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1. Introduction

We consider the initial value problem for complex n-dimensional heat equa-
tion

∂tu = ∆u, u(0, z) = ϕ(z), (1)

where t ∈ C, z ∈ Cn, ∆ =
∑n
i=1 ∂

2
zi is the complex Laplace operator and ϕ

is holomorphic in a complex neighbourhood of the origin. The unique formal
power series solution of (1) is given by

û(t, z) =

∞∑
k=0

∆kϕ(z)

k!
tk. (2)

In the dimension n = 1 the problem of convergence of formal solution
(2) was already solved by Kowalevskaya [3]. She showed that û is convergent
if and only if the Cauchy data ϕ is an entire function of exponential order at
most 2. In the multidimensional case Aronszajn at all [1] solved the problem
of convergence of û in terms of the growth of ∆kϕ(z) for k ∈ N0. Another
approach was given by  Lysik [5]. He proved that û is convergent if and only
if the integral mean of ϕ over the closed ball B(x, t) or the sphere S(x, t) as
a function of a radius t extends to an entire function of exponential order at
most 2.
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If û diverges, it is natural to ask when it is Borel summable. In the
one-dimensional case the solution was given by Lutz at all [4]. They proved
that û is 1-summable in a direction d if and only if ϕ can be analytically
continued to infinity in directions d/2 and π + d/2 and the continuation is
of exponential order at most 2. In the multidimensional case the author [6]
proved that û is Borel summable in a direction d if and only if the function

Φn(t, z) =

{ ∫
S(0,1)

ϕ(z + tx) dS(x) if n is odd∫
B(0,1)

ϕ(z+tx) dx√
1−|x|2

if n is even

is analytically continued to infinity in directions d/2 and π+d/2 (with respect
to t) and to some ball with a centre at the origin (with respect to z) and this
continuation is of exponential order at most 2 as t→∞.

In the present paper we show that for arbitrary dimension n, we may
replace the functions Φn(t, z) in the above characterisation by the integral
mean of ϕ over the closed ball B(x, t) or the sphere S(x, t). The result is based
upon the mean-value formulas for analytic functions (see [5, Theorem 3.1]).
As an application, we use the procedure of Borel summability to find the Borel
sum u of the formal solution û. In this way we obtain the representation of the
solution u of the heat equation given by a complex version of the convolution
of the heat kernel and the Cauchy data ϕ.

2. Preliminaries

In the paper we use the following notation. The real closed ball (respectively
sphere) with a centre at x ∈ Rn and a radius t > 0 is denoted by B(x, t)
(respectively S(x, t)). Moreover, the complex disc in Cn with a centre at the
origin and a radius r > 0 is denoted by Dn

r := {z ∈ Cn : |z| < r}. If the
radius r is not essential, then we write it Dn for short.

Let a ∈ R. The Pochhammer symbol is defined by (a)0 := 1 and (a)k :=
a(a+ 1) · · · (a+ k − 1) for k ∈ N.

A sector in a direction d ∈ R with an opening ε > 0 in the universal

covering space C̃ of C \ {0} is defined by

S(d, ε) := {z ∈ C̃ : z = reiθ, d− ε/2 < θ < d+ ε/2, r > 0}.

Moreover, if the value of opening angle ε is not essential, then we denote it
briefly by Sd. We denote by Ŝd the set Sd ∪D1. By O(G) we understand the
space of holomorphic functions on a domain G ⊆ Cn.

Let us also recall some definitions and fundamental facts about the Borel
summability. For more details we refer the reader to [2].

