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Abstract. For a given a normally hyperbolic invariant manifold, whose sta-
ble and unstable manifolds intersect transversally, we consider several tools
and techniques to detect orbits with prescribed trajectories: the scattering
map, the transition map, the method of correctly aligned windows, and the
shadowing lemma. We provide an user’s guide on how to apply these tools
and techniques to detect unstable orbits in Hamiltonian systems.

1. Introduction

Consider a normally hyperbolic invariant manifold for a flow or a map, and
assume that the stable and unstable manifolds of the normally hyperbolic invariant
manifold have a transverse intersection along a homoclinic manifold. One can
distinguish an inner dynamics, associated to the restriction of the flow or of the map
to the normally hyperbolic invariant manifold, and an outer dynamics, associated to
the homoclinic orbits. There exist pseudo-orbits obtained by alternatively following
the inner dynamics and the outer dynamics for some finite periods of time. An
important question in dynamics is whether there exist true orbits with similar
behavior. In this paper, we develop a toolkit of instruments and techniques to
detect true orbits near a normally hyperbolic invariant manifold, that alternatively
follow the inner dynamics and the outer dynamics, for all time. Some of the tools
discussed below have already been used in other works. The aim of this paper is to
provide a general recipe on how to make a systematic use of these tools in general
situations.

The first tool is the scattering map, introduced in [8], and further investigated in
[10]. The scattering map is defined on the normally hyperbolic invariant manifold
and it assigns to the foot of an unstable fiber passing through a point in the homo-
clinic manifold, the foot of the corresponding stable fiber that passes through the
same point in the homoclinic manifold. The scattering map can be defined both
in the flow case and in the map case. In Section 3 we describe the relationship
between the scattering map for a flow and the scattering map for the return map
to a surface of section. We note that the scattering map is defined in terms of the
geometric structure, however it is not dynamically defined – there is no actual orbit
that is given by the scattering map.

The second tool that we discuss is the transition map, that actually follows the
homoclinic orbits for a prescribed time. The transition map can be computed in
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terms of the scattering map. Again, we will have a transition map for the flow and
one for the return map, and we will describe the relationships between them. The
transition map is presented in Section 4.

The third tool is the topological method of correctly aligned windows (see [22]),
which is used to detect orbits with prescribed itineraries in a dynamical system.
A window is a homeomorphic copy of a multi-dimensional rectangle, with a choice
of an exit direction and of an entry direction. A window is correctly aligned with
another window if the image of the first window crosses the second window all the
way through and across its exit set. This method is reviewed briefly in Section 5.

The fourth tool is a shadowing lemma type of result for a normally hyperbolic
invariant manifold, presented in Section 6. The assumption is that a bi-infinite
sequence of windows lying in the normally hyperbolic invariant manifold is given,
with the consecutive pairs of windows being correctly aligned, alternately, under
the transition map (outer map), and under some power of the inner map. The
role of the windows is to approximate the location of orbits. Then there exists a
true orbit that follows closely these windows, in the prescribed order. To apply
this lemma for a normally hyperbolic invariant manifold for a map, one needs to
reduce the dynamics from the continuous case to the discrete case by considering
the return map to a surface of section, and construct the sequence of correctly
aligned windows for the resulting normally hyperbolic invariant manifold for the
return map. For this situation, the relationships between the scattering map for
the flow and the scattering map for the return map, and between the transition
map for the flow and the transition map for the return map, explored in Section 3
and Section 4, are useful.

A remarkable feature of these tools is that they can be used for both analytic
arguments and rigorous numerical verifications. The scattering map and the tran-
sition map can be computed explicitly in concrete systems. They can also be used
to reduce the dimensionality of the problem: from the phase space of a flow to a
normally hyperbolic invariant manifold for the flow, and further to the normally
hyperbolic invariant manifold for the return map to a surface of section. The shad-
owing lemma also plays a key role in reducing the dimensionality of the problem:
it requires the verification of topological conditions in the normally hyperbolic in-
variant manifold for the return map to conclude the existence of trajectories in
the phase space of the flow. In numerical applications, reducing the number of
dimensions of the objects computed is very crucial. The potency of these tools in
numerical application is illustrated in [7].

A main motivation for developing these tools resides with the instability problem
for Hamiltonian systems. We now describe two models where the above techniques
can be applied to show the existence of unstable orbits.

The first model is emblematic to the Arnold diffusion problem for Hamiltonian
systems [1]. This problem conjectures that generic Hamiltonian systems that are
close to integrable possess trajectories the move ‘wildly’ and ‘arbitrarily far’.

The model consists of a rotator and a pendulum with a small, periodic coupling.
This model is described by a time-dependent Hamiltonian. By considering the
return map to the surface of section given by the period of the perturbation, the
problem is reduced to the discrete case. The phase space of the rotator can be
described in action-angle coordinates, and its dynamics satisfies a twist condition.
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When the rotator and the pendulum are decoupled the system is integrable.
The phase space of the rotator is a normally hyperbolic invariant manifold for the
return map, and is foliated by invariant tori. The separatrix of the pendulum
determines hyperbolic stable and unstable manifolds of the normally hyperbolic
invariant manifold; these stable and unstable manifolds coincide. All trajectories
of the system are stable, in the sense that they experience no change in their action
variable.

The situation changes dramatically when a small, generic coupling is added to
the system. The phase space of the rotator is survived by a normally hyperbolic
invariant manifold. Its foliation by invariant tori is destroyed, however, the KAM
theory yields a Cantor family of invariant tori that survives the small coupling. The
surviving tori are slight deformations of some tori from the integrable case, and they
are referred as primary tori. The stable and unstable manifolds of the normally
hyperbolic invariant manifold no longer coincide, but they intersect transversally
along a homoclinic manifold. The unstable manifold of an invariant torus intersects
transversally the stable manifolds of all sufficiently close invariant tori. Thus, by
following the unstable manifold of a torus and then the stable manifold of a different
torus, one can obtain trajectories that exhibit a change in the action variable. The
scattering map associated to the homoclinic manifold can be explicitly computed
in terms of the coupling, so one can estimate the change in the action variable
along a homoclinic excursion. The actual homoclinic excursion is described by the
transition map. The Arnold instability problem requires to show that there exist
trajectories along which the action variable changes by some arbitrary quantity
that is independent of the size of the coupling. One difficulty is that the coupling
creates large gaps between the invariant tori, of size larger than the change in the
action variable achieved by the scattering map.

A geometric method to cross the large gaps, used in [9, 11], is to consider sec-
ondary invariant tori that are formed inside the large gaps by resonances. The
estimates on the scattering map show that there exist homoclinic orbits that con-
nect invariant primary tori outside the large gaps with invariant secondary tori
inside the gaps. The invariant tori (primary and secondary) and their heteroclinic
orbits form a ‘transition chain’.

Another geometric method to cross the large gaps, used in [16, 17] is to treat
the large gaps as Birkhoff Zones of Instability (regions between two invariant pri-
mary tori that contain no other invariant primary tori in their interior) and to use
connecting orbits inside the gaps that travel from one boundary of the Birkhoff
Zones of Instability to the other boundary. In this case, one obtains a sequence of
transition chains of invariant primary tori that are interspersed with Birkhoff Zones
of Instability.

Both methods, the one based on transition chain of primary and secondary tori,
and the one based on transition chains of invariant tori interspersed with Birkhoff
Zones of Instability, yield pseudo-orbits that follow the corresponding geometric
structures. To show the existence of true orbits that follow the geometric structures,
one can use the method of correctly aligned windows, as in [14, 16, 17]. The windows
used in these papers are full dimensional, and consecutive pairs of windows are
correctly aligned under suitable powers of the first return map. Alternatively, one
can construct windows contained in the phase space of the rotator, such that the
consecutive pairs of windows are correctly aligned, alternately, under the transition
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map, and under some power of the inner map. The shadowing lemma stated in
Theorem 6.1 implies that there is an orbit that follows closely these windows, in
the prescribed order. By choosing the initial and the final windows far from one
another, one obtains unstable orbits as claimed by the Arnold diffusion problem.

The second model is the spatial circular restricted three-body problem, in the
case of the Sun-Earth system. We follow [7]. This problem considers the spatial
motion of an infinitesimal body under the gravitational influence of Sun and Earth
that are assumed to move on circular orbits about their center of mass. When
the equations of motion of the infinitesimal body are described relative to a co-
rotating frame, then the dynamics is given by a Hamiltonian system. The system
has five equilibrium points; one of them, denoted L1, lies between the two primaries.
We will focus our attention on the dynamics near L1. This problem is not close
to integrable, and so the methods from perturbation theory do not apply. The
approach below is numerical.

