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Abstract. We consider infinite dimensional Hamiltonian systems. First we prove the existence of
“Cantor manifolds” of elliptic tori -of any finite higher dimension- accumulating on a given elliptic
KAM torus. Then, close to an elliptic equilibrium, we show the existence of Cantor manifolds of
elliptic tori which are “branching” points of other Cantor manifolds of higher dimensional tori. We
also provide a positive answer to a conjecture of Bourgain [8] proving the existence of invariant elliptic
KAM tori with tangential frequency constrained to a fixed Diophantine direction. These results are
obtained under the natural nonresonance and nondegeneracy conditions. As applications we prove
the existence of new kinds of quasi periodic solutions of the one dimensional nonlinear wave equation.
The proofs are based on averaging normal forms and a sharp KAM theorem, whose advantages are
an explicit characterisation of the Cantor set of parameters, quite convenient for measure estimates,
and weaker smallness conditions on the perturbation.
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1 Introduction

A central topic in the theory of Hamiltonian partial differential equations (PDEs) concerns the exis-
tence of quasi-periodic solutions. In the last years several existence results have been proved using
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both KAM theory, see e.g. Wayne [28], Kuksin [22], Pöschel [25], [23], Eliasson-Kuksin [16] (and
references therein), or Newton-Nash-Moser implicit function techniques, see e.g. Craig-Wayne [14],
Bourgain [8]-[10], Berti-Bolle [5] and with Procesi [6]. We mention also to the recent approach with
Lindstedt series by Gentile-Procesi [18]. An advantage of the KAM approach is to provide not only
the existence of an invariant torus but also a normal form around it. This would allow, in principle,
to study the dynamics of the PDE in its neighbourhood.

All the existing literature considers quasi-periodic solutions of PDEs in a neighbourhood of an
elliptic equilibrium, see for a survey Kuksin [22], Craig [13], or perturbations of finite gap solutions of
integrable PDEs, see Kuksin [22], Kappeler-Pöschel [20].

In this paper we want to study the dynamics of infinite dimensional Hamiltonian systems near an
elliptic torus, developing, in particular, an abstract KAM theory for proving the existence of “Cantor
manifolds” of elliptic invariant tori tangent to a given elliptic torus.

For finite dimensional Hamiltonian systems, the dynamics close to a lagrangian KAM torus has
been deeply investigated by Giorgilli-Morbidelli [19], proving, in particular, the existence of invariant
tori with asymptotic density exponentially close to 1. On the other hand the existence of lower
dimensional tori in a neighbourhood of an elliptic torus requires, also in finite dimension, a more
refined KAM theorem (it is a corollary of our general results). The difficulty comes from the presence
of the elliptic directions.

Our first result states, roughly, the following (see Theorem 2.1 for a precise statement):
Given a finite dimensional torus with an elliptic KAM normal form around it, we prove, under the
natural non-resonance and non-degeneracy assumptions, the existence of “Cantor manifolds” of elliptic
tori -of any finite higher dimension- accumulating on it.

This result is based on two main steps. We first perform a Birkhoff normalisation (see the “av-
eraging” Proposition 6.1) assuming the weakest, natural, non-resonance conditions on the tangential
and normal frequencies of the torus (see (2.12)). These are similar to those used in Bambusi [1],
Bambusi-Grébert [3], for an elliptic equilibrium. The next step is to apply some KAM Theorem. Due
to the third order monomials on the high mode variables in (6.3)-(6.4), the KAM theorems available in
the literature would apply only requiring stronger non-resonance assumptions, see Remark 2.2. Then
we use the sharper KAM Theorem 5.1. Note that these refined estimates are required only for small
amplitude solutions and not for perturbations of linear PDEs as considered in [21], [22], [28] where
the size of the perturbation is an external parameter.

As a second result we prove an abstract theorem describing a branching phenomenon of Cantor
manifolds of elliptic tori of increasing dimension (see Theorem 3.1 for a precise statement):
Close to an elliptic equilibrium there exist, under the natural non-resonance and non-degeneracy as-
sumptions, Cantor manifolds of elliptic tori which are “branching points” of other Cantor manifolds
of higher dimensional tori.

This result relies on an application of Theorem 2.1. The main difficulty is to check that, after
the first application of the KAM theorem close to the equilibrium, the perturbed frequencies of the
deformed elliptic torus, fulfil the non-resonance conditions required in Theorem 2.1. This is achieved
in section 7, thanks to the explicit form of the Cantor set of non-resonant parameters provided by the
basic KAM Theorem 5.1.

Theorem 3.1 can be also seen as a “building block” for constructing small amplitude almost periodic
solutions for PDEs without external parameters. Actually, with the present estimates, we can prove
the existence of only finitely many branches of finite dimensional elliptic tori. The existence of almost
periodic solutions has been proved in Pöschel [26] with a similar scheme, for the nonlinear Schr̈odinger
equation, with potentials as external parameters, and adding a regularising nonlinearity.

These abstract results, valid for infinite dimensional Hamiltonian systems, can be applied to Hamil-
tonian PDEs like Schr̈odinger, beam and wave equations. For concreteness we focus on the nonlinear
wave equation (NLW). Moreover NLW is more difficult for KAM theory than the Schrödinger and
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beam equation for the weaker asymptotic growth of the frequencies. As an application of Theorem
3.1 we show in Theorem 4.1 the existence of a new kind of quasi-periodic solutions of{

utt − uxx + mu+ f(u) = 0
u(t, 0) = u(t, π) = 0

(1.1)

for almost all the masses m > 0 and for real analytic, odd, nonlinearities of the form

f(u) =
∑

k≥3,odd

aku
k , a3 6= 0 , (1.2)

These quasi-periodic solutions are different from the ones of [25] since they accumulate to a torus and
not to the origin.

As already said, a basic tool for the previous results is an application of the sharp KAM Theorem
of section 5. Its main advantages are:
- (i) the KAM smallness condition are weaker than in [24], see comments after KAM Theorem 5.1.

This is achieved by a modification of the iterative scheme of [22], [24], as described in section 5.
- (ii) The final Cantor set of parameters, satisfying the Melnikov non-resonance conditions for all the
KAM iterative steps, is completely explicit in terms of the final frequencies only, see (5.13).

A new aspect of Theorem 5.1 is the complete separation between the iterative scheme for the
construction of invariant tori and the existence of enough non-resonant frequencies at every step of
the iterative process, see [5] for a similar construction in the Nash-Moser setting. In previous KAM
theorems the Cantor set of non-resonant parameters is known “a posteriori” ([23]). The key point
here is that the final frequencies are always well defined also if the iterative KAM process stops after
finitely many steps (and so there are no invariant tori for any value of the parameters). The present
formulation simplifies considerably the necessary measure estimates, see, as applications, Theorems
5.2, 5.3, and section 7.1. The characterisation in (5.13) of the Cantor set in terms of the final fre-
quencies only is new also for finite dimensional elliptic tori; for lagrangian tori in finite dimension see
[12],[11]. It simplifies also the measure estimates of degenerate KAM theory, see for example [4] for
an extension to PDEs. In particular it allows to avoid the notions of “links” and “chains” used in
[27]. Actually, thanks to the explicit characterisation of the Cantor set (5.13) we are able to answer
positively to a conjecture by Bourgain in [8], proving
- the existence of elliptic invariant KAM tori with tangential frequency constrained to a fixed Dio-
phantine direction, see Theorem 3.2; for the application to NLW equation (1.1) see Theorem 4.2.

This kind of results was proved for finite dimensional Hamiltonian systems by Eliasson [15] and
Bourgain [8] who raised the question if a similar result can be achieved also for infinite dimensional
Hamiltonian systems. For a result for NLW in this direction see [17].

We hope that the results and techniques of this paper will be used to develop a more general
description of the dynamics of the PDE close to an elliptic torus, proving, for example, stability
results as in Bambusi [1], Bambusi-Grébert [3].

Before presenting precisely our results, we introduce the functional setting and the main notations
concerning infinite dimensional Hamiltonian systems.
Acknowledgments: We thank Michela Procesi for useful comments.

Functional setting and notations

Phase space. We consider the Hilbert space of complex-valued sequences

`a,p :=
{
z = (z1, z2, . . .) : ‖z‖2a,p :=

∑
j≥1

|zj |2j2pe2ja < +∞
}

with a > 0, p > 1/2, and the toroidal phase space

(x, y, w) ∈ Tns × Cn × `a,pb , w := (z, z̄) ∈ `a,pb := `a,p × `a,p ,
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where Tns is the complex open s-neighbourhood of the n-torus Tn := Rn/(2πZ)n.
Hamiltonian system. Given H : Tns × Cn × `a,pb → C we consider the Hamiltonian system

(ẋ, ẏ, ẇ) = XH(x, y, w) (1.3)

with Hamiltonian vector field

XH := (∂yH,−∂xH,−iJ∂wH) ∈ Cn × Cn × `a,pb

where

J :=
(

0 −I
I 0

)
: `a,p × `a,p → `a,p × `a,p .