Definition 1. A function u(t, z) ∈ O(S(d, ε)×Dn
r ) is of exponential growth of

order at most s > 0 as t→∞ in S(d, ε) if and only if for any r1 ∈ (0, r) and
any ε1 ∈ (0, ε) there exist A,B <∞ such that

max
|z|≤r1

|u(t, z)| ≤ AeB|t|
s

for t ∈ S(d, ε1).
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The space of such functions is denoted by Os(S(d, ε) × Dn
r ). We also write

Os(Ŝd ×Dn) for the space Os(Sd ×Dn) ∩ O(Ŝd ×Dn).
Analogously, a function ϕ ∈ O(S(d, ε)) is of exponential growth of order

at most s > 0 as z → ∞ in S(d, ε) if and only if for any ε1 ∈ (0, ε) there
exist A,B <∞ such that

|ϕ(z)| ≤ AeB|z|
s

for z ∈ S(d, ε1).

The space of such functions is denoted by Os(S(d, ε)). We also set Os(Ŝd) :=

Os(Sd) ∩ O(Ŝd).

Definition 2. Let d ∈ R. A formal series

û(t, z) =

∞∑
j=0

uj(z)

j!
tj with uj(z) ∈ O(Dn) (3)

is called Borel summable in a direction d if and only if its Borel transform
B̂û satisfies

(B̂û)(s, z) :=

∞∑
j=0

uj(z)

(j!)2
sj ∈ O1(Ŝd ×Dn).

The Borel sum of û in the direction d is represented by the Laplace transform
of v(s, z) := (B̂û)(s, z)

uθ(t, z) :=
1

t

∫ ∞(θ)

0

e−s/tv(s, z) ds,

where the integration is taken over any ray eiθR+ := {reiθ : r ≥ 0} with
θ ∈ (d− ε/2, d+ ε/2).

According to the general theory of moment summability (see [2, Section
6.5]), a formal series (3) is Borel summable in a direction d if and only if the
same holds for the series

∞∑
j=0

uj(z)
j!

(2j)!
tj .

Consequently, we obtain a characterisation of Borel summability, which is
analogous to Definition 2 (see also [2, Theorem 38 and Section 11])

Proposition 1. Let d ∈ R. A formal series (3) is Borel summable in a direction

d if and only if its modified Borel transform B̃û satisfies

(B̃û)(s, z) =

∞∑
j=0

uj(z)

(2j)!
sj ∈ O1(Ŝd ×Dn).

The Borel sum of û in the direction d is represented by the Ecalle acceleration
operator acting on ṽ(s, z) := (B̃û)(s, z) as follows

uθ(t, z) =
1√
t

∫ ∞(θ)

0

ṽ(s, z)C2(
√
s/t) d

√
s
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with θ ∈ (d − ε, d + ε). Here integration is taken over the ray eiθR+ and C2

is defined by

C2(ζ) :=
1

2πi

∫
γ

eu−ζ
√
u

√
u

du (4)

with a path of integration γ as in the Hankel integral for the inverse gamma
function (from ∞ along arg u = −π to some u0 < 0, then on the circle
|u| = |u0| to arg u = π, and back to ∞ along this ray).

3. Integral means

In this section we recall the notion of integral means. To this end we take a
continuous function ϕ on a domain Ω ⊂ Rn, x ∈ Ω and 0 < t < dist(x, ∂Ω).
Then we denote by M(ϕ; t, x) and N(ϕ; t, x) the integral means of ϕ over the
closed ball B(x, t) and the sphere S(x, t) respectively, i.e.

M(ϕ; t, x) = —

∫
B(x,t)

ϕ(y) dy :=
1

α(n)tn

∫
B(x,t)

ϕ(y) dy

N(ϕ; t, x) = —

∫
S(x,t)

ϕ(y) dS(y) :=
1

nα(n)tn−1

∫
S(x,t)

ϕ(y) dS(y),

where α(n) := πn/2

Γ(1+n/2) is the volume of the n-dimensional unit ball B(0, 1).

