃, because they determine

uniquely such quantities (note that the diagonal terms are the identity and that the

upper–diagonal term in the system (3.26), (3.27) are small).

Applying the solution of the system of equations (3.26), (3.27), we obtain that the

difference between Ã, S̃ – the approximate solutions of (3.26), (3.27) – and A, S – the

exact solutions of (3.26), (3.27) – can be bounded by a constant times the error of the

approximate solution. That is, we can bound the size of Ã−A, S̃−S by a constant times

the size of EL. Precise estimates will be given once we have defined appropriate function

spaces, but we point out that, since they depend only on just using linear algebra and

precise formulas, these estimates will be uniform provided that we take norms which are

a Banach algebra under multiplication.

Now that the geometric procedure is specified, we proceed to develop estimates. This

will require that we specify some spaces and that we develop estimates for some auxiliary

equations, such as difference equations, which we will do in the next section.

4. Estimates on the solutions of the linearized equation

Since the KAM procedure is based on the application of a Newton’s method, the estimates

on the linearized equation are extremely important.

In our case, we will be concerned with an equation for ϕ : Tn → C, given η : Tn → C, of

the form

ϕ(θ + ω)− λϕ(θ) = η(θ) , (4.1)

where λ ∈ C, ω ∈ Rn are given. Equations of the form (4.1) appeared in many contexts of

dynamical systems; when |λ| 6= 1, they appear often in the study of hyperbolic dynamical

systems, while when |λ| = 1, (4.1) is recognized as the standard small divisor equation.

We remark that the cases |λ| = 1, |λ| 6= 1 are very different. When |λ| 6= 1, one can solve

(4.1) by an elementary contraction mapping argument, which works for all real vectors

ω. When |λ| = 1, it is well known that the argument is more subtle and, in particular,

it depends on the arithmetic properties of ω and Im(log(λ)).

4.1. Several function spaces. In this section we present precise definitions of the norms

and some elementary properties of the solutions of (4.1). The main results of this section

are Lemma 18 and 19, which deal with the solution of (4.1) for the case |λ| 6= 1 and for

the case that applies uniformly for all λ ∈ R, including λ = 1.

We stress that in this work we present two types of KAM theorems, one with the

analytic estimates and another one with the estimates in Sobolev spaces. In each type of

scale of spaces, we present a theorem that assumes smallness in one space of the scale and

we conclude existence of solutions on another space of the same scale. We also present
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estimates which are uniform in λ, as λ approaches 1 and estimates which assume that

|λ| 6= 1 and are not uniform in λ.

The reason to present the results in two regularity scales is that the Sobolev norms are

a rather straightforward byproduct of the algorithms we present here (which provide with

the Fourier coefficients). Furthermore, we also present a bootstrap of regularity result,

which states that the Sobolev solutions of high enough order are analytic. Another

important reason to present estimates on both spaces is that, as shown in [11], we obtain

that the breakdown of analytic circles happens when and only when the Sobolev norms

of high enough order break up. This criterion is rather practical because it works without

any fine–tuning, since it only relies on computing objects which are locally unique. For

example, it avoids the computation of periodic orbits, which for many systems appear in

a complicated way [28, 48]. A comparison of this criterion based on blow up and other

methods in the literature to compute breakdown can be found in [15, Appendix B], while

implementations can be found in [13, 14] for the conservative systems and in [11] for the

conformally symplectic systems considered here.

The estimates uniform in λ are analytically more delicate since the difference equations

involve small denominators. They also involve some more geometric obstructions. The

reason why to include both cases is that we want to pay particular attention to the

case of small dissipation. This is a case that has received a great deal of attention

in the applications, especially in Celestial Mechanics, [17, 19, 18]. One of the good

features of the method presented here is that it allows to continue seamlessly through

the Hamiltonian case.

Definition 16. Given ρ > 0, we denote by Tn
ρ the set

T
n
ρ = {z = x+ iy ∈ C

n/Zn : x ∈ T
n, |yj| ≤ ρ , j = 1, ..., n} .

Given ρ > 0, we denote by Aρ the set of functions which are analytic in Int(Tn
ρ) and

extend continuously to the boundary. We endow Aρ with the norm

‖f‖Aρ = sup
z∈Tn

ρ

|f(z)| . (4.2)

More generally, if C ⊂ Cn/Zn × Cn is a domain with a smooth boundary, we denote by

AC the space of functions which are analytic in the interior of C and extend continuously

to the boundary. We endow AC with the norm

‖f‖AC
= sup

z∈C
|f(z)| .

Given m > 0 and denoting the Fourier series of a function f = f(z) as f(z) =∑
k∈Zn f̂k exp(2πikz), we define the space Hm as

Hm =
{
f : T

n → C : ‖f‖m ≡
( ∑

k∈Zn

| f̂k |
2(1 + |k|2)m

)1/2

<∞
}
. (4.3)
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For a vector valued function f = (f1, f2, ..., fj), j ≥ 1, we define the norm

‖f‖X =
√
‖f1‖

2
X + ‖f2‖

2
X + ...+ ‖fj‖

2
X ,

where X is either Aρ or Hm. For an n1 × n2 matrix valued function F we define

‖F‖X = sup
v∈R

n2
+ , |v|=1

√√√√
n1∑

i=1

( n2∑

j=1

‖Fij‖X vj

)2

.

Notice that if F is a matrix valued function and f is a vector valued function, then one

has

‖F f‖X ≤ ‖F‖X ‖f‖X

for X being Aρ or Hm with m > n
2
.

To distinguish clearly between analytic and Sobolev norms we will use the notation ‖f‖Hm

instead of ‖f‖m.

It is well known that Aρ and Hm, endowed with their corresponding norms (4.2), (4.3),

are Banach spaces. It is also well known that Aρ and Hm with m > n/2 are Banach

algebras under pointwise multiplication ([65]):

‖fg‖Aρ ≤ C‖f‖Aρ‖g‖Aρ ,

‖fg‖Hm ≤ C‖f‖Hm‖g‖Hm , m >
n

2
,

for a suitable real positive constant C.

It will be essential for the proof of the main result to have estimates on the composition

of functions belonging to the Banach algebras introduced above. We include the compo-

sition estimates in the following lemma. As stated in the introduction, we use the same

letter C for all constants appearing in the forthcoming estimates.

Lemma 17. The following estimates for the composition of functions in Sobolev spaces

and in spaces of analytic functions hold.

A.1) Let f ∈ Cm be the space of functions with m continuous derivatives defined in the

whole space. Then, for g ∈ Hm ∩ L∞(Tn) one has:

‖f ◦ g‖Hm ≤ Am(‖g‖∞) ‖f‖Cm (1 + ‖g‖Hm) ,

where Am depends on ‖g‖∞; ‖ · ‖∞ denotes the essential supremum norm.

A.2) Let f ∈ Cm+2, m > n/2. Then, for g, h ∈ Hm ∩ L∞(Tn) one has:

‖f ◦ g − f ◦ h−Df ◦ h (g − h)‖Hm ≤ Ãm(‖g‖∞) ‖f‖Cm+2 ‖g − h‖2Hm .

B.1) Let f ∈ AC be an analytic function on a domain C ⊂ Cn/Zn × Cn, where C is

a compensated domain. Assume that g = (g1, ..., gn) is such that g(Tn
ρ) ⊂ C and

gi ∈ Aρ with ρ > 0. Then f ◦ g ∈ Aρ and

‖f ◦ g‖Aρ ≤ ‖f‖AC
,
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where ‖f‖AC
= supz∈C |f(z)|.

B.2) Similarly, if g, h are as above

‖f ◦ g − f ◦ h−Df ◦ h (g − h)‖Aρ ≤ C‖D2f‖AC
‖g − h‖2Aρ

.

Proof. A.1) is proven in [65, Section 13.3]. B.1) is obvious from the definition of the

analytic norm as supremum.

For the other two cases, we just use the fundamental theorem of calculus to write

f ◦ g(z)− f ◦ h(z)−Df ◦ h(z)(g− h)(z) =

∫ 1

0

dt

∫ t

0

dsD2f(gs(z))(g − h)
⊗2(z) , (4.4)

where gs(z) is a path such that g0(z) = h(z), g1(z) = g(z).

In A.2), where we are assuming that the function f is defined everywhere, we can just

take gs = sg + (1 − s)h. This formula for gs also works when C is a convex domain,

but for more general domains we could need a more complicated path and the argument

above only gives an estimate in the right hand side of B.2) by the square of the length

of the path. The definition of compensated domains ([24]) is precisely that given any

pair of points in the domain, we can find a path that joins them, whose length is not

more than a constant. Of course, all the convex domains are compensated. Note that,

for the previous argument, since we are doing pointwise estimates, there is no need that

the paths corresponding to different z are related.

Note that the same proof using (4.4) works both in the analytic and in the Sobolev

case. Nevertheless, in the Sobolev case, since the Sobolev norms are not just pointwise

estimates, one needs that the paths joining two points depend well on the point. Hence,

we included the assumption that the functions are defined in the whole space. This is

not a severe restriction, since one can use the Whitney extension theorem [64] to extend

functions from domains to the whole space. �

4.2. Estimates on cohomology equations. In this section, we collect estimates on

the solutions of cohomology equations of the form (4.1), which are the main tool in

KAM theory. The results collected here are very standard. We note that we provide

estimates in two kinds of spaces: analytic and Sobolev spaces. We also present two

types of estimates, one that corresponds to |λ| 6= 1 and the other that applies uniformly

for all λ ∈ R, including λ = 1. Roughly, the estimates for |λ| 6= 1 involve less loss of

differentiability, but they include constants that depend on λ. When we present estimates

that are valid for all values of λ in an interval, we will use the name the uniform case.

We also consider the dependence of the solutions on λ, but that is easy by observing that

the derivatives with respect to λ also satisfy cohomology equations.

It is interesting to remark that when |λ| 6= 1, the cohomology equations have a unique

solution for all the data. When λ = 1, they only have solutions for data in a space of

codimension 1 (there is one obstruction), but when there is a solution, there is a one
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dimensional space of solutions. Stating unified results for both cases will give the key for

the formulation of the limit of zero dissipation.

Lemma 18. Assume |λ| 6= 1, ω ∈ Rn. Then, given any Lebesgue measurable function

η, there is one Lebesgue measurable function ϕ satisfying (4.1). Furthermore, for m > 0

the following estimates hold:

‖ϕ‖Aρ ≤
∣∣ |λ| − 1

∣∣−1
‖η‖Aρ ,

‖ϕ‖Hm ≤
∣∣ |λ| − 1

∣∣−1
‖η‖Hm .

(4.5)

Finally, one can bound the derivatives of ϕ with respect to λ as

‖Dj
λϕ‖Aρ ≤

j!∣∣ |λ| − 1
∣∣j+1 ‖η‖Aρ , j ≥ 1 ,

‖Dj
λϕ‖Hm ≤

j!∣∣ |λ| − 1
∣∣j+1 ‖η‖Hm , j ≥ 1 .

(4.6)

Proof. Note that (4.1) is equivalent to

ϕ(θ − ω)−
1

λ
ϕ(θ) = −

1

λ
η(θ − ω) , (4.7)

which is of the same form as (4.1), but it involves 1/λ in place of λ. Therefore, it suffices

to consider the case |λ| < 1. Note that (4.7) implies

ϕ(θ) = η(θ − ω) + λϕ(θ − ω)

= η(θ − ω) + λη(θ − 2ω) + λ2ϕ(θ − 2ω)

=
N∑

i=0

λiη(θ − (i+ 1)ω) + λN+1ϕ(θ − (N + 1)ω) .

Using Lusin’s theorem and Poincaré recurrence theorem, it is easy to see that we have

almost everywhere limN→∞ λN+1ϕ(θ − (N + 1)ω) = 0. Therefore the only measurable

solution of (4.1) is

ϕ(θ) =

∞∑

i=0

λiη(θ − (i+ 1)ω) . (4.8)

Since

‖η(· − (i+ 1)ω)‖Aρ = ‖η(·)‖Aρ

and

‖η(· − (i+ 1)ω)‖Hm = ‖η(·)‖Hm ,

we obtain that (4.8) converges uniformly in Aρ, H
m, whenever η belongs to these spaces;

we also have that (on spaces X = Aρ or X = Hm)

‖ϕ‖X ≤

( ∞∑

i=0

|λ|i
)
‖η‖X ,
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which establishes (4.5).

To study the limit of conservative systems, we note that, taking derivatives with respect

to λ of (4.8) and observing that the resulting series converges uniformly on 0 < |λ| ≤ 1−ε

for any ε > 0, we obtain that

Dj
λϕ(θ) =

∞∑

i=j

i!

(i− j)!
λi−jη(θ − (i+ 1)ω) ,

from which (4.6) follows straightforwardly; note that the estimates (4.5) and (4.6) become

singular as |λ| → 1.

�

Next we consider the case λ in an interval containing 1 and we prove the following result,

which is standard in KAM theory (see [58]).

Lemma 19. Consider (4.1) for λ ∈ [A0, A
−1
0 ] for some 0 < A0 < 1 and let ω ∈ D(ν, τ).

Assume that η ∈ Aρ, ρ > 0 (resp. η ∈ Hm, m > τ) and that
∫

Tn

η(θ) dθ = 0 .

Then, there is one and only one solution of (4.1) with zero average:
∫

Tn ϕ(θ) dθ = 0.

Furthermore, if ϕ ∈ Aρ−δ for every δ > 0 (resp. ϕ ∈ Hm−τ), then we have

‖ϕ‖Aρ−δ
≤ C

1

ν
δ−τ‖η‖Aρ ,

‖ϕ‖Hm−τ ≤ C
1

ν
‖η‖Hm ,

(4.9)

where C is a constant that depends on A0 and the dimension of the space, but it is uniform

in λ and it is independent of the Diophantine constant ν.

Note that, when λ = 1, there are other solutions of (4.1), but all the solutions differ by

a constant. The result of Lemma 19 is that the estimates of solutions of cohomology

equations normalized to average zero are uniform when λ ranges over an interval that

contains 1.

Proof. The analytic bound is established in [58]; in that reference, only the case λ = 1 is

treated in detail, but all other cases can be treated by the same method as well. We note

that, if we express η in Fourier coefficients, η(θ) =
∑

j∈Zn η̂j exp(2πij · θ) and similarly

for ϕ, we see that (4.1) is equivalent to having for all j ∈ Zn

(λ− exp(2πij · ω)) ϕ̂j = η̂j . (4.10)

Clearly, when λ = 1 and j = 0, it is impossible to satisfy (4.10) unless η̂0 = 0. In such a

case, we have that ϕ̂0 is arbitrary. In all other cases, provided that (λ−exp(2πij ·ω)) 6= 0,
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we can find ϕ̂j by setting

ϕ̂j = (λ− exp(2πij · ω))−1η̂j .

Hence, it suffices to estimate the multipliers using Cauchy bounds and (3.1), as it is done

in [58] to get (4.9). �

Note that Lemma 19 involves only values of λ ranging over a real interval. A conjecture

concerning complex values of λ will be given in Section 10. The result is false for sets

that include segments of |λ| = 1, because in segments of |λ| = 1 there are new small (or

zero!) divisors that appear.

5. Statement of the main results

In this section we formulate the main results for maps which we state in Theorem 20.

We note that this result is formulated in an a-posteriori format, namely we show that if

there is a function which solves approximately the invariance equation (3.2) and satisfies

some explicit nondegeneracy condition, then there is a true solution which is locally

unique. Furthermore, we can bound the difference between the original approximate

solution and the exact one by the original error in the invariance equation. It is quite

important to note that we do not assume that the system is close to integrable, but only

that we have an approximate solution. We note that Theorem 20 involves adjustment

of parameters, as it is certainly needed in the dissipative case. If we fix the dissipative

system, it has an attractor, which may be quasi–periodic or not (for example, a strange

non–chaotic attractor). Even if it is quasi–periodic, it may not have the desired frequency.

In the conservative case, as it is well known, the adjustment of parameters is not needed

and one can choose suitable initial conditions. A general KAM theory with adjustment

of parameters is developed in [53]. Nevertheless, the parameter count of Theorem 20 is

somewhat different than the parameter count in [53] because, as shown in Section 3.1,

the geometric structures present in our problems produce the automatic reducibility and

fix some of the parameters (but kill some other obstructions).

We note that we present statements in analytic and Sobolev norms as well as statements

that are uniform in λ as λ approaches 1 as well as statements that assume that |λ| is

away from 1.

In Section 8 we present local uniqueness results as well as some elementary conse-

quences (Lipschitz dependence, measure estimates). In Section 10 we will also show

that one can obtain perturbative expansions including the rather singular limit of zero

dissipation. We also show that these expansions are convergent when there is some dissi-

pation. In Section 9 we show the bootstrap of the regularity of solutions, from which we

obtain a numerically accessible criterion for the study of the boundary of the analyticity

domain of the solutions. The criterion roughly asserts that the boundary of analyticity
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can be computed by following the parameters and monitoring some Sobolev norms. This

criterion has been already used for dissipative mappings in [11]; similar justifications

in other cases can be found in [13, 15, 14]. The method of proof of Theorem 20 is to

show that if we start a quadratically convergent method, it will converge; the quadratic

convergence is used to overcome the small divisors that appear in the iterative step. A

detailed formulation of the iterative step will be presented in Section 6. The step is based

on some geometric identities (“automatic reducibility”, already discussed in Section 3.1),

which reduce the Newton’s step to the solution of the standard difference equations with

constant coefficients discussed in Section 4. We note that the automatic reducibility leads

to a very efficient numerical algorithm (see Algorithm 32).

