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Abstract. We investigate the differentiability of minimal average energy associated to the
functionals S ε(u) =

�
Rd

1
2 |∇u|2 + εV(x, u) dx, using numerical and perturbative methods.

We use the Sobolev gradient descent method as a numerical tool to compute solutions of
the Euler-Lagrange equations with some periodicity conditions; this is the cell problem
in homogenization. We use these solutions to determine the average minimal energy as a
function of the slope. We also obtain a representation of the solutions to the Euler-Lagrange
equations as a Lindstedt series in the perturbation parameter ε, and use this to confirm our
numerical results. Additionally, we prove convergence of the Lindstedt series.

1. Introduction. Let d ∈ N be fixed, and let V : Rd × R → R, be periodic under
integer translations. That is V(x + k, y + l) = V(x, y) for all (k, l) ∈ Zd × Z, where
(x, y) = (x1, . . . , xd, y) ∈ Rd × R. Furthermore, assume V is analytic. We consider the
formal variational problem

Sε(u(x)) =
�

Rd

1
2
|∇u(x)|2 + εV(x, u(x)) dx, (1)

where ε is a small parameter, so that Sε is a small perturbation of S0(u) =
�
Rd

1
2 |∇u|2 dx. We

call u ∈ H1
loc(Rd) a minimizer (or minimal solution) of Sε if for all φ ∈ H1

comp(Rd)
�

supp(φ)

1
2
|∇(u + φ)|2 + εV(x, u + φ) −

1
2
|∇u|2 − εV(x, u) dx ≥ 0.

Any minimizer of (1) must solve the Euler-Lagrange equation

− ∆u + εVy(x, u) = 0, (2)

and by standard elliptic regularity theory will be at least as regular as V , so analytic in our
case.

Definition 1.1. Following [10], we say a continuous function u is non-selfintersecting if
the graph of u does not intersect integer translates of itself. That is, if u ∈ C0(Rd,R) and
∀(k, l) ∈ Zd × Z

u(x + k) + l − u(x) > 0, or < 0, or ≡ 0, (3)
where the three alternatives are independent of x.
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This is also referred to in the literature as the Birkhoff property. From a geometric view-
point, this means that the graph of u projects into Td+1 = Rd+1/Zd+1 without intersecting
itself, unless it coincides exactly.

If u is non-selfintersecting, then there is a rotation vector, ω ∈ Rd, associated to u such
that

sup
x∈Rd
|u(x) − ω · x| < ∞ (4)

[10]. A function u satisfying (4) is called plane-like because its graph is at a bounded
distance from the a hyperplane in Rd+1 with normal vector (ω,−1).

We denote the set of all non-selfintersecting minimizers of Sε with rotation vector ω by
Mω(Sε), and more briefly as Mω, where dependence on Sε is understood. As shown in
[10],Mω is nonempty for all ω ∈ Rd.

The rational dependency of ω can play a role in the structure ofMω. The case where
ω̄ = (ω,−1) is rationally independent was studied in [2], and the rationally dependent case
in [3].

We define the minimal average energy Aε : Rd → R by

Aε(ω) = lim
R→∞

1
|BR|

�

BR

1
2
|∇u|2 + εV(x, u) dx, (5)

where u ∈ Mω, BR = {x ∈ Rd : |x| ≤ R}. It was shown in [13] that Aε is well-defined, that
is, the limit exists and is independent of the choice of minimizer u ∈ Mω. Furthermore, Aε
is convex, so that one-sided derivatives of Aε exist at each ω ∈ Rd, [13]. In fact, for ε = 0,
any u ∈ Mω has the form u(x) = ω · x + α for some α ∈ R (see [10]). Thus, A0(ω) = 1

2 |ω|
2

is smooth. However, for typical V the differentiability of Aε breaks down when ε > 0, and
for large enough ε the set of points where Aε is not differentiable will be dense in Rd (see
[1]). Because Aε has one-sided derivatives the graph of Aε will have “corners” (i.e. the
jump in the gradient of Aε in a direction e j) at points of nondifferentiability. In [14], page
356 there is a formula for the one-sided directional derivative of Aε involving special types
of minimizers of Sε, described in Section 3.

In this paper, we present a numerical approach to computing solutions of (2) via a gra-
dient descent method known as the Sobolev gradient, as explained in Section 2. We use
this to compute Aε and De j Aε(ω) + D−e j Aε(ω), that is the jump in the gradient of Aε in the
direction e j. We will sometimes refer to a jump in the gradient as a “corner”. In Section
3 we present a perturbation method for finding the minimizers of Sε needed to apply the
formula provided in [14] to compute Dej Aε(ω) + D−e j Aε(ω).

Throughout the paper, we will deal with the case ω ∈ 1
NZ

d. There are two good reasons
for this. The first is that minimizers of (1) with irrational rotation vectors can be obtained
as limits of sequences of minimizers with rational rotation vectors. The second reason
is that for rational ω, the partial differential equations we need to solve are well-defined
on the torus Td. That is, they have periodic boundary conditions. This allows the use of
Fourier transforms in the numerical method. It also makes each equation in (16) of the
form ∆φ = g, which can be solved for φ provided g has average zero.

In this setting, for a fixed ω ∈ 1
NZ

d, the formal functional in (1) can be replaced by the
reduced functional

Sε,N(u) =
�

NTd

1
2
|∇u|2 + εV(x, u) dx, u = ω · x + z(x) (6)

where z is NZd-periodic. Considering the limits of solutions uN(x) = ωN x + zN(x), ωN ∈
1
NZ

d as N → ∞, we see that this problem is related to periodic homogenization. Rescaling
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so that (6) is defined on the unit cube, the process of letting N → ∞ is the same as letting
the x dependence oscillate very rapidly.