Moreover, since

M(ϕ; t, x) = —

∫
B(0,1)

ϕ(x+ ty) dy and N(ϕ; t, x) = —

∫
S(0,1)

ϕ(x+ ty) dS(y),

we may also consider M(ϕ; t, z) and N(ϕ; t, z) for complex variables t and z.
Hence, according to the mean-value properties for analytic functions we have

Proposition 2 (see [5, Theorem 3.1]). Let ϕ ∈ O(G), G ⊆ Cn and z ∈ G.
Then M(ϕ; t, z) and N(ϕ; t, z) are holomorphic functions at the origin as
functions of t and for t small enough

M(ϕ; t, z) =

∞∑
k=0

∆kϕ(z)

4k(n2 + 1)kk!
t2k and N(ϕ; t, z) =

∞∑
k=0

∆kϕ(z)

4k(n2 )kk!
t2k. (5)

Using the above proposition we find the relation between the series∑∞
k=0

∆kϕ(z)
(2k)! t

2k and
∑∞
k=0

∆kϕ(z)
(k!)2 t2k and the integral means M(ϕ; t, z) and

N(ϕ; t, z). Namely, we have

Lemma 1. Assume that ϕ ∈ O(G), G ⊆ Cn, z ∈ G and t is small enough.
Then it holds
∞∑
k=0

∆kϕ(z)

(2k)!
t2k =

1

n!!
∂t(t

−1∂t)
n−1
2 tnM(ϕ; t, z)

=
1

(n− 2)!!
∂t(t

−1∂t)
n−3
2 tn−2N(ϕ; t, z)
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for n = 2m+ 1;

∞∑
k=0

∆kϕ(z)

(k!)2
t2k =

1

n!!
(t−1∂t)

n
2 tnM(ϕ; 2t, z)

=
1

(n− 2)!!
(t−1∂t)

n−2
2 tn−2N(ϕ; 2t, z)

for n = 2m.

Proof. First, note that

4k(
n

2
+ 1)kk! = (2k)!!

(n+ 2k)!!

n!!
and 4k(

n

2
)kk! = (2k)!!

(n+ 2k − 2)!!

(n− 2)!!
.

(6)

If n is an odd number then by (5) and (6) we obtain

1

n!!
∂t(t

−1∂t)
n−1
2 tnM(ϕ; t, z) =

1

n!!
∂t(t

−1∂t)
n−1
2

∞∑
k=0

∆kϕ(z)

4k(n2 + 1)kk!
t2k+n

=
1

n!!

∞∑
k=0

(2k + n)(2k + n− 2) · · · (2k + 1)∆kϕ(z)
(2k)!!(2k+n)!!

n!!

t2k =

∞∑
k=0

∆kϕ(z)

(2k)!
t2k

and

1

(n− 2)!!
∂t(t

−1∂t)
n−3
2 tn−2N(ϕ; t, z)

=
1

(n− 2)!!
∂t(t

−1∂t)
n−3
2

∞∑
k=0

∆kϕ(z)

4k(n2 + 1)kk!
t2k+n

=
1

(n− 2)!!

∞∑
k=0

(2k + n− 2)(2k + n− 4) · · · (2k + 1)∆kϕ(z)
(2k)!!(2k+n−2)!!

(n−2)!!

t2k

=

∞∑
k=0

∆kϕ(z)

(2k)!
t2k,

which proves the first part of the lemma.

Analogously, if n is an even number then by (5) and (6) we have

1

n!!
(t−1∂t)

n
2 tnM(ϕ; 2t, z) =

1

n!!
(t−1∂t)

n
2

∞∑
k=0

∆kϕ(z)4k

4k(n2 + 1)kk!
t2k+n

=
1

n!!

∞∑
k=0

(2k + n)(2k + n− 2) · · · (2k + 2)∆kϕ(z)4k

(2k)!!(2k+n)!!
n!!

t2k =

∞∑
k=0

∆kϕ(z)

(k!)2
t2k.
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and

1

(n− 2)!!
(t−1∂t)

n−2
2 tn−2N(ϕ; 2t, z)

=
1

(n− 2)!!
(t−1∂t)

n−2
2

∞∑
k=0

∆kϕ(z)4k

4k(n2 )kk!
t2k+n−2

=
1

(n− 2)!!