Fixing an energy manifold close to that of L1, inside the energy manifold one
computes a 3-dimensional normally hyperbolic invariant manifold for the Hamil-
tonian flow. One shows that the stable and unstable manifolds of the normally
hyperbolic invariant manifold intersect transversally. Fixing a homoclinic intersec-
tion, one computes the corresponding scattering map for the the normally hyper-
bolic invariant manifold of the flow [3, 12]. By making a choice on how closely
to follow the homoclinic orbits to the normally hyperbolic invariant manifold, one
also computes the corresponding transition map. Inside the normally hyperbolic
invariant manifold, one identifies a family of 2-dimensional invariant tori with the
property that the stable and unstable manifolds of nearby tori intersect transver-
sally. Such invariant tori can be enchained in a transition chain. In order to detect
orbits that follow the transition chain, one can use the method of correctly aligned
windows. Since the energy manifold is 5-dimensional, it is convenient to reduce
the problem to a lower dimension by considering the return map relative to a suit-
able local surface of section to the Hamiltonian flow. The surface of section is
4-dimensional, the normally hyperbolic invariant manifold relative to the return
map is 2-dimensional, and the corresponding tori are 1-dimensional. It is possible
to endow the 2-dimensional normally hyperbolic invariant manifold with a system
of action-angle coordinates, where the action represents the out-of-plane amplitude
of the motion of the infinitesimal body. The scattering map and the transition map
corresponding to the return map can be computed as in Section 3 and in Section 4.
Then one constructs 2-dimensional windows contained inside the 2-dimensional nor-
mally hyperbolic invariant manifold, with the property that the consecutive pairs
of windows are correctly aligned, alternately, under the transition map, and under
some power of the inner map. The shadowing lemma stated in Theorem 6.1 implies
that there exist orbits that follow closely these windows, in the prescribed order.
These orbits increase the out-of-plane amplitude of the motion of the infinitesimal
body. The argument is entirely numerical, however, due to the robustness of the
correct alignment of windows given by Proposition 5.4, it can be translated into a
rigorous verification with the aid of the computer, using the methods from [4, 5].

It seems possible that the above argument can be proved analytically, using the
same methodology, in the case of the spatial circular restricted three-body problem
when the relative mass of the smaller primary is sufficiently small, and the energy
level is close to the energy of L1.
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As a practical conclusion, we propose a possible recipe for finding trajectories
with prescribed itineraries for a normally hyperbolic invariant manifold with the
property that its stable and unstable manifolds have a transverse intersection along
a homoclinic manifold:

• Compute the scattering map associated to the homoclinic manifold.
• For some prescribed forward and backwards integration times, compute the

corresponding transition map.
• If necessary, reduce the dynamics from a flow to the return map relative

via some surface of section. Determine the normally hyperbolic invariant
manifold relative to the surface of section, and compute the inner map – the
restriction of the return map relative to the normally hyperbolic invariant
manifold.

• Compute the scattering map and the transition map for the return map.
• Construct windows within the normally hyperbolic invariant manifold rel-

ative to the surface of section, with the the property that the consecutive
pairs of windows are correctly aligned, alternately, under the transition map
and under some power of the inner map.

• Apply the shadowing lemma stated in Theorem 6.1 to conclude that there
exist orbits that follow closely these windows.

2. Preliminaries

In this section we review the concepts of normal hyperbolicity for flows and maps,
normally hyperbolic invariant manifold for the return map to a surface of section,
and we state a version of the Lambda Lemma that will be used in the subsequent
sections.

2.1. Normally hyperbolic invariant manifolds. In this section we recall the
concept of a normally hyperbolic invariant manifolds for a map and for a flow,
following [13, 18].

Let M be a Cr-smooth, m-dimensional manifold, with r ≥ 1, and Φ : M×R→ M
a Cr-smooth flow on M .

Definition 2.1. A submanifold Λ of M is said to be a normally hyperbolic invariant
manifold for Φ if Λ is invariant under Φ, there exists a splitting of the tangent bundle
of TM into sub-bundles

TM = Eu ⊕ Es ⊕ TΛ,

that are invariant under dΦt for all t ∈ R, and there exist a constant C > 0 and
rates 0 < β < α, such that for all x ∈ Λ we have

v ∈ Es
x ⇔ ‖DΦt(x)(v)‖ ≤ Ce−αt‖v‖ for all t ≥ 0,

v ∈ Eu
x ⇔ ‖DΦt(x)(v)‖ ≤ Ceαt‖v‖ for all t ≤ 0,

v ∈ TxΛ ⇔ ‖DΦt(x)(v)‖ ≤ Ceβ|t|‖v‖ for all t ∈ R.
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It follows that there exist stable and unstable manifolds of Λ, as well as stable
and unstable manifolds of each point x ∈ Λ, which are defined by

W s(Λ) ={y ∈ M | d(Φt(y),Λ) ≤ Cye−αt for all t ≥ 0},
Wu(Λ) ={y ∈ M | d(Φt(y),Λ) ≤ Cyeαt for all t ≤ 0},
W s(x) ={y ∈ M | d(Φt(y),Φt(y)(x)) ≤ Cx,ye−αt for all t ≥ 0},
Wu(x) ={y ∈ M | d(Φt(y),Φt(y)(x)) ≤ Cx,yeαt for all t ≤ 0},

for some constants Cy, Cx,y > 0.
The stable and unstable manifolds of Λ are foliated by stable and unstable mani-

folds of points, respectively, i.e., W s(Λ) =
⋃

x∈Λ W s(x) and Wu(Λ) =
⋃

x∈Λ Wu(x).
In the sequel we will assume that Λ is a compact and connected manifold. With

no other assumptions, Es
x and Eu

x depend continuously (but non-smoothly) on
x ∈ M ; thus the dimensions of Es

x and Eu
x are independent of x. Below we only

consider the case when the dimensions of the stable and unstable bundles are equal.
We denote n = dim(Es

x) = dim(Eu
x ), l = dim(TxΛ), where 2n + l = m.

The smoothness of the invariant objects defined by the normally hyperbolic
structure depends on the rates α and β. Let ` be a positive integer satisfying
1 ≤ ` < min{r, α/β}. The manifold Λ is C`-smooth. The stable and unstable
manifolds W s(Λ) and Wu(Λ) are C`−1-smooth. The splittings Es

x and Eu
x depend

C`−1-smoothly on x. The stable and unstable fibers W s(x) and Wu(x) are Cr-
smooth. The stable and unstable fibers W s(x) and Wu(x) depend C`−1−j-smoothly
on x when W s(x),Wu(x) are endowed with the Cj-topology. In the sequel we will
assume that the rates are such that there exists such an integer ` ≥ 2.

The notion of normal hyperbolicity for maps is very similar. Let F : M → M
be a Cr-smooth map on M .

Definition 2.2. A submanifold Λ of M is said to be a normally hyperbolic invariant
manifold for F if Λ is invariant under F , there exists a splitting of the tangent bundle
of TM into sub-bundles

TM = Eu ⊕ Es ⊕ TΛ,

that are invariant under dF , and there exist a constant C > 0 and rates 0 < λ <
µ−1 < 1, such that for all x ∈ Λ we have

v ∈ Es
x ⇔ ‖DF k

x (v)‖ ≤ Cλk‖v‖ for all k ≥ 0,

v ∈ Eu
x ⇔ ‖DF k

x (v)‖ ≤ Cλ−k‖v‖ for all k ≤ 0,

v ∈ TxΛ ⇔ ‖DF k
x (v)‖ ≤ Cµ|k|‖v‖ for all k ∈ Z.

There exist stable and unstable manifolds of Λ, as well as the stable and unstable
manifolds of each point x ∈ Λ, that are defined similarly as in the flow case, and
they carry analogous properties. The smoothness properties of the invariant objects
defined by the normally hyperbolic structure for a map are analogous of those for
a flow, if we set 1 ≤ ` < min{r, (log λ−1)(log µ)−1}.

2.2. Normal hyperbolicity relative to the return map. Let Φ : M ×R→ M
be a Cr-smooth flow defined on an m-dimensional manifold M . Denote by X the
vector field associated to Φ, where X(x) = ∂

∂tΦ(x, t)|t=0. As before, assume that
Λ ⊆ M is an l-dimensional normally hyperbolic invariant manifold for Φ. The
dimensions of TΛ, Eu and Es are l, n, n, respectively, with l + 2n = m.
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Let Σ be an (m− 1)-dimensional local surface of section, i.e., Σ is a C1 subman-
ifold of M such that X(x) 6∈ TxΣ for all x ∈ Σ. Let ΛΣ = Λ ∩ Σ. Then ΛΣ is a
(l− 1)-dimensional submanifold in Σ, assuming that the intersection is non-empty.

