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Abstract: The symbol U denotes the velocity or momentum (the mass multiplied by the
velocity). Transform the Navier Stokes momentum and density equations into infinite systems of
ordinary differential and linear equations for the classical Fourier coefficients. Prove theorems
on existence, uniqueness and smoothness of solutions of them. Interpret the results using the

A

Fourier series representation U =U,P = P.
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1. Introduction

The main result in this paper can be stated as follows. If the data is jointly smooth, spatially
periodic, and the body force and its higher order time derivatives satisfy the generalized sector

conditions described later a unique physical solution (U, P) exists which is separately smooth in
(t,¥)on t > 0,X € R*. This solution is the extension of the unique regular (smooth) short time

solution determined by the data. The solution (U, P) is also bounded for all forward time.

In 1934 Leray (in [9]) formulated the regularity problem and related it to the smoothness
problem. In the year 2000, Fefferman formulated the problem (in [5]). In that same year, Bardos
wrote a monograph on the problem ([3]) which summarized the then literature. The author
interprets the remarks in [3] Bardos to indicate that the problem of regularity/smoothness can be
solved as formulated in (A) of [5] Fefferman.

What is new?

As far as this author knows the formulas for the Navier Stokes ordinary differential equations in
this paper are new. However for the problem defined on the aperiodic space domain Cannone-
in the formula immediately prior to (27) on page 15 of Harmonic Analysis Tools for Solving the
Incompressible Navier-Stokes Equations. (2003)- uses the Fourier transform to rewrite the
variation of constants formula solution of the Navier-Stokes evolution equations.

The vector form of the Navier-Stokes equations

The vector form of the Navier-Stokes equations for an incompressible fluid on the unit cube is



U +U-VU=nAU -VP+F,n>0,t>0,% €[0,1]
U-V=0,t>0%e[0,]

U(O,x, V,z) = UO (x,y,2),X € [0,17°
U(t,x,y,0)=U(t,x,y,)) = h'(x,),(x,y) €[0,1]*, =0
U(t,x,0,2) =U(t,x,1,z) = h*(x,2),(x,z) €[0,1]*,£ = 0
U(t,0,y,2) =01, ,2) = h*(,2),(y,2) €[0,1]*,7 > 0.

(1-1)

One seeks a unique solution of (1-1) on the unit cube which is jointly smooth in time and space
and bounded for all forward time given that the data U 0,13 , h *,i=1,2,3 is smooth. Such solutions

extend to periodic solutions of period 1 in each space variable holding the others fixed.

In (1-1) U is the velocity vector field, VP is the pressure gradient to be determined, V - U is the
VU

divergence of U, and U -V is the matrix tensor D;CU =|VV ,U =U,V,W).
\"2/4

The first equation of (1-1) determines the momentum. The body force F'is smooth on
[0,00) x[0,1]* . The initial function U, » 1s smooth on [0,1]. The boundary functions 4°,i =1,2,3
are smooth on [0,1]x[0,1].

The momentum equation can be interpreted as Newton’s second law of motion for fluids

combined with a dynamic version of Archimedes’ law of hydrostatics. If U(¢,X) = 0, the

equation reduces to Archimedes’ law VP(¢,%) = F(t,X) .

The second equation of (1-1) is the equation of continuity. It is the Navier-Stokes equation for
the density for an incompressible fluid.

The following equations for the classical Fourier series coefficients are equivalent to (1-1). The
conditions on the data functions are equivalent to the conditions that their Fourier coefficients
belong to discrete Schwartz frequency spaces

dUg ") _ 4y | PP R0t F) - 220 (1,7)F % U(1,F) = 20°P(t, F) + F (1, F),
t>0,7eN’n>0 (1-2a)

U(0,7)=U,(F),F eN*
7-U@t,7)=0,F eN°,t>0.



The boundary conditions for the Fourier coefficents are

(j(t,O,rz,Q):le(rz,r}),t 20,=(r, Ar3)=0
Ut,13,0,15) = by (r,13), 2 0,1, A7) =0 (1-2b)

U(t,r,7,,0) = by (r,7,)st 2 0,—(r; AT,) =0
t>0,FeN’.

In (1-2), U, 13, F J; ' i =1,2,3 denote the classical Fourier sine series coefficients of
F,

U,P,F,h',i=1,273 and N W?denote the set of natural (respectively whole) number triples.

The law governing the average mechanical energy of an incompressible fluid

Theorem 2-4 establishes the existence of a unique solution defined (bounded) for all forward
time smooth in ¢ uniformly in X €[0,1]’ and smooth in X uniformly in ¢ > 0. The following
formulas provide a smooth generalization of Leray’s mechanical energy law ([12] section 17
formula 3.4) for the Navier-Stokes equation and all of its time derivatives with non zero body
force

t t
S N10©RG =2 (108 Fay = [IVO® Faids+ [ [0 Faids,n 0,020,
[0.17 0,17 007 0 0,17 (1-3)

k=012,..