2. Numerics. In this section we investigate numerically the size of the corners of Aε as
ε varies. Since our problem comes from a variational principle, steepest descent methods
are a natural approach. We consider a fixed ω ∈ 1

NZ
d and seek solutions of (2) of the form

u(x) = ω · x + z(x), where z is N-periodic. To find such a function u, we solve

∆z = εVy(x, ω · x + z), z(x + Nk) = z(x), ∀k ∈ Zd, (7)

for z, and set u(x) = ω · x+z(x). In this setting, we see that z is a critical point of the reduced
variational problem

Sε,N(z) =
�

NTd

1
2
|∇z|2 + εV(x, ω · x + z) dx,

where NTd = Rd/NZd. The Fréchet derivative of Sε,N at z, applied to η ∈ H1 is

DSε,N(z)η =
�

Td
∇z · ∇η + εVy(x, ω · x + z)η dx.

We recall that the gradient of Sε,N with respect to a Hilbert space, H, is the unique element
of h ∈ H such that DSε,N(z)η = �g, η�H for all η ∈ H. For instance, the L2-gradient of Sε,N at
z is the unique element of L2 = H0, which we will write as ∇0Sε,N(z), such that DSε,N(u)η =
�∇0Sε,N(z), η�L2 . Integrating by parts, we have, DSε,N(z)η = �−∆z + εVy(x, ω · x + z), η�L2 .

Considering gradients with respect to other inner products has been a fruitful endeavor
(see [11]). In our particular case, by considering the gradient of Sε,N in Hβ for β ∈ (0, 1]
we avoid the stiffness of the problem that appears in the H0 case. This is explained in more
detail in the remark following the derivation of ∇βSε,N(z).

The standard inner product on Hβ(NTd) is �u, v�Hβ = �(I − ∆)βu, v�H0 . For γ > 0 we
define the inner product �u, v�β = �(γI − ∆)βu, v�H0 , which determines a norm on Hβ that is
equivalent to the standard norm. For more details on this see the introduction of [4]. In that
paper, the authors show that the descent equation ∂tu = −∇βSε,N(u) satisfies a comparison
principle, and preserves the class of non-selfintersecting functions. In this way, they obtain
critical points of Sε,N with rotation vector ω by choosing initial condition u(x, 0) = ω · x,
equivalently, z(x, 0) = u(x, 0) − ω · x = 0.

We note that different choices of γ result in different inner products, and therefore differ-
ent gradients of Sε,N . Thus, ∇βSε,N(u) depends not only on the choice of Hilbert space, but
also on the choice of inner product on that space. We calculate the Hβ-gradient as follows:

DSε,N(z)η =
�

NTd
∇z · ∇η + εVy(x, ω · x + z)η dx

=
�
−∆z + εVy(x, ω · x + z), η

�
L2

=
�
(γI − ∆)β(γI − ∆)−β(−∆z + εVy(x, ω · x + z)), η

�
L2

=
�
(γI − ∆)−β(γz − ∆z − γz + εVy(x, ω · x + z)), η

�
β

=
�
(γI − ∆)1−β z − (γI − ∆)−β(γz − εVy(x, ω · x + z)), η

�
β
.

Thus, our steepest descent equation in Hβ, ∂tz = −∇βSε,N(z), becomes

∂tz = − (γI − ∆)1−β z + (γI − ∆)−β
�
γz − εVy(x, ω · x + z)

�
, (8)

z : [0,N]d → R with periodic boundary conditions.
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If the solution z(x, t) of (8) approaches a critical point of Sε,N , that is z(x, t) → zc(x) as
t → ∞, then zc will solve (γ+∆)1−β zc = (γ+∆)−β(γzc −Vy(x, ω · x+ zc)), which reduces to
−∆zc + εVy(x, ω · x+ zc) = 0. Then uc = ω · x+ zc will solve (2) and supx |uc(x)−ω · x| < ∞.

Remark 1. The stiffness of (8) is significantly reduced for values of β ≈ 1. For in-
stance, the L2 gradient descent equation would be ∂tu = ∆u − εVy(x, u). If we set G(k) =
F {−εVy(x, u)}(k), then the descent equation in the Fourier domain becomes the system
∂tûk = |k|2ûk +G(k) for each k. As |k| grows, these equations become increasingly stiff (the
eigenvalues of the linearization have a large spread). However, the Hβ gradient descent
equation in the Fourier domain becomes ∂tûk = (γ + |k|2)1−βûk + (γ + |k|2)−βG(k). So for
β ≈ 1 the stiffness is greatly reduced.

2.1. Implementation of Sobolev gradient descent. We fix ω ∈ 1
NZ

d and seek z : [0,∞)×
[0,N]d → R solving (7) with periodic boundary conditions. Thus, (7) can be rewritten
in the frequency domain via the Fourier transform. The main benefit of this is that the
pseudo-differential operators in (7) simplify greatly in the frequency domain. However, the
composition Vy(x, ω · x+ z(x)) is complicated by the Fourier transform. We take advantage
of the simplicity of the operators in the frequency domain in our numerical scheme, and
pay the price of computing an inverse fast Fourier transform at each time-step. This is
explained in the remark following equation (11).

We now develop the details of the implementation for d = 2. We know that z(x, t) =
u(x, t) − w · x will be N−periodic if we have Nω ∈ Z2 and if z(x, 0) = u(x, 0) − ω · x is an
N−periodic function. So we set z0(x) = z(x, 0) = 0, and consider the equation satisfied by
ẑ, the Fourier transform of z. We get

ẑt(t, ξ) = −(γ + |ξ|2)1−β ẑ(t, ξ) + (γ + |ξ|2)−β(γ ẑ(t, ξ) − F [Vy(x, ω · x + z)](t, ξ)), (9)

where we have also used F [·] to denote the Fourier transform. We now choose a time
step ∆t and set tn = n∆t. We also break up the domain [0,N]2 into m2 discrete points
and represent z(tn, x) as an m × m array zn(i, j). So, representing the discrete fast Fourier
transform as fft[·] (and with ẑn = fft[zn]) equation (3) is approximated as

ẑn+1 − ẑn

∆t
= −(γ + |ξ|2)1−βẑn+1 + (γ + |ξ|2)−β(γẑn+1 − fft[Vy(x, ω · x + zn)]). (10)

This is a quasi-implicit method, since nearly all of the right-hand-side is evaluated at the
later time tn+1. Only the nonlinear term is evaluated at time tn, so we can easily solve for
ẑn+1:

ẑn+1(i, j) =
ẑn(i, j) − ∆t(γ + ξ1(i)2 + ξ2( j)2)−βfft[Vy(x, ω · x(i, j) + zn(i, j))]

1 + ∆t(γ + ξ1(i)2 + ξ2( j)2)1−β − γ∆t(γ + ξ1(i)2 + ξ2( j)2)−β
. (11)

Remark 2. After the n-th step, we have ẑn. In order to compute Vy(x, ω·x+zn) we apply the
inverse fast Fourier transform to get zn = ifft[ẑn], which requires order m2 log(m) operations
because zn is an m × m array (or a vector of length m2). With zn computed, we evaluate
Vy(x, ω · x + zn), requiring m2 operations, and then we transform it with FFT, again costing
O(m2 log(m)) operations.