Assume that each forward and backward orbit through a point in ΛΣ intersects
again ΛΣ. Since X(x) 6∈ TxΣ for all x ∈ Σ, then the intersection of the forward
and backward orbits with Σ are transverse. Also, X(x) 6∈ TxΛΣ for all x ∈ ΛΣ.
Additionally, assume that the function

τ : ΛΣ → (0,∞), given by τ(x) = inf{t > 0 |Φ(x, τ(x)) ∈ ΛΣ},
is a continuous function. Following [13], we will refer to ΛΣ with these properties
as a thin surface of section.

By the Implicit Function Theorem, τ can be extended to a C1-smooth function
in a neighborhood UΣ of ΛΣ in Σ such that Φ(x, τ(x)) ∈ Σ for all x ∈ UΣ. The
Poincaré first return map to Σ is the map F : UΣ → Σ given by F (x) = Φτ(x)(x).

Let ΛX
Σ ⊆ Λ be the union of the orbits of the flow through points in ΛΣ. Since ΛX

Σ

is a C1-submanifold of Λ, and is invariant under Φ, then is a normally hyperbolic
invariant manifold for the flow Φ. The theorem below [13] implies that the manifold
ΛΣ is normally hyperbolic for the return map F .

Theorem 2.3. Let ΛΣ be a thin surface of section for the vector field X on M .
Then ΛΣ is normally hyperbolic with respect to F if and only if ΛX

Σ is a normally
hyperbolic invariant manifold with respect to Φ.

The invariant sub-bundles TΛ, Eu, Es associated to the normal hyperbolic struc-
ture on Λ correspond to sub-bundles TΛΣ, Eu

Σ, Es
Σ in the following way. Let

π : TM = span(X) ⊕ TΣ → TΣ be the projection onto TΣ. Then TΛΣ = π(TΛ),
Eu

Σ = π(Eu), and Es
Σ = π(Es).

2.3. Lambda Lemma. We describe a Lambda Lemma type of result for normally
hyperbolic invariant manifolds that appears in J.-P. Marco [19].

We consider a normally hyperbolic invariant manifold Λ for a diffeomorphism
F : M → M ; also dim(M) = l+2n, dim(Λ) = l, and dim(W s(Λ)) = dim(Wu(Λ)) =
l + n. We fix an integer 2 ≤ k ≤ ` so that all the manifolds and maps considered
below are Ck-smooth. By a normal form in a neighborhood V of Λ in M we mean
a Ck-smooth coordinate system (c, s, u) on V such that V is diffeomorphic through
(c, s, u) with a product Λ× Rn × Rn, where Λ = {(c, s, u) | c ∈ Λ, u = s = 0}, and
Wu(x) = {(c, s, u) | c = c(x), s = 0}, W s(x) = {(c, s, u) | c = c(x), u = 0} for each
x ∈ Λ of coordinates (c(x), 0, 0).

Theorem 2.4 (Lambda Lemma). Suppose that Λ is a normally hyperbolic invariant
manifold for F and (c, s, u) is a normal form in a neighborhood of Λ. Consider a
submanifold ∆ of M of dimension n which intersects the stable manifold W s(Λ)
transversely at some point z = (c, s, 0). Set FN (z) = zN = (cN , sN , 0) for N ∈ N.
Then there exists δ > 0 and N0 > 0 such that for each N ≥ N0 the connected
component ∆N of FN (∆) in the δ-neighborhood V (δ) = Λ×Bs

δ(0)×Bu
δ (0) of Λ in

M admits a graph parametrization of the form

∆N := {(CN (u), SN (u), u) |u ∈ Bu
δ (0)}

such that

‖CN − cN‖C1(Bu
δ (0)) → 0, and ‖SN‖C1(Bu

δ (0)) → 0 as N →∞.
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3. Scattering map

In this section we review the scattering map associated to a normally hyperbolic
invariant manifold for a flow or for a map, and discuss the relationship between the
scattering map for a flow and the scattering map for the corresponding return map
to some surface of section.

3.1. Scattering map for continuous and discrete dynamical systems. Con-
sider a flow Φ : M × R → M defined on a manifold M that possesses a normally
hyperbolic invariant manifold Λ ⊆ M .

As the stable and unstable manifolds of Λ are foliated by stable and unstable
manifolds of points, respectively, for each x ∈ Wu(Λ) there exists a unique x− ∈ Λ
such that x ∈ Wu(x−), and for each x ∈ W s(Λ) there exists a unique x+ ∈ Λ such
that x ∈ W s(x+). We define the wave maps Ω+ : W s(Λ) → Λ by Ω+(x) = x+, and
Ω− : Wu(Λ) → Λ by Ω−(x) = x−. The maps Ω+ and Ω− are C`-smooth.

We now describe the scattering map, following [10]. Assume that Wu(Λ) has a
transverse intersection with W s(Λ) along a l-dimensional homoclinic manifold Γ.
The manifold Γ consists of a (l − 1)-dimensional family of trajectories asymptotic
to Λ in both forward and backwards time. The transverse intersection of the hy-
perbolic invariant manifolds along Γ means that Γ ⊆ Wu(Λ)∩W s(Λ) and, for each
x ∈ Γ, we have

TxM = TxWu(Λ) + TxW s(Λ),

TxΓ = TxWu(Λ) ∩ TxW s(Λ).
(3.1)

Let us assume the additional condition that for each x ∈ Γ we have
TxW s(Λ) = TxW s(x+)⊕ Tx(Γ),

TxWu(Λ) = TxWu(x−)⊕ Tx(Γ),
(3.2)

where x−, x+ are the uniquely defined points in Λ corresponding to x.
The restrictions ΩΓ

+, ΩΓ
− of the wave maps Ω+, Ω− to Γ are local C`−1-diffeomorphisms.

By restricting Γ even further if necessary, we can ensure that ΩΓ
+, ΩΓ

− are C`−1-
diffeomorphisms. A homoclinic manifold Γ for which the corresponding restrictions
of the wave maps are C`−1-diffeomorphisms will be referred as a homoclinic channel.

Definition 3.1. Given a homoclinic channel Γ, the scattering map associated to
Γ is the C`−1-diffeomorphism SΓ = ΩΓ

+ ◦ (ΩΓ
−)−1 defined on the open subset U− :=

ΩΓ
−(Γ) in Λ to the open subset U+ := ΩΓ

+(Γ) in Λ.

In the sequel we will regard S as a partially defined map, so the image of a set
A by S means the set S(A ∩ U−).

If we flow Γ backwards and forward in time we obtain the manifolds Φ−tu(Γ) and
Φts(Γ) that are also homoclinic channels, where tu, ts > 0. The associated wave
maps are ΩΦ−tu (Γ)

+ , ΩΦ−tu (Γ)
− , and ΩΦts (Γ)

+ , ΩΦts (Γ)
− , respectively. The scattering map

can be expressed with respect to these wave maps as

(3.3) SΓ = Φ−ts ◦ (ΩΦts (Γ)
+ ) ◦ Φts+tu ◦ (ΩΦ−tu (Γ)

− )−1 ◦ Φ−tu .

We recall below some remarkable properties of the scattering map.

Proposition 3.2. Assume that dim M = 2n + l is even (i.e., l is even) and M
is endowed with a symplectic (respectively exact symplectic) form ω and that ω|Λ
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is also symplectic. Assume that Φt is symplectic (respectively exact symplectic).
Then, the scattering map SΓ is symplectic (respectively exact symplectic).

Proposition 3.3. Assume that T1 and T2 are two invariant submanifolds of com-
plementary dimensions in Λ. Then Wu(T1) has a transverse intersection with
W s(T2) inside Γ if and only if S(T1) has a transverse intersection with T2 in Λ.

In the case of a discrete dynamical system consisting of a diffeomorphism F :
M → M defined on a manifold M , the scattering map is defined in a similar way.
We assume that F has a normally hyperbolic invariant manifold Λ ⊆ M . The wave
maps are defined by Ω+ : W s(Λ) → Λ with Ω+(x) = x+, and Ω− : Wu(Λ) → Λ
with Ω−(x) = x−.

Assume that Wu(Λ) and W s(Λ) have a differentiably transverse intersection
along a homoclinic l-dimensional C`−1-smooth manifold Γ. We also assume the
transverse foliation condition (3.2).