Given two functions H,F : Tns × Cn × `a,pb → C we define their Poisson bracket

{H,F} := ∂xH · ∂yF − ∂yH · ∂xF − iJ∂wF · ∂wH . (1.4)

Analytic functions. Given a complex Banach space E, we consider analytic functions

f : D(s, r)×Π→ E (1.5)

possibly depending on parameters ξ ∈ Π ⊂ Rm defined on the open neighbourhood of the origin

D(s, r) :=
{
|Imx| < s , |y| < r2 , ‖w‖a,p < r

}
⊂ Tns × Cn × `a,pb , 0 < s, r < 1 ,

where |y| := sup
j=1,...,n

|yj |. We define the sup-norm

|f |s,r := |f |s,r,Π,E := sup
(x,y,w;ξ)∈D(s,r)×Π

‖f(x, y, w; ξ)‖E . (1.6)

We denote simply by | · |s the sup-norm of functions independent of (y, w).
Any analytic function can be developed in a totally convergent power series

P (x, y, w; ξ) =
∑
i,j≥0

Pij(x; ξ)yiwj

where

Pij(x) := Pij(x; ξ) ∈ L
( i−times︷ ︸︸ ︷

Cn × . . .× Cn ×

j−times︷ ︸︸ ︷
`a,pb × . . .× `

a,p
b ,C

)
(1.7)

are multilinear, symmetric, bounded maps. For simplicity of notation, we will often omit the explicit
dependence on ξ. By the Riesz Representation Theorem, we identify the 1-forms P10(x) ∈ (Cn)∗,
resp. P01(x) ∈ (`a,p)∗, with vectors P10(x) ∈ Cn, resp. P01(x) ∈ `a,pb , writing

P10(x)y = P10(x) · y , resp. P01(x)w = P01(x) · w ,

where “ · ” denotes the scalar product on Cn, resp. `a,pb . Moreover we identify as usual the bilinear
symmetric form P02(x) ∈ L(`a,pb × `

a,p
b ,C) with the operator P02(x) ∈ L(`a,pb , `a,pb ) defined by

P02(x)w2 = P02(x)w · w , ∀w ∈ `a,pb .

We define
P≤2 := P00 + P01w + P10y + P02w · w . (1.8)

In general we identify the Pij in (1.7) with the vector valued multilinear forms, for j ≥ 1,

Pij(x) , ∂iy∂
j
wP (x, y, w) ∈ L

( i−times︷ ︸︸ ︷
Cn × . . .× Cn ×

(j−1)−times︷ ︸︸ ︷
`a,pb × . . .× `

a,p
b , `a,pb

)
. (1.9)
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If the Hamiltonian vector field maps XP : D(s, r)→ Cn × Cn × `a,p̄b with p̄ ≥ p, then, for j ≥ 1,

|Pij |s = sup
(x;ξ)∈Ts×Π

‖Pij(x; ξ)‖ <∞

where ‖ · ‖ denotes the operatorial norm on L(

i−times︷ ︸︸ ︷
Cn × . . .× Cn ×

(j−1)−times︷ ︸︸ ︷
`a,pb × . . .× `

a,p
b , `a,p̄b ).

The [ ]-operator. We define the operator [·] acting on monomials Q := q(x)yizaz̄ā, i, a, ā ∈ N∞, by

[Q] :=

{
〈Q〉 = 〈q〉yizaz̄ā if a = ā

0 otherwise
(1.10)

where 〈q〉 := (2π)−n
∫

Tn
q(x)dx denotes the average with respect to the angles.

Lipschitz norms. Given a function f as in (1.5) we define the Lipschitz semi-norm

|f |lips,r = sup
ξ,ζ∈Π,ξ 6=ζ

|f(·; ξ)− f(·; ζ)|s,r
|ξ − ζ|

(1.11)

and, given λ ≥ 0, the Lipschitz norm

| · |λr,s := | · |r,s + λ| · |lipr,s . (1.12)

We will always use the symbol “λ” in this role, not to be confused with exponentiation. We denote
the Lipschitz norm of functions independent of (y, w) more simply by | · |λs .
Miscellanea. Given l ∈ Z∞ we define

|l| :=
∑
j≥1

|lj | , |l|p :=
∑
j≥1

jp|lj | , 〈l〉d := max
(

1,
∣∣∣∑
j≥1

jdlj

∣∣∣)
and the unit versors ej := (0, . . . , 0, 1, 0, . . .) with zero components except the j-th one. We define the
space

`−δ∞ :=
{

Ω := (Ω1,Ω2, . . .), Ωj ∈ R : ||Ω||−δ := sup
j≥1

j−δ|Ωj | < +∞
}

and the Lipschitz norm

||Ω||λ−δ := sup
ξ∈Π
||Ω(ξ)||−δ + λ||Ω||lip−δ where ||Ω||lip−δ := sup

ξ,ζ∈Π,ξ 6=ζ

||Ω(ξ)− Ω(ζ)||−δ
|ξ − ζ|

. (1.13)

Finally, for τ > n− 1, η > 0, we define the set of Diophantine vectors

Dη,τ :=
{
ω ∈ Rn : |ω · k| ≥ η

1 + |k|τ
, ∀ k ∈ Zn \ {0}

}
. (1.14)

2 Cantor manifolds of tori close to an elliptic torus

The KAM-normal form Hamiltonian

H = H(x, y, z, z̄) = N + P = ω · y + Ω · zz̄ +
∑

2i+j≥3

Pij(x)yiwj (2.1)

possesses the elliptic invariant torus

T0 = Tn × {0} × {0} × {0} (2.2)

with tangential and normal frequencies ω := (ω1, . . . , ωn) ∈ Rn, Ω := (Ωn+1, . . .) respectively. In (2.1)
the variables are w = (z, z̄) with z = (zn+1, . . .). We assume
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• Frequency asymptotics. The Ωj ∈ R and there exists d ≥ 1 such that

Ωj = jd + . . . , j ≥ 1 , (2.3)

where the dots stand for lower order terms in j.

If d = 1 we denote by κ the largest positive number such that

Ωi − Ωj
i− j

= 1 +O(j−κ) , ∀i > j , and µ :=

{
1 if d > 1
κ/(κ+ 1) if d = 1 .

(2.4)

• Regularity. The vector field XP is real analytic and

XP : D(s, r)→ Cn × Cn × `a,p̄b with

{
p̄ ≥ p if d > 1
p̄ > p if d = 1 .

(2.5)

We aim to prove the existence of finite dimensional elliptic tori of any arbitrary dimension n̂ ≥ n
accumulating onto the elliptic torus T0. We denote the augmented frequencies

ω̂ := (ω1, . . . , ωn,Ωn+1, . . . ,Ωn̂) ∈ Rn̂ , Ω̂ := (Ωn̂+1, . . .) , (2.6)

the coordinates

z = (z̃, ẑ) , z̃ := (zn+1, . . . , zn̂) , ẑ := (zn̂+1, . . .) , w = (w̃, ŵ) , w̃ = (z̃, ¯̃z) , ŵ = (ẑ, ¯̂z) ,

and the actions

ŷ := (y, ỹ) , ỹ :=
1
2

(zn+1z̄n+1, . . . , zn̂z̄n̂) , Ẑ =
1
2

(zn̂+1z̄n̂+1, . . .) .

We decompose any l = (ln+1, . . .) ∈ Z∞ as

l = (l̃, l̂) with l̃ := (ln+1, . . . , ln̂) , l̂ := (ln̂+1, . . .) . (2.7)

Given Pij (see (1.7)) we define the coefficients Pi̃̂, for ̃, ̂ ∈ N with ̃+ ̂ = j, by the relation

Pijy
iwj =

∑
̃+̂=j

Pi̃̂y
iw̃̃ŵ̂ .