To compute ẑn+1, we now only need to perform component-wise multiplication of the
arrays in (11), requiring O(m2) operations. That is, we multiply the (i, j)-component of
fft[Vy(x, ω · x(i, j) + zn(i, j))] by the (i, j)-component of ∆t(γ + ξ1(i)2 + ξ2( j)2)−β for each
1 ≤ i, j ≤ m. We then add to it the (i, j)-component of ẑn(i, j) and then divide by the
(i, j)-component of 1 + ∆t(γ + ξ1(i)2 + ξ2( j)2)1−β − γ∆t(γ + ξ1(i)2 + ξ2( j)2)−β.

If ẑn and fft[Vy(x, ω · x + zn)] were represented as vectors of length m2, then this same
procedure would amount to multiplying fft[Vy(x, ω · x+ zn)] by the m2×m2 diagonal matrix
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representing ∆t(γ + ξ21 + ξ
2
2)−β, adding ẑn, and then multiplying the result by the m2 × m2

diagonal matrix representing (1 + ∆t(γ + ξ21 + ξ
2
2)1−β − γ∆t(γ + ξ21 + ξ

2
2)−β)−1.

Remark 3. This method would also work in a setting where the gradient part of the en-
ergy functional S ε is replaced by the fractional laplacian. We could use all of the same
techniques above for solving the gradient descent for

S δε(z) =
�

Td
z (−∆)δz + εV(x, ω · x + z)dx, δ ∈ (0, 1). (12)

The critical points of (12) will solve the Euler-Lagrange equation

−(−∆)δz = εVy(x, ω · x + z).

Using the metric on Hβδ given by �v,w�Hβδ = �(γ + (−∆)δ)βv,w�L2 , we arrive at the descent
equation

∂tz = −(γ + (−∆)δ)1−βz + (γ + (−∆)δ)−β(γz − Vy(x, ω · x + z)). (13)

Because z is periodic and the operator (−∆)δ is diagonal in the Fourier coefficients,
implementing (13) numerically is the same as described above, except with powers of |ξ|2δ
in place of |ξ|2.

3. Perturbation method for computing minimizers and the jumps in DAε(ω).

3.1. Foliations and laminations of minimizers. Following [14], we define Γω = {(k, l) ∈
Zd ×Z : ω̄ · (k, l) = 0}, where ω̄ = (ω,−1), andM(ω̄) ⊂ Mω, the set of maximally periodic
u ∈ Mω by

M(ω̄) = {u ∈ Mω : u(x + k) + l = u(x),∀(k, l) ∈ Γω} .

For each ω ∈ Rd the setM(ω̄) is closed and totally ordered. The closedness is a classical
argument (see [9]). The total order, meaning that if u, v ∈ M(ω̄) then either u > v or
u < v or u ≡ v, is a consequence of the maximum principle for elliptic partial differential
equations. Let x = (x1, . . . , xd), and we write (x, xd+1) ∈ Rd+1. Let ω ∈ Rd, then the total
order ofM(ω̄) means that for a given (x, xd+1) ∈ Rd+1 there is at most one u ∈ M(ω̄) such
that xd+1 = u(x). That is, each point in Rd+1 belongs to the graph of at most one u ∈ M(ω̄).
If for all (x, xd+1) ∈ Rd+1 there exists u ∈ M(ω̄) with xd+1 = u(x), then we sayM(ω̄) is a
foliation of Rd+1. Because of the non-selfintersection property (3), such a foliation projects
into Td+1. It can happen that there are points (x, xd+1) ∈ Rd+1 for which there does not exist
any u ∈ M(ω̄) with xd+1 = u(x). In this case we sayM(ω̄) is a lamination of Rd+1 (and
projects to a lamination of Td+1). For this reason, a lamination is sometimes referred to as
a “foliation with gaps”.

If ω̄ is rationally dependent, and ifM(ω̄) defines a lamination, then there are minimizers
u ∈ Mω whose graphs lie in the gaps ofM(ω̄), [3]. In addition, if we choose a direction

β ∈ spanR{k ∈ Z
d : ω · k ∈ Z} ∩ S d−1

then there is a u ∈ Mω such that u is asymptotic to some u+ ∈ M(ω̄) in the direction
β and asymptotic to some u− ∈ M(ω̄) in the direction −β. For details of the asymptotic
behavior, see [14], page 350. Such a u is said to be heteroclinic in the direction β. A
formula for the one-sided directional derivative of Aε at a point ω is given on page 356 of
[14], and involves integrating the action over the gaps defined by the elements of M(ω̄)
and the heteroclinics between them. We will use perturbation methods to calculate the gap
borders and the heteroclinics lying in the gaps.
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3.2. Lindstedt series for solutions. We seek plane-like solutions uε(x) of

∆u = εVy(x, u) (14)

that can be expanded as uε(x) = u0 + εu1 + ε2u2 + . . .. The series
�

j≥0 ε
ju j shall be referred

to as the Lindstedt series for the solution uε. Substituting the series into equation (14) and
matching powers we arrive at the following equations for each order of ε

ε0 : ∆u0 = 0

ε1 : ∆u1 = Vy(x, u0)

ε2 : ∆u2 = Vyy(x, u0)u1(x)

ε3 : ∆u3 = Vyy(x, u0)u2(x) +
1
2

Vyyy(x, u0)u2
1(x)

ε4 : ∆u4 = Vyy(x, u0)u3(x) + Vyyy(x, u0)u1(x)u2(x) +
1
3!