A homoclinic manifold Γ for which the corresponding restrictions of the wave
maps are C`−1-diffeomorphisms is referred as a homoclinic channel.

Definition 3.4. Given a homoclinic channel Γ, the scattering map associated to
Γ is the C`−1-diffeomorphism SΓ = ΩΓ

+ ◦ (ΩΓ
−)−1 defined on the open subset U− :=

ΩΓ
−(Γ) in Λ to the open subset U+ := ΩΓ

+(Γ) in Λ.

Note that for M, N > 0, the manifolds F−M (Γ) and FN (Γ) are also homoclinic
channels. The associated wave maps are ΩF−M (Γ)

− , ΩF−M (Γ)
+ , and ΩF N (Γ)

− ,ΩF N (Γ)
+ .

The scattering map can be expressed with respect to these wave map as

(3.4) SΓ = F−N ◦ (ΩF N (Γ)
+ ) ◦ FM+N ◦ (ΩF−M (Γ)

− )−1 ◦ F−M .

The scattering map for the discrete case satisfies symplectic and transversality
properties similar to those in Proposition 3.2 and Proposition 3.3 for the continuous
case.

3.2. Scattering map for the return map. Let Φ : M×R→ M be a Cr-smooth
flow defined on an m-dimensional manifold M , and X be the vector field associated
to Φ. Let Λ ⊆ M be an l-dimensional normally hyperbolic invariant manifold for Φ.
Assume that Σ is a local surface of section and ΛΣ = Λ∩Σ satisfies the conditions
in Subsection 2.2.

Consider Γ a homoclinic channel for Φ. First, we assume that Γ has a non-empty
intersection with Σ. Note that Γ is a (l− 1)-parameter family of orbits; we further
assume that each trajectory intersects Σ transversally. Since Γ is a homoclinic
channel, each orbit intersects Σ exactly once. Let ΓΣ = Γ ∩ Σ. It is easy to see
that ΓΣ is a homoclinic channel for F . Thus, we have a scattering map SΓ for Γ
associated to the flow Φ, and we also have a scattering map SΓΣ for ΓΣ associated
to the map F .

We want to understand the relationship between SΓ and SΓΣ . Associated to
the homoclinic channels Γ and ΓΣ there exist wave maps ΩΓ

± : Γ → Λ and ΩΓΣ± :
ΓΣ → ΛΣ, respectively. These maps are diffeomorphisms. Let x ∈ ΓΣ, and let
x− = ΩΓ

−(x), x+ = ΩΓ
+(x), and x̂− = ΩΓΣ− (x), x̂+ = ΩΓΣ

+ (x). We have SΓ(x−) = x+

and SΓΣ(x̂−) = x̂+.
We want to relate x− with x̂−, and x+ with x̂+. These points are all in Λ.

It is clear that x̂− = ΩΓΣ− ◦ (ΩΓ
−)−1(x−), and x̂+ = ΩΓΣ

+ ◦ (ΩΓ
+)−1(x+). Denote

by PΓ
− : ΩΓ

−(Γ) → ΩΓΣ− the map given by PΓ
− = ΩΓΣ− ◦ (ΩΓ

−)−1, and denote by
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Γ

Σ

ΛΣ

ΓΣ

Λ

x-

x
+

x-

x
+

Figure 1. Scattering map for the return map.

PΓ
+ : ΩΓ

+(Γ) → ΩΓΣ
+ the map given by PΓ

+ = ΩΓΣ
+ ◦ (ΩΓ

+)−1. We want to express
these maps in terms of the dynamics restricted to Λ.

Let V be a flow box at x̂− (for definition see [21]). This means each trajectory
through a point y ∈ V intersects Σ exactly once. Then there exists a differentiable
function τ̂ : V → R defined by τ(z) = 0 if z ∈ Σ and Φτ̂(y)(y) ∈ Σ for each
y ∈ V . The function τ̂ can be extended in a unique way on each trajectory passing
though V . Due to the relationship between the invariant bundles for the flow and
the invariant bundles for the map described in Subsection 2.2, the fiber Eu

Σ(x̂−)
is the projection onto TΣ of the image of the fiber Eu(x−) under DΦτ̂(x−)

x− . This
means that Φτ̂(x−)(x−) = x̂−. In other words, x̂− is at the intersection of the
trajectory through x− with Σ. Thus, the projection PΓ

− that takes x− to x̂− is
given by PΓ

−(x−) = Φτ̂(x−)(x−). This projection map is invertible. If ŷ− is a point
in ΩΓΣ− , there exists a unique point y− ∈ ΩΓ

−(Γ) such that Φτ̂(y−)(y−) = ŷ−. If
there exist two such points, y− and y′−, to them they correspond two points y, y′

in ΓΣ such that y ∈ Wu
F (y−) and y′ ∈ Wu

F (y′−). The points y, y′ should belong
to the same unstable fiber Wu

F (ŷ−). Then it means that y, y′ are on the same
trajectory. As they are also in Γ and Γ is a homoclinic channel, than y = y′

and y− = y′−. In summary, the projection map PΓ
− : ΩΓ

−(Γ) → ΩΓΣ− is given by
PΓ
−(x−) = Φτ(x−)(x−). Similarly, the projection map PΓ

+ : ΩΓ
+(Γ) → ΩΓΣ

+ is given
by PΓ

+(x+) = Φτ(x+)(x+). See Figure 1.
Now we can formulate the relationship between the scattering map SΓ associated

to the flow Φ, and the scattering map SΓΣ associated to the map F .

Proposition 3.5. Assume that Γ is a homoclinic channel for the flow Φ, and
ΓΣ = Γ ∩ Σ is the corresponding homoclinic channel for the map F . Let SΓ be the
scattering map corresponding to Γ, and let SΓΣ be the scattering map corresponding
to ΓΣ. Then:

(3.5) SΓΣ = PΓ
+ ◦ SΓ ◦ (PΓ

−)−1.

Proof. We have that SΓ(x−) = x+, SΓΣ(x̂−) = x̂+, PΓ
−(x−) = x̂−, and PΓ

−(x+) =
x̂+. Thus SΓΣ(x̂−) = PΓ

+(x+) = PΓ
+ ◦ SΓ(x−) = PΓ

+ ◦ SΓ ◦ (PΓ
−)−1(x̂−). ¤
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4. Transition map

The scattering map for a flow Φ is geometrically defined: SΓ(x−) = x+ means
that Wu(x−) intersects W s(x+) at a unique point x ∈ Γ, with Wu(x−) and W s(x+)
being n-dimensional manifolds. However, there is no trajectory of the system that
goes from near x− to near x+. Instead, the trajectory of x approaches asymptot-
ically the backwards orbit of x− in negative time, and approaches asymptotically
the forward orbit of x+ in positive time. For applications we need a dynamical
version of the scattering map. That is, we need a map that takes some backwards
image of x− into some forward image of x+. We will call this map a transition
map. The transition map depends on the amounts of times we want to flow in
the past and in the future. The transition map carries the same geometric infor-
mation as the scattering map. Since in perturbation problems the scattering map
can be computed explicitly, the transition map is also computable. The notion of
transition map below is similar to the transition map defined in [6], however, their
version is not related to the scattering map.

4.1. Transition map for continuous and discrete dynamical systems. Con-
sider a flow Φ : M×R→ M defined on a manifold M that possesses a normally hy-
perbolic invariant manifold Λ ⊆ M . Assume that Wu(Λ) and W s(Λ) have a trans-
verse intersection, and that there exists a homoclinic channel Γ. Given tu, ts > 0,
the time-map Φts+tu is a diffeomorphism from Φ−tu(Γ) to Φts(Γ). Using (3.3) we
can express the restriction of Φts+tu to Φ−tu(Γ) in terms of the scattering map as

Φts+tu

|Φ−tu (Γ) : (ΩΦ−tu (Γ)
− )−1(Φ−tu(U−)) → (ΩΦts (Γ)

+ )−1(Φts(U+)),

given by

(4.1) Φts+tu

|Φ−tu (Γ) = (ΩΦts (Γ)
+ )−1 ◦ Φts ◦ SΓ ◦ Φtu ◦ (ΩΦ−tu (Γ)

− ),

where SΓ : U− → U+ is the scattering map associated to the homoclinic channel
Γ. We use this to define the transition map as an an approximation of Φts+tu

|Φ−tu (Γ)

provided that tu, ts are sufficiently large.