Equations (1-3) state that the difference of the space average of the kinetic energy (at time

¢t > 0) minus that at time 7 = 0" is equal to the viscosity times the potential energy minus the
average work done by the body force acting on the incompressible fluid where

|VU = Vu-Vu+Vv-Vv+Vw-Vw,U" = (u,v,w) . The energy formulas (1-3) are equivalent to
the formulas

MIUR @)= U (0,7) =

7>0 7>0

t n t n n (1'4)
—4x’ [ YAFPIUD [ ds+ [ D UN (5,7)- F(s,7)ds,t 2 0,7 > 0,k = 0,1,2,...

0 #>0 0 >0

established in theorem 2-2.

By Parseval’s theorem, the quantities on the left side of (1-3) and (1-4) are both equal to the
average kinetic energy.

The problem of finite time blow up



In theorem 2-3 the author shows that finite time blow up of solutions of (1-1) is impossible given
smooth data, the equation of continuity, and the following conditions on the forcing function

t t
[ O -F®dids <] [|VU® [dids,t>0,7>0,k =0,1,2,.. (1-5)
0

0,1 00,1

In the frequency domain, inequalities (1-5) become

t

[ X097 F O (s,7)ds < 4x’n[ 3|7 P1UY (5,7) [Pds,t 2 0,7 > 0,k = 0,1,2,.... (1-6)

0 7>0 0 7>0

Under the conditions (1-5) on F the solutions of (1-1) are absolutely bounded. Absolute
stability/boundedness extends the concept of Lyapunov stability/boundedness from
homogeneous nonlinear systems to nonlinear systems with a forcing function.

2. Existence of a unique smooth short time solution and its forward time extension
The Navier-Stokes ordinary differential equations in the frequency domain comprise an infinite
system of ordinary differential equations for the time dependent Fourier coefficients U(z,7) of

the velocity U(z,%). It is possible to use the classical Fourier sine series coefficients because the

inhomogeneous Dirichlet boundary conditions match on opposite faces of the unit cube.

The notation

U e {C*([0,T]).7 € N} A {S(N*),t > 0}

indicates the space of Fourier coefficients of momentum vectors which are separately smooth on
t €[0,7] and discrete Schwartz in the vector of frequency parameters. A Fourier coefficient is

discrete Schwartz in a parameter if it decays more rapidly than any fixed power of the norm of

the frequency |7 |”, p € W grows. Thus lim |7 |?|U(t,7)=0,t >0, p e W . Equivalently the

|F|—>o0
discrete Schwartz coefficients can be defined with upper bounds replacing limits (see definition
2-2 below).

Lemma 2-1. The Navier-Stokes ordinary differential equations for the Fourier coefficients of the
solution of the spatially periodic problem (1-1) are

% — 4 | FP 20, F) - 270 (,F)F * U (1, F) = 20°P(1,F) + F (8, 7),
t>0,7eN’,n>0 (2-1a)

F-U(@,F)=0,F eN>,t>0
U(0,7)=U,(F),F eN°.



where

U(t,r,7,,0) = by (r,7,),t 2 0,—(r; ATy) =0
U(t,17.0,7) = by (1,75), 2 0,=(r, A75) =0 (2-1b)

U(t,0,r,,1,) = h(ry,r;),t = 0,—(r, A1y) =0

where * in line 1 of (2-1a) denotes the convolution

Uiy *U(F) = Y [0F -§)F -3 10 (6.9). (2-2)

zi>()
The discrete Fourier (integral) transform (the Fourier coefficient) of the velocity is

U(t,7) = 3{U )} = [U(t,%)sin2m;xsin 27, y sin 2, zdxdydsz,
(0,17 (2-3)

FeN,t>0.

and similarly for F(z,7), P(t,F) .
PROOF

Note that all triple integrals over [0,1]° in the definition of the discrete Fourier transform defined

by (2-3) are well defined for all forward time since F,U , are smooth in X € D and smooth and

bounded in ¢ with all time derivatives continuous and bounded on ¢ €[0,). The boundary

functions #',i =1,2,3 are smooth on [0,1]°.

A

The terms dd—U, 7P, F are calculated from the discrete Fourier transform to the terms of (1-1) and
t

the differentiation property of discrete Fourier transforms applied to the first partial derivatives
in the case of the pressure gradient term.

The Fourier series coefficient of the diffusion term can be calculated using integration by parts
twice. Since the three calculations are identical, it suffices to calculate the transform of the

second partial derivative of U with respect to the first component x,



IU . SIn 27, x sin 27w, y sin 27y zdxdydz =
0.1y’

11
I .[Ux sin 27zr,x |\ _, sin 2z, y sin 27, zdydz =
y=02z=0
- 27, J.Ux cos 2z, xsin 27w, y sin 27w, zdxdydz =
(0.1
—A4x? Ilj sin 27, y sin 27w, zdxdydz = -4z r?U (t,7),t > 0,7 € N°.
(0.1’

Thus the diffusion term is

oU(t,x,,x,) 8U(10, xz,x3)] .\
ox, ox,
. [OU(t,xl Lx;)  oU(,x, ,O,x3)] N r3[8U(t,x1,x2 1) oU(t,x,,x, ,0)] N

: ox, 0ox, Ox, Ox,

SAUY = (12 + 12 +rD)UEF) + 1]

U(t1,x,,x,) = U(t,0,x,,x,) + U(t, x,,1,x,) —U(t,x,,0,x,) + U(t, x,,x, 1) = U(t, x,, X,,0)

=2+ 12+ 1)U, F) %0, 20,F e N°.
It follows that
InAU} = -4nx® |FP U,F e N*,t>0.