Vyyyy(x, u0)u3
1(x)

...

(15)

In order that uε be a plane-like solution, we require u0 to be affine and u j be periodic for
each j > 1. Using the notation [·] j to refer to the j-th coefficient of the power series in ε,
we write

Vy(x, uε) = Vy(x, u0 + εu1 + . . .) =
�

j≥0

[Vy(x, uε)] jε
j.

We will also write u< j for the first j terms in the Lindstedt series: u< j = u0 + . . .+ ε j−1u j−1.
The j-th order equation in the list (15) has the form

ε j : ∆u j = [Vy(x, u)] j−1 = [Vy(x, u< j)] j−1. (16)

The zeroth order equation is satisfied by any affine function, so we take u0 = ω · x + α,
and at this point we are free to choose α as we like. To solve the j-th order equation,
we must have that

�
Td [Vy(x, u< j)] j−1dx = 0. This compatibility condition is what forces

specific choices of α once ω has been fixed.
We also note that the solution of (16) is determined only up to an additive constant,

which will be chosen so that the equation of the following step has a solution. That is, the
average of u j is chosen so that equation for u j+1 is solvable.

3.3. Existence of the Lindstedt series to all orders. We consider ω ∈ 1
NZ

d fixed, and
seek uε solving (14) such that uε(x) − ω · x ∈ L∞(NTd). We must have u0(x) = ω · x + α to
solve ∆u0 = 0. The choice of α is free, and each value of α ∈ [0, 1) will result in a different
set of equations for the u j with j ≥ 1. In this section, we show that there are at least two
choices of α ∈ [0, 1) such that (16) has a solution for each j ≥ 0.

Lemma 3.1. For fixed ω ∈ 1
NZ

d, there are at least two choices of α ∈ [0, 1) such that�
NTd Vy(x, ω · x + α) dx = 0.
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Proof. Define Φ1 : R→ R by Φ1(α) =
�

NTd Vy(x, ω · x+α) dx. Then Φ1 is continuous, and
we have

� 1

0
Φ1(α) dα =

� 1

0

�

NTd
Vy(x, ω · x + α) dxdα

=

�

NTd

� 1

0

∂

∂α
V(x, ω · x + α) dαdx

=

�

NTd
V(x, ω · x + 1) − V(x, ω · x) dx = 0.

Thus, Φ1 must have a zero in [0, 1), and since Φ1(α + 1) = Φ1(α), by the periodicity of V ,
we know that Φ1 must have at least two zeros. �

For any such choice of α,
�

NTd Vy(x, u0) dx = 0, and therefore there exists a family of
periodic solutions, u1(x) = u∗1(x) + λ, of ∆u1 = Vy(x, u0), differing only by an additive
constant. We will write u∗1 for the member of the family with average zero.

Theorem 3.2. Let u0 = ω · x + α, with ω ∈ 1
NZ

d and Φ1(α) = 0. If
�

NTd
Vyy(x, u0) dx � 0 (17)

then each equation ∆u j =
�
Vy(x, u< j)

�
j−1

has a solution for all j ≥ 1.

Proof. From Lemma 3.1, we have a family of solutions u1 = u∗1 + λ, of ∆u1 = Vy(x, u0). If
we set

λ(1) = −

�
NTd Vyy(x, u0)u∗1 dx
�

NTd Vyy(x, u0) dx

then,
�

NTd

�
Vy(x, u<2)

�
1

dx =
�

NTd Vyy(x, u0)(u∗1 + λ
(1)) dx = 0, so the equation ∆u2 =

Vyy(x, u0)u1 is solvable for u2 = u∗2 + λ when we choose u1(x) = u∗1(x) + λ(1). To con-
tinue inductively, we note that for each j ≥ 1,

�
Vy(x, u< j)

�
j−1
= Vyy(x, u0)u j−1 + Rj(u1, . . . , u j−2).

Suppose that we have solutions of (16) for j = 1, . . . , n, and the constants λ(1), . . . , λ(n−1)

have been selected so that u j(x) = u∗j(x) + λ( j). We choose

λ(n) = −

�
NTd Vyy(x, u0)u∗n + Rn(u1, . . . , un−1) dx

�
NTd Vyy(x, u0) dx

so that�

NTd

�
Vy(x, u<n+1)

�
n

dx =
�

NTd
Vyy(x, u0)(u∗n + λ

(n)) + Rn(u1, . . . , un−1)dx = 0.

Thus ∆un+1 =
�
Vy(x, u<n+1)

�
n

has a family of solutions, un+1(x) = u∗n+1(x) + λ, completing
the induction. �

3.4. Convergence of the Lindstedt series. We use a Newton method to produce a se-
quence of functions Un(x, ε) that are analytic in ε, and converge uniformly to a solution of
−∆uε + εVy(x, uε) = 0 for ε ∈ Bδ(0) ⊂ C for small enough δ > 0. Thus, we produce an
ε-analytic function, uε, solving (14) for ε ∈ Bδ(0), so the Taylor series of uε must coin-
cide with the Lindstedt series, proving the convergence of the Lindstedt series. For similar
convergence results, but for the case of Diophantine frequencies, see [5].
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Lemma 3.3. Let u j ∈ Hm+2(Td) and ε ∈ C and define u(ε, x) =
�

j∈N ε
ju j(x), where the

series is convergent in Hm+2 for |ε| < r, for some r > 0 and m > d/2. Define F : C →
Hm(Td) by

F(ε; u) = ∆u(ε, x) + εV(x, u(ε, x))
Then the derivative of F with respect to ε is

DεF(ε; u) = ∆Dεu(ε, x) + V(x, u(ε, x)) + εVy(x, u(ε, x))Dεu(ε, x).

Proof. We define

G(ε; u) = ∆Dεu(ε, x) + V(x, u(ε, x)) + εVy(x, u(ε, x))Dεu(ε, x)

H(ε; u) = ∆D2
εu(ε, x) + 2Vy(x, u(ε, x))Dεu(ε, x)

+ εVy(x, u(ε, x))D2
εu(ε, x) + εVyy(x, u(ε, x)) (Dεu(ε, x))2 .