Definition 4.1. Let Γ be a homoclinic channel for Φ. Let tu, ts > 0 fixed. The
transition map SΓ

tu,ts
is a diffeomorphism

SΓ
tu,ts

: Φ−tu(U−) → Φts(U+)

given by
SΓ

tu,ts
= Φts ◦ SΓ ◦ Φtu ,

where SΓ : U− → U+ is the scattering map associated to the homoclinic channel Γ.

Alternatively, we can express the transition map as

SΓ
tu,ts

= ΩΦts(Γ)

+ ◦ Φtu+ts ◦ (ΩΦ−tu(Γ)

− )−1

The symplectic property and the transversality property of the scattering map
lend themselves to similar properties of the transition map.

In the case of a dynamical system given by a map F : M → M , the transition
map can be defined in a similar manner to the flow case, and enjoys similar proper-
ties. As before, we assume that Λ ⊆ M is a normally hyperbolic invariant manifold
for F .
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Definition 4.2. Let Γ be a homoclinic channel for F . Let Nu, Ns > 0 fixed. The
transition map SΓ

Nu,Ns
is a diffeomorphism

SΓ
Nu,Ns

: F−Nu(U−) → FNs(U+)

given by
SΓ

Nu,Ns
= FNs ◦ SΓ ◦ FNu ,

where SΓ : U− → U+ is the scattering map associated to the homoclinic channel Γ.

4.2. Transition map for the return map. We will consider the reduction of
the transition map to a local surface of section. Let Σ be a local surface of section
and ΛΣ = Λ ∩ Σ. By Theorem 2.3, ΛΣ is normally hyperbolic with respect to the
first return map to Σ. Assume that Γ intersects Σ as in Subsection 2.2, and let
ΓΣ = Γ ∩ Σ.

Let x be a point in ΓΣ. Then Φ−tu(x) lies on Wu(Φ−tu(x−)), approaches asymp-
totically Λ as tu → ∞, and intersects Σ infinitely many times. Similarly, Φts(x)
lies on Wu(Φts(x+)), approaches asymptotically Λ as ts → ∞, and intersects Σ
infinitely many times.

We want to choose and fix some times tu, ts, depending on x ∈ Γ, such that
Φ−tu(x), Φts(x) are both in Σ, and moreover, Φ−tu(x), Φts(x) are sufficiently close
to Φ−tu(x−), Φts(x+), respectively.

Let υ > 0 be a small positive number. We define tu = tu(x) to be the smallest
time such that Φ−tu(x)(x) ∈ Σ, and the distance between Φ−tu(x) and Φ−tu(x−),
measured along the unstable fiber Wu(Φ−tu(x−)), is less than υ. Let Nu > 0 be
such that Φ−tu(x) = F−Nu(x). Similarly, we define ts = ts(x) to be the smallest
time such that Φts(x) ∈ Σ, and the distance between Φts(x) and Φts(x+), measured
along the stable fiber W s(Φts(x+)), is less than υ. Let Ns > 0 be such that
Φts(x) = FNS (x).

At this point, we have a transition map SΓ
tu,ts

associated to the flow Φ and to
the homoclinic channel Γ for the flow, and a transition map SΓΣ

Nu,Ns
associated to

the map F and to the homoclinic channel ΓΣ for the map.
We have that Φ−tu(Γ) and Φts(Γ) are both homoclinic channels for the flow

Φ, and F−Nu(Γ) and FNs(Γ) are both homoclinic channels for the map F . Let
us consider the projection mappings PF−Nu

− (Γ), PF−Nu

+ (Γ) associated to the homo-
clinic channel F−Nu(Γ), and the projection mappings PF Ns

− (Γ), PF Ns

+ (Γ) associated
to the homoclinic channel FNs(Γ). These projections mappings are defined as in
Subsection 2.2.

The relationship between the transition map for the flow Φ and the transition
map for the return map F is given by the following:

Proposition 4.3. Assume that Γ is a homoclinic channel for the flow Φ, and
ΓΣ = Γ∩Σ is the corresponding homoclinic channel for the map F . Let tu, ts, Nu,
Ns > 0 be fixed. Let SΓ

Nu,Ns
be the transition map corresponding to Γ for the flow

Φ, and let SΓΣ
Nu,Ns

be the transition map corresponding to ΓΣ for the return map F .
Then

SΓΣ
Nu,Ns

= P
F Ns (Γ)
+ ◦ SΓ

tu,ts
◦ (PF−Nu(Γ)

− )−1.

Proof. We have that SΓΣ(x̂−) = x̂+. Note that x̂− = FNu ◦ PF−Nu(Γ)

− ◦ Φ−tu(x−)
and x̂+ = F−Ns ◦ PF Ns(Γ)

+ ◦ Φts(x+).
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Thus

SΓΣ(x̂−) = x̂+

= F−Ns ◦ PF Ns(Γ)

+ ◦ Φts(x+)

= F−Ns ◦ PF Ns(Γ)

+ ◦ Φts ◦ S(x−)

= F−Ns ◦ PF Ns(Γ)

+ ◦ Φts ◦ S ◦ Φtu ◦ (PF−Nu (Γ)
− )−1 ◦ F−Nu(x̂−).

Hence

FNs ◦ SΓΣ ◦ FNu = PF Ns(Γ)

+ ◦ Φts ◦ SΓ ◦ Φtu ◦ (PF−Nu (Γ)
− )−1.

The conclusion of the proposition now follows from the definition of the transition
map in the flow case and the definition of the transition map in the map case. ¤

5. Topological method of correctly aligned windows

We review briefly the topological method of correctly aligned windows. We follow
[22]. See also [15, 14].

Definition 5.1. An (m1, m2)-window in an m-dimensional manifold M , where
m1 + m2 = m, is a compact subset R of M together with a C0-parametrization
given by a homeomorphism χ from some open neighborhood of [0, 1]m1 × [0, 1]m2

in Rm1 × Rm2 to an open subset of M , with R = χ([0, 1]m1 × [0, 1]m2), and with a
choice of an ‘exit set’

Rexit = χ (∂[0, 1]m1 × [0, 1]m2)
and of an ‘entry set’

Rentry = χ ([0, 1]m1 × ∂[0, 1]m2) .

We adopt the following notation: Rχ = χ−1(R), (Rexit)χ = χ−1(Rexit), and
(Rentry)χ = χ−1(Rentry). (Note that Rχ = [0, 1]m1× [0, 1]m2 , (Rexit)χ = ∂[0, 1]m1×
[0, 1]m2 , and (Rentry)χ = [0, 1]m1 × ∂[0, 1]m2 .) When the local parametrization χ is
evident from context, we suppress the subscript χ from the notation.

Definition 5.2. Let R1 and R2 be (m1,m2)-windows, and let χ1 and χ2 be the
corresponding local parametrizations. Let F be a continuous map on M with
F (im(χ1)) ⊆ im(χ2). We say that R1 is correctly aligned with R2 under F if the
following conditions are satisfied:

(i) There exists a continuous homotopy h : [0, 1]× (R1)χ1 → Rm1 ×Rm2 , such
that the following conditions hold true

h0 = Fχ,

h([0, 1], (Rexit
1 )χ1) ∩ (R2)χ2 = ∅,

h([0, 1], (R1)χ1) ∩ (Rentry
2 )χ2 = ∅,

(ii) the map Ay0 : Rm1 → Rm1 defined by Ay0(x) = πm1 (h1(x, y0)) satisfies

Ay0 (∂[0, 1]m1) ⊆ Rm1 \ [0, 1]m1 ,

deg(Ay0 , 0) 6= 0,

where πm1 : Rm1 × Rm2 → Rm1 is the orthogonal projection onto the first
component, and deg is the Brouwer degree of the map Ay0 at 0.

The following result allows the detection of orbits with prescribed itineraries.
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Theorem 5.3. Let Ri be a collection of (m1,m2)-windows in M , where i ∈ Z or i ∈
{0, . . . , d−1}, with d > 0 (in the latter case, for convenience, we let Ri = R(i mod d)

for all i ∈ Z). Let Fi be a collection of continuous maps on M . If Ri is correctly
aligned with Ri+1, for all i, then there exists a point p ∈ R0 such that

(Fi ◦ . . . ◦ F0)(p) ∈ Ri+1,

Moreover, if Ri+k = Ri for some k > 0 and all i, then the point p can be chosen
periodic in the sense

(Fk−1 ◦ . . . ◦ F0)(p) = p.

Often, the maps Fi represent different powers of the return map associated to a
certain surface of section.

The correct alignment of windows is robust, in the sense that if two windows
are correctly aligned under a map, then they remain correctly aligned under a
sufficiently small perturbation of the map.