We present the estimates both in analytic spaces and in Sobolev spaces. Given the

abstract formulation we use, this does not require much more work. On the other hand, as

already mentioned, the use of Sobolev norms is quite useful in the study of the breakdown

of invariant attractors. For a function B we denote by B its average and by (B)0 = B−B.

Theorem 20. H1 Let ω ∈ Dn(ν, τ) according to (3.1). Let M be as in Section 2.

H2 Let fµ be a family of conformally symplectic mappings with respect to a symplectic

form Ω, that is f ∗
µΩ = λΩ (see Definition 1) with λ constant.

Let K0 : Tn →M, µ0 ∈ Rn and define E, such that

fµ0 ◦K0 −K0 ◦ Tω = E .

H3 Assume that the following non–degeneracy condition holds:

det

(
S S(Bb)0 + Ã1

(λ− 1) Id Ã2

)
6= 0 , (5.1)

where S is an algebraic expression involving derivatives of K0 written explicitly in (3.9),

Ã1, Ã2 denote the first and second n columns of the 2n×n matrix Ã = M−1 ◦TωDµ0fµ0 ◦

K0, where M is written explicitly in (3.13), (Bb)
0 is the solution (with zero average in

the λ = 1 case) of λ(Bb)
0 − (Bb)

0 ◦ Tω = −(Ã2)
0. We denote by

T ≡

∥∥∥∥∥∥

(
S S(Bb)0 + Ã1

(λ− 1) Id Ã2

)−1
∥∥∥∥∥∥

and we refer to T as the twist constant.

A) Analytic case:

Assume H1–H3 and that K0 ∈ Aρ for some ρ > 0. Assume furthermore that for

µ ∈ Λ, Λ being an open set in Rn, we have that fµ is a C1–family of analytic functions

on a domain – open connected set – C ⊂ Cn/Zn × Cn with the following assumption on

the domain.
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H4 There exists a ζ > 0, so that

dist(µ0, ∂Λ) ≥ ζ

dist(K0(T
n
ρ), ∂C) ≥ ζ .

Furthermore, assume that the solution is sufficiently approximate in the following sense.

H5 We assume that, for some 0 < δ < ρ/2, E satisfies the inequality

||E||Aρ ≤ C ν2ℓ δ2ℓτ ;

here and below C denotes a constant that can depend on τ , n, T , ‖DK0‖ρ, ‖N‖ρ, ‖M‖ρ
‖M−1‖ρ, where N , M are defined in (3.5),(3.13) as well as on ζ entering in H4. In such

a case, ℓ takes the value 2. If we allow C to depend on λ with |λ| 6= 1, we can take ℓ = 1.

Then, there exists µe, Ke such that

fµe ◦Ke −Ke ◦ Tω = 0 . (5.2)

The quantities Ke, µe satisfy

||Ke −K0||Aρ−ℓδ
≤ C ν−ℓ δ−ℓτ ||E||Aρ

|µe − µ0| ≤ C ||E||Aρ .

B) Finitely differentiable, Sobolev case:

Assume H1–H3 and that for µ ∈ Λ, Λ being an open set in Rn, we have that fµ is a

C1–family of Cr functions (where r ≥ m + 13ℓτ + 2 with m > n
2

+ ℓτ and ℓ specified

below) on a domain – open connected set – C ⊂ T
n × R

n. Furthermore, assume that the

solution K0 ∈ H
m+13ℓτ is sufficiently approximate in the following sense.

H6 Assume that E and ε∗ > 0 satisfy the inequality

||E||Hm−ℓτ ≤ ε∗ ,

where ε∗ = ε∗(τ, ν, n, T , ‖DK0‖Hm , ‖N‖Hm, ‖M‖Hm , ‖M−1‖Hm) is an explicit function.

Then, there exists Ke, µe satisfying (5.2) and such that they also satisfy the following

distance bounds:

||Ke −K0||Hm ≤ C ||E||Hm−ℓτ

|µe − µ0| ≤ C||E||Hm−ℓτ ,

with ℓ = 2 in the uniform case, while ℓ = 1 if C depends on λ with |λ| 6= 1.

Remark 21. We note that the properties on the function f enter only very mildly, since

it suffices to find bounds on some of its derivatives. Of course, in the analytic case, one

can obtain the derivatives from estimates on the size in a slightly bigger domain.

Remark 22. Notice that the non–degeneracy condition in H3 has a well defined meaning

when λ approaches 1, since for λ = 1, (5.1) just amounts to det(S) 6= 0, which is the
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standard Kolmogorov twist condition in KAM theory (see [23]), and det(Ã2) 6= 0, which

is just the non–degeneracy of the family with respect to parameters.

Remark 23. When λ = 1, the existence of invariant tori requires that Ω is an exact

form and that the mapping f is exact. For λ close to 1 one does not need that Ω is an

exact form, nor that f is exact.

The reason is that the exactness comes into the proof because the automatic reducibility

requires that the approximately invariant torus is approximately Lagrangian. This is

proved showing that K∗Ω solves a cohomology equation with a small right hand side. In

the |λ| 6= 1 this is indeed enough to show that K∗Ω is small. In the λ = 1 case, this

cohomology equation only allows to conclude that K∗Ω is almost constant, we need to use

the exactness to conclude that the constant is zero.

In the case that Ω is exact, we can see that the existence of an approximately invariant

torus implies that the map is approximately exact. The nondegeneracy condition H3,

includes that we can change the cohomology of the map by changing µ. Hence, since fµ

is approximately exact, using H3 we can make a small change of parameters so that the

mapping becomes exact. This choice of parameters is implicit in the procedure. We see

that, as λ approaches 1, the parameters µ approach zero, so that fµ gets to be exact.

The solutions produced by Theorem 20 are essentially unique; as already remarked, the

only ambiguity is the change of origin in the phase of parameterization. The main idea

underlying Theorem 20 is that the operator obtained solving the linearized equation has

a left inverse.

5.1. Uniqueness results.

5.1.1. A preliminary normalization. In order to deal with the non–uniqueness pointed

out in Remark 5, we note that it is possible to impose an extra normalization (see (5.3)

below) for all possible candidates to a solution in a neighborhood of the solution. We

note that the proof that the normalization can be achieved is elementary and it only

uses the standard implicit function theorem. Hence, at the only price of complicating

slightly the proximity assumptions in the statement of Theorem 28, one can formulate

Theorem 28 without involving the normalization (see Remark 25).

The normalization (5.3) below also plays a role in the study of perturbative expansions,

see Section 10. Of course, to discuss dependence on parameters, one needs to eliminate

arbitrary choices, so that some normalization that makes the solutions unique is needed.

We also note that some variants of this normalization are easy to impose in the algorithms

that we are going to discuss.
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Our chosen normalization is as follows. We want that the function Kσ = K2 ◦ Tσ

satisfies ∫

Tn

[
M−1(θ)(Kσ(θ)−K1(θ))

]
1
dθ = 0 , (5.3)

where the subindex 1 in the braces means taking the first component. In other words, if

we writeKσ−K1 = MWσ, we are imposing that [Wσ]1 has zero average; the normalization

equation (5.3) can be considered as the average over the angle coordinates of the difference

in the adapted coordinates (introduced in Section 3.2) in the neighborhood of K1.

Proposition 24. Let K1, K2 be solutions of (3.2), ‖K1 − K2‖C1 be sufficiently small

(with respect to quantitities depending only on M – computed out of K1 – and f). Then,

there exists σ ∈ Rn, such that Kσ = K2 ◦ Tσ satisfies (5.3). Furthermore:

|σ| ≤ C ‖K1 −K2‖C0 , (5.4)

where C can be chosen to be as close to 1 as desired by assuming that fµ, K are twice

differentiable, DKTDK is invertible and ‖K1 −K2‖C0 is sufficiently small.

The σ thus chosen is locally unique.

Proof. The proof follows from an easy application of the implicit function theorem. We

realize that, expressing Wσ in coordinates, we have

Kσ −K1 = DK1 [Wσ]1 + J−1 ◦K1DK1N1 [Wσ]2 .

If we take derivatives with respect to σ, we obtain:

DσKσ = DK1 [DσWσ]1 + J−1 ◦K1DK1N1 [DσWσ]2 .

Multiplying the left hand side by DKT
1 J ◦K1 and by DKT

1 , using that the torus K1 is

Lagrangian and that DσKσ = DK2 ◦ Tσ, we get

DKT
1 J ◦K1DK2 ◦ Tσ = [DσWσ]2

DKT
1 DK2 ◦ Tσ = DKT

1 DK1 [DσWσ]1 + γ1N1 [DσWσ]2 ,

where γ1 is as in (3.10) corresponding to the torus K1. By (3.6) we obtain that [DσWσ]2
is small, if DK1 is close to DK2 and σ is small; under these conditions we obtain that

[DσWσ]1 is close to the identity. An application of the implicit function theorem concludes

the proof. In fact, if we define a function F (x, σ) =
∫

Tn [M−1(θ)(Kσ(θ)−K1(θ)− x)]1 dθ,

we recognize that F (K2 −K1, 0) = 0. Moreover,

Fσ(x, σ) =

∫

Tn

[DσWσ]1 dθ

is close to the identity if K2 is close to K1. Applying the implicit function theorem, there

exists a differentiable function u = u(x), such that F (x, u(x)) = 0; from u(x) = σ one

obtains the estimate (5.4). �



KAM THEORY FOR CONFORMALLY SYMPLECTIC SYSTEMS 31

Remark 25. Notice that the normalization (5.3) does not use at all that K1 is a solution

of the invariance equation (3.2). We just use that M is invertible and that the inverse

function theorem for the average can be used. Hence, it works just as well when K1 is an

approximate solution.

Remark 26. The geometric meaning of the condition (5.3) is that, in the natural system

of coordinates introduced in Section 3.2, we can express K2 as a graph over K1. We

request that in these coordinates the average of the angle displacement is zero. Of course,

since the tori are very close, the average displacement of the second torus (in the coordi-

nates of the first torus) is almost the same as the change of the origin of coordinates in

the second tori.

Remark 27. Note that from the inequality

‖K2 −K2 ◦ Tσ‖ ≤ ‖DK2‖|σ| ≤ C‖DK2‖ ‖K1 −K2‖C0 ,

we can derive bounds on ‖K1 −K2 ◦ Tσ‖ from bounds on ‖K1 −K2‖.

The statement of Theorem 28 will be done under the assumption that the solution K2

is normalized with respect to K1. In numerical applications computing the shift is not

very difficult and one can get better estimates than using the triangle inequality as above.

5.1.2. Statement of the local uniqueness theorem.

Theorem 28. Let ω ∈ Dn(ν, τ) according to (3.1). Let fµ be a family of conformally

symplectic mappings satisfying Definition 1 with λ constant. Let (K1, µ1), (K2, µ2) be

solutions of (3.2). Assume also that K2 satisfies (5.3).

In the Sobolev case, let fµ be a C1–family of Cr functions, r ≥ m + 2, m > n/2 + ℓτ

satisfying the non–degeneracy condition H3 at K1, µ1. Let M+ ≡ max(‖M‖Hm , 1),

M− ≡ max(‖M−1‖Hm , 1), where M has been defined in (3.13). Assume that we have the

following inequality:

C ‖DµD(I,ϕ)fµ‖Hm ν−ℓM3
+M− max(‖W‖Hm+ℓτ , |µ1 − µ2|) < 1 . (5.5)

Again, we can take ℓ = 1 if we allow that the constants depend on λ with |λ| 6= 1 and

ℓ = 2 if we allow the constants to be independent on λ.

In the analytic case, let fµ be a C1–family of analytic functions, satisfying the non–

degeneracy condition H3 at K1, µ1 and assume that assumption H4 about the domain

of fµ1 and the range of K1 holds. Let M+ ≡ max(‖M‖Aρ , 1), M− ≡ max(‖M−1‖Aρ , 1).

Assume that we have the following inequality:

C ‖DµD(I,ϕ)fµ‖Aρ ν
−ℓδ−ℓτ M3

+M− max(‖W‖Aρ+ℓδ
, |µ1 − µ2|) < 1 . (5.6)

Then,

K1 = K2, µ1 = µ2 .
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Again, we can take ℓ = 1 if we allow that the constants depend on λ with |λ| 6= 1 and

ℓ = 2 if we allow the constants to depend on λ.

The proof of Theorem 28 is given in Section 8. Of course, given Proposition 24 if we

assume just that the solutions are sufficiently close (in a slightly stronger sense), we can

assume that there is a normalized solution which is also normalized. Then Theorem 28

concludes that there exist σ ∈ R
n such that K1 = K2 ◦ Tσ.

5.1.3. Some straightforward conclusions of uniqueness: Lipschitz dependence on parame-

ters, measure estimates. An easy corollary of Theorems 20 and 28 is that if we consider a

family of maps, which depends in a Lipschitz way on a parameter, then we obtain a Lip-

schitz dependence of the solution with respect to the parameter. Later, in Section 10.3,

we will obtain sharper conclusions of differentiability on parameters, assuming, of course,

that the problem is differentiable with respect to parameters. This is closely related to

the existence and convergence of perturbative expansions.

Corollary 29. Assume that the family fµ,φ depends also on a parameter φ, belonging

to a metric space (Y , d), and assume that for each value of φ, the map fµ,φ satisfies the

hypotheses of Theorem 20 with uniform constants. Assume also a Lipschitz dependence

with respect to the parameter φ for m > n/2 + ℓτ :

‖fµ,φ ◦K − fµ,φ′ ◦K‖Aρ ≤ ÃL d(φ, φ
′)

‖fµ,φ ◦K − fµ,φ′ ◦K‖Hm ≤ ÃL d(φ, φ
′) (5.7)

for a suitable constant ÃL. Then, there exists a constant AL such that the solution

(φ,Kφ, µφ) of the invariance equation

fµφ,φ ◦Kφ = Kφ ◦ Tω ,

produced by applying Theorem 20 normalized so that we obtain uniqueness, is Lipschitz

with respect to the parameter φ with a constant CÃL, i.e.

‖Kφ −Kφ′‖Aρ−ℓδ
≤ C ÃLν

−ℓ δ−ℓτ d(φ′, φ)

in the analytic case with δ as in Theorem 20 and

‖Kφ −Kφ′‖Hm ≤ C ÃL d(φ
′, φ)

in the Sobolev case with

|µφ − µφ′| ≤ C ÃL d(φ
′, φ) ,

where ℓ = 2 in the uniform case and ℓ = 1 if we allow C to depend on λ with |λ| 6= 1.
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The proof of Corollary 29 (see Section 8) relies on the remark that if (φ,Kφ, µφ) is a

solution of (3.2) corresponding to the parameter φ, we have

||fµφ,φ′ ◦Kφ −Kφ ◦ Tω||Aρ = ||fµφ,φ′ ◦Kφ − fµφ,φ ◦Kφ||Aρ ≤ ÃL d(φ, φ′) .

Then, applying Theorem 20, we obtain Corollary 29.

A simple consequence of Corollary 29 is the following.

Corollary 30. Assume that in the hypotheses of Theorem 20, we have an exact solution

fµ0 ◦ K0 − K0 ◦ Tω0 = 0 with K0 ∈ Aρ+δ (K0 ∈ H
m+1, m > n/2 + ℓτ), ω0 ∈ Dn(ν, τ).

Fix 0 < δ < ρ; then, for s > 0 sufficiently small and for all ω ∈ D̃s ≡ Dn(ν, τ) ∩ Bs(ω0)

(we denote by Bs(ω0) ⊂ Rd , the ball of radius s around ω0), there exist Kω ∈ Aρ−ℓδ

(Kω ∈ H
m), µω ∈ R

n such that

fµω ◦Kω −Kω ◦ Tω = 0 .

Furthermore, the mapping ω → (Kω, µω) is Lipschitz, when considered as a mapping

from the closed set D̃s to Aρ−ℓδ × R
n (Hm × R

n), where ℓ = 2 in the uniform case and

ℓ = 1 if we allow the Lipschitz constant to depend on λ with |λ| 6= 1.

We note that there are more sophisticated arguments that give that the dependence

on the frequency is differentiable in the Whitney sense [66].

The proof of Corollary 30 is simply to observe that

‖fµ0 ◦K0 −K0 ◦ Tω‖Aρ = ‖K0 ◦ Tω0 −K0 ◦ Tω‖Aρ ≤ Cδ−1‖K0‖Aρ+δ
|ω − ω0|

in the analytic case and

‖fµ0 ◦K0 −K0 ◦ Tω‖Hm = ‖K0 ◦ Tω0 −K0 ◦ Tω‖Hm ≤ C‖K0‖Hm+1 |ω − ω0|

in the Sobolev case. Hence, when |ω − ω0| is small enough, we can take K0, µ0 as an

approximate solution of the invariance equation for the frequency ω, so that the error in

the invariance can be made arbitrarily small by making |ω − ω0| sufficiently small. We

also note that the non–degeneracy conditions depend only on K0, µ0 and therefore they

are uniform with the choices of ω.

It then follows from the application of Theorem 20 that we can have a solution Kω, µω.

Furthermore, we have that ‖Kω − K0‖Aρ−ℓδ
(‖Kω − K0‖Hm) and |µω − µ0| are smaller

than C|ω−ω0|. It is important that we choose K normalized, for example satisfying the

normalization (5.3).

Now, we observe that we can apply the argument again to all ω, ω′ ∈ D̃s and, eventually

redefining the constants and making the smallness conditions stronger, we obtain

‖Kω −Kω′‖Aρ−ℓδ
, ‖Kω −Kω′‖Hm , |µω − µ0| ≤ C|ω − ω′| .

An immediate consequence of Corollary 29 is the following.