We introduce the symmetric n̂-dimensional “twist” matrix

Â ∈ Mat(n̂× n̂) , Â :=

 2[P200] [P120]

[P120] 2[P040]

 (2.8)

where the matrices [P200], [P040], [P120] are defined by1

[P200]y · y := [P200y
2] , [P040]ỹ · ỹ := [P040w̃

4] , [P120]y · ỹ := [P120yw̃
2] (2.9)

and the [ ] operator in (1.10). We also define [P102], [P022], by

[P102]y · Ẑ := [P102yŵ
2] , [P022]ỹ · Ẑ := [P022w̃

2ŵ2]

and
B̂ :=

(
[P102] [P022]

)
∈ L(Cn̂, `p̄−p∞ ) , (2.10)

the last property being valid thanks to the regularizing property (2.5). We set

τ :=
{

2(d− 1)−1 + n+ 1 if d > 1
(n+ 2)(δ∗ − 1)δ−1

∗ + 1 if d = 1
(2.11)

with δ∗ fixed below.
1The matrices [P200] ∈ Mat(n × n), [P040] ∈ Mat

`
(n̂ − n) × (n̂ − n)

´
, [P120] ∈ Mat

`
(n̂ − n) × n

´
. Similarly

[P102] ∈ Mat(∞× n), [P022] ∈ Mat
`
∞× (n̂− n)

´
.

6



Theorem 2.1. (Higher dimensional tori close to an elliptic torus) Consider an Hamiltonian
H as in (2.1) satisfying (2.3), (2.5), and, if d = 1, µ > 9/14 (see (2.4)). Fix n̂ ≥ n. There exists a
constant c > 0 such that, if the following assumptions hold:

• (Melnikov conditions) For some α > 0,

|ω · k + Ω · l| ≥ α 〈l〉d
1 + |k|τ

, ∀k ∈ Zn , l = (l̃, l̂) ∈ Λn̂,D , (k, l) 6= 0 , (2.12)

where τ is defined in (2.11) with δ∗ = p− p̄, and

Λn̂,D :=
{
|l| ≤ D, |l̂| ≤ 2

}
∪
{
|l̃| = D, |l̂| = 1

}
, D :=

{
4 if d > 1
6 if d = 1 .

• (Twist) Â is invertible.

• (Non-resonance) ∀ 0 < |l̂| ≤ 2 there hold(
Ω̂− B̂Â−1ω̂

)
· l̂ 6= 0 . (2.13)

• (Smallness) The third order terms satisfy

(|P11|s + |P03|s)2 ≤ cα , (2.14)

then there exists an n̂-dimensional Cantor manifold of real analytic, elliptic, diophantine n̂-dimensio-
nal tori accumulating onto the n-dimensional elliptic torus T0.

The above Cantor manifold has the same geometric structure described in [23]. The constant c
depends on n, τ, s, d, A,B, n̂, ω̂, Ω̂, Â, B̂.

Remark 2.1. By (2.3), (2.4) and the regularizing property (2.10) of B̂, (2.13) implies

inf
0<|l̂|≤2

|(Ω̂− B̂Â−1ω̂) · l̂| > 0 .

Indeed |(Ω̂− B̂Â−1ω̂) · l̂| ≥ 1/2 up to a finite subset of {0 < |l̂| ≤ 2}.

The proof of Theorem 2.1 is based on two main steps. The former is the “averaging” Proposition
6.1 in which we use the Melnikov conditions (2.12), that are similar to those used in [1]-[3] close to an
elliptic equilibrium. The latter is an application of the basic KAM Theorem 5.1, case-(H2).

Remark 2.2. Condition (H2) of Theorem 5.1 is strictly weaker than the KAM condition in [24] (see
comments after Theorem 5.1) and applies under the natural Melnikov conditions (2.12). The KAM
Theorem [24] would require the stronger Melnikov conditions (2.12) with D = 6 for d > 1 and D = 7
for d = 1 and µ = 2/3 (as for NLW, see (4.5)). See also Remarks 6.1 and 6.3.

3 Branching of Cantor manifolds of elliptic tori

We consider an Hamiltonian
H = Λ +Q+R (3.1)

where R is a higher order perturbation of an integrable normal form Λ +Q. In complex coordinates
(ζ, ζ̄) and, setting

I :=
1
2

(ζ1ζ̄1, . . . , ζnζ̄n) , Z :=
1
2

(ζn+1ζ̄n+1, . . .) ,
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the normal form consists of the terms

Λ := a · I + b · Z , Q :=
1
2

AI · I + BI · Z (3.2)

where a, b and A,B denote, respectively, vectors and matrices with constant coefficients. Fixed n̂ ≥ n,
we assume that:

(A) The normal form Λ +Q is nondegenerate in the following sense:

Twist. (A1) detA 6= 0

Nonresonance.

(A2) b · l 6= 0 , ∀ 1 ≤ |l| ≤ 2
(A3) a · k + b · l 6= 0 or Ak + Bᵀl 6= 0 , ∀ k ∈ Zn , l ∈ Λn̂,D , (k, l) 6= 0 .

Moreover, if d = 1, a · k + b · (l̃, 0)± h 6= 0 or Ak + Bᵀ(l̃, 0) 6= 0 ,
∀ 0 < |k| ≤ K0 , |l̃| ≤ D − 2 , 1 ≤ h ≤ L0 + n̂(D − 2) .

The constants K0, L0 depend only on d,D, a,b,A,B, see (7.34).

(B) Frequency asymptotics. There is d ≥ 1 and δ∗ < d− 1 such that bj = jd + . . .+O(jδ∗).

(C) Regularity. The vector fields XQ, XR are real analytic from some neighbourhood of the origin
of `a,pb into `a,p̄b with p̄ ≥ p defined in (2.5). By increasing δ∗, if necessary, we may also assume

p− p̄ ≤ δ∗ < d− 1 . (3.3)

Concerning the higher order perturbation R we assume

|R| = O(‖z‖4a,p) +O(‖ζ‖ga,p) , z := (ζn+1, ζn+2, . . .) , g > 1 + 3µ−1 , µ ∈ (9/14, 1] , (3.4)

where µ is defined as in (2.4) and, for d = 1, κ is the largest positive constant such that∣∣∣∣bi − bj
i− j

− 1
∣∣∣∣ ≤ a∗j−κ , ∀ i > j (3.5)

for some a∗ > 0. For d = 1, by increasing δ∗, if necessary, we can assume −δ∗ < κ.
Fix n̂ ≥ n. We define the augmented frequency vectors

â := (a,bn+1, . . . ,bn̂) ∈ Rn̂ , b̂ := (bn̂+1,bn̂+2 . . .) , (3.6)

the symmetric “twist” matrix

Â ∈ Mat(n̂× n̂) , Âij :=


Aij if i, j ≤ n
Bij if j ≤ n < i ≤ n̂
〈∂4
ζiζ̄iζj ζ̄j

R|ζ=ζ̄=0〉 if n < i, j ≤ n̂
(3.7)

and

B̂ ∈ Mat(n̂×∞) , B̂ij :=
{

Bij if j ≤ n < i
〈∂4
ζiζ̄iζj ζ̄j

R|ζ=ζ̄=0〉 if n < j ≤ n̂ < i. (3.8)

(Â) We assume

Twist. (Â1) detÂ 6= 0

Nonresonance.

(Â2) b · l 6= 0 , ∀ l ∈ Λn̂,D , where Λn̂,D is defined in (2.12) .
Moreover, if d = 1, inf

l∈Λn̂,D
|b · l| > 0 .

(Â3) (b̂− B̂Â−1â) · l̂ 6= 0 , ∀ l̂ = (ln̂+1, ln̂+2, . . .) with |l̂| = 1, 2 .
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Clearly (Â2) is stronger than (A2).

Theorem 3.1. (Branching of Cantor manifolds of elliptic tori) Fix n̂ ≥ n. Suppose H =
Λ +Q+R satisfies assumptions (A),(B),(C), (Â) and (3.4). Then

• (i) there exists an n-dimensional Cantor manifold of real analytic, elliptic, diophantine, invari-
ant n-dimensional tori.

• (ii) Each of these n-dimensional elliptic tori possesses another Cantor manifold of real analytic,
elliptic, diophantine n̂-dimensional tori, which is tangent to the torus with asymptotically full
density.

The new result is clearly (ii). Part (i) was proved in Kuksin-Pöschel in [23].
We prove Theorem 3.1 as follows. After a Birkhoff normal form step, we introduce the actions as

parameters, and, applying Theorem 5.1-(H3), we find a Cantor manifold of n-dimensional tori close
to the origin with asymptotically full density (part (i)). For proving part (i) we only require

(A1), (A2), (B), (C), (3.4) and a · k+ b · l 6= 0 or Ak+ Bᵀl 6= 0 , ∀ k ∈ Zn , |l| ≤ 2 , (k, l) 6= 0 , (3.9)

as in [23]. In order to prove part (ii) the crucial point is to show that, thanks to assumptions (A3)
and (Â), it is possible to take the parameters still in a set of asymptotically full measure, such that
the hypotheses of Theorem 2.1 hold. This is verified in subsection 7.1, strongly exploiting the explicit
form of the Cantor set Π∞ in (5.13) proved in the basic KAM Theorem 5.1.