Proposition 5.4. Assume R1, R2 are (m1,m2)-windows in M . Let G be a con-
tinuous maps on M . Assume that R1 is correctly aligned with R2 under G. Then
there exists ε > 0, depending on the windows R1, R2 and G, such that, for every
continuous map F on M with ‖F (x)−G(x)‖ < ε for all x ∈ R1, we have that R1

is correctly aligned with R2 under F .

Also, the correct alignment satisfies a natural product property. Given two
windows and a map, if each window can be written as a product of window com-
ponents, and if the components of the first window are correctly aligned with the
corresponding components of the second window under the appropriate components
of the map, then the first window is correctly aligned with the second window under
the given map. For example, if we consider a pair of windows in a neighborhood
of a normally invariant normally hyperbolic invariant manifold, if the center com-
ponents of the windows are correctly aligned and the hyperbolic components of
the windows are also correctly aligned, then the windows are correctly aligned.
Although the product property is quite intuitive, its rigorous statement is rather
technical, so we will omit it here. The details can be found in [14].

6. A shadowing lemma for normally hyperbolic invariant manifolds

In this section we present a shadowing lemma-type of result saying that, given
a sequence of windows in a normally hyperbolic invariant manifold, if each pair
of successive windows is correctly aligned under some appropriate mappings, then
there exists a true orbit in the full space dynamics that follows these windows. In
the sequence, the pairs of windows are correctly aligned under the transition map,
alternating with pairs of windows that are correctly aligned under the inner map.

The result below provides a method to reduce the problem of the existence of
orbits in the full dimensional phase space to a lower dimensional problem of the
existence of pseudo-orbits in the normally hyperbolic invariant manifold.

Theorem 6.1. Let ε > 0. Let {D+
i , D−

i }i∈Z be a bi-infinite sequence of l-dimensional
windows contained in a compact subset of Λ. Assume that for any integers
n0

1, n
−
1 , n+

1 > 0 there exist integers n0
2 > n0

1, n−2 > n−1 , n+
2 > n+

1 and sequences of
integers {N0

i , N−
i , N+

i , }i∈Z with n0
1 < N0

i < n0
2, n−1 < N−

i < n−2 , n+
1 < N+

i < n+
2

such that the following properties hold for all i ∈ Z:
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(i) F−N+
i (D+

i ) ⊆ U+ and FN−
i (D−

i ) ⊆ U−.
(ii) D−

i is correctly aligned with D+
i+1 under the transition map SΓ

N−
i ,N+

i+1
=

FN+
i+1 ◦ S ◦ FN−

i .
(iii) D+

i is correctly aligned with D−
i under the iterate FN0

i of F|Λ.

Then there exist an orbit FN (z) of F for some z ∈ M and an increasing sequence
of integers {Ni}i∈Z with Ni+1 = Ni + N+

i+1 + N0
i+1 + N−

i+1 such that, for all i:

d(FNi(z), Γ) < ε,

d(FNi−N−
i (z), D−

i ) < ε,

d(FNi+N+
i+1(z), D+

i+1) < ε.

Proof. The idea of this proof is to ‘thicken’ the windows D+
i , D−

i in Λ to full-
dimensional windows R−i , R+

i in M , so that the successive windows in the sequence
{R−i , R+

i }i are correctly aligned under some appropriate iterations of the map F .
The argument is done in several steps. In the first three steps, we only specify the
relative sizes of the windows involved in each step. In the fourth step, we explain
how to make the choices of the sizes of the windows uniform.

Step 1. Note that conditions (i) and (ii) imply that D̂−
i := FN−

i (D−
i ) ⊆ U− ⊆ Λ

is correctly aligned with D̂+
i+1 := F−N+

i+1(D+
i+1) ⊆ U+ ⊆ Λ under the scattering

map S. Let D̄−
i = (ΩΓ

−)−1(D̂−
i ) and D̄+

i+1 = (ΩΓ
+)−1(D̂+

i+1) be the copies of D̂−
i and

D̂+
i+1, respectively, in the homoclinic channel Γ. By making some arbitrarily small

changes in the sizes of their exit and entry directions, we can alter the windows D̂−
i

and D̂+
i+1 such that D̂−

i is correctly aligned with D̄−
i under (Ω−Γ )−1, D̄−

i is correctly
aligned with D̄+

i+1 under the identity mapping, and D̄+
i+1 is correctly aligned with

D̂+
i+1 under Ω+

Γ .
We ‘thicken’ the l-dimensional windows D̄−

i and D̄+
i+1 in Γ, which are correctly

aligned under the identity mapping, to (l + 2n)-dimensional windows that are cor-
rectly aligned under the identity map. We now explain the ‘thickening’ procedure.

First, we describe how to thicken D̄−
i to a full dimensional window R̄−i . We

choose some 0 < δ̄−i < ε and 0 < η̄−i < ε. At each point x ∈ D̄−
i we choose

an n-dimensional closed ball B̄−
δ̄−i

(x) of radius δ̄−i centered at x and contained in

Wu(x−), where x− = ΩΓ
−(x). We take the union ∆̄−

i :=
⋃

x∈D̄−i
B̄u

δ̄−i
(x). Note

that ∆̄−
i is contained in Wu(Λ) and is homeomorphic to an (l + n)-dimensional

rectangle. We define the exit set and the entry set of this rectangle as follows:

(∆̄−
i )exit :=

⋃

x∈(D̄−
i )exit

B̄u
δ̄−i

(x) ∪
⋃

x∈D̄−i

∂B̄u
δ̄−i

(x),

(∆̄−
i )entry :=

⋃

x∈(D̄−
i )entry

B̄u
δ̄−i

(x).

We consider the normal bundle N+ to Wu(Λ). At each point y ∈ ∆̄−
i , we

choose an n-dimensional closed ball B̄+

η̄−i
(y) centered at y and contained in the

image of N+
y ⊆ TyM under the exponential map expy : N+

y → M . We let R̄−i :=⋃
y∈∆̄−i

B̄s
η̄−i

(y). By the Tubular Neighborhood Theorem (see, for example [2]), we
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have that for η̄−i > 0 sufficiently small, the set R̄−i is a homeomorphic copy of an
(l + 2n)-rectangle. We now define the exit set and the entry set of R̄−i as follows:

(R̄−i )exit :=
⋃

y∈(∆̄−i )exit

B̄s
η̄−i

(y),

(R̄−i )entry :=
⋃

y∈(∆̄−i )entry

B̄s
η̄−i

(y) ∪
⋃

y∈(∆̄−i )

∂B̄s
η̄−i

(y).

Second, we describe in a similar fashion how to thicken D̄+
i+1 to a full dimensional

window R̄+
i+1. We choose 0 < δ̄+

i+1 < ε and 0 < η̄+
i+1 < ε. We consider the (l + n)-

dimensional rectangle ∆̄+
i+1 :=

⋃
x∈D̄+

i+1
B̄s

η̄+
i+1

(x) ⊆ W s(Λ), where B̄+

η̄+
i+1

(x) is the

n-dimensional closed ball of radius η̄+
i+1 centered at x and contained in W s(x+),

with x+ = ΩΓ
+(x). The exit set and entry set of this window are defined as follows:

(∆̄+
i+1)

exit :=
⋃

x∈(D̄+
i+1)

exit

B̄s
η̄+

i+1
(x),

(∆̄+
i+1)

entry :=
⋃

x∈(D̄+
i+1)

entry

B̄s
η̄+

i+1
(x) ∪

⋃

x∈(D̄+
i+1)

∂B̄s
η̄+

i+1
(x).

We let R̄+
i+1 :=

⋃
y∈∆̄+

i+1
B̄u

δ̄+
i+1

(y), where B̄−
δ̄+

i+1
(y) is the n-dimensional closed ball

centered at y and contained in the image of N−
y ⊆ TyM under the exponential

map expy : N−
y → M , and N− is the normal bundle to W s(Λ). The Tubular

Neighborhood Theorem implies that for δ̄+
i+1 > 0 sufficiently small the set R̄+

i+1 is a
homeomorphic copy of a (l + 2n)-rectangle. The exit set and the entry set of R̄+

i+1

are defined by:

(R̄+
i+1)

exit :=
⋃

y∈(∆̄+
i+1)

exit

B̄u
δ̄+

i+1
(y) ∪

⋃

y∈(∆̄+
i+1

∂B̄u
δ̄+

i+1
(y),

(R+
i+1)

entry :=
⋃

y∈(∆̄+
i+1)

entry

B̄u
δ̄+

i+1
(y).