We have
� 1

0
H(ε + στh; u)τh dσ = G(ε + τh; u) −G(ε; u)

� 1

0
G(ε + τh; u)h dτ = F(ε + h; u) − F(ε; u)

so that

F(ε + h; u) − F(ε; u) −G(ε; u)h =
� 1

0

� 1

0
H(ε + στh; u)τh2 dσ dτ

and

�H(ε; u)�Hm ≤
���D2
εu(ε, x)

���
Hm+2 + 2

���Vy
���
C0 �Dεu(ε, x)�Hm

+ |ε|
���Vy
���
C0

���D2
εu(ε, x)

���
Hm + |ε|

���Vyy
���
C0

���(Dεu(ε, x))2
���

Hm .

From the Gagliardo-Nirenberg inequality [12], we have that (Dεu(ε, x))2
∈ Hm because

m > d/2, and that there is a constant depending on m and d, such that
���(Dεu(ε, x))2

���
Hm ≤

C(m, d) �Dεu(ε, x)�2Hm . Hence,

�F(ε + h; u) − F(ε; u) −G(ε; u)h�Hm ≤

� 1

0

� 1

0
�H(ε + στh; u)�Hm τ|h|2 dσ dτ

≤ C (m, d, �u�m+2, |V |C2 , ε) |h|2.

Thus, F is differentiable and DεF(ε; u) = G(ε; u) �

We define Fε(u) = −∆u + εVy(x, u). It was shown in the Section 3.3 that for any fixed
M ∈ N, we can solve the first M equations from (15) for u<M

ε , and that u<M
ε will solve (14)

up to order εM . That is, Fε(u<M
ε ) = O(εM). We set U0 = u<M

ε for a sufficiently large M to
be determined later, and for j ≥ 1 we define

Un+1 = Un − DFε(Un)−1F(Un). (18)

Let m > d/2 be fixed, and note that for any M > 0, u<M
ε ∈ Hm by the regularity theory for

elliptic PDEs. If Un(x, ε) is analytic in ε and is Hm+2 in x, then Fε(Un) = −∆Un+εVy(x,Un)
is analytic in ε and Hm in x by the result in Lemma 3.3. We have DFε(Un)η = −∆η +
εVyy(x,Un)η, and we need to consider carefully the behavior of DFε(Un)−1. To simplify
notation, we define Ln

ε : Hm+2(NTd)→ Hm(NTd) as

Ln
ε = DFε(Un) = −∆ + εVyy(x,Un).

Ln
ε is a small perturbation of −∆ : Hm+2 → Hm. Now, −∆ maps the codimension one

subspace Hm+2/R of its domain to the codimension one subspace Hm/R of its range in a
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bounded, invertible way. But it has the simple eigenvalue λ = 0, with eigenspace spanned
by the constant functions.

Lemma 3.4. Let P0 : Hm → Hm/R be the orthogonal projection onto Hm functions with
zero average. That is, if f ∈ Hm, then P0 f = f −

�

NTd f dx. Let −∆0 : Hm+2/R→ Hm/R be
the restriction of the laplacian, and let Y be the image of Hm+2/R under −∆0 + εVyy(x,Un).
Suppose there are constants q, c1, δ0 > 0 such that

�εVyy(x,Un), g�Hm ≥ c1|ε|
q, ∀ g ∈ Y⊥, �g�Hm = 1 (19)

for |ε| < δ0. Then �(Ln
ε)−1�L(Hm) ≤ cε−q, for some c > 0.

Proof. Let Q = −∆0+P0εVyy(x,Un), then Q : Hm+2/R→ Hm/R, and for small ε will have
a bounded inverse, Q−1 : Hm/R→ Hm+2/R.

We have that −∆0 + εVyy(x,Un) = −∆0 + P0εVyy(x,Un) + P⊥0 εVyy(x,Un) maps Hm+2/R
into Hm and is a small perturbation of Q, and there is a c2 > 0 such that � − ∆0η +
εVyy(x,Un)η�Hm ≥ c2�η�Hm+2 for all η ∈ Hm+2/R. Thus, Y is a codimension one linear space
isomorphic to Hm/R lying inside Hm, and Y⊥ = {g ∈ Hm :

�
NTd (−∆0η+εVyy(x,Un)η)g dx =

0,∀η ∈ Hm+2/R} is one dimensional.
The condition (19) implies that the image of constant functions under Ln

ε does not lie
entirely in Y , but has a component in the Y⊥ direction. Thus the image of Hm+2 under Ln

ε is
Hm, and for small ε, Ln

ε will be invertible.
Let PY and P⊥Y denote the orthogonal projections of Hm onto Y and Y⊥. We let g ∈ Y⊥

be a unit vector such that P⊥Y ξ = �ξ, g�Hm g for ξ ∈ Hm, which is possible because Y⊥ is
one dimensional. Let ξ ∈ Hm, so ξ = Ln

εη for some η ∈ Hm+2. We write η = η1 + η0 with
η1 ∈ Hm+2/R, and η0 ∈ R, and ξ = ξY + ξ⊥ with ξy ∈ Y and ξ⊥ ∈ Y⊥. Writing ξ in terms of
η1, η0 we have

∆η + εVyy(x,Un)η = ∆0η1 + εVyy(x,Un)η1 + εVyy(x,Un)η0

= ∆0η1 + εVyy(x,Un)η1 + PYεVyy(x,Un)η0 + P⊥Y εVyy(x,Un)η0.

The term ∆0η1 + εVyy(x,Un)η1 + PYεVyy(x,Un)η0 ∈ Y , so the component of Ln
εη in Y⊥ is

ξ⊥ = �Ln
εη, g�Hm g = �εVyy(x,Un)η0, g�Hm g. Thus, η0 = ξ⊥(�εVyy(x,Un), g�Hm )−1 and η1 is

given by

η1 =
�
∆0 + εVyy(x,Un)

�−1
�
ξY +

PYεVyy(x,Un)ξ⊥
�εVyy(x,Un), g�Hm

�
.