Another minor advantage of the application of the improved KAM Theorem 5.1 is the following.
Since condition (H3) is strictly weaker, when d = 1, than the KAM condition in [24] (see comments
after Theorem 5.1), Theorem 5.1 simultaneously applies to both cases d > 1 and d = 1.

Actually we can also improve the result of Theorem 3.1-(i) proving the existence of elliptic tori
with tangential frequency restricted to a fixed Diophantine direction, extending to infinite dimensional
systems the results of Bourgain [8] and Eliasson [15].

Theorem 3.2. Assume (A1), (A2), (B), (C), (3.4), a 6= 0 and (b−BA−1a) · l 6= 0, ∀ 1 ≤ |l| ≤ 2. Then
if ω̄ ∈ Dα0,τ (see (1.14)) with α0 := ρ1+c

0 , ρ0 := |ω̄ − a| > 0, and c > 0 is small enough, then

|T |(2cρ0)−1 → 1 as ρ0 → 0 , (3.10)

where T ⊂ [1− cρ0, 1 + cρ0] are the t such that tω̄ is the tangential frequency of a n-dimensional torus
found in Theorem 3.1-(i).

Note that the hypotheses of Theorem 3.2 imply (3.9).

4 Application to nonlinear wave equation

Now we apply the results of section 3 to the NLW. We first write the NLW equation (1.1) as an infinite
dimensional Hamiltonian system introducing coordinates q, p ∈ `a,p, a > 0, p > 1/2, setting

u =
∑
j≥1

qj√
λj
φj , v = ut =

∑
j≥1

pj
√
λjφj where λj :=

√
j2 + m , φj :=

√
2/π sin(jx) .

The Hamiltonian of NLW is

HNLW =
∫ π

0

(v2

2
+
u2
x

2
+ m

u2

2
+ g(u)

)
dx = Λ +G =

1
2

∑
j≥1

λj(q2
j + p2

j ) +G(q) ,

where
g(s) :=

∫ s

0

f(t)dt , G(q) :=
∫ π

0

g
(∑
j≥1

qjλ
−1/2
j φj

)
dx .
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For 1 ≤ n ≤ n̂ we choose arbitrarily the “tangential sites”

I := {i1, . . . , in} ⊆ Î := {i1, . . . , in, in+1, . . . , in̂} ⊂ N+ . (4.1)

By [25] there is a symplectic map transforming HNLW in its partial Birkhoff normal form on the
Î-modes

H = Λ + Ḡ+ Ǧ+K

where XḠ, XǦ, XK are analytic from some neighborhood of the origin in `a,p into `a,p+1,

Ḡ =
1
2

∑
i or j∈Î

Ḡijziz̄izj z̄j , Ḡij :=
6
π

4− δij
λiλj

, zj =
1√
2

(qj + ipj) , z̄j =
1√
2

(qj − ipj) ,

Ǧ is of order four and depends only on zi, i /∈ Î, K is of order six and depends on all the variables zi,
i ∈ N (for more details we refer to [25] or [7]).

In order to write H in the form (3.1) we renumber the indexes in such a way that the first n modes
correspond to the I-modes and the first n̂ modes to the Î-modes. More precisely we construct a re-
ordering N+ → N+, j 7→ ij which is bijective and increasing from {1, . . . , n} onto I, from {n+1, . . . , n̂}
onto Î \ I and from N+ \ {1, . . . , n̂} onto N+ \ Î. Calling the variables

ζj := zij , ∀ j ≥ 1 ,

the Hamiltonian H assumes the form (3.1)-(3.2) with

a := (λi1 , . . . , λin) , b := (λin+1 , . . .) , A := (Ḡihik)1≤h,k≤n , B := (Ḡihik)1≤k≤n<h , (4.2)

and
R :=

1
2

∑
h or k≤n̂, h,k>n

Ḡihikζhζ̄hζk ζ̄k + Ǧ+K . (4.3)

Let us verify the hypotheses of Theorem 3.1. By [25] the matrix A in (4.2) is invertible, actually

(A−1)hk =
π

6

(
4

4n− 1
− δhk

)
ahak , 1 ≤ h, k ≤ n . (4.4)

Then (A1) holds. Assumption (A2) holds because the frequencies λj are simple and non zero. Still in
[25] it is verified that (B), (C) are satisfied with

d = 1 , δ∗ = −1 , p̄ = p+ 1 ,

as well as (3.4) with (see (4.2) and (3.5))

g = 6 , µ = 2/3 > 9/14 , κ = 2 . (4.5)

Assumptions (A3) (which is new with respect to [25]) will be a corollary of the next lemma.

Lemma 4.1. ∀0 < |l| < ∞, the function fl : (0,∞) → R, fl(m) := (b − BA−1a) · l is analytic and
non constant.

Proof. By (4.2) and (4.4) we get (BA−1)ij = 4ajb−1
i /(4n− 1) and

fl(m) =
∑
j>n

ljb−1
j (αm + β + i2j ) with α :=

−1
4n− 1

, β := −
4
∑

1≤j≤n i
2
j

4n− 1
.

Let j∗ := max{j > n : lj 6= 0} and i∗ := max{ij : lj 6= 0}. For m > i2∗ we expand the analytic
functions bj(m)−1 in power series

b−1
j =

1√
m

∑
k≥0

ck
(
i2j/m

)k
with c0 := 1 , ck := −1

2

(
−1

2
− 1
)
· · ·
(
−1

2
− k + 1

)
/k! 6= 0 .
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Then
fl(m) = α

√
m

∑
n<j≤j∗

lj +
1√
m

∑
k≥0

ckpkm−k where pk :=
∑

n<j≤j∗

lji
2k
j qkij

and qki := Li +
αi2

2(k + 1)
, Li := (1 − α)i2 + β . We prove that fl(m) is not constant showing that

pk 6= 0 for k large enough. Note that |qki∗ | ≥ 1/k2 for k large enough: if Li∗ 6= 0 then qki∗ → Li∗ 6= 0,
otherwise |qki∗ | = |αi2∗(2k + 2)−1| ≥ 1/k2 for k large. Moreover |qkij | ≤ 2i2∗, ∀ k. Hence

|pk| ≥ i2k∗ |qki∗ | − (i∗ − 1)2k
∑

n<j≤j∗

|lj ||qkij | ≥ i2k∗ k−2 − |l|(i∗ − 1)2k2i2∗ →∞

as k →∞.

Corollary 4.1. Assumption (A3) is satisfied with the exception of a countable set of m’s in (0,∞).

Proof. If l ∈ Λn̂,D and Ak+Bᵀl = 0, then a ·k+b · l = (b−BA−1a) · l 6= 0 except at most countably
many m’s. Analogously, if Ak+ Bᵀ(l̃, 0) = 0, then a · k+ b · (l̃, 0)± h = (b−BA−1a) · (l̃, 0)± h 6≡ 0.

The last condition of Theorem 3.1 to verify is (Â), where â, b̂, Â, B̂, defined in (3.6), (3.7), (3.8),
are like a, b, A, B in (4.2) changing n̂ with n. Then (Â1) holds as well as (Â3), except countably
many m. Finally, assumption (Â2) holds for almost every m ∈ (0,∞) as a consequence of Theorem
3.12 of [3] (see also Theorem 6.5 of [1]). More precisely inf

l∈Λn̂,D
|b(m) · l| > 0 is a consequence of the

nonresonance condition (r-NR) of [3] with r = D + 2, N = n̂. Then Theorem 3.1 applies.

Theorem 4.1. Suppose f is real analytic and (1.2) holds. Fix n̂ ≥ n. For all the choices of indices
I, Î as in (4.1), for almost all the masses m the conclusions (i)-(ii) of Theorem 3.1 apply to the NLW
equation (1.1).

Conclusion (i) was proved in Pöschel [25] for all m ∈ R with the restriction min
1≤j<n

ij+1− ij ≤ n−1.

On the other hand, the quasi-periodic solutions obtained in (ii) are new, since they accumulate onto a
n-torus and not at the origin. They are not the n̂-dimensional tori bifurcating from the fourth order
Birkhoff normal form of (1.1).

As a consequence of Corollary 4.1 we can prove the existence of quasi-periodic solutions with
tangential frequency restricted to a fixed direction, see [17] for a similar result.

Theorem 4.2. Suppose that f is real analytic and (1.2) holds. Then, excluding a countable set of
masses m ∈ (0,∞), the conclusion of Theorem 3.2 applies to the NLW equation (1.1).