This completes the description of the thickening of the l-dimensional window D̄−
i

into an (l+2n)-dimensional window R̄−i , and of the thickening of the l-dimensional
window D̄+

i+1 into an (l+2n)-dimensional window R̄+
i+1. Note that, by construction,

R̄−i and R̄+
i+1 are both contained in an ε-neighborhood of Γ.

Now we want to make R̄−i correctly aligned with R̄+
i+1 under the identity map.

This is achieved by choosing δ̄+
i+1 sufficiently small relative to δ̄−i , and by choosing

η̄−i sufficiently small relative to η̄+
i+1. Thus, we have δ̄−i > δ̄+

i+1 and η̄−i < η̄+
i+1

(we stress that these inequalities alone may not suffice for the correct alignment).
Choosing δ̄+

i+1 and η̄−i small enough agrees with the constraints imposed by the
Tubular Neighborhood Theorem.

Step 2. We take a negative iterate F−M (R̄−i ) of R̄−i , where M > 0. We have that
F−M (Γ) is ε-close to Λ on a neighborhood in the C1-topology, for all M sufficiently
large. The vectors tangent to the fibers Wu(x−) in R̄−i are contracted, and the
vectors transverse to Wu(Λ) along R̄−i ∩Wu(Λ) are expanded by the derivative of
F−M . We choose and fix M = N−

i sufficiently large. We obtain that, in particular,
F−N−

i (R̄−i ) is ε-close to D−
i = F−N−

i (D̂−
i ).
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We now construct a window R−i about D−
i that is correctly aligned with F−N−

i (R̄−i )
under the identity. Note that each closed ball B̄u

δ−i
(x), which is a part of ∆̄−

i , gets

exponentially contracted as it is mapped into Wu(F−N−
i (x−)) by F−N−

i . By the
Lambda Lemma (Proposition 2.4), each closed ball B̄s

η−i
(y) with y ∈ ∆̄−

i , which is

a part of R̄−i , C1-approaches a subset of W s(F−M (y−)) under F−M , as M → ∞.
For N−

i sufficiently large, we may assume that F−N−
i (B̄s

η−i
(y)) is ε-close to a subset

of W s(F−N−
i (y−)) in the C1-topology, for all y ∈ ∆̄−

i . As D̂−
i is correctly aligned

with D̄−
i under (ΩΓ

−)−1, we have that D−
i = F−N−

i (D̂−
i ) is correctly aligned with

F−N−
i (D̄−

i ) under (ΩF−N
−
i (Γ)

− )−1. In other words, D−
i is correctly aligned under

the identity mapping with the projection of F−N−
i (D̄−

i ) onto Λ along the unstable
fibres. Let us consider 0 < δ−i < ε and 0 < η−i < ε.

To define the window R−i we use a local linearization of the normally hyperbolic
invariant manifold. By Theorem 1 in [20], there exists a homeomorphisms h from an
open neighborhood of TΛ×{0}×{0} in TΛ⊕Es⊕Eu to a neighborhood of Λ in M
such that h◦DF = F ◦h. At each point x ∈ D−

i we consider a a rectangle H−
i (x) of

the type h({x̃}×B̄u
δ−i

(0)×B̄s
η−i

(0)), where x̃ ∈ TΛ is such that h({x̃}×{0}×{0}) = x,

B̄u
δ−i

(0) is the closed ball centered at 0 of radius δ−i in the unstable bundle Eu, and

B̄s
η−i

is the closed ball centered at 0 of radius η−i in the stable bundle Es. We set

the exit and entry sets of H−
i (x) as (H−

i (x))exit = h({x̃}× ∂B̄u
δ−i

(0)× B̄s
η−i

(0)) and

(H−
i (x))entry = h({x̃} × B̄u

δ−i
(0)× ∂B̄s

η−i
(0)).

Then we define the window R−i as follows:

R−i =
⋃

x∈D−
i

H−
i (x),

(R−i )exit =
⋃

x∈(D−i )exit

H−
i (x) ∪

⋃

x∈D−i

(H−
i (x))exit,

(R−i )entry =
⋃

x∈(D−i )entry

H−
i (x) ∪

⋃

x∈D−i

(H−
i (x))entry.

In order to ensure the correct alignment of R−i with F−N−
i (R̄−i ) under the iden-

tity map, it is sufficient to choose δ−i , η−i such that
⋃

x∈D−i
h({x̃} × B̄u

δ−i
(0)× {0})

is correctly aligned with F−N−
i (∆̄−

i ) under the identity map (the exit sets of both
windows being in the unstable directions), and that each closed ball F−N−

i (B̄s
η−i

)

intersects Ri in a closed ball that is contained in the interior of F−N−
i (B̄s

η−i
). The

existence of suitable δ−i , η−i follows from the exponential contraction of ∆̄−
i under

negative iteration, and from the Lambda Lemma applied to B̄s
η−i

(y) under negative
iteration.

In a similar fashion, we construct a window R+
i+1 contained in an ε-neighborhood

of Λ such that R̄+
i+1 is correctly aligned with R+

i+1 under FN+
i+1 . The window R+

i+1,
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and its entry and exit sets, are defined by:

R+
i+1 =

⋃

x∈D+
i+1

H+
i+1(x),

(R+
i+1)

exit =
⋃

x∈(D+
i+1)

exit

H+
i+1(x) ∪

⋃

x∈D+
i+1

(H+
i+1(x))exit,

(R+
i+1)

entry =
⋃

x∈(D+
i+1)

entry

H+
i+1(x) ∪

⋃

x∈D+
i+1

(H+
i+1(x))entry,

where H+
i+1(x) = h({x̃} × B̄u

δ+
i+1

(0) × B̄s
η+

i+1
(0)), (H+

i+1(x))exit, and (H+
i+1(x))entry

are defined as before for some appropriate choices of radii δ+
i+1, η

+
i+1 > 0.

Step 3. Suppose that we have constructed the window R+
i+1 about the l-dimensional

rectangle D+
i+1 ⊆ Λ and the window R−i+1 about the l-dimensional rectangle R−i+1 ⊆

Λ. Under positive iterations, the rectangle B̄u
δ+

i+1
(0) × B̄s

η+
i+1

(0) ⊆ Eu ⊕ Es gets

exponentially expanded in the unstable direction and exponentially contracted in
the stable direction by DF . Thus B̄u

δ+
i+1

(0) × B̄s
η+

i+1
(0) is correctly aligned with

B̄u
δ−i+1

(0)× B̄s
η−i+1

(0) under the power DFN0
i+1 of DF , provided N0

i+1 is sufficiently

large. This implies that FN0
i+1(h({x̃} × B̄u

δ+
i+1

(0) × B̄s
δ+

i+1
(0))) is correctly aligned

with h(FN0
i+1(x̃)×B̄u

δ−i+1
(0)×B̄s

δ−i+1
(0)) under the identity map (both rectangles are

contained in h(FN0
i+1(x̃)× Eu × Es)).

Since D+
i+1 is correctly aligned with D−

i+1 under FN0
i , the product property of

correctly aligned windows implies that R+
i+1 is correctly aligned with R−i+1 under

FN0
i+1 , provided that N0

i+1 is sufficiently large.
Step 4. At this step we will use the previous steps to construct a bi-infinite

sequences of windows {R±i , R̄±i }i∈Z such that, for each i, the windows {R±i } are
obtained by thickening the rectangles {D±

i } ⊆ Λ, the windows {R̄±i+1} are obtained
by thickening some rectangles {D̄±

i } ⊆ Γ, and, moreover, R−i is correctly aligned
with R̄−i under FN−

i , R̄−i is correctly aligned with R̄+
i+1 under the identity map,

R̄+
i+1 is correctly aligned with R+

i+1 under FN+
i+1 , and R+

i+1 is correctly aligned with
R−i+1 under FN0

i .
We can assume without loss of generality that Λ and Γ are compact. We fix

an ε-neighborhood V of Λ. Using the compactness of Λ and Γ and the uniform
boundedness of the iterates N−

i , N+
i , N0

i , we now show how to choose the sizes of
the stable and unstable components of the windows {R±i , R̄±i }i∈Z constructed in
the previous steps in a uniformly bounded manner.

For each point x in Λ we consider a (2n)-dimensional window h({x̃}× B̄u
δ × B̄s

η),
for some 0 < δ, η < ε, where h is the local conjugacy between F and DF near Λ,
and h(x̃) = x. Then FN0

i (h({x̃}× B̄u
δ × B̄s

η) is correctly aligned with h({FN0
i (x̃)}×

B̄u
δ (0)× B̄s

η(0)), for all n0
1 ≤ N0

i ≤ n0
2, provided that n0

1 is chosen sufficiently large.
For each i, we thicken D+

i and D−
i into full dimensional windows R+

i and of R−i
respectively, as described in Step 2, where for the sizes of the components of these
windows we choose δ±i = δ and η±i = η for all i. Since D+

i is correctly aligned with
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D−
i under FN0

i , then, as in Step 3, it follows that R+
i is correctly aligned with R−i

under FN0
i .