The transform of the Euler term is

U -VU} = > 22[U0(t,7 - §)F —§)'1U(,§),t 2 0,7 € N°.

geN 3
The transform of the pressure gradient term is

IVP sin 277, x sin 27, y sin 27, zd% = 277°P,t > 0,7 € N°.
0.1’

The transform of the equation of continuity is

I(Ux +V, +W.)sin 2z xsin 2zr, y sin 27y zdx = 27[nU + 1,V + W] =0,

[0,17°
t>0,7eN°.

(2-4)

(2-5)

(2-6)

(2-7)

(2-8)

(2-9)

The boundary conditions (lines 3-6 of formula (2-1)) are derived by solving the homogeneous

Laplace’s equation constrained by the face matching boundary conditions using transform

(Fourier series) methods.



END PROOF

Remark 2-1. Equations (2-1) specify an infinite system of ordinary differential equations with
a discrete vector parameter whose solutions are the time dependent Fourier coefficients in the

Fourier expansions of U(t, %), F(¢,%),U o(%), P(t,X). In fact formulas (2-4) through (2-9) hold on
7 e W’ . But, since the boundary conditions are Dirichlet and the Fourier sine series is used,
there is no constant term corresponding to 7 = 0 while cases with one or two indices r, equal to
0 occur on the boundary of the frequency domain.

Definition 2-1. The family of linear operators defined by the transformed equation of continuity
is

LIF(t,7)] =7 F(t,7).F e N*,t > 0. 2-10)

Remark 2-2. Forany 7 e N°, L, :C*[0,00) =C*[0,0) . The linear operator L. is a map from
vectors of smooth (infinitely continuous differentiable) functions on ¢ € [0,) to smooth scalar

functions on [0,).

s

v k=0,1,2,.. isin n(L;) (the

ko’

Proposition 2-1. Any derivative of finite order of the velocity

null space of L.).

PROOF

By (1-1) this relation holds for the discrete Fourier transform of the equation of continuity (

k =0). Take derivatives of order k =1,2,3,... with respect to ¢ of both sides of
Ut,7)-F=0,6>0,7 >0 @-11)
to complete the proof.

END PROOF

Since differentiation of the momentum function with respect to the space variables corresponds
to multiplication of its transform by frequency variables, the following Banach space is the one

needed to establish that solutions of the Navier-Stokes equations are smooth in (¢, x) €[0,00) x R’.

Definition 2-2. The discrete Schwartz space (uniform in ¢ € [0,7]) for Fourier coefficients U

defined on [0,T]x N” is

éw ([O,T]) || r]s(l)rzs(Z)r;(.’))U H: sup__ s | I"IS(I)VZS(Z)V;(3)U |S M(§), 7 EN3, Se W3 }’ (2_12)



The following assertions follow from the hypotheses of [5] Fefferman or, in the case of é (t,r)

from the functional analytic conditions imposed in the last line of equations (2-1).
The following lemma establishes that P is an auxiliary function for (2-1)- i.e. a function which
can be removed in an equivalent form of the equation.

Lemma 2-2. Equations (2-1) can be placed into the following equivalent form

100
—1010||[22(UF")*U-F1,t 20, e N*
001

——t

U, =—4x’n|7|" U+

=2

. 2-13
Ut,7)-7 =0,0>0,F e N° (2-132)

0(0,7)=U,(7),7 e N°

Uefl:Ue(C”nI*N0,0).7 € N.U e S(N*).t > 0).

The boundary conditions for the velocity coefficients are

U(t,7,7,,0) = by (77 o > 0,—(r Ay) = 0

U(t,7,0,1,) =y (1 7)ot 2 0,—(r A7) =0 (2-13b)
(j(t,O,rz,ig) = 21(r2,r3),t >0,—(r, Ar;)=0.

The pressure coefficients satisty the following equations

P(t,7) = Py (7 2m(UF" ) *U +7 - F(1,7)},t > 0,7 e N
aul (2-14a)

PO ,7)= (=7 22U, F)F ) * U, (F) + 7 - (O, 7}, F e N°.