∞∑
k=0

(2k + n− 2)(2k + n− 4) · · · (2k + 2)∆kϕ(z)4k

(2k)!!(2k+n−2)!!
(n−2)!!

t2k

=

∞∑
k=0

∆kϕ(z)

(k!)2
t2k,

which proves the second part of the lemma. �

4. Summability of formal solutions

Now, we are ready to state the main result of the paper.

Theorem 1. Let û be a formal solution of the n-dimensional complex heat
equation

∂tu = ∆u, u(0, z) = ϕ(z) ∈ O(Dn). (7)

Then the following conditions are equivalent:

• û is Borel summable in a direction d;
• M(ϕ; t, z) ∈ O2((Ŝd/2 ∪ Ŝd/2+π)×Dn);

• N(ϕ; t, z) ∈ O2((Ŝd/2 ∪ Ŝd/2+π)×Dn).

Proof. The formal solution û of (7) is given by (2). Applying the modified

Borel transform B̃ and the Borel transform B̂ to û and replacing s by t2 we
have

(B̃û)(t2, z) =

∞∑
k=0

∆kϕ(z)

(2k)!
t2k and (B̂û)(t2, z) =

∞∑
k=0

∆kϕ(z)

(k!)2
t2k.

By Proposition 1 and by Definition 2, the formal solution û is Borel sum-
mable in a direction d if and only if (B̃û)(t2, z) ∈ O2((Ŝd/2 ∪ Ŝd/2+π)×Dn)

or, equivalently if and only (B̂û)(t2, z) ∈ O2((Ŝd/2 ∪ Ŝd/2+π) × Dn). On

the other hand, by Lemma 1, M(ϕ; t, z) ∈ O2((Ŝd/2 ∪ Ŝd/2+π) × Dn) if

and only if N(ϕ; t, z) ∈ O2((Ŝd/2 ∪ Ŝd/2+π) × Dn) and, moreover, if and

only if
∑∞
k=0

∆kϕ(z)
(2k)! t

2k ∈ O2((Ŝd/2 ∪ Ŝd/2+π) ×Dn) in odd dimensions and∑∞
k=0

∆kϕ(z)
(k!)2 t2k ∈ O2((Ŝd/2 ∪ Ŝd/2+π) × Dn) in even dimension. Hence we

obtain our assertion. �

Using the representation of the Borel transform B̂û and the modified
Borel transform B̃û, we derive the Borel sum u for Borel summable formal
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solution û. To this end, we calculate the function C2 defined by (4). Using
the power series expansion (see [2, p. 175]) of C2 we have

C2(ζ) =

∞∑
n=0

(−ζ)n

n!Γ(1− (n+ 1)/2)
.

Since the Gamma function Γ(z) has the simple poles for z = 0,−1,−2, .. and

Γ(−k + 1/2) =
(−1)kk!4k

√
π

(2k)!
for k ∈ N0,

we obtain

C2(ζ) =

∞∑
k=0

ζ2k

(2k)!Γ(−k + 1/2)
=

1√
π

∞∑
k=0

(−1)kζ2k

4kk!
=

1√
π
e−

ζ2

4 . (8)

Now we are ready to prove that the procedure of Borel summability
gives us the solution u of the heat equation as the convolution of the heat
kernel and the Cauchy data. Namely, we have

Theorem 2. Let û be a formal solution of (7), which is Borel summable in a
direction d. Then the Borel sum of û in the direction d is given by

uθ(t, z) =
1

(4πt)n/2

∫
(eiθ/2R)n

e−
eiθ|x|2

4t ϕ(z + x) dx,

where θ ∈ (d− ε/2, d+ ε/2).