5 A sharp basic KAM theorem

We consider a family of integrable Hamiltonians

N := N(x, y, z, z̄; ξ) := e(ξ) + ω(ξ) · y + Ω(ξ) · zz̄ (5.1)

defined on Tns ×Cn × `a,p × `a,p. The frequencies ω = (ω1, . . . , ωn) and Ω = (Ωn+1,Ωn+2, . . .) depend
on m-parameters

ξ ∈ Π ⊂ Rm , m ≤ n , Π compact with positive Lebesgue measure, ρ := diam(Π) .

For each ξ there is an invariant n-torus T0 = Tn × {0} × {0} × {0} with frequency ω(ξ). In its
normal space, the origin (z, z̄) = 0 is an elliptic fixed point with proper frequencies Ω(ξ). The aim is
to prove the persistence of a large portion of this family of linearly stable tori under small analytic
perturbations H = N + P .

We assume
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(A∗) Parameter dependence. The map ω : Π→ Rn, ξ 7→ ω(ξ), is Lipschitz continuous.

(B∗) Frequency asymptotics. There exist d ≥ 1 and δ∗ < d− 1 such that

Ωi(ξ) = Ω̄i + Ω∗i (ξ) ∈ R , i ≥ 1 ,

where Ω̄i = id + . . . and Ω∗ : Π→ `−δ∗∞ is Lipschitz continuous.

By (A∗) and (B∗), the Lipschitz semi-norms (defined as in (1.11)) of the frequency maps satisfy

|ω|lip + ||Ω||lip−δ∗ ≤M < +∞ . (5.2)

(C∗) Regularity. The perturbation P is real analytic in the space coordinates, Lipschitz in the
parameters, and for every ξ ∈ Π the hamiltonian vector field maps XP : D(s, r)→ Cn×Cn×`a,p̄b
with p̄ satisfying (2.5). More precisely, using the notations (1.6), (1.11), we assume

|XP |r,s,E,Π + |XP |lipr,s,E,Π < +∞ where E := Cn × Cn × `a,p̄b . (5.3)

Moreover, we also assume (3.3).

We introduce the group (under composition) of maps

Es :=
{

Ψ : (x+, y+, w+; ξ) 7→ (x, y, w) of the form (5.4)

x = x00(x+; ξ) , w = w00(x+; ξ) + w01(x+; ξ)w+ ,

y = y00(x+; ξ) + y01(x+; ξ)w+ + y10(x+; ξ)y+ + y02(x+; ξ)w+ · w+ ,

where x00, yij , wij are analytic and bounded on Tns and Lipschitz on Π
}
.

In Theorem 5.1 the symplectic map yielding the KAM normal form (5.8) has the form Φ = I + Ψ
with Ψ like in (5.4), as in [24]. It will be the composition of infinitely many time-1-flow maps (each
having the form I + Ψ, Ψ ∈ Es) generated by Hamiltonians in Fs defined in (8.7).

Theorem 5.1. (Sharp basic KAM theorem) Suppose that H = N + P satisfies assumptions
(A∗), (B∗), (C∗). Let α > 0 be a parameter and assume that

Θ := max
{

1, |P11|λs , |P03|λs ,
∑

2i+j=4

|∂iy∂jwP |λs,r
}

with λ =
α

M
satisfies Θ ≤

√
α

3r
. (5.5)

Then there is γ := γ(n, τ, s) > 0 such that, if one of the following KAM-conditions

• (H1) ε1 := max
{
|P00|λs
r2α2

,
|P01|λs
rα3/2

,
|P10|λs
α

,
|P02|λs
α

}
≤ γ ,

• (H2) ε2 := max
{
|P00|λs
r2α5/4

,
|P01|λs
rα3/2

,
|P10|λs
α

,
|P02|λs
α

}
≤ γ and |P11|λs ≤

α5/4

r
,

• (H3) ε3 := max
{
|P00|λs
r2αµ

,
|P01|λs
rα

,
|P10|λs
α

,
|P02|λs
α

}
≤ γ and |P11|λs , |P03|λs ≤

α

r

where µ := 1 if d > 1 and 0 < µ ≤ 1 if d = 1 ,

holds, then there exist:
• (Frequencies) Lipschitz functions ω∞ : Π→ Rn, Ω∞ : Π→ `−d∞ , satisfying

|ω∞ − ω|λ , ||Ω∞ − Ω||λp̄−p ≤ γ−1αεi (5.6)

and |ω∞|lip, ||Ω∞||lip−δ∗ ≤ 2M .
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• (KAM normal form) A Lipschitz family of analytic symplectic maps

Φ : D(s/4, r/4)×Π∞ 3 (x∞, y∞, w∞; ξ) 7→ (x, y, w) ∈ D(s, r) (5.7)

of the form Φ = I + Ψ with Ψ ∈ Es/4, where Π∞ is defined in (5.12), such that,

H∞(·; ξ) := H ◦ Φ(·; ξ) = ω∞(ξ)y∞ + Ω∞(ξ)z∞z̄∞ + P∞ has P∞≤2 = 0 (5.8)

see (1.8). Moreover {
|P∞11 − P11|s/4 ≤ γ−1εi(|P11|s + αpa−1/2)
|P∞03 − P03|s/4 ≤ γ−1εi(|P03|s + |P11|s + αpa−1/2) .

(5.9)

• (Smallness estimates) The map Ψ satisfies

|x00|λs/4, |y00|λs/4
α1−pa

r2
, |y01|λs/4

α1−pb

r
, |y10|λs/4, |y02|λs/4, |w01|λs/4, |w00|λs/4

α1−pb

r
≤ γ−1εi (5.10)

according (Hi)i=1,2,3 holds, where

pa :=


2 if (H1)
5/4 if (H2)
1 if (H3)

pb :=

{
3/2 if (H1) or (H2)

1 if (H3).
(5.11)

• (Cantor set) The Cantor set is explicitely

Π∞ :=

{
Π∞ if (H1) or (H2) or (H3)− (d > 1)
Π∞ ∩ ω−1(Dαµ,τ ) if (H3)− (d = 1)

(5.12)

where Dαµ,τ is defined in (1.14) with η = αµ, and

Π∞ :=
{
ξ ∈ Π : |ω∞(ξ) · k + Ω∞(ξ) · l| ≥ 2α

〈l〉d
1 + |k|τ

, ∀(k, l) ∈ Zn × Z∞ \ {0} , |l| ≤ 2
}
. (5.13)

Then, ∀ξ ∈ Π∞, the map x∞ 7→ Φ(x∞, 0, 0; ξ) is a real analytic embedding of an elliptic, diophantine,
n-dimensional torus with frequency ω∞(ξ) for the system with Hamiltonian H, see (1.3).

Note that (5.8) is the KAM normal form in an open neighborhood of the invariant elliptic torus.
Regarding the smallness conditions we note that:
- In (H1) we make assumptions only on P00, P01, P10, P02. This is quite natural because, if they
vanish, then the torus T0 in (2.2) is yet invariant, elliptic, and in normal form.
- In (H2) we relax the smallness assumption on P00, at the expense of a smallness condition on P11.
Note that in (H2) we do not require any assumption on P03. We apply (H2) looking for tori in a
neighborhood of a fixed torus (where, in general, P03 does not vanish), see the proof of Theorem 2.1.
- In (H3) we further relax the smallness assumptions on P00 and P01, at the expense of stronger
conditions on P11 and P03. We apply (H3) looking for tori close to an elliptic equilibrium (where,
after a Birkhoff normal form, both P11 and P03 are small), see the proof of Theorem 3.1.
Comparison with the KAM Theorem [24]. The KAM condition in [24] on XP in (2.5) is

α−1|XP |λr,s ≤ const with λ = α/M , (5.14)

where |XP |λr,s := |XP |r,s,E,Π + λ|XP |lipr,s,E,Π is defined in (1.12) and

E :=
{

(x, y, w) ∈ Cn × Cn × `a,pb with norm |(x, y, w)|r := |x|+ r−2|y|+ r−1‖w‖a,p̄
}
.
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We note that (5.14) implies the KAM condition (H3). For example, since P10 = (∂yP )(x, 0, 0), we
deduce, by (5.14), that |P10|λs ≤ const α. Similarly (5.14) implies all the other conditions in (H3). In
the case d = 1 condition (H3) is strictly weaker than (5.14), since µ ≤ 1. This is why, we prove the
result of [25] for NLW (where µ = 2/3), avoiding the use of theorem D in [24] (see Theorem 4.1 and
the proof of Theorem 3.1-(i)).