34 R. CALLEJA, A. CELLETTI, AND R. DE LA LLAVE

Corollary 31. In the conditions of Theorem 20, there is a positive measure set of µ,

such that there is a K and an ω satisfying (3.2).

The proof of Corollary 31 is just to observe that the set of Diophantine points is a set of

positive measure. Since the mapping ω → µω is bi–Lipschitz, it sends a set of positive

measure into a set of positive measure.

Notice that, due to Proposition 10, the solutions of (3.2) are attractors. Hence, we

show that the set of parameters µ for which the attractor is quasi–periodic has positive

measure. Furthermore, the set described by Corollary 31 is bi–Lipschitz equivalent to

the set of Diophantine numbers Dn(ν, τ). This is a geometrically complicated set full of

gaps. In the gaps of this set (which can be large in some topological sense) the attractors

could have a dynamics more complicated than quasi–periodic (e.g. strange attractors,

see [46]).

6. Formulation of the iterative step in the proof of Theorem 20

In this section we formulate the iterative step of the Newton’s method and we argue

that it leads to a fast and efficient algorithm (we present the algorithm in Section 6.2.2).

Estimates showing that the error after a Newton’s step is quadratic in the original errors

(using the appropriate norms) will be developed in Section 7. Given these estimates,

standard KAM theory ensures that, if the initial error is small enough, then the iteration

procedure can be repeated indefinitely and it converges to a solution which is close to

the initial approximation. In Section 7 we provide estimates on the dependence on

parameters, characterizing the limit of small dissipation. The efficiency of the iterative

step is due to the fact that we take advantage of some identities of geometric origin as

described in Section 3.1.

6.1. The Newton’s equation. We start with an approximate solution of (3.2) up to

an error term E, say

fµ ◦K −K ◦ Tω = E , (6.1)

where E is supposed to be small. Newton’s method consists in finding corrections ∆,

σ to K and µ respectively, such that the linear approximation of the transformation

associated to K + ∆, µ+ σ quadratically reduces the error. Taking into account that

fµ+σ ◦ (K + ∆) = fµ ◦K + [Dfµ ◦K]∆ + [Dµfµ ◦K]σ +O(‖∆‖2) +O(|σ|2) ,

the resulting equation is

[Dfµ ◦K] ∆−∆ ◦ Tω + [Dµfµ ◦K] σ = −E . (6.2)
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6.2. A method to find approximate solutions of the linearized equation (6.2).

A quasi–Newton method. The equation (6.2) is not easy to solve, since it involves

the unknown function ∆ evaluated at different points and, moreover, the factor Dfµ ◦K

appearing in the first term is not constant.

We will not solve (6.2) exactly, but we will find approximate solutions that still lead

to a convergent proedure.

The main idea to find approximate solutions of (6.2) is to use the geometric identities

developed in Section 3.1. Using the matrix valued function M introduced in (3.13), we

change variables in (6.2) by setting

∆ = MW (6.3)

and we seek W instead of ∆. Note that in the iterative step M is known because it is an

explicit expression (given in (3.13)) involving derivatives of K, which is known.

The geometric meaning of (6.3) is that M defines a frame of vector fields that trans-

forms very simply under the map fµ. The new unknown W is just the expression of ∆

in the coordinates given by M . Using (6.3) we have that equation (6.2) is equivalent to

Dfµ ◦KMW − (M ◦ Tω)(W ◦ Tω) +Dµfµ ◦Kσ = −E ;

using (3.20) one obtains that (6.2) is equivalent to:

M ◦ Tω

[(
Id S(θ)
0 λ Id

)
W −W ◦ Tω

]
+Dµfµ ◦Kσ = −E − RW , (6.4)

where R is the error in (3.20). Since we expect that ∆, and therefore W , are estimated by

E and, as we argued before, so is R, we obtain that the term RW in (6.4) is quadratic in

E; therefore, we can omit this term without changing the quadratic nature of the method.

Precise estimates for R and for the other quantities will be established in Section 7.

Our iterative step consists in solving the following equation (6.5), obtained dropping the

term RW from (6.4):
(

Id S(θ)
0 λ Id

)
W −W ◦ Tω = −M−1 ◦ TωE −M

−1 ◦ TωDµfµ ◦Kσ . (6.5)

As we will see, (6.5) reduces to difference equations with constant coefficients, so that it

can be solved very efficiently by using Fourier methods. Equation (6.5) can be expressed

in components as

W1 −W1 ◦ Tω = −SW2 − Ẽ1 − (Ãσ)1

λW2 −W2 ◦ Tω = −Ẽ2 − (Ãσ)2 ,
(6.6)

where, to simplify the notation, we have written

Ẽ = M−1 ◦ TωE ≡ (Ẽ1, Ẽ2)

Ã = M−1 ◦ Tω Dµfµ ◦K .
(6.7)
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Note that Ã is a 2n × n matrix that we write as Ã = [Ã1|Ã2] with Ã1, Ã2 being n × n

matrices.

The system of equations (6.6) has an upper triangular structure. The second equation

involves only W2, but the first equation involves W1 and W2. So, it is natural to try to

solve first the equation for W2, substitute in the first equation of (6.6) and then find W1.

Note that both equations in (6.6) for the unknowns W1,W2 are cohomology equations

of the form studied in Section 4.2. The main subtlety of the procedure comes from the fact

that these equations involve small divisors and obstructions which will be accommodated

by choosing parameters. These obstructions and choices of parameters are different when

λ = 1 and when |λ| 6= 1, but we will present a choice that works uniformly in both cases.

We will first discuss these choices of parameters; once we do that, the discussion of

estimates will become an application of the results of Section 4.2.

6.2.1. The choice of parameters. When |λ| 6= 1, the second equation can always be solved

and has a unique solution, while for any λ the first equation involves small divisors and it

requires that the right hand side has zero average. On the other hand, when λ = 1, both

equations involve small divisors and require that the right hand side has zero average,

but the solution of W2 is not unique and it admits an arbitrary constant. In some way,

the freedom of having an arbitrary average for W2 compensates the extra obstruction

required for λ = 1.

We now study the problem systematically. Given a function B we denote by B its average

and by (B)0 = B −B, the no–average part.

We can divide (6.6) into two systems, one for the average and another one for the

no–average part:

0 = −S W2 − S(W2)0 − Ẽ1 − Ã1σ

(λ− 1)W2 = −Ẽ2 − Ã2σ ,
(6.8)

(W1)
0 − (W1)

0 ◦ Tω = −(SW2)
0 − (Ẽ1)

0 − (Ã1)
0σ

λ(W2)
0 − (W2)

0 ◦ Tω = −(Ẽ2)
0 − (Ã2)

0σ .
(6.9)

Unfortunately, the two systems (6.8) and (6.9) are not completely uncoupled due to the

term S(W2)0 appearing in the first equation of (6.8). Nevertheless, it is easy to uncouple

the system because (W2)
0 is an affine function of σ, since it satisfies (6.9). We define

(Ba)
0, (Bb)

0 to be the zero average solutions of, respectively,

λ(Ba)
0 − (Ba)

0 ◦ Tω = −(Ẽ2)
0

λ(Bb)
0 − (Bb)

0 ◦ Tω = −(Ã2)
0 .

(6.10)
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These equations are readily solvable using the lemmas in Section 4.2. In particular, note

that we have estimates which are uniform in λ as λ goes through 1. Of course, these

uniform estimates will entail more severe losses of regularity.

We therefore see that we can transform (6.8) into

0 = −S W2 − S(Ba)0 − S(Bb)0σ − Ẽ1 − Ã1σ

(λ− 1)W2 = −Ẽ2 − Ã2σ .
(6.11)

The system (6.11), in spite of its typographically formidable appearance, is a finite di-

mensional system that we can write as
(

S S(Bb)0 + Ã1

(λ− 1) Id Ã2

)(
W2

σ

)
=

(
−S(Ba)0 − Ẽ1

−Ẽ2

)
. (6.12)

The non–degeneracy condition that we assumed in H3 is precisely that the determinant

of the matrix at the left hand side of (6.12) is not zero.

In summary, the algorithm is to: 1) form the auxiliary quantities entering into (6.11),

2) solve for W2, σ, 3) solve (6.9). In Section 6.2.2 we will present the algorithm and in

Section 7 we will present estimates.

6.2.2. The algorithm for the improved approximation. The procedure described before in

Section 6.2 leads to the algorithm described below for a given Diophantine frequency ω,

where each step is denoted as follows: “a← b” means that the quantity a is determined

by computing b.

Assume that we are given a family fµ, and that we can compute Dfµ, Dµfµ. The family

is quasi–conformal so that f ∗
µΩ = λΩ. The following algorithm computes an improved

approximation for any λ ∈ R.

Algorithm 32. Given K : Tn →M, µ ∈ Rn, we denote by λ ∈ R the conformal factor

for fµ. We perform the following computations:

1) E ← fµ ◦K −K ◦ Tω

2) α← DK

3) N ← [αTα]−1

4) M ← [α, J−1 ◦KαN ]

5) β ← M−1 ◦ Tω

6) Ẽ ← βE

7) P ← αN

A← λ Id

γ ← αTJ−1 ◦Kα

S ← (P ◦ Tω)TDfµ ◦K J−1 ◦KP − (N ◦ Tω)T (γ ◦ Tω)(N ◦ Tω)A

Ã←M−1 ◦ Tω Dµfµ ◦K
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8) (Ba)
0 solves λ(Ba)

0 − (Ba)
0 ◦ Tω = −(Ẽ2)

0

(Bb)
0 solves λ(Bb)

0 − (Bb)
0 ◦ Tω = −(Ã2)

0

9) Find W 2, σ solving

0 = −S W2 − S(Ba)0 − S(Bb)0σ − Ẽ1 − Ã1σ

(λ− 1)W2 = −Ẽ2 − Ã2σ .

10) (W2)
0 = (Ba)

0 + σ(Bb)
0

11) W2 = (W2)
0 +W 2

12) (W1)
0 solves (W1)

0 − (W1)
0 ◦ Tω = −(SW2)

0 − (Ẽ1)
0 − (Ã1)

0σ

13) K ← K +MW

µ← µ+ σ .

We formulate in Appendix A the equivalent of the Algorithm 32 for flows.

Remark 33. Algorithm 32 is constructed as follows. Step 1 follows from (6.1); step 2

defines α; steps 3, 4 follow respectively from (3.5), (3.13); step 5 defines β; steps 6, 7

follow respectively from (6.7), (3.9); step 8 follows from (6.10); step 9 gives the solution

of (6.11); step 10 solves the second of (6.9); step 11 provides the solution W2; step 12

solves the first of (6.9); step 13 determines the corrections ∆, σ with ∆ as in (6.3).

Remark 34. There are two important points to underline in the above algorithm. One

is that no large matrix (i.e. a matrix of dimension equal to the elements used in the

discretization) is stored (and much less, inverted).

Another important point is that steps 2), 8), 10), 11), 12) are diagonal operations in

the Fourier space, while all other steps are diagonal in the real space (a few of them are

diagonal in both spaces). Of course, once we obtain a representation of the function in

discrete points or in Fourier space, we can obtain the other applying the Fast Fourier

Transform (FFT). Therefore, if we decide to discretize the unknowns using N Fourier

modes (as well as N discretization points), the storage required is O(N) and the number

of operations is O(N logN) – due to the FFT we have to switch from the representations.

Note that the algorithm is reasonably easy to implement.

Remark 35. Denoting by J0 =

(
0 Id
− Id 0

)
the standard symplectic structure, we have

that

MTJ ◦KM = J0 +O(E) . (6.13)

Without changing the quadratic character of the algorithm, we can modify step 5) of the

algorithm by using an approximate inverse M−1 obtained as J−1
0 MTJ ◦K.

Of course, from the theoretical point of view both methods require O(N) operations. If

we use 5), the coefficient is the number of operations needed to invert n×n matrices, while
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in the case of (6.13) it is the number of operations needed to carry out the multiplication

indicated. Note that J0 is a very simple matrix, so that the multiplication is just a

rearrangement of the coefficients, which in practice is easier to program. We do not need

to link to linear algebra routines to compute n×n inverses and the only operations needed

are very simple ones (like in the BLAS package [27]).

7. Estimates for the iterative step

7.1. Approximate reducibility. In this section, we present estimates on the approx-

imate reducibility (see Lemma 36), which is a perturbation of the geometric arguments

developed in Section 3.1. We present two versions of the estimates: one in the spaces of

analytic functions and another in the space of Sobolev functions.

Lemma 36. Let fµ : M → M be an analytic (respectively Cr) conformal symplectic

mapping. Let ω ∈ D(ν, τ).

Let K : T
n → M be an embedding such that K ∈ Aρ (respectively, K ∈ Hm, m >

n/2 + τ + 1 in the uniform case, m > n/2 + 1 in the non–uniform case, r ≥ m+ 1).

Assume further that for some ζ > 0:

1) K(Tn
ρ ) ⊂ domain(fµ),

dist(K(Tn
ρ), ∂ domain (fµ)) ≥ ζ > 0;

2) the approximate invariance equation holds:

fµ ◦K −K ◦ Tω = E . (7.1)

Then, we have

a) ‖Dfµ ◦K DK −DK ◦ Tω‖Aρ−δ
≤ C δ−1‖E‖Aρ

‖Dfµ ◦K DK −DK ◦ Tω‖Hm−1 ≤ C ‖E‖Hm ,

b) ‖K∗Ω‖Aρ−(ℓ−1)δ−δ/2
≤ Cν−(ℓ−1)δ−1−τ(ℓ−1)‖E‖Aρ

‖K∗Ω‖Hm−(ℓ−1)τ−1 ≤ Cν−(ℓ−1)‖E‖Hm , where ℓ = 2 when C is independent of λ

and ℓ = 1 when C can depend on λ with |λ| 6= 1.

Remark 37. The proof is based on repeating the calculations performed in Section 3.1,

but keeping track of the estimates. In contrast with the calculation for exactly invariant

systems done in Section 3.1, which could be performed with geometrically natural op-

erations, in this section we need to perform geometrically unnatural operations such as

comparing vectors at different points; they are possible because the phase space we are

considering is an Euclidean manifold. Therefore in this section we will use a matrix

formulation in preference to the more intrinsic geometric notation.

Proof. The proof of a) is just the chain rule applied to (3.2). The first step for the rest,

will be to obtain estimates for the form EΩ defined as:

T ∗
ωK

∗Ω− λK∗Ω = EΩ . (7.2)
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Note that, if h, g are diffeomorphisms, the matrix corresponding to h∗Ω− g∗Ω is:

DhTJ ◦ hDh−DgTJ ◦ gDg = (DhT −DgT )J ◦ hDh+DgT (J ◦ h− J ◦ g)Dh

+DgTJ ◦ g (Dh−Dg) .
(7.3)

In our case, of course, we will apply the above formula (7.3) for h = fµ ◦K, g = K ◦ Tω.

Hence, we can estimate straightforwardly (7.2) using the above, Cauchy bounds and

(7.1), as

‖EΩ‖Aρ−δ/2
≤ Cδ−1‖fµ ◦K −K ◦ Tω‖Aρ + ‖∇J‖Aρ‖fµ ◦K −K ◦ Tω‖Aρ

≤ Cδ−1‖E‖Aρ

‖EΩ‖Hm−1 ≤ C‖E‖Hm .

We now observe that, because (fµ ◦K)∗Ω = K∗f ∗
µΩ = λK∗Ω, we have that K∗Ω satisfies

(7.2), which in coordinates is a difference equation of the form we studied in Lemma 19,

namely,

(DKTJ ◦KDK) ◦ Tω − λ (DKTJ ◦KDK) = ẼΩ , (7.4)

where ẼΩ is the expression in coordinates of EΩ. Furthermore, since for Ω = dα we have

K∗Ω = K∗dα = d(K∗α), we obtain that DKTJ ◦KDK has zero average, and henceforth

ẼΩ has zero average. Applying the estimates obtained in Lemma 18 and Lemma 19

to (7.4), we obtain b). Notice that the limitation m − (τ + 1) > n/2 and Sobolev’s

embedding theorem ([65]) ensure that we are dealing with continuous objects, which also

enjoy the Banach algebra properties under multiplication and the composition estimates

of Lemma 17. �

Lemma 38. Let fµ : M → M be an analytic (respectively Cr) conformal symplectic

mapping. Let ω ∈ D(ν, τ). Let K : T
n → M be an embedding such that K ∈ Aρ

(respectively, K ∈ Hm, m > n/2 + τ + 1 in the uniform case, m > n/2 + 1 in the

non–uniform case, r ≥ m+ 1). Under the hypotheses of Lemma 36, assume that

C ν−1 δ−(τ+1) ‖E‖Aρ << 1 or C ν−1 ‖E‖Hm << 1 . (7.5)

Then, the matrix valued function

M(θ) = [DK(θ) | J−1 ◦K(θ)DK(θ)N(θ)]

satisfies

Dfµ ◦K(θ) M(θ) = M(θ + ω)

(
Id S(θ)
0 λ Id

)
+R(θ) ,

where S(θ) is given by (3.9) and R satisfies:

‖R‖Aρ−(ℓ−1)δ−δ/2
≤ C ν−(ℓ−1) δ−1−τ(ℓ−1)‖E‖Aρ ,

‖R‖Hm−(ℓ−1)τ−1 ≤ C ν−(ℓ−1) ‖E‖Hm , (7.6)

where ℓ = 2 when C is independent of λ or ℓ = 1 when C can depend on λ with |λ| 6= 1.
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Proof. Due to the assumption (7.5) and to b) of Lemma 36, then ‖K∗Ω‖C0 is sufficiently

small, which implies that the torus K(Tn) is approximately Lagrangian and that

RangeDK(θ) ∩ Range
(
J−1 ◦K(θ)DK(θ)

)
= {0} for all θ ∈ T

n
ρ−δ .