2|7 |

The pressure coefficients satisfy the following boundary conditions



1 4 [ oy
272'| ’_;|2 {_ 2272'(”1,”2,O)'[U(t,ql,QQ,O)(ql,q2,0) ][U(tarl 4,7 —4, 50)]
(}ENZ
+(r,1,,0)-F(t,1,,1,0)} (17, 1,) > (0,0),£ 2 0,
1

ﬁ(t,lq,O,lg) =—1{ Zzﬂ(”l ,O,r3)-[(j(t,q1,0,q3)(q1 aO,%)t][U(ta’ﬁ —4,,0,75—q;5)]
| FT e (2-14b)

+(r,0,1,)-F(t,r,0,7,)},(r;,73) > (0,0),£ 0,

A 1 Jay e
P(taoarzarj):—2{_Zzﬂ(07r2>r3)'[U(t7q17q2’0)(0’q2’q3) ][U(t,(),r2 _CIz:rz _‘]3)]

27Z'| 77| QEN2

P(t, 1,15,0) =

+(0,I’2,l’3)-F'(t,o,r2,r3)},(l’2,r3)>(O,O),t20_

PROOF

The equations in the first line of (2-13a) form an infinite system of vector ordinary differential
equations-one for each Fourier coefficient as a function of time. The equations in the second line
of (2-13a) for an infinite set of homogeneous linear equations.

Apply the linear operator L. to each side of equation (2-1) by forming the dot product of each

term with the vector 7 to obtain

P AUGT) e i 207
- . ) (2-15)
—F Y [22U0(t,F - §)F - §)' WU (t,§) — F - F2aP(t,F) +F - F(t,F),F € N*,t 2 0.
GeN?

By proposition 2-1, U(t,7),U, (t,7) € n(L,),7 € W* hence (2-15) reduces to

0=—7- Y 22U(t,7 - §)F —§) WU (t,§) — F - F27P(t,F) + 7 - F(1,7). (2-16)
z}eN3

Solve (2-16) for P(t,7) to obtain the first line of (2-14a). Insert the first line of the pressure

formula into (2-1) to obtain the first line of (2-13a). The second line of (2-14a) is obtained from

the transform of the initial function U o (7). The coefficients i ,i =1,2,3 on the boundary of the

frequency domain can be inserted for U to further reduce the formulas (2-14b). The pressure
coefficients are independent of time on the boundary.

END PROOF



Remark 2-3. From higher order derivatives of (2-1) and the projection defined by the k™ order

equation of continuity, one can calculate formulas for P (¢,7) similar to (2-14).

The equation that results from calculating any finite order time derivative of equations (2-13a) is

100
U =4z’ |FPUY + l’i’"z ~[010 | [@raWF)*T)*® - F©],
001

t>0,7e N’ keN (2-17)

U®0,7)=0,7 e N*,keN
U, 7)-F=0,620,7e N> keN.

The following theorem establishes the existence of smooth short time solutions of equation (2-
13).

Theorem 2-1. Suppose 7,0 € C*([0,00) A S(N*),U, € S(N*), b € S(N?),¢ > 0,i =1,2,3 then
there exists 7 > 0 such that U e € ([0,T)) N §(N3), satisfies (2-11) and

PeC”(0,T))N §(N3).

PROOF

The goal is to establish
a. Forany fixed 7 € N*, and any finite k, U™ is continuous for sufficiently short time.
3T >0:| U ,)-UP () < M(k,F)|t,—t, |<0,V1,,t, €[0,T],M =sup,.,_, U () (2-18)

b. The continuity of U is uniform in k € W

ar >0:|U(k)(12)_0(k)(t1) [<M(F)[t, -t |<oo, V1,1, €[0,T],

~ A 2-19
M =sup,_, sup.r U () ( )
c. The continuity of U* is uniform in 7 eN?

AT >0:|UP1,)-UP ()< M |1, -1, |<o0,¥1,,t, €[0,T],M
(2-20)

_ (k1)
=SUp__,s SUP oy SUP e U (1)

10



Use the variation of constants formula to solve for the general Fourier coefficient of the
momentum

U(L7) = V() +

t 100
nd g R A2 rr! 4 fat ol R 3 (2‘21)
eI 4 [ 1010 | [2a(UF) *U) ~ Flds,t 2 0,7 € N°.
|7
0 001

Form the difference to establish continuity of the Fourier coefficients in time
U(t,.))=U(1,,7) =

e—n4n2\f|zz(2)00 _ e’”“”z'”zl“)ﬁo +

(2 .., (100 A A oA

[femmreersl Il 010 | |[2r(UF") *U) - Flds - (2-22)

0 7 o0

(1) - 7Pt 100 A A 2

[ et s —— 1010 | [7(UF") *U) - Fds

0 7 o0

t,>t,20,F e N°.
Simplify the expression on the right side of (2-22)

U(ty,F)=U(t,7) =

[e Q) _ ta PO

1(2) - 7t 100 A A A

[emmmeeral It o10] [Qa(F) «0) - Fids - (2-23)
g 7 oo

0 - - 77t 100 N A o2
[ [emnruers _ g T 010 |[(27(UF")*U)~ Flds}
° 001

t,>t,20,F e N°.

Examine continuity near time 0 by setting?, =¢,7, =0

11



U@, 7)-U(0,7) =
eI _13U, +

t ., 100 . . . (2-24)
Ie_n4,,2\;\2(t(2)—s) %_ 010 [(27[([7?) * U) - F]ds} -

0 7] 001

t>0,7eN’.