On the other hand the KAM conditions (H1)-(H2) are quite different than (5.14). The iterative
scheme in [22], [24] would not converge assuming only (H1) or (H2). We discuss below the differences
of the KAM iteration process used to prove Theorem 3.1.

Finally note that, if |P03|λs = O(1), then (5.14) implies α ≥ const r. This causes difficulties for
verifying the measure estimates because, as r → 0, also the size of the parameters domain shrinks to
zero, see remark 6.3.

The KAM Theorem 5.1 is completed by the following remarks.

Remark 5.1. (Analytic case) If the Hamiltonian H is analytic in ξ ∈ Π with Π ⊂ Cm we can
prove the existence of limit-frequency maps ξ 7→ (ω∞(ξ),Ω∞(ξ)) that are of class C∞ and, ∀q ≥ 1,

|ω∞ − ω|Cq , ||Ω∞ − Ω||p̄−p,Cq ≤ C(q)ε0α
1−q . (5.15)

See remark 8.1. Moreover in the KAM conditions (H1)-(H3) we can substitute |Pij |λs with |Pij |s thanks
to Cauchy estimates.

Remark 5.2. (Lipeomorphism) If ω : Π → ω(Π) is a homeomorphism which is Lipschitz in both
directions (Lipeomorphism), with

|ω−1|lip ≤ L and εi ≤
γ

2LM
, (5.16)

then ω∞ : Π→ ω∞(Π) is a Lipeomorphism with |ω−1
∞ |lip ≤ 2L.

Remark 5.3. (Dependence on n) The constant γ depends on the dimension n of the torus like,
for example, γ = τ̃−cτ̃ where τ̃ := (τ +n) ln

(
(τ +n)/s

)
and c > 0 is an absolute constant, see Remark

8.2. We have not tried to improve such super-exponential estimate to get larger values of γ.

Let us briefly comment on the assumptions of Theorem 5.1.

Remark 5.4. The condition Θ ≥ 1 in (5.5) is not restrictive because, rescaling the variables

y → ρ2y , w → ρw , H → ρ−2H , (5.17)

we can always verify max{|P11|s, |P03|s,
∑

2i+j=4

|∂iy∂jwP |s,r} ≥ 1. On the other hand note that the KAM

conditions (H1)-(H3) are invariant under the above rescaling.

Remark 5.5. The KAM condition (H3) is obtained, for d = 1, performing a normal form step before
the KAM iteration, see section 8.4. Such condition is used for the wave equation. Note that if µ→ 0
the condition (H3) improves, but, on the contrary, the measure |Dαµ,τ | decreases (see (1.14)-(5.12)).

The scheme of proof of Theorem 5.1 is different than in [24]. In order to find the symplectic map
Φ which transforms the Hamiltonian H into the KAM normal form H∞ := H ◦ Φ in (5.8), i.e.

P∞≤2 := P∞00 + P∞01w + P∞10 y + P∞02w · w ≡ 0 ,

we perform infinitely many symplectic maps Φν , ν ≥ 1, as in [24]. Each Hamiltonian has the form

Hν = Nν + P ν where Nν = ων(ξ) · y + Ων(ξ) · zz̄ (5.18)

and P ν is analytic on D(sν , rν) with rν > r0/4 > 0 for all ν ≥ 0. It is natural to look at the map

(P ν00, P
ν
01, P

ν
10, P

ν
02) 7→ (P ν+1

00 , P ν+1
01 , P ν+1

10 , P ν+1
02 )
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after any KAM step. An explicit calculus shows that the new P ν+1
≤2 is not a quadratic function of P ν≤2:

in the terms (P ν+1
10 , P ν+1

02 ) there are linear combinations of P ν00, P
ν
01, see Lemma 8.13, with coefficients

P ν11, P ν03, P ν12, P ν20. These terms come from the transformation of the cubic and quartic terms of P ν

under Φν . However, after three iterations, the map

(P ν00, P
ν
01, P

ν
10, P

ν
02) 7→ (P ν+3

00 , P ν+3
01 , P ν+3

10 , P ν+3
02 )

turns out to be quadratic, see Lemma 8.16. Then the superexponential convergence of the iterative
process is guaranteed under the smallness conditions (H1)-(H3) on the initial P00, P01, P10, P02, where
α and r occur with different weights. Note that the exponents of r come from the natural rescaling
(5.17), while the different exponents of α by explicit computations. Unlike the usual KAM scheme in
[22], [21], [24], the KAM normal form H∞ converges directly on an open neighborhood of the torus.

Note that also the KAM iterative scheme in [24] is not quadratic, see, for example formula (13) in
[24]. This problem is solved letting the domain of the normal form shrink to zero (see also [21]), so
that at the end of the iteration the normal form converges on the KAM torus only. The convergence
on an open neighborhood of the torus is then recovered by a posteriori arguments.

The Cantor set Π∞

Note that the Cantor set Π∞ in (5.13) depends only on the final frequencies (ω∞,Ω∞). It could be
empty. In such a case the iterative process stops after finitely many steps and no invariant torus
survives for any value of the parameters. However ω∞, Ω∞, and so Π∞, are always well defined.

The idea is as follows. Each KAM step can be performed only for the parameters ξ such that the
frequencies ων(ξ), Ων(ξ), satisfy the second order Melnikov non-resonance conditions (8.42). Actually
this set could be empty. However we can always extend the frequency maps ων(ξ), Ων(ξ), to the
whole set of parameters ξ ∈ Π, see the iterative Lemma 8.17-(S2)ν . This extension is Lipschitz
continuous and, if the Hamiltonian is analytic, it is C∞, see remark 8.1. Finally we verify in Lemma
8.19 that if ξ belongs to the Cantor set Π∞ then all the Melnikov non-resonance conditions required
to perform the previous KAM step are all satisfied. We exploit that (ων ,Ων) converge to (ω∞,Ω∞)
superexponentially fast.

Note that we do not claim that the frequencies of the final invariant torus satisfy the second order
Melnikov non-resonance conditions, fact already proved in [24]. We state a stronger claim, namely
that if the parameter ξ is in Π∞ then the torus is preserved.

The number of parameters m in Theorem 5.1 is arbitrary. It could be strictly less than n (degen-
erate KAM theory). In the PDE applications of this paper we have m = n and the frequency map is a
Lipeomorphism. In such a case the final frequency ω∞ is a Lipeomorphism too, see remark 5.2. Then
the following measure estimate follows by classical arguments [21], [22], [24], [20] (see also subsection
7.1).

Let κ be the largest number such that (2.4) holds uniformly on Π and set µ as in (2.4).

Theorem 5.2. (Measure estimate I) Let ω : Π→ ω(Π) be a Lipeomorphism and (5.16) hold. If

Ω(ξ) · l 6= 0 , ∀ |l| = 1, 2 , ∀ ξ ∈ Π , (5.19)

|{ξ ∈ Π : ω(ξ) · k + Ω(ξ) · l = 0}| = 0 , ∀k ∈ Zn, l ∈ Z∞ , |l| ≤ 2 , (k, l) 6= 0 , (5.20)

then, taking τ as in (2.11), |Π\Π∞| → 0 as α→ 0. If, moreover, ω(ξ), Ω(ξ) are affine functions of ξ

|Π \Π∞| ≤ Cρn−1αµ where ρ := diam(Π) . (5.21)

The following theorem states that, given a Diophantine versor ω̄, there exist many invariant elliptic
KAM tori with tangential frequency tω̄, t ∈ R+.
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Theorem 5.3. (Measure estimate II) Assume that ω(ξ), Ω(ξ) are affine functions of ξ, ∂ξω is
invertible, and (

Ω− ∂ξΩ(∂ξω)−1ω
)
|ξ=0
· l 6= 0 , ∀ 0 < |l| ≤ 2 . (5.22)

Suppose that 0 /∈ ω(Π). If γ defined in Theorem 5.1 is small enough, there exists K > 1 such that for
every versor ω̄ ∈ DKα,τ ,

|ω∞(Π \Π∞) ∩ ω̄R+| ≤ Kαµ (5.23)

(here | · | denotes the one dimensional Lebesgue measure).

Condition (5.22) is similar to condition (2) of [15] where it is required for 0 < |l| ≤ 3 (see also (2.13)
with n̂ = n). By Fubini theorem (5.23) implies (5.21) integrating along the directions ω̄.

6 Proof of Theorem 2.1

We have
1
2
Âŷ · ŷ =

[ ∑
2i+̃=4

Pi̃0y
iw̃̃
]

and B̂ŷ · Ẑ =
[ ∑

2i+̃=2

Pi̃2y
iw̃̃ŵ2

]
.