Due to the transversality of the spaces Range (J−1 ◦K(θ)DK(θ)) and RangeDK(θ) for

all θ, we obtain that M(θ) in (3.13) is a linear isomorphism. Due to a) of Lemma 36,

the left column of M satisfies the bounds claimed in (7.6). The only thing that remains

is to bound R2 (compare with (3.25)), namely to study the right column of M provided

by J−1 ◦KDKN .

We define the error on the Lagrangian character (see (3.23)) as

EL ≡ DKT J ◦KDK .

Due to b) of Lemma 36, the norm of EL is bounded by the norm of E. Moreover, from

(3.9), (3.26), (3.27), we obtain that

Ã(θ)− A(θ) = −EL(θ + ω) S̃(θ)

S̃(θ)− S(θ) = −N(θ + ω)T γ(θ + ω)N(θ + ω)
(
Ã(θ)−A(θ)

)
;

therefore the norms over Aρ or Hm of ‖Ã(θ) − A(θ)‖, ‖S̃(θ) − S(θ)‖ are bounded by

‖EL‖. Due to (3.25) we obtain the estimates in (7.6). �

7.2. Estimates for the increments in the step. In this section, we present estimates

for the corrections ∆, σ obtained applying Algorithm 32 (we follow the notations intro-

duced there). We present estimates using analytic and Sobolev norms. We note that,

in the case that λ 6= 1, we can obtain better regularity estimates because we can use

Lemma 18, rather than Lemma 19 to estimate the second equation of (6.6). Neverthe-

less, as pointed there, the constants depend on λ.

Lemma 39. Let fµ ∈ AC be a family of conformally symplectic maps on a domain

C ⊂ Cn/Zn × Cn, K an embedding, ω ∈ D(ν, τ).

A) Analytic case: assume that the map fµ is analytic and that for some ζ > 0

K ∈ Aρ+δ , K(Tn
ρ) ⊂ domain (fµ) ,

and

dist(K(Tn
ρ ), ∂(domain (fµ))) ≥ ζ > 0 .

Then, we have:

‖W‖Aρ−ℓδ
≤ C

1

νℓ
δ−ℓτ‖E‖Aρ ,

|σ| ≤ C ‖E‖Aρ ,

where ℓ = 2 and C is an explicit constant depending only on the dimension and

on the non–degeneracy condition.
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If we assume that λ 6= 1 we can take ℓ = 1, but C depends on λ and indeed C

blows up as λ→ 1.

B) Sobolev case: let fµ be a Cr map, r ≥ m+ 1 and m > n
2

+ ℓτ . Assume that

K ∈ Hm+1 .

Then, we have:

‖W‖Hm−ℓτ ≤ C
1

νℓ
‖E‖Hm

|σ| ≤ C ‖E‖Hm ,

where ℓ = 2 and C is an explicit constant depending only on the dimension and

on the non–degeneracy condition.

If we assume that λ 6= 1 we can take ℓ = 1, but C depends on λ and indeed C

blows up as λ→ 1.

Proof. We just follow the steps of Algorithm 32 estimating the output in terms of the

input. We note that steps 8) and 12) involve solving cohomology equations; all the other

steps are algebraic operations. The results of steps 8) and 12) are estimated using the

results for difference equations in Section 4. The algebraic steps are estimated using the

Banach algebra properties of the norms.

The most delicate point is that we need to ensure that the constants satisfy the non–

degeneracy conditions in H3 of Theorem 20. We remark that the estimates of the

derivatives of fµ with respect to the parameter µ immediately yield an estimate for

Ã. Then, one has:

‖(Dµfµ) ◦K‖Aρ ≤ sup
C
|Dµfµ|

and

‖(Dfµ) ◦K‖Aρ ≤ sup
C
|Dfµ| .

In both cases, we define Q as an upper bound on the supC |Dµfµ| and on the supC |Dfµ|;

then, for analytic norms we have that

‖Ã‖Aρ ≤ Q‖M−1‖Aρ .

In the case of Sobolev norms we obtain the estimates from the composition

‖(Dµfµ) ◦K‖Hm ≤ Am(‖K‖∞) ‖Dµfµ‖Cm (1 + ‖K‖Hm) ,

while in the analytic case we have

‖(Dµfµ) ◦K‖Aρ ≤ ‖Dµfµ‖AC
.

Similarly we have:

‖(Dfµ) ◦K‖Hm ≤ Am(‖K‖∞) ‖Dfµ‖Cm (1 + ‖K‖Hm) ,
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and

‖(Dfµ) ◦K‖Aρ ≤ ‖Dfµ‖AC
.

Another estimate that will be needed throughout the proof is an estimate for S. The main

point is that S is an explicit algebraic expression involving only K and its derivatives,

N , M−1. Provided that these quantities remain in a small enough neighborhood of those

corresponding to the initial guess, then S is uniformly bounded. For completeness we

report below some explicit estimates in the analytic and Sobolev spaces that follow from

the explicit formulas (see (3.9)):

‖S‖Aρ ≤ C‖Dfµ‖AC
‖K‖2Aρ+δ

‖N‖2Aρ
|J−1|Bζ

+ C ‖N‖2Aρ
Q‖M−1‖Aρ‖γ‖Aρ ,

‖S‖Hm ≤ C‖K‖2Hm+1‖N‖2HmAm(‖K‖∞) ‖Dfµ‖Hm (1 + ‖K‖Hm) ‖J−1‖Hm

+ C ‖N‖2Hm Q‖M−1‖Hm‖γ‖Hm ,

where Bζ denotes a neighborhood of radius ζ around the image of K(θ).

The main point of the estimates above is that, provided that K,M,M−1, N remain in

a neighborhood, we have uniform bounds in S

We now proceed to perform estimates for λ 6= 1. Later, we will present estimates

uniform for λ in an interval around 1.

The difference equations in steps 8), 9) of Algorithm 32 allow to conclude estimates

for W 2 and σ under the assumption H3 of Theorem 20. Setting

α1 = S(Bb)0 + Ã1 , β1 = −S(Ba)0 − Ẽ1 , (7.7)

then we have

|W 2| ≤ T (|α1| ‖E‖Aρ + |β1|Q‖M
−1‖Aρ) ,

|σ| ≤ T (|λ− 1| |β1|+ ‖S‖Aρ ‖E‖Aρ) ,

where

|α1| ≤ C
1

||λ| − 1|
‖M−1‖Aρ Q‖S‖Aρ +Q‖M−1‖Aρ

|β1| ≤
( 1

||λ| − 1|
‖S‖Aρ + 1

)
‖E‖Aρ .

The estimates for W come from the fact that the components of W satisfy the difference

equations in (6.6). Thus we obtain the following estimates, where the key point is that

we can bound the norm of W by some other norm of E, times some quantities that

are bounded provided that K remains in a sufficiently small neighborhood of the initial

guess. Of course, the norms for W and the norms for E are in different spaces. In the

analytic case, we lose some domain and the constants include a factor which is a power
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of the domain loss. From (6.6), Lemma 18 and Lemma 19, we finally obtain:

‖W2‖Aρ ≤
C∣∣|λ| − 1

∣∣
(
‖E‖Aρ + ‖Dµfµ‖AC

‖M−1‖Aρ |σ|
)

≤ C‖E‖Aρ

‖W1‖Aρ−δ
≤ Cδ−τ 1

ν

[
‖S‖Aρ‖W2‖Aρ + ‖E‖Aρ + ‖Ã1‖Aρ|σ|

]

≤ Cδ−τ‖E‖Aρ ,

(7.8)

where C stands for a constant that depends on ‖DK‖Aρ T , ‖N‖Aρ ‖M‖Aρ , ‖M
−1‖Aρ

and λ. Similar computations for the case of Sobolev spaces yield

|σ| ≤ C T ‖E‖Hm

and

‖W2‖Hm ≤
C∣∣|λ| − 1

∣∣
(
‖E‖Hm + Am(‖K‖∞) ν−1‖Dµfµ‖Cm (1 + ‖K‖Hm) ‖M−1‖Hm+1 |σ|

)

≤ C‖E‖Hm

‖W1‖Hm−τ ≤ C
1

ν

(
‖S‖Hm‖W2‖Hm + ‖E‖Hm + ‖Ã1‖Hm |σ|

)

≤ C‖E‖Hm ,
(7.9)

where C again depends on λ. The result for |λ| 6= 1 follows.

We conclude this section with estimates which are uniform in λ. These estimates come

from the fact that the solution of the first equation in (6.6) can be estimated by using

Lemma 19, providing uniform estimates in λ for the difference equation (4.1).

These estimates are somewhat more subtle than in the previous case, because to find B,

we have to solve a difference equation (6.10) that has small divisors. Note, in particular,

that the equation for (Bb)
0 has a right hand side which is not small. We start by observing

that we can still easily obtain

|W 2|, |σ| ≤ C ‖E‖Aρ

|W 2|, |σ| ≤ C ‖E‖Hm .
(7.10)

The reason for (7.10) is that the definition of α1, β1 in (7.7) only involves the function

S(B)0 in the real axis (or the C0 norm). Hence, in the analytic case we can take as domain

loss ρ, which remains uniformly bounded. In the Sobolev case, we see that the C0 norm

of (Bb)
0 is bounded by the Hm norm of A provided that m > n/2 + τ . Furthermore, we

see that we can bound ‖(Ba)
0‖C0 ≤ C‖E‖Aρ .
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Like in the case for λ 6= 1, we can obtain estimates for W as follows (see (4.9)):

‖W2‖Aρ−δ
≤ Cδ−τ 1

ν

(
‖E‖Aρ + ‖Dµfµ‖AC

‖M−1‖Aρ |σ|
)

≤ Cδ−τ 1

ν
‖E‖Aρ

‖W1‖Aρ−2δ
≤ Cδ−τ 1

ν

(
‖S‖Aρ−δ

‖W2‖Aρ−δ
+ ‖E‖Aρ + ‖Ã1‖Aρ |σ|

)

≤ Cδ−2τ 1

ν2
‖E‖Aρ ,

(7.11)

where C denotes a constant that is independent of λ. This is the only place where we use

this assumption in the linear study. This assumption will play a very important role later

in the nonlinear estimates (see (7.5) in Lemma 38, which is slightly stronger). Similarly,

for the case of the Sobolev space we obtain:

‖W2‖Hm−τ ≤ C
1

ν

(
‖E‖Hm + Am(‖K‖∞) ‖Dµfµ‖Cm (1 + ‖K‖Hm) ‖M−1‖Hm|σ|

)

≤ C‖E‖Hm

‖W1‖Hm−2τ ≤ C
1

ν

(
‖S‖Hm−τ‖W2‖Hm−τ + ‖E‖Hm + ‖Ã1‖Hm+1 |σ|

)

≤ C‖E‖Hm .

(7.12)

�

7.3. Estimates for the convergence of the iterative step. In the present section we

state and prove Lemma 41 which provides estimates for Algorithm 32. The estimates in

Lemma 41 allow to apply an abstract implicit function theorem (see Theorem 46 later),

which establishes the convergence of the iterative scheme (or some modification involving

smoothing) and the bounds for the solutions claimed in Theorem 20. Note that in the

analytic case, we will also present a self–contained proof that does not require to use

an abstract theorem. In the language of [68], Lemma 41 shows that the process we

have presented in Algorithm 32 describes an approximate inverse of the derivative of the

functional given by the invariance equation.

We have already shown (Lemma 39) that an application of Algorithm 32 provides a step

that makes the correction bounded (in a less smooth norm) by the original error. Now,

let us restate the result in Lemma 39 using a convenient operator notation. Following [68,

47, 15], we describe Algorithm 32 by introducing a linear operator η[K,µ], depending on

the approximate solution (K,µ). In this context, the operator η produces the correction

(∆, σ) from the error functional E = E [K,µ], where

E [K,µ] = fµ ◦K −K ◦ Tω . (7.13)

The procedure is completely specified in Algorithm 32. We will denote this process by

(∆, σ) = −η[K,µ]E ,
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where ∆ = −(η[K,µ]E)1, σ = −(η[K,µ]E)2; note that ∆, σ depend linearly on E.

Remark 40. We note that Lemma 39 provides linear estimates in the error E [K,µ] for

the operator η, both in analytic and Sobolev spaces. One can also verify that Algorithm

32 is defined for all (K,µ) in an open ball in the corresponding spaces. Therefore, we

have the following result.

A) Analytic case: under the hypotheses of Lemma 39 A), the linear operator η : Aρ →

Aρ−ℓδ is defined for every (K,µ) in the unit ball in Aρ centered at (K0, µ0), and

satisfies

‖η[K,µ]E‖Aρ−ℓδ
≤ C

1

νℓ
δ−ℓτ‖E‖Aρ .

B) Sobolev case: under the hypotheses of Lemma 39 B), the linear operator η : Hm →

Hm−ℓτ is defined for every (K,µ) in the unit ball in Hm centered at (K0, µ0), and

satisfies

‖η[K,µ]E‖Hm−ℓτ ≤ C
1

νℓ
‖E‖Hm .

The constants ℓ and C behave as in Lemma 39, i.e. ℓ = 2 in the uniform case, while

ℓ = 1 if λ 6= 1 and C depends also on λ.

It is well known in Nash–Moser theory that the convergence of the iterative step (or some

small modification as in [53]) is achieved by implementing a quadratic iterative scheme.

In the context of our problem, the quadratic estimates on the step amount to proving

that, in a space of less regular functions, the norm of the quantity

DE ∆ +DµE σ + E (7.14)

is proportional to the square of the norm of the error E. The quadratic estimates will

come from a simple computation on the norm of (7.14) and from applying the estimates

in Lemma 36, Lemma 39.

Lemma 41. Let η[K,µ] be the linear operator produced by an application of Algorithm

32.

Assume that

Cν−1δ−(τ+1)‖E‖Aρ ≪ 1 or Cν−1‖E‖Hm ≪ 1 ,

so that the conclusions of Lemma 36 hold. Then, under the assumptions of Lemma 39

A) and B), we have the following quadratic estimates.

A) Analytic case:

‖DE [K,µ]∆ +DµE [K,µ]σ + E‖Aρ−ℓδ
≤ C

1

ν2ℓ−1
δ−1−τ(2ℓ−1)‖E‖2Aρ

.

B) Sobolev case (for r ≥ m+ 1, m > n/2 + ℓτ):

‖DE [K,µ]∆ +DµE [K,µ]σ + E‖Hm−ℓτ ≤ C
1

ν2ℓ−1
‖E‖2Hm .
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The constants ℓ and C behave as in Lemma 39.

Proof. Using the definition of E [K,µ] in (7.13), M in (3.13), R in (3.14) and adding and

subtracting, one can verify the following identity.

DE∆ +DµEσ + E = DE∆ +DµEσ − RM
−1∆ +RM−1∆ + E

= (Dfµ ◦K −RM
−1)∆−∆ ◦ Tω +Dµfµ ◦Kσ + E +RM−1∆

=
(
M ◦ Tω

(
Id S(θ)
0 λ Id

)
M−1

)
∆−∆ ◦ Tω +Dµfµ ◦Kσ

+ E +RM−1∆

= RM−1∆ , (7.15)

where we have used (3.20) and the fact that the operator η is obtained following algorithm

32 to solve equation (6.5).

To obtain the result, we estimate the right hand side of the last equality in (7.15) by

using Lemma 38 and the estimates in Remark 40. �

7.4. Estimates for the error of the improved solution. A natural consequence of

the quadratic estimates in Lemma 41 above and the linear estimates in Lemma 39 is

the following estimate of the error of the improved solution, which follows from Taylor’s

theorem applied to the functional given by the invariance equations.

We present the proof which is just a direct application of Lemma 17. This will allow

us to give a self–contained proof in the analytic case. The main subtlety to keep in mind

is that, since the estimates for the increment blow up if δ – the loss of domain – goes to

zero, we cannot ensure that the range of K + ∆ is in the domain of fµ, so that the new

error makes sense. Hence, in the direct proof, if one fixes the rate of domain losses, one

has to ensure that the error decreases fast enough, so that the composition fµ ◦ (K + ∆)

makes sense (in the abstract theorem, this corresponds to the choices of smoothing steps

to ensure that we never leave a neighborhood).

Lemma 42. Let η[K,µ] be as in Lemma 41 and denote

∆ = −(η[K,µ]E)1 and σ = −(η[K,µ]E)2 .

Assume that C and Λ are as in H4 of Theorem 20 and let ζ > 0 be such that

dist(µ0, ∂Λ) ≥ ζ

dist(K(Tn
ρ), ∂C) ≥ ζ .

Furthermore, assume that

Cν−1δ−(τ+1)‖E‖Aρ < ζ or Cν−1‖E‖Hm < ζ , (7.16)

and that ζ is small enough, so that the estimates of Lemma 41 hold.

Then, we obtain the following composition estimates for r ≥ m+ 2, m > n/2 + ℓτ :
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A) Analytic case:

‖E [K + ∆, µ+ σ]‖Aρ−ℓδ
≤ C

1

ν2ℓ
δ−2ℓτ‖E‖2Aρ

.

B) Sobolev case:

‖E [K + ∆, µ+ σ]‖Hm−ℓτ ≤ C
1

ν2ℓ
‖E‖2Hm .

The constants ℓ and C behave as in Lemma 39.