It follows that

|U(t,7)|< Lt

t
N J~e,,74,[z\,:\2(m)2{M1 +M,}ds =
| (2-25)

1_ —17412\7\2t
W)2{M1 +M,}

t>0,7eN°.

Lt +(

For derivatives of the momentum coefficients of any finite order &k =1,2,3,...the variation of

constants formula yields

0(k)(t’77) _ (_477)k7z_2k | 7 |2k 67774”2”'2[00

100
‘ ——f A A A
+J.e774;z2m2(zfs) %_ 010 | [x(UF")*U)® —F®ds,t>0,7 e N°, (2-26)
0 001

t>0,7eN,k=123,..

To prove continuity of the k™ derivative of the momentum coefficient in time, calculate

U(k)(tz,?) —U(k)(tl,f) _ (_477)k 7z_2k |}7 |2k e—f747r2|f|2t(2)00 _(_477)k72_2k |}7 |2k e—f747z2|f|2t(])00

. (100 -
+ [ el I 010 | [[2a(UF )« U) - F® Jds -
" 7T oot
(2-27)
" (100 -
+ [emmrrenm) 1010 | [Qa(UF)*U)* - FOds
" 7T oo

t,>t,20,F e N>, k=123,.

12



Simplify the difference of U™ at two distinct times

Ij(k)(tzﬂ_’:) —ﬁ(k)(tl,?) = (—dn)* 72 | F PH [en T —e_”4”2‘;‘2t(1)]5o
o . 100 i . .
N J. e—774772\7\2(f(2)‘°) I’_.l’ _lo10 [(272_(077t) *U)(k) _F(k) 1ds —
(1) 7 | 001

W e (100 2 A A
J‘ [e—ll4ff [FI7(2(2)=s) _e—1747f |71 (f(l)—S)] | ~ |2 —-1010 [(27Z'(U771)*U)(k) _F(k)]ds
0 001

t,>t, 20, e N' k=123,...

To investigate behavior near time 0, evaluate (2-27) at ¢, = 0,7, =¢

UN(t,7) = (<4n)* 7 | F [ [e= T —110,

100
t == A A A

+ [ el L[ 010 | [ (UF)*U)® — F 1ds
" TS

t>0,7eN,k=1223,.

The upper bound on the momentum coefficient is

TR 7Y 4nF 7| F P 1= T, |

100
t 7t - - =
+J'e—774;r [7[* (t-5) | ﬁ_ 010 |[| (272_(U-}—;t)*U)(k) |+ | F(k) |]dS
r
0 001

t>0,7eNk=1273,..

The upper bound can be simplified as follows.

U®(, 7)< 4n [ 22 |7 1 dnx? |7 PO, |1
n n 0
Rrnnn | (100

+ [erierre| rry 1y |~ 010 || [[|a(UF) *TYY |+ F* [1ds
0

|2
2
ULERETERE! 001

t>0,7eN,k=123,...

Use the trace norm to bound the matrix operator inside the integral above

(2-28)

(2-29)

(2-30)

(2-31)

13



00
> |7’
noonn R 100 s
1 2 r =7 3|7 P |7 [
Wl nr, r, | — 010 |<| OTO |<?=2. (2-32)
r r r
By nry 1y 001 2 =2
0 O 7"3 _lr |
|7 [’
By the hypothesis on the data
sup,., | U, (F)|< L(r) < L (2-32a)
sup, |47 [ 72 | F [ FO (s, F) | 1) F 9 (s,7) |< My (F) < My, | F > max {4z, 7} | (2-32b)

Since the variation of constants operator is defined on coefficients which are smooth time/

discrete Schwartz frequency, U(s,7)#" is discrete Schwartz in the frequency. The convolution

of discrete Schwartz functions is discrete Schwartz in the frequency 7 € N° which is also
smooth in the time variable,

sup ., | Qa[(U (s, F)F)*U(s,H)]* |< M, (F) < M, (2-33)
It follows that

U ® e, 7)< Lt

t
+ [em I 24M, + M s =
0 (2-34)

1— —nan’|F)

e
Lt+(772—2)2{M1 +M2}

477 |7 |
t>0,7e N’ k=123,...

Not only are the coefficients [U “(z,7) | bounded for sufficiently short time but for all finite

forward time.

The formulas (2-13b) and (2-14b) for U, P on the integer lattice “boundaries” of the frequency

domain and their discrete Schwartz property in N° for all forward time follow automatically
from the given conditions on the boundary data.

END PROOF

14



Proposition 2-2. The inner product of U®(¢,7) with the transformed Euler (convolution) term

UO@,HIUF U@, )™ =0,k =0,1,2,3,...,t > 0,7 > 0.
PROOF

By the Liebnitz rule, the k™ order Euler term can be written

g® ZT[U F +U, (0] =0 Z@w OF) " # (U, (1)
= (2-36)

= U(k) OF ZZ( j([j;q (7 -q) )(’) ((jq (t))(k—l).