Proposition 6.1. (Averaging) Let H be as in (2.1). Suppose that (2.12) holds. Then there exists
a constant C := C(n, τ, s, d, n̂) > 1 large enough, 0 < r+ < r/4 small enough and a symplectic map

Φ : (x+, y+, w+) ∈ D(s+, r+)→ (x, y, w) ∈ D(s, r) , s+ := s/4 ,

close to the identity, such that, defining

H+ := H ◦ Φ =: N + P+ ,

the Hamiltonian vector field XP+ has the same regularity of XP , P+
ij = 0 if 2i+ j ≤ 2 and2

P+
i̃̂y

iw̃̃ŵ̂ =
[
P+
i̃̂y

iw̃̃ŵ̂
]

if 2i+ ̃+ ̂ ≤ D + 1 and ̃+ ̂ ≤ 4 , ̂ ≤ 2 or ̂ = 1 . (6.1)

Moreover

‖[P+
i̃̂]− [Pi̃̂]‖ ≤ Cκ2

3/α , κ3 := |P11|s + |P03|s , ∀ 2i+ ̃+ ̂ = 4 , ̃ = 0, 2, 4 , ̂ = 0, 2 . (6.2)

In other words, in the case d > 1, D = 4,

H+ = ω̂ · ŷ+ + Ω̂ · ẑ+
¯̂z+ + P003(x+)ŵ3

+ +
1
2
Â+ŷ+ · ŷ+ + B̂+ŷ+ · ẑ+

¯̂z+ + P+
004(x+)ŵ4

+ (6.3)

+P+
013(x+)w̃3

+ŵ+ +
∑

2i+̃+̂=5,̂6=1

P+
i̃̂(x+)yi+w̃

̃
+ŵ

̂
+ +

∑
2i+̃+̂≥6

P+
i̃̂(x+)yi+w̃

̃
+ŵ

̂
+ ,

while, in the case d = 1, D = 6,

H+ = ω̂ · ŷ+ + Ω̂ · ẑ+
¯̂z+ + P003(x+)ŵ3

+ +
1
2
Â+ŷ+ · ŷ+ + B̂+ŷ+ · ẑ+

¯̂z+ + P+
004(x+)ŵ4

+ (6.4)

+P+
013(x+)w̃3

+ŵ+ +
∑

2i+̃+̂=5,6, ̂≤2

[
P+

0̃̂(x+)w̃̃+ŵ
̂
+

]
+

∑
2i+̃+̂=5,6 ,̂≥3

P+
i̃̂(x+)yi+w̃

̃
+ŵ

̂
+ ,

+
∑

2i+̃+̂=7,̂ 6=1

P+
i̃̂(x+)yi+w̃

̃
+ŵ

̂
+ +

∑
2i+̃+̂≥8

P+
i̃̂(x+)yi+w̃

̃
+ŵ

̂
+ ,

where Â+ ∈ Mat(n̂× n̂) and B+ ∈ L(Cn̂, `p̄−p∞ ) satisfy

‖Â+ − Â‖ , ‖B̂+ − B̂‖ ≤ C(|P11|s + |P03|s)2α−1 . (6.5)
2 In particular the terms P+

110, P
+
101, P

+
030, P

+
021, P

+
012, P

+
111, P

+
031, P

+
041 vanish.
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Proof. We start with some general considerations. We define the degree of a monomial

F = Fijy
iwj = Fi̃̂y

iw̃̃ŵ̂ as degF := 2i+ j = 2i+ ̃+ ̂ .

The Poisson brackets of two monomials is a monomial with

deg{F,G} = degF + degG− 2 or {F,G} = 0 . (6.6)

We denote Xt
F the hamiltonian flow generated by F at time t. Then

H ◦X1
F =

∑
j≥0

LjFH/j! where LjFH := {Lj−1
F H,F} and L0

FH := H . (6.7)

Let H = N + P be as in (2.1) and suppose that F = Fi̃̂y
iw̃̃ŵ̂ solves the homological equation

{N,F}+ Pi̃̂y
iw̃̃ŵ̂ = [Pi̃̂yiw̃̃ŵ̂] . (6.8)

By (6.7) and (6.6) we see that the terms of H and H ◦X1
F with degree less or equal than degF of are

the same, except for Pi̃̂yiw̃̃ŵ̂ which is normalised into [Pi̃̂yiw̃̃ŵ̂] . On the other hand the terms
of degree equal to degF + 1 are changed by a quantity of order |F |κ3.
For brevity for the rest of this proof a l b means that there exists a constant c = c(n, τ, s,D, n̂) > 0
such that a ≤ cb.
By the Melnikov condition (2.12) there is a solution F = Fi̃̂y

iw̃̃ŵ̂ of the homological equation (6.8)
for every (i, ̃, ̂) satisfying the conditions in (6.1). Indeed the existence of F and the estimate

|Fi̃̂|s(1−1/D) l |Pi̃̂|s/α (6.9)

follows as in Lemmata 1-2 of [24]; we just note that the small divisors involved in the definition of
every monomial f(x)ymz̃ã ˜̄z ˜̄aẑâ ˆ̄z ˆ̄a of F are ω · k + Ω̃(ã − ˜̄a) + Ω̂(â − ˆ̄a), with Ω̃ := (Ωn+1, . . . ,Ωn̂),
k ∈ Zn, ã, ˜̄a ∈ Nn̂−n, â, ˆ̄a ∈ N∞ and |ã+ ˜̄a| = ̃, |â+ ˆ̄a| = ̂ (then |ã+ ˜̄a| ≤ ̃, |â+ ˆ̄a| ≤ ̂).

We now proceed normalising the terms of degree three with

(i, ̃, ̂) = (1, 1, 0), (1, 0, 1), (0, 3, 0), (0, 2, 1), (0, 1, 2) . (6.10)

Let us define F (3) :=
∑

Fi̃̂y
iw̃̃ŵ̂ where the sum is taken over the indexes in (6.10). Let s3 :=

s(1−1/D). For r3 > 0 we have that |∂xF (3)|s3 lr3
3, |∂yF (3)|s3 lr3, |∂wF (3)|s3 lr2

3, since 2i+ ̃+ ̂ ≥ 3.
Therefore we can choose r3 small enough such that X1

F (3) : D(s3, r3) → D(s, r). Moreover the terms
of order three of H ◦X1

F (3) are the same of H except for Pi̃̂yiw̃̃ŵ̂ with indexes as in (6.10) that are
normalised; note that, being of odd degree, they actually annihilate. On the other hand the term of
degree four are slightly changed by a quantity of order |F (3)|s3κ3l κ2

3/α by (6.9).
We now normalise the terms of degree four with

(i, ̃, ̂) = (1, 1, 1) , (0, 3, 1) , (2, 0, 0) , (1, 2, 0) , (1, 0, 2) , (0, 4, 0) , (0, 2, 2) . (6.11)

Let us define F (4) :=
∑

Fi̃̂y
iw̃̃ŵ̂ where the sum is taken over the indexes in (6.11). If r4 > 0 is

small enough and s3 := s(1 − 2/D) we have that X1
F (4) : D(s4, r4) → D(s3, r3). The terms of order

three and four of H ◦X1
F (3) ◦X1

F (4) are the same of H ◦X1
F (3) except for those with indexes as in (6.10)

that are normalised. Note that the terms corresponding to the first two triples in (6.11) annihilate.
The normalisation of all the other terms of degree up to D + 1 is analogous.

Remark 6.1. The cubic terms P003(x+)ŵ3
+ on the high modes can not be removed by some averaging

procedure because the tangential and normal frequencies satisfy only the second order Melnikov non-
resonance conditions (2.12).
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We introduce parameters
ξ ∈ (0, ρ∗]n̂ , ρ∗ ∈ (0, r2

+/4) ,

and new symplectic variables

(x∗, y∗, w∗) = (x∗, ŷ+ − ξ, ŵ+) ∈ D(s∗, r∗) ⊂ Tn̂s∗ × Cn̂ × `a,pb , s∗ ≤ s+ , r∗ ≤
√
ρ∗/2

where the n̂-dimensional angles are defined by

x∗j := x+j , ∀1 ≤ j ≤ n ,
√

2(ξj + y∗j)
(
e−ix∗j , eix∗j

)
:= w+j ,∀ n < j ≤ n̂ .