Proof. The proof of the composition estimates follows from Taylor’s theorem and from

the estimates in Lemma 41. Define the remainder of the Taylor expansion as

R[(K,µ), (K ′, µ′)] = E [K ′, µ′]− E [K,µ]−DE [K,µ](K ′ −K)

−DµE [K,µ](µ′ − µ).

We notice that (7.16) guarantees that |σ| < ζ and

‖∆‖Aρ−ℓδ
< ζ or ‖∆‖Hm−ℓτ < ζ.

In particular, K + ∆ ∈ C and µ+ σ ∈ Λ. So one has:

E [K + ∆, µ+ σ] = E +DE [K,µ]∆ +DµE [K,µ]σ +R[(K,µ), (K + ∆, µ+ σ)] .

The first three terms of the above expansion are estimated in Lemma 41. The remainder

is estimated as follows. In the analytic setting we have:

‖R‖Aρ−ℓδ
≤ C(‖∆‖2Aρ−ℓδ

+ |σ|2) ≤
[
(C

1

νℓ
δ−ℓτ ‖E‖Aρ)

2 + (C‖E‖Aρ)
2
]
,

so that

‖E [K + ∆, µ+ σ]‖Aρ−ℓδ
≤ C

1

ν2ℓ
δ−2ℓτ ‖E‖2Aρ

.

In the Sobolev setting we have:

‖R‖Hm−ℓτ ≤ C(‖∆‖2Hm−ℓτ + |σ|2) ≤
[
(C

1

νℓ
‖E‖Hm)2 + (C‖E‖Hm)2

]
,

so that

‖E [K + ∆, µ+ σ]‖Hm−ℓτ ≤ C
1

ν2ℓ
‖E‖2Hm .

�

7.5. An abstract implicit function theorem. Conclusion of the proof of Theo-

rem 20. To conclude the proof of Theorem 20, we can just apply the abstract implicit

function theorem that we state below for completeness (see Theorem 46). We follow the

formulation of Theorem A.6 in the Appendix of [15] with some modifications presented

later. The theorem holds for an arbitrary scale of Banach spaces for which smoothing

operators are available. The proof is done by combining the Newton’s step, which looses

derivatives, with smoothing that restores them. The procedure converges if the order of
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the Banach spaces is bounded. The main hypothesis is that the initial guess satisfies the

equation very approximately as well as some other explicit non–degeneracy conditions.

For the sake of making the paper more self–contained, we also present an explicit proof

of the analytic case of Theorem 20 in Section 7.6.

We consider a one–parameter family of Banach spaces X r in the interval 0 ≤ r′ ≤ r ≤ ∞,

X 0 ⊇ X r′ ⊇ X r ⊇ X∞

and with norms satisfying

‖g‖X r′ ≤ ‖g‖X r

for all g ∈ X r and 0 ≤ r′ ≤ r.

In a scale of Banach spaces we define smoothing operators as follows.

Definition 43. Given a scale of Banach spaces {X r}, we say that {St}t∈R+ is a family

of smoothing operators when

i) limt→∞ ‖(St − Id)u‖X 0 = 0 ,

ii) ‖Stu‖Xm ≤ Ctm−ℓ‖u‖X ℓ , for all 0 ≤ ℓ ≤ m and for all u ∈ X ℓ ,

iii) ‖(Id−St)u‖X ℓ ≤ Ct−(m−ℓ)‖u‖Xm , for all 0 ≤ ℓ ≤ m and for all u ∈ Xm .

In our case the scales of Banach Spaces will be either spaces of analytic functions or

Sobolev spaces. Smoothing operators in Sobolev spaces are standard in functional anal-

ysis (see for example [65], [15], [54]). In the case of analytic functions the smoothing is

obtained by rescaling the size of the strip on which the analytic functions are defined.

As pointed out in [68], one important consequence of the existence of smoothing oper-

ators is the validity of interpolation inequalities.

Proposition 44. Let f ∈ X s; for r ≤ s, 0 ≤ θ ≤ 1, we have

‖f‖X θr+(1−θ)s ≤ C‖f‖θX r‖f‖1−θ
X s . (7.17)

The proof in [68] is very elementary. It suffices to observe that, for all t > 0 we have

f = Stf + (Id−St)f , so that we obtain the bound:

‖f‖X θr+(1−θ)s ≤ ‖Stf‖X θr+(1−θ)s + ‖(Id−St)f‖X θr+(1−θ)s

≤ Ctθr+(1−θ)s−s‖f‖Xs + Ct−(r−(θr+(1−θ)s))‖f‖Xr .

Computing the minimum of the function in t at the right hand side, provides the inter-

polation inequality (7.17).

Remark 45. Of course, for concrete examples of spaces, the interpolation inequalities

were done much earlier and by different methods. For analytic functions, (7.17) is given

by Hadamard’s three circles theorem, while for finite differentiable functions or Sobolev

functions the result was obtained by other methods ([32], [44]).
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To make the notation of the theorem more compatible with this paper, the elements

of the Banach spaces will have two components, which we denote as (K,µ). Later, we

will also separate the components of the approximate inverse. In an arbitrary scale of

Banach spaces with smoothing we have the following result.

Theorem 46. Let α > 0 and p > α and let X q for p − α ≤ q ≤ p + 13α be a scale of

Banach spaces with smoothing operators. Let Bq be the unit ball in X q, B̃q = (K0, µ0)+Bq

the unit ball translated by (K0, µ0) ∈ X
q and let B(X q,X q−α) be the space of bounded

linear operators from X q to X q−α. Consider the functional E = E [K,µ] with E : B̃q → X
q

and let η = η[K,µ], with η : B̃q → B(X q,X q−α). Consider a pair (K,µ) ∈ B̃q and denote

by E the function obtained by evaluating the functional E at (K,µ), i.e. E = E [(K,µ)],

and by ∆ = −(η[(K,µ)]E)1, σ = −(η[K,µ]E)2. Furthermore, we assume:

i) E(B̃q ∩ X
q) ⊂ X q for p− α ≤ q ≤ p+ 13α;

ii) E|B̃m∩X q : B̃q ∩ X
q → X q has two continuous Fréchet derivatives for p− α ≤ q ≤

p+ 13α;

iii) ‖(∆, σ)‖X q−α ≤ C‖E‖X q , (K,µ) ∈ B̃q, for q = p− α, p+ 13α;

iv) (quadratic estimates)

‖DE [K,µ]∆ +DµE [K,µ]σ + E‖X p−α ≤ C‖E‖2X p ,

where (K,µ) ∈ B̃p;

v) ‖E‖X p+13α ≤ C(1 + ‖(K,µ)‖X p+13α), (K,µ) ∈ B̃p+13α.

Then, if we can find (K0, µ0) ∈ Bp+13α such that ‖E0‖X p−α is sufficiently small (where

E0 = E [K0, µ0]), there exists (Ke, µe) ∈ X
p, such that E [Ke, µe] = 0. Moreover,

‖(Ke −K0, µe − µ0)‖X p ≤ C‖E0‖X p−α . (7.18)

Remark 47. Note that, even if we are referring everything to the unit ball of the spaces

for convenience, we could be using any ball. It suffices to redefine the norms multiplying

them by a constant. Of course, in such a case, the smallness conditions in the end could

depend on the size of the balls.

Remark 48. Note that (7.18) provides bounds on a smoother space from bounds in

a rougher space. This is not paradoxical, because we are assuming that (K0, µ0) is in

Bp+13α. Given the assumption v), this implies that ‖E0‖Xp+13α is bounded. Hence, by the

interpolation inequalities (7.17) we obtain that the smallness assumption on ‖E0‖Xp−α

implies the smallness assumption on ‖E0‖Xs, p− α ≤ s ≤ p+ 13α.

Remark 49. The proof of Theorem 46 is very similar to that in Appendix A in [15],

but since we performed some modifications we prefer to insert the whole proof for com-

pleteness. In particular, the parameters defining the scales of Banach spaces have been

improved (p + 13α in this paper and p + 17α in [15]); moreover, in assumption v) the
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norms are computed in the same space, while in [15] they were computed in different

spaces. These different composition estimates in v) are due to the fact that the operator

E does not lose regularity under composition in our case, while this loss of regularity was

allowed in [15]. Since the operator does not lose derivatives and since we are always

working on bounded sets, the hypothesis v) becomes just that the operator is bounded.

Proof. The proof relies on an iterative procedure combining the ideas of [61], [68]. Given

(K,µ) ∈ X p+13α and E = E [K,µ] with the property that ‖E‖X p−α is sufficiently small

compared with the other properties of the function, the iterative procedure constructs

(Ke, µe) such that E [Ke, µe] = 0.

Let κ > 1, β, γ, δ > 0, 0 < ψ < 1 be real numbers which will be specified later. We

construct a sequence {(Kn, µn)}n≥0 by defining

(Kn+1, µn+1) = (Kn, µn)− Stnη[Kn, µn]En ,

where tn = eβκn
. By induction we prove that the following properties and inequalities

are satisfied:

(p1;n) ((Kn, µn)− (K0, µ0)) ∈ Bp

(p2;n) ‖En‖X p−α ≤ ψe−γαβκn

(p3;n) 1 + ‖(Kn, µn)‖X p+13α ≤ ψeδαβκn
.

Suppose that conditions (p1; j), (p2; j), and (p3; j) are true for j < n. We start by

proving (p1;n). First, we notice that (p2;n− 1), assumption iii) and assumption ii) of

Definition 43 imply that

‖(Kn, µn)− (Kn−1, µn−1)‖X p = ‖Stn−1η[Kn−1, µn−1]En−1‖X p

≤ Ce2αβκn−1

‖η[Kn−1, µn−1]En−1‖X p−2α

≤ Cψeαβκn−1(2−γ) .

Then if γ > 2, {(Kn, µn)} ⊂ X
p converges to some (K,µ) ∈ X p. In order to prove (p1;n),

we remark that, using κj ≤ j(κ− 1), we obtain

‖(Kn, µn)− (K0, µ0)‖X p ≤ Cψ

∞∑

j=1

eαβκj(2−γ)

≤ Cψ
∞∑

j=1

eαβj(κ−1)(2−γ)

≤ Cψ
eαβ(κ−1)(2−γ)

1− eαβ(κ−1)(2−γ)
,

(7.19)

which shows that ‖(Kn, µn)− (K0, µ0)‖X p ≤ Cψ for γ > 2 and β large enough.

In order to prove (p2;n), we add and subtract the terms En−1,

DE [Kn−1, µn−1]η[Kn−1, µn−1]En−1, and

DE [Kn−1, µn−1][Stn−1η[Kn−1, µn−1]En−1]1 +DµE [Kn−1, µn−1][Stn−1η[Kn−1, µn−1]En−1]2 to
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En. Here ∆j = −(η[K,µ]Ej)1, σj = −(η[K,µ]Ej)2. Next we collect the terms in three

groups to obtain

‖En‖X p−α ≤ ‖En −En−1

+DE [Kn−1, µn−1][Stn−1η[Kn−1, µn−1]En−1]1
+DµE [Kn−1, µn−1][Stn−1η[Kn−1, µn−1]En−1]2‖X p−α

+‖DE [K,µn−1]∆n−1 +DµE [Kn−1, µn−1]σn−1 + En−1‖X p−α

+‖DE [Kn−1, µn−1][(Id−Stn−1)η[Kn−1, µn−1]En−1]1
+DµE [Kn−1, µn−1][(Id−Stn−1)η[Kn−1, µn−1]En−1]2‖X p−α .

(7.20)

We estimate the first term in (7.20) using assumption iii) and the formula for the qua-

dratic remainder of Taylor’s expansion:

‖En−En−1 +DE [Kn−1, µn−1][Stn−1η[Kn−1, µn−1]En−1]1

+DµE [Kn−1, µn−1][Stn−1η[Kn−1, µn−1]En−1]2‖X p−α

≤ Cψ2e2αβκn−1(2−γ) .

Concerning the second term of (7.20), using assumption iv) we obtain

‖DE [K,µn−1]∆n−1 +DµE [Kn−1, µn−1]σn−1 + En−1‖X p−α ≤ C‖En−1‖
2
X p .

We estimate ‖En−1‖
2
p by using the interpolation inequality, assumption v) and the induc-

tion hypotheses (p2;n− 1) and (p3;n− 1):

‖En−1‖
2
X p ≤ C‖En−1‖

26/14
X p−α‖En−1‖

2/14
X p+13α

≤ C‖En−1‖
26/14

X p−α (1 + ‖(Kn−1, µn−1)‖X p+13α)2/14

≤ Cψ2eαβκn−1(− 26γ
14

+ 2δ
14

) .

Concerning the third term of (7.20), we use the properties of the smoothing operators

and the fact that the Fréchet derivative, (DE , DµE), is bounded:

‖DE [Kn−1, µn−1][(Id−Stn−1)η[Kn−1, µn−1]En−1]1
+DµE [Kn−1, µn−1][(Id−Stn−1)η[Kn−1, µn−1]En−1]2‖X p−α

≤ C‖(Id−Stn−1)η[Kn−1, µn−1]En−1‖X p

≤ Ce−12αβκn−1
‖η[Kn−1, µn−1]En−1‖p+12α

≤ Ce−12αβκn−1
‖En−1‖X p+13α

≤ Ce−12αβκn−1
(1 + ‖(Kn−1, µn−1)‖X p+13α)

≤ Cψeαβκn−1(δ−12) .

Finally, the desired inequality (p2;n) is satisfied whenever

C(ψ2e2αβκn−1(2−γ) + ψ2eαβκn−1( 2δ
14

− 26γ
14

) + ψeαβκn−1(δ−12)) ≤ ψe−γαβκn

or equivalently

C(ψe−αβκn−1(2(γ−2)−γκ) + ψe−αβκn−1(− 2δ
14

+ 26γ
14

−γκ) + e−αβκn−1(12−δ−γκ)) ≤ 1 . (7.21)
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Condition (7.21) is satisfied for β sufficiently large, ψ sufficiently small and provided that

γ(2− κ) > 4
γ(26− 14κ) > 2δ

12− γκ > δ .
(7.22)

This concludes the proof of (p2;n). To prove (p3;n), we start by remarking that

1 + ‖(Kn, µn)‖X p+13α ≤ 1 +
n−1∑

j=0

‖Stjη[Kj , µj]Ej‖X p+13α

≤ 1 + C

n−1∑

j=0

eαβκj

‖η[Kj, µj]Ej‖X p+12α

≤ 1 + C
n−1∑

j=0

eαβκj

‖Ej‖X p+13α

≤ 1 + C

n−1∑

j=0

eαβκj

(1 + ‖(Kj, µj)‖X p+13α)

≤ 1 + Cψ
n−1∑

j=0

eαβ(1+δ)κj

,

so that one obtains

(1 + ‖(Kn, µn)‖X p+13α)e−δαβκn
≤ e−δαβκn

+ C ψ

n−1∑

j=0

eαβκj(1+δ−κδ) . (7.23)

To have (p3;n) it suffices that the right hand side of (7.23) is less than 1. Therefore,

if δ > 1
κ−1

, the right hand side of (7.23) will be less than 1 for sufficiently large β. If

we consider κ = 4/3, γ = 61/10 and δ = 7/2, then (7.22) and δ > 1
κ−1

are satisfied

simultaneously. To complete the induction, we fix β large enough so that (7.23) and

(7.21) are satisfied.

Finally, with our choices of β and γ, we fix ψ to be ψ = ‖E‖X p−αeαβγ , which, together

with (7.19), leads to the estimate

‖(Ke −K0, µe − µ0)‖X p ≤ Cψ
eαβ(κ−1)(2−γ)

1− eαβ(κ−1)(2−γ)
≤ Cγ,α,β,κ‖E‖X p−α ,

which completes the proof. �

7.5.1. Choices of spaces and parameters. We apply Theorem 46 to prove the finite dif-

ferentiable version of Theorem 20. In order to apply the theorem, we need to make

appropriate choices of the parameter p, of the loss of differentiability α, and of the scales

of Banach spaces X q for p−α ≤ q ≤ p+ 13α. In our case we choose the scale of Banach

spaces to be the Sobolev space Hq for the function K times the space Λ ⊂ Rn for the

parameter µ, i.e. X q = Hq × Λ with the product norm. We remark that smoothing

operators for the spaces Hq are readily available, see [65, 15].



54 R. CALLEJA, A. CELLETTI, AND R. DE LA LLAVE

Our choice of p and α depends on the estimates on the increment of the step and the

estimates on the approximate reducibility in Section 7. According to Lemma 36 and 39

we choose the Sobolev exponent p = m with m > n
2

+ ℓτ and the loss of differentiability

α = ℓτ . This allows us to use the estimates in Remark 40 to justify iii) in Theorem 46.

Moreover, item ii) of the abstract theorem requires that the functional

E [K,µ] = fµ ◦K −K ◦ Tω ,

defined in Hq for m − ℓτ ≤ q ≤ m + 13ℓτ , has two continuous Fréchet derivatives.

The estimates in [45, 4] on composition operators guarantee that if the function fµ has

two continuous derivatives more than the highest Sobolev exponent, then the composi-

tion operator fµ ◦ K ∈ H
m+13ℓτ must have at least two continuous Fréchet derivatives.

Therefore, fµ should be in the space Cr for r ≥ m+ 13ℓτ + 2.

7.6. End of the proof of the results of Theorem 20 for analytic regularity.

In this section we present a proof of the convergence of the iterative step in analytic

spaces. We start by remarking that the convergence statement follows from the abstract

Theorem 46. Nevertheless, since the proof is fairly simple, we think it is worthwhile to

present a self–contained proof, which is very similar to that in [68] (see for instance the

qualitative estimates in [69]); a pedagogical exposition can be found in [22]. We point

out that this proof is based on the technique of “analytic smoothing”, which is the oldest

technique in KAM theory, going back to Kolmogorov [42]. One constructs increasingly

approximate solutions in smaller analyticity domains, but the loss of domain slows down

so that we end up with a positive radius of analyticity.