Hence, �(Ln
ε)−1ξ�Hm+2 ≤

1
c1 |ε|q
�ξ⊥�Hm+ 1

c2

�
�ξY�Hm + ε�Vyy�Hm

1
c1 |ε|q
�ξ⊥�Hm

�
≤ c|ε|−q�ξ�Hm . �

Recall that (Ln
ε)−1 is a compact operator by the regularity theory for elliptic PDE. In

particular, the eigenvalues of Ln
ε are isolated from the spectrum, and if λn is an eigenvalue

of Ln
ε, then the resolvent of Ln

ε, written as R(Ln
ε, ζ) = (Ln

ε − ζI)−1, has the representation

R(Ln
ε, ζ) =

∞�

j=0

(λn − ζ) jQ j+1
n +

1
λn − ζ

Pn, (20)

where Qn is bounded, and Pn is the spectral projection on the the λn eigenspace:

Pn = −
1

2πi

�

Γ

R(ζ, Ln
ε) dζ,

and Γ is a closed curve enclosing λn but no other point of the spectrum (see [7]). The
principal eigenvalue, λ0(ε), of Ln

ε is simple because Ln
ε is an elliptic operator, [6]. This

means that λ0(ε) is analytic in a neighborhood of ε = 0, [7]. In the iteration process,
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(Ln
ε)−1 = R(Ln

ε, ζ) =
�
∞

j=0 λ
j
nQ j+1

n + 1
λn

Pn, will act on Fε(Un). At each step, we need the
function Un to be analytic in ε, so we need (Ln

ε)−1Fε(Un) to be analytic.

Proposition 1. Assuming condition (19) holds, there is a choice of M ∈ N such that,
if U0 = u<M, then Un will be analytic in ε for all n ≥ 0, and the Newton method (18)
converges uniformly in ε in a neighborhood of ε = 0.

Proof. In the iteration process, (Ln
ε)−1 = R(Ln

ε, ζ) =
�
∞

j=0 λ
j
nQ j+1

n +
1
λn

Pn,will act on Fε(Un).
As explained in the previous paragraph, λ0(ε) is analytic in a neighborhood of ε = 0, and
will have a zero of order p ∈ N at ε = 0. From the result of Lemma 3.4 we may assume
p < q.

We will use induction on n to show the analyticity of Un+1. Fε(u<M) has a zero of order
M at ε = 0 by construction of u<M , and we take M > 2q. By the expansion in (20) and the
result from Lemma 3.3, for ζ = 0 and λn = λ0(ε), (L0

ε)−1Fε(u<M) has a zero of order M − p
if M > p or a pole of order p − M if p > M. Thus, taking M > 2q is more than enough
to ensure U1 = u<M + (L0

ε)−1Fε(u<M) is analytic in ε, since q > m. From (18), Fε(U1) =
D2Fε(U0)(DFε(U0)−1Fε(U0))2 + . . ., and since D2Fε(U0) = εVyyy(x,U0) is bounded, we
have �Fε(U1)�Hm ≤ C|ε|(�(L0

ε)−1�L(Hm)�Fε(U0)�Hm )2. Hence, �Fε(U1)�Hm ≤ C|ε|1−2q+2M

by Lemma 3.4 and because �Fε(U0)�Hm ≤ |ε|M . We chose M such that M − q > q, so
�Fε(U1)�Hm ≤ C|ε|M1 where M1 = 1 + 2(M − q) > 2q. We also have �U1 − U0�Hm ≤ c|ε|q,
so

L1
ε = −∆ + εVyy(U1) = −∆ + εVyy(U0 + U1 − U0) = L0

ε + O(εq).

Hence, L1
ε is a small perturbation of L0

ε, and λ1(ε) will have a zero of order p. Thus, we
have established the first step of the induction on n, because U1 is analytic in ε, Fε(U1) has
a zero of order M1 > 2q, and the principal eigenvalue has a zero of order p < q at ε = 0.

Now assume that Un is analytic in ε and Fε(Un) has a zero of order Mn > 2q at ε =
0. Fε(Un+1) = D2Fε(Un)(DFε(Un)−1Fε(Un))2 + . . . and �D2Fε(Un)�L(Hm) ≤ ε�Vyyy�L∞ is
independent of n. So

�Fε(Un+1)�Hm ≤ Cε�(DFε(Un)−1Fε(Un))�2Hm ≤ Cε(εMn−q)2. (21)

From (21) we have that Un+1 is analytic, and Fε(Un+1) has a zero of order at least 2q at
ε = 0. Just as for the n = 0 case, �Un+1 −Un�Hm ≤ c|ε|q so λn+1(ε) has a zero of order p < q
at ε = 0, and the induction is complete.

To prove uniform convergence, we have from (21) the recurrence formula:

�Fε(Un)�Hm < (ε−q
�Fε(Un−1)�Hm )2,

provided we choose ε small enough (independently of n) so that Cε < 1. Therefore,
�Fε(Un)�Hm < |ε|−2q(2n−1)�Fε(U0)�2n

Hm ≤ c|ε|2n(M−2q)+2q. Hence, with M > 2q, the error on
Fε(Un) is bounded by cε2n , c independent of n. �

3.5. Connecting orbits and corners of the energy. The connecting orbits, or heteroclinic
orbits, exist only whenM(ω̄) fails to produce a foliation of Td+1, as described at the be-
ginning of Section 3. Each u ∈ M(ω̄) satisfies ∆u = εVy(x, u) because it is a minimizer of
S ε. The order-zero approximation to u has the form u0 = ω · x + α, for α ∈ [0, 1). This is a
continuous family, whose graphs foliate Td+1.

From Lemma 3.1 we know that if V satisfies the twist condition (17) then there are at
least two choices of α ∈ [0, 1) such that the Lindstedt equations (15) can be solved to all
orders. Recall that the function Φ1, defined in Lemma 3.1, has at least two zeros in [0, 1).
If the zero set of Φ1 is not all of [0, 1), then a choice of α must be made in order to solve
∆u1 = Vy(x, ω · x + α) for periodic u1. Thus, the order-ε approximations, given by u0 + εu1
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are not a continuous family indexed by α ∈ [0, 1), but rather by a strict subset of [0, 1). The
graphs of the functions in this family no longer foliate Td+1.