7>q 1=0

The equality in the second line follows by the definition of convolution and the fact that the

coefficients for the classical Fourier sign series are one sided 7 > 0.
The next equality follows by matrix vector multiplication,
- dt = 2 A I
U -W[U; ()7 * U (O]= ZZ( J(r =) (U@ (U, () - U (0. (2-37)
r>q =0

The next inequality follows by the Schwartz inequality for vectors in R’ applied to each term
and both dot products,

g [U OF *U, ()] <
. . X (2-38)
ZZ( j|f—é|2|(@)“‘”(mﬂ(Uf_q><’>(r)|2|(Uq>(k‘”(t)|.

r>q 1=0
The next equality follows by the definition of the inner product of a vector with itself ¥ - X =| X|”.

2 Z( j 7 =G| (@)("‘” 0] (5;_5)“)0) i (li;)("‘” )=

7>q =0

ZZ[ j (U OPIUN O PIU; )" (1) (F-§) = (2-39)
F>q =0

0,keW.

The final inequality follows by applying the higher order equation of continuity to each term

U 7=0,1=0,12,..kt>0,7>0. (2-40)

Similarly
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A k A A
00 £ 0.0 + U, (1)

. . R (2-41)
_ZZ( j (U OPIUN" O I U)" () (F=§) " =0,k e N.
7>q 1=0
Hence
A df = o -
u® -d—k[U,,, (OF' *U.(1)]=0,t>0,7>0,ke N . (2-42)
t
END PROOF

In the next theorem notation 7 > 0 indicates that all discrete frequency indices are non negative
integers and not all indices are 0.

The next theorem extends the domain of definition of solutions of (2-13) by showing that they
and all of their finite time derivatives are bounded and continuous for all forward time. A
frequency domain formula for the total mechanical energy of the average velocity and any time
derivative of it also appears. This is the frequency domain analog of the extension of Leray’s
energy law augmented by the body force.

The key to proving the next theorem is to impose the generalized sector conditions for the
Fourier coefficients to control finite time blow up and to realize (from the variation of constants
formula) that higher order initial functions exist, and, if they are nontrivial -denoted by

(UPF)=0,7 > 0}k =0,1,2,...

-then a useful inequality can be constructed.

Theorem 2-2. If —{U " (¥)=0,7 > 0},k =0,1,2,... and

t N A t A

IZU“”(S,F) F®ds < 47z2nj2| FREIU® (s,7) Pds,t 20,7 >0,k =0,1,2,... (2-43)
0 7>0 0 7>0

then

a. the following formulas for the total mechanical energy are well defined

Z|8U(tr) ZIaU(Or)|_ i nIzM'aU(zr)'

7>0 7>0 0 7>0 (2-44)
t kirt(o = KBt (o 7

+J-26 U (ks,r) 0'F (kS,F) ds,k =0,1,2,3,...t > 0.
0 7>0 aS aS
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b. The solution of (2-1)/ (2-13a) and every finite time derivative U* (¢,7),k = 0,1,2,..., > 0 of
it is unique, continuous, and bounded in ¢ for all forward time, square summable in 7 € N° for

all forward time and jointly bounded in (¢,7) €[0,00)x N°.
PROOF

First note that, by continuity, the hypothesis implies I |U® *(%)dx > 0,k =0,1,2,... hence

D
MIUPF) >0,k =0,12,.., (2-45)
7>0
By Parseval’s theorem
I| Uék) |2()?)d)? <0 & Z| (_jék)(’—;)|2 < oo,k =0,1,2,... (2-46)
D 7>0

Construct the formulas for the average energy of U® (¢,7),k = 0,1,2,... Then apply proposition 2-
2 to eliminate the U® (¢,7) dotted time derivative of the Euler terms to simplify these formulas.

Form the dot product of each equation (2-13a) with U (¢,7), sum over 7 e W > — {0} and
integrate from 0 to ¢ to obtain

DI AP =Y O =-4x*n| 3|7 P10 | ds+

>0 7>0 0 >0

2ﬂj Z Z%{ﬁm(&?_@'(’7—6))(&(&77)‘é(“(S,é)}ds+ (2-47)

P A
J'ZU(k)(S,f) - F® (s,F)ds,k =0]12,...

0 7>0
By proposition 2-2 the U dotted transformed Euler term summed over 7 > 0 satisfies

22 Y, SUs.F)- (U(s,F ~§)- U (5,3) = 0. (2-48)

72>0 G>0

By proposition 2-2 the U™ dotted transformed Euler term of the k™ order Navier Stokes

ordinary differential equations, likewise summed over 7 el satisfies

22 Y S0 [ (s.7 -§)-F - )0 (s,9)] =0. (2-49)

72G>0 §>0
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a. By (2-39) the frequency average of the kinetic energy is a decreasing function of time

DU N 0, < D UD 0P <00 <ty <1y, =012,... (2-50)

7>0 7>0
Since the frequency average of the kinetic energy is decreasing in time, the kinetic energy of
U™ is bounded for all forward time

0<>UP@AHIP<YI U P=N,t20=sup_|UX () < N, o5
>0 >0 =

t20,k=0,123,.