Proof. Fix θ ∈ (d − ε/2, d + ε/2). First, let us assume that n = 2m + 1. By
Proposition 1, (8) and Lemma 1, we have

uθ(t, z) =
1√
t

∫ ∞(θ)

0

(B̃û)(s, z)
1√
π
e−

s
4t d
√
s

s=τ2

=
1√
πt

∫ ∞(θ/2)

0

(B̃û)(τ2, z)e−
τ2

4t dτ

=
1√
πt

∫ ∞(θ/2)

0

e−
τ2

4t
1

(n− 2)!!
∂τ (τ−1∂τ )

n−3
2 τn−2N(ϕ; τ, z) dτ.

Now, by (1 + n−3
2 )-fold integration by parts we have

uθ(t, z) =
1√
πt

∫ ∞(θ/2)

0

τ

2t
e−

τ2

4t
1

(n− 2)!!
(τ−1∂τ )

n−3
2 τn−2N(ϕ; τ, z) dτ

=
1

(n− 2)!!(2t)
n−1
2

√
πt

∫ ∞(θ/2)

0

e−
τ2

4t τn−1N(ϕ; τ, z) dτ.
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Finally, using the definition of the integral means over the sphere we have

uθ(t, z) =
1

(n− 2)!!(2t)
n−1
2

√
πt

∫ ∞(θ/2)

0

e−
τ2

4t τn−1 —

∫
S(0,1)

ϕ(z + τy) dS(y) dτ

τy=x
=

1

(4πt)n/2

∫
(eiθ/2R)n

e−
eiθ|x|2

4t ϕ(z + x) dx,

since
1

nα(n)
=

Γ(1 + n/2)

nπn/2
=

n!!π1/2

2
n+1
2 nπn/2

=
(n− 2)!!

2
n+1
2 π

n−1
2

.

Analogously, for n = 2m we apply Definition 2, (8) and Lemma 1 to
calculate

uθ(t, z) =
1

t

∫ ∞(θ)

0

e−s/t(Bû)(s, z) ds
s=τ2

=
1

t

∫ ∞(θ/2)

0

e−τ
2/t(Bû)(τ2, z)2τ dτ

=
2

t

∫ ∞(θ/2)

0

e−τ
2/tτ

1

(n− 2)!!
(τ−1∂τ )

n−2
2 τn−2N(ϕ; 2τ, z) dτ

By n−2
2 -fold integration by parts and by the definition of the integral means

over the sphere we have

uθ(t, z) =
2n/2

tn/2(n− 2)!!

∫ ∞(θ/2)

0

e−τ
2/tτn−1 —

∫
S(0,1)

ϕ(z + 2τy) dS(y) dτ

2τ=σ
=

1

(2t)n/2(n− 2)!!

∫ ∞(θ/2)

0

e−
σ2

4t σn−1 —

∫
S(0,1)

ϕ(z + σy) dS(y) dσ

σy=x
=

1

(4πt)n/2

∫
(eiθ/2R)n

e−
eiθ|x|2

4t ϕ(z + x) dx,

since
1

nα(n)
=

Γ(1 + n/2)

nπn/2
=

n!!

2n/2nπn/2
=

(n− 2)!!

2n/2πn/2
.

�
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4. D.A. Lutz, M. Miyake, and R. Schäfke, On the Borel summability of divergent
solutions of the heat equation, Nagoya Math. J. 154 (1999), 1–29.

5. G.  Lysik, Mean-value properties of real analytic functions, Arch. Math. (Basel),
(to appear).



On the Borel summable solutions of multidimensional heat equation 9

6. S. Michalik, Summability of divergent solutions of the n-dimensional heat equa-
tion, J. Differential Equations 229 (2006), 353–366.

S lawomir Michalik
Institute of Mathematics Polish Academy of Sciences, P.O. Box 21, Śniadeckich 8
00-956 Warszawa, Poland
Faculty of Mathematics and Natural Sciences, College of Science
Cardinal Stefan Wyszyński University
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