If Φ1(α) ≡ 0, no gaps appear in the approximation up to first order in ε. In this case,
we can find periodic u1 solving ∆u1 = Vy(x, ω · x + α) for arbitrary α, and the order-ε
approximations do foliate Td+1. We can then move on to try to solve ∆u2 = [Vy(x, u<2)]1

for periodic u2. With α free, we define Φ2 : [0, 1) → R by Φ2(α) =
�

NTd [Vy(x, u<2)]1dx.
Now either Φ2(α) ≡ 0 or there is some α ∈ [0, 1) with Φ2(α) � 0. In the latter case, we
must make a choice of α such that Φ2(α) = 0. In the former case, we move on to find u3.
This can continue as long as Φ j(α) =

�
NTd [Vy(x, u< j)] j−1dx is identically zero. Otherwise,

a choice of α must be fixed, and the foliation breaks down.
If at the j-th step we find that Φ j(α) � 0 for some value of α then we make the ansatz

that the heteroclinic orbit will be of the form uh(x) = ω · x + α(ε j/2x) + εu1(x) + . . ..
And α(ε j/2x) → α± as x → ±∞ where α± satisfy Φ j(α±) = 0. Then ∆α = O(ε j) and
the j-th order equation will be ∆α + ∆u j = [Vy(x, u< j)] j−1. Thus, α will solve a PDE
of the form ∆α = f (x, α) with boundary conditions α(ε j/2x) → α± as x → ±∞, where�

NTd f (x, α) dx � 0. That is, f is the term that keeps [Vy(x, u< j)] j−1 from having a zero
average for any α. This is carried out in detail in Section 4 for a specific example.

3.6. Energies involving the fractional Laplacian. The existence of minimizers in the
case ω ∈ 1

NZ
d has been established for energy functionals involving fractional powers of

the laplacian, [8], [4]. As described in the remark at the end of Section 2.1, the Euler-
Lagrange equation for the functional

S δε (u) =
�

Rd
u (−∆)δu + εV(x, u)dx, δ ∈ (0, 1), u = ω · x + z(x),

is

−(−∆)δu = Vy(x, u), u = ω · x + z(x).

Much of what has been described so far regarding solutions of ∆u = Vy(x, u) carries over
to this case. However, the analogous properties of the associated minimal average energy
Aδε that are presented for δ = 1 in [13] and [14] need to be established if one desires
to investigate the differentiability properties of Aδε in this case of non-local energy. This
remains an interesting challenge.

4. An example of the Lindstedt series. Consider the potential V : Rd+1 → R given by
V(x, y) = sin(2πk · x) cos(2πy), with k ∈ Zd. For a fixed ω ∈ Rd, We compute the jumps
in the derivative of the average energy functional, Aε(ω) defined in (5), using asymptotic
expansions of the connecting orbits.

Let uε(x) solve ∆uε = εV(x, uε). Writing uε =
�

j ε
ju( j) we see that ∆u0 = 0, and thus

u0 = ω · x + α, ω ∈ Rd, α ∈ R. We are considering ω fixed, but the choice of α is free and
we have a family of solutions parametrized by α ∈ R.

However, in order to calculate u1 we must solve ∆u1 = Vy(x, u0) for a periodic function
u1. The average of Vy(x, u0) depends on ω, so in this example we will choose ω = k so
that the average of Vy(x, u0) is nonzero for some choices of α. Thus, the requirement that
Vy(x, u0) = −2π sin(2πk · x) sin(2πk · x + 2πα) has zero average forces cos(2πα) = 0. We
say that uε has a first order resonance if α is restricted in solving for the order ε1 term in
the Lindstedt series.
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We can calculate the first two terms in the Lindstedt series for each admissible value of
α = 1/4, 3/4. We have ∆u1 = ∓π sin(4πkx) so that the two solutions are:

uc
ε = kx +

3
4
−

ε

16π|k|2
sin(4πk · x) + O(ε2)

um
ε = kx +

1
4
+

ε

16π|k|2
sin(4πk · x) + O(ε2).

The superscripts c and m indicate that the solution for α = 1/4 is a minimizer of the reduced
energy functional

S ε,N(u) =
1

Nd

�

[0,N]d

1
2
|∇u|2 + εV(x, u) dx,

and the solution for α = 3/4 is a critical point, but not a minimizer. We restrict our attention
to minimizers, where Aε can be considered as a function of the rotation vector ω.

To compute the jump in the gradient of Aε at ω = k using the formula in [14] we
need to find minimizers of Aε that are heteroclinic between um

ε and um
ε +1. We search for an

asymptotic solution to ∆u = εVy(x, u) that has the form uh
ε(x) = kx+α(

√
εx)+εu1(x)+o(ε).

The order ε1 equation is

∆α + ∆u1 = −2π sin(2πkx) sin(2πkx + 2πα)
= −π cos(2πα) + π cos(2πα) cos(4πkx) − π sin(2πα) sin(4πkx). (22)

We want to choose α so that it is essentially one-dimensional (i.e. for some η ∈ Rd, we want
α to be a function of η · x). It should also satisfy ∆α = −π cos(2πα) and we can eliminate
those two terms from the equation above. At this point, any choice of η is reasonable, and
in the end we will chose η to be in the direction in which we want to differentiate Aε(ω)
(thus, η will typically be a standard basis vector).

Letting η̂ denote 1
|η|η, we have

α(z) =
1
π

arctan(sinh(
√

2πη̂ · z)) +
3
4

Recall that in the expression for u, α is evaluated at z =
√
εx. Expanding sin(2πα(

√
ε x))

and cos(2πα(
√
ε x)) in Taylor series, for this choice of α, we have

sin(2πα(
√
ε x)) = −1 + 2(

√
2ε πη̂ · x)2

−
4
3

)(
√

2ε πη̂ · x)4 + . . .

= −1 + O(ε)

cos(2πα(
√
ε x)) = 2(

√
2ε πη̂ · x) −

5
3

(
√

2ε πη̂ · x)3 + . . .

= O(
√
ε ).