Remark 50. For the experts in KAM theorem, we recall that the papers [52, 51] intro-

duced the technique of double smoothing perfected in [69] which allows to obtain finite

differentiability results from the analytic ones.

The main observation of the method is that Ck+α spaces can be characterized by the

speed of approximation of analytic functions defined on decreasing domains.

Then, starting in a Cr problem, one can smooth it and and obtain a sequence of

analytic problems, which yield a sequence of analytic solutions. The regularity of the

problem translates into a fast convergence of the sequence of problems, which in turn yields

the speed of convergence of the solutions using the a-posteriori format of the theorem.

Therefore we obtain the smoothness of the solutions of the final problem.

As it is shown in [52, 51, 69], the double smoothing method yields better differentiability

results, than the one–step smoothing which is the basis of results such as Theorem 46.

Nevertheless, we remark that for our purposes a double smoothing is not so useful for the

following reasons.

(1) Since we rely on geometric identities, we would need that also the smoothed prob-

lems preserve the geometric properties. It is not so straightforward to show that a
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smooth diffeomorphism can be approximated by analytic diffeomorphisms, which

also preserve the same geometric structure and satisfy quantitative bounds (in the

symplectic, volume preserving contact case this is done in [31]. It seems that one

can adapt the methods of [31] to the present case, but the quantitative statements

are not so straightforward).

(2) We are interested in presenting results in Sobolev norms rather than Ck+α norms,

because Sobolev norms are much easier to compute numerically. Then, Sobolev

spaces are not easy to characterize using approximations by analytic functions.

We are now able to present the estimates for the iterative step in the analytic space Aρ.

Precisely, we compute estimates for the increment and estimates for the new reminder

(provided the composition of the correction can be well defined). To simplify the ty-

pography, we use the index h ∈ Z to denote the steps of the iteration and we will use

subindices to indicate the quantities after h steps. We start by making the choice of

domain losses. A convenient choice is

δh ≡
ρ0

2h+1

and

ρh+1 = ρh − δh

for h ≥ 0. Note that ρh ≥
ρ0

2
for h ≥ 1. Define

εh ≡ ‖E(Kh, µh)‖Aρh

and let

dh ≡ ‖∆h‖Aρh
, vh ≡ ‖D∆h‖Aρh

, sh ≡ |σh| .

Remark 51. By Lemma 39 we have the following inequalities:

dh ≤ Ĉhν
aδ−α

h εh

vh ≤ Ĉhν
aδ−α−1

h εh

sh ≤ Ĉhεh ,

where Ĉh are explicit constants depending in a polynomial manner on ‖Mh‖Aρh
, ‖M−1

h ‖Aρh
,

‖Nh‖Aρh
and Th with a = −2, α = 2τ or Ĉh depending on the above and also on λ with

a = −1, α = τ .

Remark 52. In the following we will denote by C a constant depending on ν, τ , n, ζ, ρ0,

|J−1|Bζ
, and that is a polynomial in ‖M0‖Aρ0

, ‖M−1
0 ‖Aρ0

, ‖N0‖Aρ0
, T0. We will denote

as Ch the maximum of the constants Ĉh and of the constants C̃h introduced in the Taylor

estimate of Lemma 42 as

εh+1 ≤ C̃hν
2aδ−2α

h ε2
h .
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We assume that C is large enough, for instance C > 2C0. In the proof, we will give

smallness conditions, so that Ch ≤ C for every h ≥ 0. Since we look for a solution

(Ke, µe) which is near to (K0, µ0), it is natural to expect (as shown later) that the quanti-

ties ‖Mh‖Aρh
, ‖M−1

h ‖Aρh
, ‖Nh‖Aρh

and Th will be close to ‖M0‖Aρ0
, ‖M−1

0 ‖Aρ0
, ‖N0‖Aρ0

and T0, respectively.

We prove by induction that for all integers h ≥ 0 the following properties hold:

(p1; h)

‖Kh −K0‖Aρh
≤ κK ε0 < ζ

|µh − µ0| ≤ κµ ε0 < ζ

with

κK ≡ Cνaρ−α
0 2α+1 κ0 , κµ ≡ 2Cκ0 ; (7.24)

(p2; h)

εh ≤ (κ0ε0)
2h

with

κ0 ≡ Cν2aρ−2α
0 24α ;

(p3; h) Ch ≤ C.

Note that (p1; 0), (p2; 0) and (p3; 0) are trivial. Assume that (p1; h) is true for h =

1, ..., H . Then, by Lemma 42 we obtain the Taylor estimate

εh = ‖E(Kh−1 + ∆h−1, µh−1 + σh−1)‖Aρh
≤ Cν2aδ−2α

h−1ε
2
h−1 , (7.25)

where Ch−1, a, α are as in Remark 51 and 52. Without loss of generality we can assume

C ≥ 1, ρ0 < 1. We have:

εh ≤ Cν2aρ−2α
0 22αhε2

h−1

≤ (Cν2aρ−2α
0 22α) 22α(h−1) (Cν2aρ−2α

0 22α 22α(h−2) ε2
h−2)

2

≤ (Cν2aρ−2α
0 22α)1+2+...+2h−1

22α((h−1)+2(h−2)+...+2h−2) ε2h

0 .

Using that 1 + 2 + ...+ 2h−1 = 2h− 1, (h− 1) + 2(h− 2) + ...+ 2h−2 = 2h−1
∑h−1

j=1 j 2−j =

2h − (h+ 1), one obtains:

εh ≤ (Cν2aρ−2α
0 22α)2h−1 22α(2h−(h+1)) ε2h

0

≤ (Cν2aρ−2α
0 22α 22α ε0)

2h

for h = 1, ..., H .
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Let us now prove (p1;H + 1), (p2;H + 1) and (p3;H + 1). We assume the induction

assumption (p1; h), (p2; h), (p3; h) and that

‖Nh‖Aρh
≤ 2‖N0‖Aρ0

‖Mh‖Aρh
≤ 2‖M0‖Aρ0

‖M−1
h ‖Aρh

≤ 2‖M−1
0 ‖Aρ0

Th ≤ 2T0

for h = 0, ..., H .

First, we prove (p1;H + 1) as follows. Using j + 1 ≤ 2j, we have:

‖KH+1 −K0‖AρH+1
≤

H∑

j=0

dj ≤
H∑

j=0

(Ĉjν
aδ−α

j εj)

≤ Cνaρ−α
0 2α

H∑

j=0

(2jα κ2j

0 ε2j

0 )

≤ Cνaρ−α
0 2α κ0ε0

H∑

j=0

(2α κ0ε0)
j

≤ Cνaρ−α
0 2α+1 κ0ε0 ,

assuming that ε0 is sufficiently small, e.g. 2α κ0ε0 ≤
1
2
. In conclusion,

‖KH+1 −K0‖AρH+1
≤ κKε0

with κK as in (7.24). Moreover, we have:

|µH+1 − µ0| ≤

H∑

j=0

sj ≤

H∑

j=0

Ĉjεj

≤ C

H∑

j=0

(κ0ε0)
2j

;

assuming that ε0 is sufficiently small, e.g. κ0ε0 ≤
1
2
, we conclude:

|µH+1 − µ0| ≤ 2C κ0ε0 .

We take ε0 small enough so that κKε0 < ζ and 2C κ0ε0 < ζ . Since (p1;H + 1) is true,

we use Taylor estimate (7.25) with H + 1 in place of h to obtain (p2;H + 1).
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In order to prove (p3;H + 1) we need other hypotheses that are easier, but more tedious

to verify:

‖Nh −N0‖Aρh
≤ C̃‖DKh −DK0‖Aρh

‖Mh −M0‖Aρh
≤ C̃‖DKh −DK0‖Aρh

‖M−1
h −M

−1
0 ‖Aρh

≤ C̃‖DKh −DK0‖Aρh

|Th − T0| ≤ C̃‖DKh −DK0‖Aρh
,

where C̃ is a uniform constant. The above inequalities come from the fact that N , M ,

M−1 and T are algebraic expressions of DK, Dfµ and Dµfµ. We remark that the inverses

can be computed using Neumann series. Then, we just note that

‖DKH+1 −DK0‖AρH+1
≤

H∑

j=0

vj ≤
H∑

j=0

Ĉjν
aδ−α−1

j εj

≤ Cνaρ−α−1
0 2α+1

H∑

j=0

2(α+1)j (κ0ε0)
2j

≤ Cνaρ−α−1
0 2α+2 κ0ε0 .

Indeed, we have bounded the sum in the second inequality as well as the last expression

by taking ε0 sufficiently small, e.g. 2α+1 κ0ε0 ≤
1
2
. Again, if we take C̃Cνaρ−α−1

0 2α+2 κ0ε0

small enough, we are able to verify (p3;H + 1), since CH+1 is an algebraic expression of

‖MH‖AρH
, ‖M−1

H ‖AρH
, ‖NH‖AρH

and TH .

8. Proof of Theorem 28 and Corollary 29

In this section we prove the uniqueness result of Theorem 28 and Corollary 29. We

present in detail the Sobolev case, which, of course, implies the analytic case. We also

present the analytic case directly.

Remember that we have:

fµ1 ◦K1 = K1 ◦ Tω

fµ2 ◦K2 = K2 ◦ Tω .
(8.1)

We denote by

R̃ ≡ fµ2 ◦K2 − fµ1 ◦K1 −Dfµ1 ◦K1(K2 −K1)−Dµfµ1 ◦K1(µ2 − µ1) . (8.2)

We anticipate that, because of Taylor’s theorem, R̃ is quadratic in K2 − K1, µ2 − µ1.

We also note that, using the reducibility as in Section 3.1, for some specific M obtained

using K1 in (3.13), we have:

Dfµ1 ◦K1(θ)M(θ) = M(θ + ω)B(θ) , (8.3)
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where B(θ) =

(
Id S(θ)
0 λ Id

)
. As before, we introduce the notation

K2(θ)−K1(θ) = M(θ)W (θ) , (8.4)

where M is the matrix constructed in (3.13) corresponding to the solution K1, namely

M(θ) = [DK1(θ) | J
−1 ◦K1(θ) DK1(θ)N1(θ)], N1(θ) =

(
DK1(θ)

TDK1(θ)
)−1

. Subtract-

ing the identities (8.1), and using (8.2), (8.3), (8.4), we obtain

0 = fµ2 ◦K2 −K2 ◦ Tω − fµ1 ◦K1 +K1 ◦ Tω

= Dfµ1 ◦K1(K2 −K1) +Dµfµ1 ◦K1(µ2 − µ1) + R̃− (K2 −K1) ◦ Tω

= M(θ + ω)
[
B(θ)W (θ) +M−1(θ + ω)Dµfµ1 ◦K1(µ2 − µ1)−W (θ + ω)

+M−1(θ + ω)R̃
]
.

(8.5)

We emphasize that (8.5) is an identity satisfied by the difference between the two solutions

and by the related quantities we have introduced. Since M(θ + ω) is invertible we have

the following identity

B(θ)W (θ)−W (θ + ω) +M−1(θ + ω)Dµfµ1 ◦K1(µ2 − µ1)

+M−1(θ + ω)R̃(θ) = 0 .
(8.6)

The proof of Theorem 28 will be obtained by observing that (8.6) implies estimates for

W and for |µ1−µ2| in terms of R̃ (note that (8.6) is very similar to the equations we had

studied in the Newton’s procedure) and that Taylor’s theorem implies estimates for R̃ in

terms of W and µ1 − µ2. Then, putting together the two estimates, we will obtain that

max(‖W‖, |µ1 − µ2|) ≤ C max(‖W‖, |µ1 − µ2|)
2. One small wrinkle is that the norms in

both sides are different, but, as we will show, one can use interpolation inequalities to

take care of that.

8.1. Some estimates. The importance of (5.3) is that applying Lemma 19 to (8.6) we

obtain the following estimates on the function W and on |µ2 − µ1| (recall that in order

to obtain estimates on W we use that W1 has zero average.)

Note that we are not using the full strength of Lemma 19, which asserts the existence

of solutions. In our case, we know that W exists and that it satisfies some equation.

Lemma 19 gives us estimates for the solution.

To simplify the typography, we introduceM+ = max(‖M‖Hm , 1),M− = max(‖M−1‖Hm , 1)

and we obtain for m > n/2 + ℓτ :

‖W‖Hm−ℓτ ≤ CM+M−
1

νℓ
‖R̃‖Hm

|µ2 − µ1| ≤ CM+M−‖R̃‖Hm ,
(8.7)

where ℓ = 1 if we allow that the constants depend on λ with |λ| 6= 1 and ℓ = 2 if we

allow the constants to be independent on λ.
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Using Taylor’s Theorem for the composition with Sobolev spaces, recalling (8.4) and

the definition of M+, we obtain an estimate for the function R̃:

‖R̃‖Hm−ℓτ ≤
1

2
‖DµD(I,ϕ)fµ‖HmM2

+(‖W‖2Hm + |µ2 − µ1|
2) . (8.8)

8.2. Interpolation and end of the proof of Theorem 28. Putting together (8.7)

and (8.8), we obtain:

max(‖W‖Hm−ℓτ , |µ1 − µ2|) ≤ C‖DµD(I,ϕ)fµ‖Hmν−ℓM3
+M− max(‖W‖Hm, |µ1 − µ2|)

2 .

(8.9)

Using the well known interpolation inequalities (see e.g. [65, 15])

‖W‖Hm ≤ C ‖W‖
1/2

Hm−ℓτ‖W‖
1/2

Hm+ℓτ ,

where C is a constant depending on m and n, we transform (8.9) into

max(‖W‖Hm−ℓτ , |µ1 − µ2|) ≤

C‖DµD(I,ϕ)fµ‖Hmν−ℓM3
+M− max(‖W‖Hm+ℓτ , |µ1 − µ2|) max(‖W‖Hm−ℓτ , |µ1 − µ2|)

(C depending on m, n), so that W = 0, namely K1 = K2 and µ1 = µ2 if (5.5) is satisfied.

8.3. The analytic case. The analytic case of Theorem 28 is implied by the previous

one. Nevertheless, it is instructive to give just the minor changes needed for a direct

proof. Note that the analytic case has a free parameter δ. Proceeding as before, and

using the notation M± = max(‖M±1‖Aρ , 1), applying the analytic version of Lemma 19

we obtain

‖W‖Aρ−ℓδ
≤ CM+M−

1

νℓ
δ−ℓτ‖R̃‖Aρ

|µ2 − µ1| ≤ CM+M−‖R̃‖Aρ ,

with ℓ = 1 if we allow that constants to depend on λ with |λ| 6= 1 and ℓ = 2 if we allow

the constants to be independent on λ. The only difference in the argument is that rather

than using the interpolation of Sobolev norms, we use Hadamard’s three circle theorem

[3], which gives

‖W‖Aρ ≤ C‖W‖
1/2
Aρ−ℓδ
‖W‖

1/2
Aρ+ℓδ

.

Using (5.6) one obtains K1 = K2 and µ1 = µ2.

8.4. Proof of Corollary 29.

Proof. To prove Corollary 29 we first note that thanks to Theorem 28, the solutions are

unique in the neighborhood we are considering. We know that

fµφ,φ ◦Kφ = Kφ ◦ Tω

and for φ′ 6= φ we consider the function e defined as

e = fµφ,φ′ ◦Kφ −Kφ ◦ Tω .



KAM THEORY FOR CONFORMALLY SYMPLECTIC SYSTEMS 61

Then, we have that for φ in a metric space (Y , d) and for X being Aρ or Hm−ℓτ , due to

(5.7):

‖e‖X = ‖fµφ,φ′ ◦Kφ −Kφ ◦ Tω − fµφ,φ ◦Kφ +Kφ ◦ Tω‖X ≤ ÃL d(φ, φ′) .

Therefore if d(φ, φ′) is small enough, there exist (Kφ′, µφ′) such that

fµφ′ ,φ′ ◦Kφ′ = Kφ′ ◦ Tω

and

‖Kφ −Kφ′‖Aρ−ℓδ
≤ CÃLν

−ℓδ−ℓτ d(φ, φ′)

|µφ − µφ′| ≤ CÃL d(φ, φ
′) ,

with ℓ = 2 in the uniform case and ℓ = 1 if C depends on λ with |λ| 6= 1,

‖Kφ −Kφ′‖Hm ≤ CÃL d(φ, φ
′)

|µφ − µφ′| ≤ CÃL d(φ, φ
′) ,

which is the desired Lipschitz property with Lipschitz constant AL = CÃL. This con-

cludes the Proof of Corollary 29. �

9. Further consequences of the a-posteriori formalism

The convergence of Theorem 20 in analytic and Sobolev spaces is justified by an ab-

stract Nash–Moser implicit function theorem. An a–posteriori version of such theorem

and its proof in scales of Banach spaces are presented in the Appendix A of [15]. As

pointed out in [15], the fact that we have an a–posteriori theorem leads to the two

following consequences.

(1) The solutions of the invariance equation, associated to analytic maps, which are

Sobolev solutions of high enough order, are also analytic.

(2) A parameter value φ0 of a map is on the boundary of the parameters with quasi–

periodic attractors if and only if a Sobolev norm of high enough order of the

conjugacy of quasi–periodic attractors for nearby parameters φ blows up as φ

approaches φ0.