It follows by the strict inequality of (2-43) and the boundedness of the frequency average that
the time average of the potential energy is bounded for all forward time. Since each term in the
total energy formula is finite on [0,) the formulas (2-44) are well posed.

b. Since ||[U™® || , < it follows that U (¢,7) is bounded for all forward time uniformly with
respect to 7 € N°. By the fundamental (extension) theory of ordinary differential equations it

follows that for each 7 € N3, U® (¢,7) is unique and continuous in ¢ for all forward time
uniformly with respect to 7 € N°.
Since U™ (¢,7),k =0,1,2,...is in L*(N*) for all forward time. Since

NT® ), NT® ||, .k =0,12,..., U(t,F)is bounded everywhere in 7 eN* for all forward time 7.

END PROOF

The following lemma establishes a link between the inequalities (2-18) in the hypothesis of
theorem 2-2 and inequality (5) and its higher order analogs.

Lemma 2-3. If U% . F® vU®e L,[0,1]°,k =0,1,2,...,¢ > 0 such that the U*,k =0,1,2,...

satisfy the Navier-Stokes partial differential equations and its finite order time derivatives satisfy

[ [0®-F®dids <n[ [|vU" dids,t>0,k=0,1,2,. (2-52)
0

0,1 0 10,1

for all forward time if and only if U® - F® vU® e, (N*),k=0,1,2,...,t >0 such that

u® ,k =0,1,2,... satisfy the Navier-Stokes ordinary differential equations and its finite time

derivatives satisfy
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t A A t A
jZ| U (s,7)- FP(s,7) | ds < 47r277j2| PO (s,7)ds,t = 0,7 > 0,k = 0,1,2,... (2-53)

0 7>0 0 7>0
PROOF

By the strict inequality, the integral on the left of (2-32a) over R’ must be finite. In order for the
Fourier transforms which appear in (2-32b) to be well defined

F®.0® vU® eL*([01]),k =0,1,2,...,t > 0 if and only if

OO FO 1512 0D el 2,k =0,1,2,...,1 > 0,

Note that, since ',k =0,1,2,...is smooth in ¥ €[0,1]’, U® . F®is integrable by Holder's
inequality if only U® e L'([0,1]*) without assuming (2-28a).

Now suppose

[XNTO 5, 7)- F O (s,7) | ds < ax’n [ Y| 7P U (s, F)Pds,t 20,7 > 0,k =0,1.2,. (2-54)

0 7>0 0 >0

By the definition of the discrete Fourier transform (i.e. the Fourier coefficient) the previous
inequality is equivalent to

t
[ > [T s,%)- FO(s,%) | x| sin 2m;.xsin 27, ysin 227, 2| diéds <

0 FeN0,1P

(2-55)
t

apr [ 3 [1UD (5,%)- V| sin 2, xsin 2727, ysin 27,2 dids, t 2 0,k = 0,1,2,...
0 FeN3[0’1]3

Since 0 <| sin 27 xsin 277, y sin 277,2|> < 1,X € R*,r € N* (2-55) holds if and only if

t - ~ t ~

[ [UGs, %) F(s,%)| dids <n[ [|VU(s,) [ dids,t >0,k =0,1,2,.... (2-56)

070,17 010,17

END PROOF

Theorem 2-3. If F (t, ?),lz.,i =1,2,3, and all time derivatives are discrete Schwartz in 7 € N° for
all forward time and U o (7) is discrete Schwartz in 7 € N* then any finite time derivative of

U(t,7) ( the solution of the equation of lemma 2-2) is Schwartz in 7 eN*>.

PROOF
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a. Forany fixed t,k U" is discrete Schwartz in 7 € N3

sup |7 17| 0™ < o0,Vp e W (2-57)
P, 171 1%

b. The upper bound forU™ is uniform in k

Sup,y sup,_. |7 ||U" |<o0,Vp e W (2-58)

c. The upper bound for U is uniform forall 7> 0.

SUP . SUP,.yy SUP__ s | 7 |”] UM <o, VpeW (2-59)

By the variation of constants formula, it suffices to show that the convolution integral is discrete
Schwartz since W(7), D(¢, 7) =e T , are discrete Schwartz in 7 € N by inspection given

the hypotheses on the initial and boundary conditions.

Multiply the time convolution by any monomial formed by the product of any finite powers of
the frequency components

SupfeN3 | },lp(l)rzp(Z)r3p(3) || U |£

Sup._._,s | ’ﬁp(l)rzp(z)rspm W) |+

B 22 oy
sup__ . e nazc|r e |U0 H l”]p(])l"zp(z)l"3p(3) |_|_ (2-60)
, ., (100
—parfiRa-sy| ¥T = = =
sup,_» | 7"V @O || [ e T —— 1010 | [27((UF) % U) ~ Flds |
0 |7 001

n>0,peW,t>0,F e N, k=123,

Simplify the upper bound on the Schwartz weighted momentum coefficient of (2-60)

sup__ . | np(l)rzp(Z)I,SpO) ||U(k)(t, F)I<

~ o422 s
sup, o | 17O OO [ (A | 2 | F e U |

, . 100 R R R (2-61)
bsup [ 7700 | je—m#\fﬁ(z-” |’:le_ 010 | [z UF")*U)® —F®1ds |
0 001

n>0,peW,t>0,F e N>, k=123,
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The Fourier series coefficient of the solution of Laplace’s equation is discrete Schwartz

h(F) e S(N?) = B(7) e S(N*) =

2 (2-62)
Vp e W3’SUP;6N3 | VPO | P (F) < M.
Since U, € S(N*)
Vt>0,pel’
(2-63)