Then equation (22) becomes ∆u1 = π sin(4πkx)+O(
√
ε ) and we get for uh

ε the expression:

uh
ε(x) = k · x + α(

√
ε x) + εu1(x) + O(ε3/2)

= k · x +
1
π

arctan(sinh(
√

2ε πη̂ · x)) +
3
4
−

ε

16π|k|2
sin(4πkx) + o(ε).

To be precise, we should write uh
ε,η to show the dependence of uh

ε on η. It is important
to notice that uh

ε,η is heteroclinic from um
ε + 1 to um

ε in the direction −η. Similarly, uh
ε,−η is

heteroclinic from um
ε + 1 to um

ε in the direction η, and from um
ε to um

ε + 1 in the direction −η.
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4.1. Computing the gradient of Aε(ω). Here we restrict η to be a standard basis vector
e j. To ease notation we will write M(x) = um

ε (x) and Hej (x) = uh
ε,e j

(x).
A formula for the derivative De j Aε(ω) is found in [14], and in our case becomes

De j Aε(ω) =
�

[0,1]d−1

�
∞

−∞

1
2
|∇M|2 + εV(x,M) −

1
2
|∇He j |

2
− εV(x,He j ) dx j dxd−1

D−e j Aε(ω) =
�

[0,1]d−1

�
∞

−∞

1
2
|∇H−e j |

2 + εV(x,H−e j ) −
1
2
|∇M|2 − εV(x,M) dx j dxd−1.

(23)

Thus, the derivative of Aε(ω) in the direction e j is difference in the energies of the minimizer
defining the top of each connected component of gap and the minimizing heteroclinic in
the direction e j. Note that |∇(M + 1)|2 + εV(x,M + 1) = |∇M|2 + εV(x,M).

4.2. Two dimensional case. We now focus on the two dimensional case so that we can
compare with the numerical computations, which were done for the two dimensional case.
The computations in higher dimensions are impractical for us at the moment.

In our example, ∇Hη = k + η
√

2ε/ cosh(
√

2επηx) − kε cos(4πkx)/4|k|2. If we select
η = e1 and compute De1 S (k) we have

1
2
|∇He1 |

2 =
1
2
|k|2 +

k1
√

2ε
cosh(

√
2ε πx1)

+
ε

cosh2(
√

2ε πx1)
−
ε

4
cos(4πkx) + O(ε3/2).

The heteroclinic solution H−e1 has the same expression as above, with a sign change
on the second term. The |k|2 terms from |∇H±e1 | and |∇M| = |k|2 + O(ε) will cancel
when computing D±e1 Aε(ω). When computing the jump in the derivative, that is the sum
De1 Aε(ω) + D−e1 Aε(ω), the terms ± k1

√
2ε

cosh(
√

2ε πx1)
will cancel, and we are left with two terms

of the form ε
cosh2(

√
2ε πx1)

. These two terms then contribute for a total of
�

R

2ε
cosh2(

√
2ε πx1)

dx1

If we integrate over all of R then this integral is
�
∞

−∞

2ε
cosh2(

√
2ε πx1)

dx1 =
2
√

2
π
ε1/2.

Computing the contributions from the potentials,
�

[0,1]d−1 εV(x,M) − εV(x,H±e1 ) dx j dxd−1,

is not easy analytically, but numerically we find that they also yield 2
√

2
π ε

1/2. Thus, the
jump in the derivative is De1 Aε(k)+D−e1 Aε(k) = 4

√
2
π ε

1/2 ≈ 1.8ε1/2, which agrees well with
the numerical computations.

4.3. Comparison with results from the numerical computations. We use the Sobolev
gradient method to compute the minimizers uε for several values of ε, where each uε has
rotation vector ω. We then repeat this computation for the same values of ε, but for rotation
vectors ω ± ∆ωe j. With these minimizers we can compute Aε(ω) for each value of ε
and each rotation vector. Taking differences over the ω-variable, we can approximate the
derivative of Aε(ω) with respect to ω.

Dej Aε(ω) ≈
Aε(ω + ∆ωe j) − Aε(ω)

∆ω
.

The plots in Figures 1 and 2 are for three cases of potential function. In each case we
examine a first-order resonance, so the choice of α in the Lindstedt series is made when
solving the order ε equation. This also means the twist condition (17) is satisfied.
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Figure 1. Logarithm of the jump in De1 Aε(ω) against log(ε) in the two
dimensional example: V(x, u) = ε sin(2πkx) cos(2πu), where k = (2, 3).
This is a “first order resonance” so ω = k. 256 modes were used for each
Fourier frequency direction ξ1, ξ2.
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Figure 2. Plots of the logarithm of the jump in De1 Aε(ω)
against log(ε) for different potential functions. V(x, u) =
ε sin(2πk1x1) sin(2πk2x2) cos(2πu) on the left and V(x, u) =
ε
2 sin(2πkx)(cos(2πu) + sin(2πu)) on the right. k = (2, 1) in each
case, and ω = k. 256 modes were used for each Fourier frequency
direction ξ1, ξ2.

Figure 1 is log-log plot of the jump in the e1 direction of the gradient of Aε(ω) versus ε.
The dotted line is the logarithms of the numerically computed points plotted against log(ε).
The solid line is the fit J(ε) = log( 4

√
2
π ε

1/2), which was derived in Section 4.2. The same
relation is found for the resonance at ω = −k.

Figure 2 has the same type of plot for different choices of potential function. In 2(a) the
potential is

V(x, u) = ε sin(2πk1x1) sin(2πk2x2) cos(2πu),
and the choice of resonance was ω = k = (2, 1). In this case, the fit is J(ε) = log( 4

πε
1/2).

The same relation is found at ω = (±k1,±k2) and at ω = (±k2,±k1).
In 2(b) the potential is

V(x, u) =
ε

2
sin(2πkx)(cos(2πu) + sin(2πu)),
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and the choice of ω was ω = k = (2, 1). The same relation is found at ω = −k.
Higher order resonances can be computed, for instance at ω = 2k in each of the previous

examples. However, the behavior of the jump in DAε(ω) behaves like ε to a power greater
than one. To get reasonable accuracy one needs to take many more Fourier modes in the
numerical approximation, which is impractical for us at the moment in the case of two
spatial dimensions.
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