The key to both results is the a–posteriori format of Theorem 20 that shows that given

an approximate solution (either in an analytic or in a Sobolev sense) that satisfies ap-

propriate non–degeneracy conditions, then there is a locally unique solution in the same

spaces.
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9.1. Bootstrap of regularity. The result on the bootstrap of regularity is obtained by

observing that if the Sobolev regularity of a solution is high enough, then a truncation

will be an approximate solution in the analytic sense. Indeed, the analytic a–posteriori

theorem shows that there is an analytic solution close to the truncated solution. Finally,

the local uniqueness result in Sobolev spaces (see Theorem 28), together with the fact

that the Sobolev regularity is high enough, shows that the original and analytic solutions

agree. The bootstrap of regularity proof for Sobolev spaces in the context of twist maps

is given in [15] (for a full proof for twist maps in Cm spaces see [31]). In the case of

conformally symplectic maps we obtain the following result.

Theorem 53. Assume that the hypotheses of Theorem 20 hold and that the map fµ is a

real analytic map. Let Ks ∈ H
p for p > n

2
+ 2ℓτ , and µs ∈ Λ solve

fµs ◦Ks −Ks ◦ Tω = 0 .

Then, there exists an ρ > 0 such that Ks ∈ Aρ. The constant ℓ is 1 if we assume that

|λ| 6= 1 and ℓ = 2 if we assume that λ belongs to an interval containing 1.

Proof. We start with Ks ∈ Hp, p > n
2

+ 2ℓτ and µs ∈ Λ a solution of the invariance

equation, i.e. E(Ks, µs) = 0, obtained by applying Theorem 20.

We consider an approximation to the solution K obtained by truncating the Fourier

series at the L–th Fourier mode, K≤L(θ) =
∑

|k|≤LKke
2πik·θ. From the definition of K≤L,

we obtain the following estimates in the C0 and C1 norms for every L sufficiently large:

‖Ks −K
≤L‖C0 ≤ CL−p+ n

2 , ‖Ks −K
≤L‖C1 ≤ CL−p+ n

2
+1 . (9.1)

Later, we will use these estimates to guarantee that the function K≤L satisfies the non-

degeneracy conditions, the twist condition H3, and the assumption H4 on the domain

of fµ whenever L is large enough. This is due to the fact that the pair (Ks, µs) satisfies

these conditions in the Sobolev space Hp.

To obtain an estimate in the AρL
norm, for some ρL > 0, we will consider an α > 1 so

that if ρL = 1
L

log α
2π

, we have that

‖K≤L‖AρL
≤ (e2πρL)L

∑

|k|≤L

|K̂k| ≤ α‖Ks‖Hp . (9.2)

Indeed, using the estimates in (9.1) and (9.2), we obtain estimates for the invariance

equation in the space of analytic functions A ρL
2

. From the C0 estimate in (9.1), we know

that

‖E(K≤L, µs)‖C0 = ‖E(K≤L, µs)−E(Ks, µs)‖C0 ≤ (‖fµs‖C1 +1)‖K≤L−Ks‖C0 ≤ CL−p+ n
2 ,

and we can use composition estimates to verify that

‖E(K≤L, µs)‖AρL
≤ ‖fµ‖A(‖Ks‖Hp )

+ ‖K≤L‖AρL
.
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Using the log–convexity of the supremum of the analytic functions (Hadamard three circle

theorem), we can interpolate the previous inequalities and obtain estimates in A ρL
2

:

‖E(K≤L, µs)‖A ρL
2

≤ CL− p
2
+ n

4 . (9.3)

The estimate in (9.3) is the last ingredient that we need to apply the analytic case of

Theorem 20 using K≤L and µs as an approximate solution and noticing that if L is large

enough then we have that Cν−2ℓ
(

ρL

2

)−2ℓτ
‖E(K≤L, µs)‖A ρL

2

< 1.

The conclusion of Theorem 20 is that there exists a Ke ∈ A ρL
4

and µe ∈ Λ such that

E(Ke, µe) = 0. Moreover, for 0 < δ < ρL

4
we obtain the following estimates for Ke and

µe:

‖Ke −K
≤L‖A ρL

2 −ℓδ
≤ Cν−ℓδ−ℓτL− p

2
+ n

4 ,

|µe − µs| ≤ CL− p
2
+ n

4 .
(9.4)

We obtain estimates on the Sobolev norm of K≤L−Ks by using the smoothing operators

in Sobolev spaces defined in 43 and choosing the smoothing parameters β, t ∈ R
+ to be

β = p
2
− n

4
− ℓτ and t = (ν−ℓ‖K‖−1

Hp)
1
β :

‖K≤L −Ks‖Hp ≤ ‖St(K
≤L −Ks)‖Hp + ‖(Id− St)(K

≤L −Ks)‖Hp

≤ Ctβ‖K≤L −Ks‖Hp−β ≤ Cν−ℓL− p
2
+ n

4
+ℓτ .

(9.5)

Notice that the last inequality is a consequence of the definition of the Sobolev norm,

‖K≤L−Ks‖
2
Hp−β =

∑

|k|>L

(1+ |k|2)p−β|K̂k|
2 ≤ CL−2β

∑

|k|>L

(1+ |k|2)p|K̂k|
2 ≤ CL−2β‖Ks‖

2
Hp .

We remark that when L > 1
δ
, the first estimate in (9.4) implies that

‖Ke −K
≤L‖Hp ≤ Cν−ℓL− p

2
+ n

4
+ℓτ . (9.6)

Therefore, we combine (9.6) and (9.5) to obtain the inequality

‖Ke −Ks‖Hp ≤ Cν−ℓL− p
2
+ n

4
+ℓτ .

This last estimate, together with the second estimate in (9.4), implies that for L large

enough the inequality (see Theorem 28)

C ‖DµD(I,ϕ)fµ‖Hp−ℓτ ν−ℓM3
+M− max(‖M−1(Ke −Ks)‖Hp, |µe − µs|) < 1 (9.7)

should hold. By the uniqueness in Hp, we have that Ke = Ks. In particular, Ks ∈

A ρL
4

. �
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9.2. Criterion for the breakdown of analyticity. The second consequence of the a–

posteriori formalism states a criterion for the breakdown of analyticity of quasi–periodic

attractors. The justification of the criterion is given by Theorem 20 together with local

uniqueness, and by Theorem 53. Combining these results we obtain the bootstrap of

regularity on an open set of the parameters.

Theorem 54. Let fµ,φ be a family of analytic mappings, satisfying the hypotheses of

Theorem 20. We assume that for some φ0 > 0 the mapping fµφ0
,φ0 has a Sobolev regular

quasi–periodic solution (Kφ0, µφ0) that satisfies the non–degeneracy assumption (5.1).

Then, if |φ− φ0| is small enough depending on the size of the Sobolev norm of Kφ0 and

on |µφ0|, then fµφ,φ has an analytic solution, which is locally unique.

We use Theorem 54 to construct and to justify the correctness of numerically accessible

algorithms to estimate the breakdown of analyticity. A prototype algorithm to estimate

the breakdown is given below.

Algorithm 55.

Choose a path in the parameter space starting with the integrable case

Initialize

The parameters and the solution at the integrable case

Repeat

Increase the parameters along the path

Run the iterative step

If (Iterations of the Newton’s step do not converge)

Decrease the increment in parameters

Else (Iteration success)

Record the values of the parameters

and the Sobolev norm of the solution

If Non-degeneracy conditions fail

Return “inconclusive”

Until Sobolev norm exceeds a threshold

The ending point of the algorithm is the estimated critical value, namely when the

Newton’s steps converge, but the Sobolev norm exceeds a threshold.

Algorithm 55 has been implemented to estimate the breakdown of analiticity of quasi–

periodic attractors of conformally symplectic maps in [11]; for similar calculations in the

symplectic case see [13].

We remark that the critical values, obtained when the Sobolev norm exceeds a thresh-

old, are not claimed to be sharp. An example of such empirical values can be found in

[11] for the case of the dissipative standard map.
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A recurrent remark concerning schemes like Algorithm 55 is that one can make the

results more convincing by observing that the norms blow up according to a power law.

Renormalization group predicts that there is a power law blow up for each Sobolev

norm and that there is a simple relation between the scaling exponents corresponding to

Sobolev norms (see [21, 11]). These empirically found scaling relations are consistent with

a renormalization group description of the breakdown. A version of this renormalization

group was proposed in [57].

10. Perturbative expansions

In several applications, the conformally symplectic mappings (or flows) include parame-

ters, some of which may be small. For example, in celestial mechanics applications, one

can often consider the masses of the planets as small (compared to the masses of the

Sun) or even the dissipation to be small.

In these circumstances, it is natural (and standard in theoretical physics) to obtain

perturbative expansions of the objects of interest in terms of the small parameter. From

the mathematical point of view, there are several natural results one can consider. One

result shows that indeed one can compute the expansion in power series and that the

formal expansion can be carried to all orders (when the family of maps is analytic). A

second type of results is to prove estimates on the reminder and the general term, thus

showing that the formal power series indeed defines a convergent series. We will present

results of all these types. Theorem 58 shows that there are perturbation results to all

orders, Theorem 59 shows that, when the unperturbed case is dissipative, the perturbative

series indeed defines an analytic function. Note that Theorem 58 applies also to the case

that the unperturbed system is conservative. Indeed, when the unperturbed system is

conservative and the perturbations are not, we present arguments that suggest that for

typical systems, the perturbative expansions exist to all orders, but do not converge. The

proof of Theorems 58 and 59 is based on the use of the automatic reducibility coming

from the geometry. We note that this also leads to an efficient algorithm to compute the

perturbative expansions. Indeed, we obtain a quadratic algorithm, whose step doubles

the number of terms computed so far in the perturbative expansion.

10.1. Basic set up. Since we will deal with analytic functions, it is convenient to con-

sider maps defined in complex extensions, namely

f : Λ× V × An × T
n
ρ → An × T

n
ρ ,

where Λ ⊂ C
n, An ⊂ C

n, 0 ∈ V ⊂ C are open sets. We think of the variables in An,T
n
ρ

to be the dynamical action–angle variables. The variables in Λ are the variables µ that

we have considered so far. Note that we have already developed a theory for families of

maps in this form. The variable in V , which we will denote by ε and which we will refer
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to as external parameter, has the meaning of the perturbation parameter. Since often

the perturbation parameter is small, it is convenient to assume that ε = 0 is a possible

value. The goal of this section is to study how the results obtained for ε fixed depend on

the value of ε. That is, we will investigate the function µ(ε) and we study whether one

can obtain perturbative expansions in ε of the result. We write the families as

fµ,ε(I, ϕ) = (Ī , ϕ̄) ,

so that we consider µ, ε as parameters. We assume that each of the mappings fµ,ε is

conformally symplectic, namely

(fµ,ε)
∗Ω = λεΩ ,

for some function λε. We assume that for ε = 0 the family fµ,0 admits a solution µ0, K0

of the invariance equation

fµ0,0 ◦K0 = K0 ◦ Tω , (10.1)

satisfying the non–degeneracy condition of Theorem 20. An important particular case

for the assumption (10.1) is that fµ0,0 is an integrable mapping, but we are not assuming

that. Finally, we assume that ω is Diophantine (see (3.1)). Note that Theorem 20 implies

that, changing ε in a sufficiently small neighborhood, there exists a solution (µε, Kε) of

the equation

fµε,ε ◦Kε = Kε ◦ Tω . (10.2)

Theorem 20 gives that the solution is locally unique and that it depends in a Lipschitz

way on ε (in some appropriate topologies for the mapping K).

In this section we aim to study the functions µε, Kε. First, we will show that there are

solutions of the parameterized equations (10.2) in the sense of power series in ε and later

we will show that these power series are actually analytic (notice that there are some

differences among the hypotheses of the two results). As it is well known, the existence

of solutions to all orders are required to satisfy some Diophantine condition, such as

(3.1) (or the Brjuno–Rüssmann conditions in [59].) The second difference is that we can

establish analyticity on parameters only when all the maps are contractive. Of course,

when all maps are symplectic, the results are well known ([53]).

Remark 56. We have considered only the case in which the perturbing parameter is one–

dimensional. However, the results easily generalize to deduce the analyticity with respect

to more parameters. Indeed, if ε = (ε1, . . . , εn), εi ∈ C, we can consider ε1, . . . , εi−1,

εi+1, . . . , εn fixed and we can apply the same technique to show the convergence. Then,

it suffices to use Hartogs theorem ([43]) to conclude that µ, K are jointly analytic in all

variables.
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10.2. Formal series solutions. We are seeking solutions of (10.2) of the form

µε =
∞∑

i=0

µ(i)εi , Kε =
∞∑

i=0

K(i)εi ,

for some unknown coefficients µ(i), K(i). More precisely, we seek µ(i), K(i) such that,

using a truncation of µε and Kε to the order N , one has

fPN
i=0 µ(i)εi,ε ◦

N∑

i=0

K(i)εi =

N∑

i=0

K(i) ◦ Tωε
i + o(εN+1) . (10.3)

The o(εN+1) in (10.3) can be understood in two meanings, which are indeed equivalent:

A) Formal sense: if we substitute the series, expand and group all the terms in ε,

then all the coefficients of εi, i ≤ N , vanish.

B) Asymptotic sense: if we substitute

µ≤N
ε =

N∑

i=0

µ(i)εi , K≤N
ε =

N∑

i=0

K(i)εi ,

into (10.2), we obtain for some ρ′ > 0:

||fµ≤N
ε ,ε ◦K

≤N
ε −K≤N

ε ◦ Tω||Aρ′
≤ CεN+1 . (10.4)

Remark 57. For the series that we are considering, both notions are equivalent as it

can be easily seen. Note that the function at the left hand side of (10.4) is analytic in ε.

Since there are only non–negative powers of ε involved, the coefficients of the expansion

in ε up to the order N depend only on the coefficients of the expansion of µε, Kε up

to the order N . Hence, if we substitute a polynomial truncation of the power series, we

obtain that the coefficients of order i ≤ N of the power series are given by the formulas

obtained in the formal power series expansions. If they vanish, then we obtain (10.4).

Theorem 58. Assume that the families fµ,ε are as above, that ω satisfies fµ,0 ◦ K0 =

K0 ◦Tω and that Assumption H3 in Theorem 20 is satisfied. Assume furthermore that ω

satisfies (3.1). Then, there is a formal power series solution of (10.2). Moreover, there

is one and only one such a series that, besides (10.2), solves also (5.3).

The reason why we impose the normalization (5.3) is that the solutions of the invariance

equation are not unique, since we can always change the origin of the phases in the

parameterization, and still obtain a solution. Other normalizations could work just as

well.

Proof. Since fµ(0),0 ◦K
(0) = K(0) ◦Tω and (fµ(0),0)

∗Ω = λ0Ω for some value λ0, proceeding

as in Section 3.1, there exist M,S as in (3.14) such that

Dfµ(0),0 ◦K
(0)(θ)M(θ) = M(θ + ω)B(θ) , B(θ) ≡

(
Id S(θ)
0 λ0 Id

)
. (10.5)
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Note that since K(0), µ(0) are exact solutions of the invariance equation, the formulas

in (10.5) are exact as indicated in Section 3.1. As standard in perturbation theory, we

expand (10.2) in ε and match the coefficients of equal powers of ε on both sides of the

equation. This will give us recursive equations that, as we will see, determine K(i), µ(i),

provided that we have computed all the previous ones. Equating terms of order ε in

(10.2), we find

Dfµ(0),0 ◦K
(0)K(1) −K(1) ◦ Tω + (Dµf)µ(0),0 ◦K

(0)µ(1) + (Dεf)µ(0),0 ◦K
(0) = 0 . (10.6)

More generally, matching the terms of order εi we obtain

Dfµ(0),0◦K
(0)K(i)−K(i)◦Tω +(Dµf)µ(0),0◦K

(0)µ(i) = Pi(K
(1), . . . , K(i−1), µ(1), . . . µ(i−1)) ,

(10.7)

where Pi is a polynomial expression in K(1), . . . , K(i−1), µ(1), . . . , µ(i−1), whose coefficients

are given by the polynomial derivatives of fµ,ε evaluated at µ = µ(0), ε = 0, and composed

with K(0). Of course (10.6) is an equation for (µ(1), K(1)), while (10.7) is an equation for

(µ(i), K(i)). The equations (10.6) and (10.7) have to be supplemented with the equations

obtained expanding (5.3), namely
∫

Tn

[
M−1(θ)(K(i)(θ)−K(0)(θ))

]
1
dθ = 0 , (10.8)

so that we adjust the average of the first component of W , being W =
∑∞

i=0W
(i)εi,

as it was done in (5.3) which implies a shifting of the origin of the angle coordinate.

Equation (10.7) can be conveniently studied using (10.5). As in the Newton’s step, we

substitute (10.5) into (10.7) and, introducing the notation of the Newton’s step, namely

K(i)(θ) = M(θ)W (i)(θ), we obtain

B(θ)W (i)(θ)−W (i)(θ + ω) +M−1(θ + ω)(Dµf)µ(0),0 ◦K
(0)(θ)µ(i)

= M−1(θ + ω)Pi(K
(1), . . . , K(i−1), µ(1), . . . , µ(i−1)) .

(10.9)

We recall that expressing equation (10.9) in components (denoted with subscripts) we

obtain the following equations:

λ0(W
(i))2(θ)− (W (i))2(θ + ω) + [M−1(θ + ω)(Dµf)µ(0),0 ◦K

(0)]2µ
(i)

= [M−1(θ + ω)Pi(θ)]2 ,

(W (i))1(θ)− (W (i))1(θ + ω) + S(θ)(W (i))2(θ) + [M−1(θ + ω)(Dµf)µ(0),0 ◦K
(0)(θ)]1µ

(i)

= [M−1(θ + ω)Pi(θ)]1 .