AR 77| e, p(2), () 5 p() . p2) . p()
sup__» € Uy | 77777 <sup__ s [Ug [ 1755 <M,
Since

UeS(N*)= (UF")*U e S(N*),F € S(N?)

and

(100

| ==~ 010]||<2,reN".
7 oo

Use the norm on the matrix operator immediately above to get the following upper bound

1 2 3 = k
SupfeN3 |r1p( )rzp( )},317( ) || U( ) |S
t ., (100
_ 1204 rr JoS oy 4
sup, s | r @O || [ TR 1010 | [272((UF) *U) - F s |

=2
0 |
001 (2-64)

eI 2 sup L supg |10 | (UF) * U)ds |

IA

Oy~ O e

2

—n4x’ (7 (t-s) p() .02, p3) ||
e SUp (¢ | ", r3 || F lds.

2

+

The convolution and body force terms in the integrand have upper bounds which are uniform
over all time and any order k of the derivative.
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sup . p(l)rzp(Z)r3p(3) || U(k) |S

FeN?3 | rl

2 j e TIPSO N N, ds < (2-65)
0

1 1
[N, +N,]—————<2[N,+N,]|——,|F >3
L, 2]7747z2|77|2 LV, 2]77127r2| |

For the k™ derivative with respect to time of the classical Fourier coefficient

100
t — . R R
Sup’:e]\ﬂ | rlp(l)rzp(z)r3p(3) || J’e*ﬂ‘lﬂ'zmz(tfs) %_ 0 1 O [(272_(U";f) *U)(k) _F(k) ]dS
’ 001

Cpant P .. p(2) .. p3 5 T\ (K
<2fe ™ 2zsup s supy |V RO | a(UF ) #U) Vs |

+2 e-174ﬂ2\7\2(t-3) sup.., |r1p(1)r2p(2)},3p(3) I F® lds < (2-66)

O ey O C—

t
2[e IR+ Py ds <

0

1 1 -
AP + P ————5<2[P +PZ]W,| rz3.

4z’ |F|

For coefficients in discrete Schwartz spaces the integer weights are unrestricted. Hence any sum
of squares can be exceeded by a product which is a single square. Thus the Schwartz norm has
two equivalent formulations

= ..p(2)..pQ3 -
SUp - s U, | ’"lp( )rzp( )r3p( ) = SUp ,ep |7 71U, | (2-67)

The homogeneous term has a uniform upper bound

Vt>0,pew’
v A - (2-68)
sup.. e e*7747f 7" ’UO ’rlp(l)rzp(2)r3p(3) < sup.. e |U0 |r1p(1)7.2p(2)7.3p(3) < ]\/[2
The pressure function
P(t,7) = — {7 [22U0F" *U - F(t,F)]},t > 0,7 € N° (2-69)

27 | F|
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is discrete Schwartz in 7 since U,Ur" are discrete Schwartz by hypothesis, the convolution of

discrete Schwartz coefficient is discrete Schwartz and the sum of discrete Schwartz functions

[Ur' «U — F(t,7)] is discrete Schwartz.

By the same reasoning any finite order time derivative of the pressure transform P(z,7) is

discrete Schwartz.

END PROOF

The following theorem is the main result of this paper. It interprets the results obtained for the

Fourier coefficients U, P which solve the Navier-Stokes ODE to the Fourier series

representation of the functions U, P which solve the Navier-Stokes PDE.

Theorem 2-4. Suppose U* - F® vU®e 12[0,1),k =0,1,2,...,t > 0 where the U®,k =0,1,2....
satisfy the Navier-Stokes partial differential equations and its finite order time derivatives such
that

o —_—

t
[U% - F®dids <[ [|UD -V |Pdsds,t 20,7 >0,k =0,1,2,... (2-70)
D 0D

where F*) is smooth in (¢,X) and bounded in¢ €[0,0). Then every finite time derivative of the
solution of the Navier-Stokes momentum equation is bounded, continuous and uniquely

determined in ¢. It is also smooth in ¥ € [0,1]’ for all forward time.

PROOF

1>

The conclusion follows directly by the properties of the Fourier series representation U of the
velocity function and theorem 2-2. In particular,

UecS(N)t20=0=0ecC*(01),>0
€SV).120=U =0 eC™ (o1 271)

Ue(C” NI )[0,0)),7 e N’ = U =U €(C” nL”)([0,0)),% €[0,I]’

By the projection formula (or by solving the Navier-Stokes momentum equation for VP ) and

the first part of this theorem, the pressure gradient satisfies the same properties as each
component of the momentum vector (marginal smoothness in¢,x , uniqueness, and boundedness

for all forward time).

END PROOF
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