We also define the set

Υ0 =
⋃

x∈Λ

h({x̃} × B̄s
η(0)× B̄s

δ(0)).

This set cannot be realized as a window since it does not have exit/entry directions
associated to the Λ components. However, for each x ∈ Λ, the set h({x̃}× B̄s

η(0)×
B̄u

δ (0)) is a well defined window, with the exit given by the hyperbolic unstable
directions. Note that Υ0(x) ⊆ h({x̃} × W̄u(x)× W̄ s(x)) for each x ∈ Γ.

We let ∆̄− =
⋃

x∈Γ B̄u
δ̄−(x), with B̄u

δ̄−(x) being the closed ball centered at x of
radius δ̄− in Wu(x−). For each point y ∈ ∆̄− we consider the closed ball B̄s

η̄−(y)
centered at y of radius η̄− in the image under expy of the normal subspace Ny to
Wu(Λ) at y. Similarly, we let ∆̄+ =

⋃
x∈Γ B̄s

η̄+(x), where B̄u
η̄+(x) ⊆ W s(x+), and

for each y ∈ ∆̄+ we consider the closed ball B̄u
δ̄+(y) in the image under expy of the

normal subspace Ny to W s(Λ) at y. We define the sets

Υ− =
⋃

y∈∆̄−

B̄s
η̄−(y), Υ+ =

⋃

y∈∆̄+

B̄u
δ̄+(y).

These sets cannot be realized as windows as there are no well defined exit/entry
directions associated to their Γ components. However, for each x ∈ Γ, the set
Υ−(x) =

⋃
y∈Bu

δ̄− (x) B̄s
η̄−(y) is a well defined (2n)-dimensional window, with the exit

given by the hyperbolic unstable directions. Note that Υ−(x) ⊆ ⋃
y∈W u(x−) expy(Ny).

The intersection of
⋃

y∈W u(x−) expy(Ny) with Υ+ defines a window Υ+(x) with the
exit given by the hyperbolic unstable directions. Due to the compactness of Γ, there
exist δ±, η± such that Υ−(x) is correctly aligned with Υ+(x) for all x ∈ Γ. We
choose and fix such δ±, η±. We define the windows R̄±i at Step 1 with the choices
of δ±i = δ±, and η±i = η±, for all i. It follows that R̄−i is correctly aligned with R̄+

i

under the identity map for all i.
Due to the compactness of Γ and the uniform expansion and contraction of the

hyperbolic directions, there exist n−1 , n+
1 such that, for all N−

i > n−1 , N+
i > n+

2 , we
have F−N−

i (Γ) ⊆ V and FN+
i (Γ) ⊆ V for all i ∈ Z, where V is the neighborhood of

Λ where the local linearization is defined. For any such n−1 , n+
1 , the assumptions of

Lemma 6.1 provide us with some n−2 > n−i , n+ > n−i . Moreover, we choose n−1 , n+
1

such that for all N−
i > n−1 , N+

i > n+
2 we have

(i) Υ0(F−N−
i (x−)) is correctly aligned with F−N−

i (Υ−) ∩ h({F̃−N−
i (x−)} ×

W̄u(F−N−
i (x−))× W̄ s(F−N−

i (x−)))] under the identity map,
(ii) FN+

i (Υ+(x)) is correctly aligned with Υ0∩h({F̃N+
i (x+)}×W̄u(FN+

i (x+))×
W̄ s(FN+

i (x+)))] under the identity map.

From these choices, it follows that the windows R−i , R+
i constructed in Step 2 satisfy

that R−i is correctly aligned with R̄−i under FN−
i , and R̄+

i is correctly aligned with
R+

i under FN+
i .

This concludes the construction of windows {R±i , R̄±i }i∈Z of uniform sizes, such
that R−i is correctly aligned with R̄−i under FN−

i , R̄−i is correctly aligned with
R̄+

i+1 under the identity map, R̄+
i+1 is correctly aligned with R+

i+1 under FN+
i+1 , and
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R+
i+1 is correctly aligned with R−i+1 under FN0

i . The windows R±i are contained in
ε-neighborhoods of the given rectangles D±

i , respectively, and the windows R±i are
contained in ε-neighborhoods of some rectangles D̄±

i , respectively.
By Theorem 5.3, there exits an orbit FN (z) that visits the windows {R±i , R̄±i }i∈Z

in the prescribed order. More precisely, if FNi(z) is the corresponding point
in R̄−i ∩ R+

i+1, then FNi+N+
i+1(z) is in R+

i+1, FNi+N+
i+1+N0

i+1(z) is in R−i+1, and

FNi+N+
i+1+N0

i+1+N−
i+1(z) is in R̄−i+1 ∩ R̄+

i+2, for all i. This means that Ni+1 =
Ni + N+

i+1 + N0
i+1 + N−

i+1 for all i. The existence of the shadowing orbit concludes
the proof. ¤
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[5] Maciej J. Capiński and Piotr Zgliczyński. Transition tori in the planar restricted elliptic three
body problem, preprint, 2011.

[6] Jacky Cresson and Christophe Guillet. Hyperbolicity versus partial-hyperbolicity and the
transversality-torsion phenomenon. J. Differential Equations, 244(9):2123–2132, 2008.

[7] A. Delshams, M. Gidea, and P. Roldan. Arnold’s mechanism of diffusion in the spatial circular
restricted three-body problem: A semi-numerical argument, 2010.

[8] Amadeu Delshams, Rafael de la Llave, and Tere M. Seara. A geometric approach to the
existence of orbits with unbounded energy in generic periodic perturbations by a potential of
generic geodesic flows of T2. Comm. Math. Phys., 209(2):353–392, 2000.

[9] Amadeu Delshams, Rafael de la Llave, and Tere M. Seara. A geometric mechanism for dif-
fusion in Hamiltonian systems overcoming the large gap problem: heuristics and rigorous
verification on a model. Mem. Amer. Math. Soc., 179(844):viii+141, 2006.

[10] Amadeu Delshams, Rafael de la Llave, and Tere M. Seara. Geometric properties of the scat-
tering map of a normally hyperbolic invariant manifold. Adv. Math., 217(3):1096–1153, 2008.

[11] Amadeu Delshams and Gemma Huguet. Geography of resonances and Arnold diffusion in a
priori unstable Hamiltonian systems. Nonlinearity, 22(8):1997–2077, 2009.

[12] Amadeu Delshams, Josep Masdemont, and Pablo Roldán. Computing the scattering map in
the spatial Hill’s problem. Discrete Contin. Dyn. Syst. Ser. B, 10(2-3):455–483, 2008.

[13] N. Fenichel. Asymptotic stability with rate conditions. Indiana Univ. Math. J., 23:1109–1137,
1973/74.

[14] Marian Gidea and Rafael de la Llave. Topological methods in the instability problem of
Hamiltonian systems. Discrete Contin. Dyn. Syst., 14(2):295–328, 2006.

[15] Marian Gidea and Clark Robinson. Topologically crossing heteroclinic connections to invari-
ant tori. J. Differential Equations, 193(1):49–74, 2003.

[16] Marian Gidea and Clark Robinson. Shadowing orbits for transition chains of invariant tori
alternating with Birkhoff zones of instability. Nonlinearity, 20(5):1115–1143, 2007.

[17] Marian Gidea and Clark Robinson. Obstruction argument for transition chains of tori inter-
spersed with gaps. Discrete Contin. Dyn. Syst. Ser. S, 2(2):393–416, 2009.

[18] M.W. Hirsch, C.C. Pugh, and M. Shub. Invariant manifolds, volume 583 of Lecture Notes in
Math. Springer-Verlag, Berlin, 1977.



TRANSITION MAP AND SHADOWING LEMMA 21

[19] Jean-Pierre Marco. A normally hyperbolic lambda lemma with applications to diffusion.
Preprint, 2008.

[20] Charles Pugh and Michael Shub. Linearization of normally hyperbolic diffeomorphisms and
flows. Invent. Math., 10:187–198, 1970.

[21] Clark Robinson. Dynamical systems. Studies in Advanced Mathematics. CRC Press, Boca
Raton, FL, second edition, 1999. Stability, symbolic dynamics, and chaos.
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