These equations can be solved as in Section 6 using the non–degeneracy assumption

and the Diophantine property of ω. We note that for λ0 6= 1, it suffices to solve one

equation involving small divisors and another equation without small divisors. When

λ0 = 1, we have to solve two equations involving small divisors. Recall that the existence

of solutions of the small divisor equations requires that some average vanishes. Hence,
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depending on whether |λ0| 6= 1 or λ0 = 1 one needs to deal with one or two obstructions.

Of course, we also obtain different estimates on the solutions depending on whether we

solve one or two equations, but this is not our concern here. In the case when |λ0| 6= 1,

we start by solving for (W (i))2. Because the equation does not have small divisors, once

we fix µ(i), the (W (i))2 is determined uniquely. The µ(i) is determined in such a way

that the equation for (W (i))1 – which involves small divisors – has a solution. Under a

non–degeneracy condition of the form (5.1), we can determine (W (i))1, (W (i))2, µ
(i). The

solution is unique up to a constant, which is chosen so that (10.8) is satisfied. In the case

when λ0 = 1, we obtain that the equation for (W (i))2 can be solved by choosing properly

µ(i). Nevertheless, the solution is determined only up to an additive constant, which can

be chosen in such a way that the equation for (W (i))1 is solvable. Again, this determines

(W (i))1 up to an additive constant, which is chosen so that (10.8) is satisfied. �

10.3. Convergence of the perturbative series expansions. In this section we prove

a result to establish that the formal series expansions are convergent. Its proof is a rather

simple consequence of the “a–posteriori” format of Theorem 20.

Theorem 59. In the conditions of Theorem 58, assume furthermore that |λ| 6= 1. Then,

the normalized power series obtained in Theorem 58 converges to an analytic function.

Proof. First of all, we observe that Theorem 20 produces a family of solutions (µε, Kε) for

all |ε| sufficiently small. The proof of the theorem shows that the solutions are Lipschitz

functions with respect to ε. We now turn to prove that they are actually differentiable

(in the complex sense) and therefore analytic in ε. We note that the first order expansion

gives us a formal derivative that satisfies the inequality for η > 0:

‖fµε+η , ε+η ◦ (K(0)
ε + ηK(1)

ε )− (K(0)
ε + ηK(1)

ε ) ◦ Tω‖Aρ−δ
≤ C δ−α ν−2 η2

for suitable constants C > 0, α > 0. We finally remark that (µ
(0)
ε + ηµ

(1)
ε , K

(0)
ε + ηK

(1)
ε )

is an approximate solution of the invariance equation for ε + η up to an error bounded

by O(ε2); on the other hand, the non–degeneracy conditions remain the same.

For η small enough, we can apply Theorem 20 to obtain the existence of a solution

(µ̃ε+η, K̃ε+η) of (3.2) for the parameters ε+ η, satisfying

|µ̃ε+η − µ
(0)
ε − ηµ

(1)
ε | ≤ C η2 ,

‖K̃ε+η −K
(0)
ε − ηK

(1)
ε ‖Aρ−2δ

≤ C η2 .

Using Theorem 28 we obtain that (µ̃, K̃) is precisely the solution produced by a direct

application of Theorem 20. Therefore, the resulting solution satisfies the inequalities:

|µε+η − µ
(0)
ε − ηµ

(1)
ε | ≤ C η2 ,

‖Kε+η −K
(0)
ε − ηK

(1)
ε ‖Aρ−2δ

≤ C η2 .
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As a consequence, the quantity µ
(1)
ε is the derivative of µε and K

(1)
ε is the derivative

of Kε, whenever we consider Kε in the domain T
n
ρ−2δ. Once we know that (µε, Kε) is

differentiable for ε in a complex neighborhood of zero, we know that its Taylor expansion

in ε converges in the domain Cn × Tn
ρ−2δ. Since we know that the functions Kε, µε are

analytic, it is easy to argue that the (convergent) Taylor expansions of these functions are

the functions that we have computed in the perturbative expansions. Using Remark 57,

we note that the coefficients of the Taylor expansion solve (10.7) and (10.8). Since the

solutions of these equations are unique, we conclude that, indeed, the formal solutions are

the Taylor series of the analytic functions Kε, µε and that, therefore, they converge. �

Remark 60. Perturbative expansions provide a tool to determine an explicit relation

between the frequency ω and the drift µ. For example, in the case of the dissipative

standard map (2.2), one can proceed as follows. Let ∆λ be defined as the finite difference

operator acting on a function u = u(θ), θ ∈ T, as ∆λu(θ) = u(θ+ ω
2
)− λu(θ− ω

2
); then,

parametrising the invariant torus as ϕ = θ+u(θ) and using the invariance equation, one

gets

∆1∆λu(θ)− λV
′(θ + u(θ)) + γ = 0 , (10.10)

where γ = ω(1− λ)− µλ. Multiplying (10.10) by 1 + uθ and taking the average, one gets

γ + 〈uθ∆1∆λu〉 = 0 ,

namely

µλ = ω(1− λ) + 〈uθ∆1∆λu〉 ,

which relates the frequency ω and the drift µ (see [19]).

10.3.1. Some conjectures on the convergence of the perturbative expansions. Note that

the hypotheses of Theorem 58 on the existence of power series are less restrictive than

those of Theorem 59 on the convergence of the power series expansions thus obtained.

The existence of formal power series is valid both for λ0 = 1 and for |λ0| 6= 1, whereas

the convergence is established only when |λ0| 6= 1. There is a good reason for these

restrictions. In fact, we note that the equations λ0(W
(i))2 − (W (i))2 ◦ Tω = η could fail

to have solutions for all η whenever

λ0 = exp(2πikω) , k ∈ Z
n\{0} . (10.11)

In such a case, we can only obtain solutions for η such that η̂ak = 0, a ∈ Z. Since these

numbers are dense on the unit circle, we cannot develop a theory for open sets of λ0

which contain 1. The following heuristic argument supports our first conjecture.

Conjecture 61. If λ0 = 1 and λµε 6≡ 1, then the perturbative expansion diverges for a

generic family fµ,ε.
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The heuristic argument for Conjecture 61 follows from the open mapping theorem: if

λµε is non–trivial (which is a generic condition), in any complex neighborhood of zero

in the ε–plane, we see that there would be some values ε∗ for which λµε∗
is of the form

(10.11). For these values, we cannot guarantee that there exists a derivative with respect

to ε by the previous argument. Indeed, it seems plausible that these derivatives do not

exist because the right hand side of the equation we have to solve does not satisfy the

constraints. This would be clear if fµε , µε, Kε were arbitrary, but of course, they are

closely related. The same argument applies when |λ0| = 1, but nevertheless the series is

defined to all orders. These numbers are of full measure in the unit circle.

Conjecture 62. When λ0 = 1 and ω is Diophantine, the perturbative series are Gevrey.

For a family which satisfies some non–degeneracy assumption, the functions Kε, µε are

analytic in a domain which is a ball in the complex plane minus a sequence of balls with

centers in a curve and whose radii are bounded by a function that decreases exponentially

fast with the distance to the origin.

In the paper [40], one has an argument that shows that, using Theorem 20, the second

part of the conjecture is a consequence of the first. The first part seems plausible because

of analogies with other cases.

Conjecture 63. Let f0 be a non–degenerate system with an analytic invariant torus,

K0. Let ω be a frequency that does not satisfy a non–resonance condition of the form

lim
N→∞

max
q∈Zn,|q|≤N,p∈Z

|ω · q − p|−1 exp(−αN) = 0

for all α ∈ R+. Then, there exists an analytic family fε – indeed polynomial in ε –

for which it is impossible to obtain an asymptotic expansion. Indeed, such functions are

generic.

Similar phenomena in other contexts have been discussed in [62, 49, 60]. Note that

a consequence of Conjecture 63 is that there is a residual set of frequencies for which

the perturbative expansions can be defined to all orders, but nevertheless diverge for all

ε 6= 0.

10.4. A fast algorithm for the computation of perturbative expansions. An

alternative proof of Theorem 59. The main observation is that algorithm 32 can be

lifted to analytic families. The quadratic convergence of the algorithm implies that the

number of terms in the expansion doubles at every step. Also, using the usual KAM

estimates, we can establish that the series converges. We just describe the iterative step

starting from the equation

f
µ

(N)
ε
◦K(N)

ε −K(N)
ε ◦ Tω = E(N)

ε ;
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proceeding as in Section 3.1, in analogy to (10.5), we obtain that

Df
µ

(N)
ε
◦K(N)

ε (θ)M (N)
ε (θ) = M (N)

ε (θ + ω)B(N)
ε (θ) +O(εN) ,

B(N)
ε (θ) =

(
Id S

(N)
ε (θ)

0 λN
ε Id

)
.

Note that in this case, of course, all the objects involved in the solution of the cohomology

equations are functions depending on ε. The fact that the estimates are uniform in ε

leads to the conclusion that exactly the same estimates used in the iterative step hold for

the convergence in the sup–norm of families. Since the uniform limit of analytic functions

is also analytic, we obtain that the solution depends analytically on parameters. We also

note that this is a practical algorithm to compute the perturbative series expansions.

Using the methods of automatic differentiation for functions of two variables ([8], see [34]

for a modern review), one can implement the operators involved in the evaluation of the

Newton’s method.

Compared with a direct numerical solution of (10.7) this method is not only faster, but

it also has the advantage that, being a Newton’s method, it is numerically stable; on the

contrary, in the order by order method, the errors in the low order affect the high–order

terms, but they are never corrected, so that the errors accumulate on higher order terms.

On the other hand, the Newton’s method keeps on correcting even the low–order terms.

Appendix A. A dissipative KAM scheme for flows

In this section, we discuss a practical scheme to compute parameterizations of invariant

tori for flows. We present only the formal calculations; the convergence of the scheme

can be proved in a very similar way as it was done for mappings. We will not discuss

the method in the greatest generality as possible, but we will assume that the symplectic

form is given by Ω = dϕ ∧ dI. In this context, we consider a conformally symplectic

family of vector fields of the form (2.4), (2.5), that we write as

İ = −
∂H(I, ϕ)

∂ϕ
+ λI + µ

ϕ̇ =
∂H(I, ϕ)

∂I
,

(A.1)

defined over a manifoldM⊂ Tn × Rn and being µ a parameter in Rn.

Let ω ∈ Rn be a diophantine frequency for flows, namely ω ∈ Dn(ν, τ) with

Dn(ν, τ) = {ω ∈ R
n : |ω · k| ≥ ν|k|−τ ∀k ∈ Z

n\{0} } .

We parameterize an invariant attractor with frequency ω as (I, ϕ) = K(θ) for θ ∈ Tn,

such that θ̇ = ω for a suitable embedding K : Tn →M. Let ∂ω be the partial derivative

operator ∂ω ≡ ω · ∂θ; denoting by Fµ the vector field associated to (A.1), we obtain that
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K must satisfy the invariance equation

∂ωK(θ)− Fµ ◦K(θ) = 0 . (A.2)

Taking the gradient of (A.2) we obtain

D(∂ωK(θ))−∇(Fµ ◦K(θ))DK(θ) = 0 .

The Lagrangian character of the torus implies that K satisfies

DK(θ)T J ◦K(θ)DK(θ) = 0 .

The equivalent of the automatic reducibility of Section 3.1 is obtained through the fol-

lowing Proposition.

Proposition 64. Let N(θ) ≡ (DK(θ)TDK(θ))−1; let M be the matrix obtained by jux-

taposing the matrices DK(θ), JDK(θ)N(θ), i.e.

M(θ) ≡ [DK(θ) | JDK(θ)N(θ)] . (A.3)

Then, setting A ≡ ∇Fµ ◦K, we have:

∂ωM(θ)− A(θ)M(θ) = M(θ)

(
0 S(θ)
0 λ Id

)
. (A.4)

with

S(θ) ≡ N(θ)DK(θ)TJ(A(θ) + A(θ)T )DK(θ)N(θ) .

Proof. Let us compute separately the first and second half of the columns of W (θ) ≡

∂ωM(θ)− A(θ)M(θ). The first half columns are zero, since (A.2) implies (for simplicity

of notation we omit the argument θ):

∂ω(DK) = (∇Fµ ◦K)DK

or

∂ω(DK) = ADK . (A.5)

The second half columns M2 are given by

M2(θ) ≡ ∂ω(J DK N)− AJ DKN ;

due to (A.5) we obtain

M2 = J∂ω(DK)N + JDK∂ω(N)− AJ DKN

= JADKN + J DK ∂ω(N)−AJ DK N

= (JA− AJ)DKN + J DK∂ω(N) .

The conformally symplectic condition for flows can be written as

(∇Fµ ◦K)J + J(∇Fµ ◦K)T = −λ J . (A.6)
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From (A.6) one obtains that AJ = −JAT − λJ , so that

M2 = J(A+ AT )DKN + λJDK N + J DK ∂ω(N) .

Moreover, using NDKTDK = Id, it follows that

∂ω(N) = −N DKT (A+ AT )DKN ; (A.7)

in fact, from

∂ω(N)DKTDK +N∂ω(DKT )DK +NDKT∂ω(DK) = 0

and being ∂ω(DK) = ADK, ∂ω(DKT ) = DKT AT , one has

∂ω(N)N−1 +NDKTATDK +NDKTADK = 0 ,

which gives (A.7). Since the vectors {∂K(θ)
∂θi

, J ∂K(θ)
∂θi
}i=1,...,n form a basis of R2n, we can

find n× n matrices S(θ), T (θ), such that

M2(θ) = DK(θ)S(θ) + JDK(θ)N(θ)T (θ) . (A.8)

Multiplying by −DKT J , one obtains

T = −DKT J M2 = λ Id .

Multiplying (A.8) by N(θ)DK(θ)T one obtains

S = −N DKT [AJ DKN − ∂ω(J DK N)]

= −N DKT (AJ − J A)DKN ,

being DKTJDK = 0 and

∂ω(JDKN) = J ADKN + J DK ∂ω(N) .

Since (A.6) implies that AJ = −JAT − λJ , namely AJ − JA = −J(A+AT )− λ J , one

has

S = N DKT J(A+ AT )DKN ,

being NDKTJDKN = 0, so that we finally obtain (A.4). �

Assume that (A.2) is satisfied up to an error term E, say

∂ωK − Fµ ◦K = E .

As in Section 6.1, we denote by ∆, σ the corrections to K, µ and we write the linearized

equation as

∂ω∆− A∆− (∇µFµ ◦K)σ = −E .

To solve this equation we make the change of variables

∆(θ) ≡ M(θ)W (θ) ,
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with M as in (A.3) and W to be determined as follows. We aim to find the corrections

∆, σ, such that the error of the approximate linearized equation is quadratically reduced.

Let us assume that

∂ωM(θ)− A(θ)M(θ) = M(θ)

(
0 S(θ)
0 λ Id

)
+R ,

for some error function R = R(θ). The iterative step is obtained by solving the following

equation (A.9), where the term RW is neglected:

∂ωW +

(
0 S(θ)
0 λId

)
W = −Ẽ +M−1(∇µFµ ◦K)σ , (A.9)

with Ẽ ≡M−1E. We have thus obtained differential equations with constant coefficients,

which can be solved using Fourier methods. Let

Ã ≡ −M−1(∇µFµ ◦K) ;

denoting the components of W as (W1,W2), we have

∂ωW1(θ) + S(θ)W2(θ) = −Ẽ1(θ)− Ã1(θ)σ

∂ωW2(θ) + λW2(θ) = −Ẽ2(θ)− Ã2(θ)σ ,
(A.10)

where Ẽ ≡ (Ẽ1, Ẽ2), Ã ≡ [Ã1 | Ã2] with Ã1, Ã2 being n × n matrices. For any |λ| 6= 0

the second equation can always be solved, while for any λ the first equation involves

small divisors and the right hand side of (A.10) must have zero average. Using the same

notation as in Section 6.2.1, namely setting W1 = W 1 + (W1)
0, W2 = W 2 + (W2)

0,

(W2)
0 = (Ba)

0 + σ(Bb)
0, one is led to choose W 2, σ as the solution of

(
S S(Bb)0 + Ã1

λ Id Ã2

)(
W2

σ

)
=

(
−S(Ba)0 − Ẽ1

−Ẽ2

)
, (A.11)

provided the following non–degeneracy condition is satisfied

det

(
S S(Bb)0 + Ã1

λ Id Ã2

)
6= 0 .

To conclude, we summarize the algorithm for computing the improved approximation for

flows as follows.

Algorithm 65. Given K : T
n →M, µ ∈ R

n perform the following computations:

1) a← ∂ωK

2) b← Fµ ◦K

3) E ← a− b

4.1) α← DK(θ)

4.2) N ← (αTα)−1
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4.3) β ← αN

4.4) γ ← Jβ

4.5) M ← [α | γ]

4.6) Ẽ ←M−1E

4.7) A←∇Fµ ◦K

4.8) G←∇µFµ ◦K

4.9) S ← NαTJ(A + AT )β

4.10) Ã← −M−1G

5) (Ba)
0 solves ∂ω(Ba)

0 +λ(Ba)
0 = −(Ẽ2)

0, (Bb)
0 solves ∂ω(Bb)

0 +λ(Bb)
0 = −(Ã2)

0

6) Find W 2, σ solving (A.11)

7) (W2)
0 = (Ba)

0 + σ(Bb)
0

8) W2 = (W2)
0 +W 2

9) W1 solves ∂ωW1(θ) + S(θ)W2(θ) = −Ẽ1(θ)− Ã1(θ)σ

10) K ← K +MW , µ← µ+ σ .
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