After this symplectic change of coordinates the Hamiltonian H+ becomes

H∗ = N∗ + P ∗ = ω∗(ξ) · y∗ + Ω∗(ξ) · z∗z̄∗ +
∑

2i+j≥0

P ∗ij(x∗; ξ)y
i
∗w

j
∗ (6.12)

with
ω∗(ξ) := ω̂ + Â+ξ , Ω∗(ξ) := Ω̂ + B̂+ξ , (6.13)

and, by (6.3), (6.4), denoting for simplicity | · | := | · |λs∗ ,

if d > 1 , |P ∗00| , |P ∗01| = O(ρ5/2
∗ ) , |P ∗10| , |P ∗02| = O(ρ2

∗) , |P ∗11| = O(ρ3/2
∗ ) , |P ∗03| = O(1) , (6.14)

if d = 1 , |P ∗00| , |P ∗01| = O(ρ7/2
∗ ) , |P ∗10| , |P ∗02| = O(ρ3

∗) , |P ∗11| = O(ρ5/2
∗ ) , |P ∗03| = O(1) . (6.15)

Moreover for α∗ > 0 and λ := α∗/M , with M := ‖Â+‖+ ‖B̂+‖ (recall (5.2)).
We now apply the KAM Theorem 5.1. Take

α∗ := 9Θ2r2
∗ , ρ∗ := r2ϑ

∗ where ϑ ∈ (9/10, 1) if d > 1 , ϑ ∈ (9/14, µ) if d = 1 . (6.16)

Remark 6.2. Other choices of α∗ ≥ 9Θ2r2
∗ are clearly possible, giving different estimates on the

Cantor manifold.

Theorem 2.1 follows applying Theorems 5.1, 5.2 with3 H = H∗, P = P ∗, r := r∗ α := α∗, etc. Let
us verify the hypotheses of the above theorems. It is immediate to check (A∗), (B∗), (C∗). Let Θ as
in (5.5) (with respect to the perturbation P ∗); note that Θ = O(1) with respect to ξ. By (6.14)-(6.16)
the KAM condition (H2) of Theorem 5.1 holds.

αµ∗/ρ∗ =

{
O(r2(1−ϑ)

∗ ) for d > 1
O(r2(µ−ϑ)

∗ ) for d = 1
→ 0 as r∗ → 0 . (6.17)

Since Â+ = Â(Id + Â−1(Â+ − Â)), by the twist condition, (6.5) and (2.14) we get that Â+ is
invertible with

‖Â−1
+ − Â−1‖ ≤ 2‖Â−1‖2‖Â+ − Â‖ , (6.18)

taking c in (2.14) small enough. Therefore, ξ → ω∗(ξ) is a diffeomorphism, see (6.13).
We finally verify that the frequencies ω∗, Ω∗ satisfy (5.19) and (5.20). The non-resonance assump-

tion (2.12) implies |Ω̂ · l| ≥ α, ∀1 ≤ |l| ≤ 2, and so4

|Ω∗(ξ) · l|
(6.13)

≥ |Ω̂ · l| − |B̂+ξ · l| ≥ α− 2ρ∗‖B̂+‖
(6.5),(2.14)

≥ α− 2ρ∗(‖B+‖+ c) ≥ α/2

if r∗ is small enough. So (5.19) holds.

3 We apply Theorems 5.1 and 5.2 with α := α∗. Here α∗ is the parameter defined in (6.16) which is small with r∗
and has not to be confused with the fixed α appearing in the statement of Theorem 2.1.

4 Recall that α is fixed and independent of ρ∗ and r∗ (see also the previous footnote).
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Since ω∗(ξ) · k + Ω∗(ξ) · l is an affine function of ξ, the condition (5.20) holds if

ω̂ · k + Ω̂ · l 6= 0 or Â+k + B̂ᵀ
+l 6= 0 .

Suppose that Â+k + B̂ᵀ
+l = 0, then k = −Â−1

+ B̂ᵀ
+l and

ω̂ · k + Ω̂ · l = (Ω̂− B̂+Â
−1
+ ω̂) · l = (Ω̂− B̂Â−1ω̂) · l +

(
B̂(Â−1 − Â−1

+ ) + (B̂ − B̂+)Â−1
+

)
ω̂ · l 6= 0

by (2.13) and remark 2.1, (6.5), (6.18) taking c in (2.14) small enough.
Then theorems 5.1 and 5.2 apply and we obtain a family of elliptic n̂-dimensional tori parametrized

by ξ ∈ Π∞, where the set Π∞ has asymptotically full measure as r → 0 by (5.21) and (6.17).

Remark 6.3. The KAM theorem in [24] does not apply. Indeed, with only the estimates (6.14)-(6.15)
the KAM condition (5.14) implies

const ≥ α−1|XP |r,s,E,Π ≥
{
const α−1(ρ5/2r−2 + r) = const α−1(r5ϑ−2 + r) if d > 1
const α−1(ρ7/2r−2 + r) = const α−1(r7ϑ−2 + r) if d = 1

which is incompatible with the measure estimate α� r2ϑ/µ (recall (5.21)).

7 Proof of Theorem 3.1

We divide the proof in several steps.
Step 1) Partial Birkhoff Normal Form on n̂ ≥ n modes

By the non-resonance assumption (Â2) where D ≥ 4, we transform H in partial Birkhoff normal
form, up to order 4, on the first n̂ ≥ n modes, namely

H = â · Î + b̂ · ζ̂ ˆ̄ζ +P = â · Î + b̂ · ζ̂ ˆ̄ζ +
1
2

ÂÎ · Î + B̂Î · ζ̂ ˆ̄ζ +O(|ζ̃|‖ζ̂‖3a,p) +O(‖ζ̂‖4a,p) +O(‖ζ‖ga,p) (7.1)

where â, b̂ are defined in (3.6), the matrices Â, B̂ in (3.7), (3.8), g := min(g, 6), and

ζ̃ := (ζ̃n+1, . . . , ζ̃n̂) , ζ̂ := (ζ̂n̂+1, ζ̂n̂+2, . . .) , ζ = (ζ̃, ζ̂) , Ĩ := ζ̃
¯̃
ζ , Î := (I, Ĩ) .

The proof of this statement follows as in [23], [25], [2]. Note that the term O(|ζ̃|‖ζ̂‖3a,p) can not be
removed because (Â2) requires only second order Melnikov non-resonance conditions for n > n̂.

Step 2) Parameters and action-angle variables on n modes

We introduce parameters
ξ ∈ (0, ρ]n , ρ ∈ (0, 1) , (7.2)

and angle-action variables (x, y) on the first n modes, setting

ζj =:
√

2(ξj + yj)e−ixj , 1 ≤ j ≤ n . (7.3)

Then I = ξ + y and the Hamiltonian (7.1) assumes the form

H = ω(ξ) · y + Ω(ξ) · zz̄ +
∑
i,j≥0

P ∗ij(x; ξ)yiwj with ω(ξ) := a + Aξ , Ω(ξ) := b + Bξ , (7.4)

z = (ζn+1, . . .), w := (z, z̄), and

|P ∗ij |λs = O(|ξ|
g
2−i−

j
2 ) , ∀ 2i+ j ≤ 3 , |P ∗ij − Pij |λs = O(|ξ|

g
2−2) , ∀ 2i+ j = 4 . (7.5)
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The Hamiltonian H is real analytic on D(s, r), for some 0 < s < 1, 0 < r < ρ/2.
Step 3) Apply the KAM Theorem 5.1 and Theorem 5.2 to H

The assumptions (A∗), (B∗), (C∗) of Theorem 5.1 are implied by (B), (C), as in [23]. We take

α := 9Θ2r2 , ρ := r2ϑ , ϑ ∈ (µ̄, µ) where µ̄ := max{2(1 + µ)g−1 , 3(g − 1)−1} < µ ≤ 1 (7.6)

by (3.4).

Remark 7.1. The parameter domain Π can not be the whole (0, ρ]n (see (7.2)) because, by (7.3), the
Hamiltonian H will be analytic in D(s, r) only excluding |ξ| ≤ Cr2. This difficulty can be handled as
in [23], section 7, step 5. For simplicity of exposition we skip this technical detail in the following.

The KAM condition (H3) reduces, by (7.5)-(7.6), to

ε3 = O(max{rgϑ−2−2µ , rϑ(g−1)−3}) ≤ γ and O(r(g−3)ϑ−1) < 1 , (7.7)

which are both verified for r small enough because (g − 3)ϑ− 1 > 0 and

ε3 → 0 as r → 0 .

By Theorem 5.1 there is, ∀ξ ∈ Π∞ defined in (5.12), an analytic symplectic map Φ(·; ξ) : D(s/4, r/4)
→ D(s, r) such that

H∞ := H ◦ Φ = ω∞(ξ) · y∞ + Ω∞(ξ) · z∞z̄∞ + P∞ with P∞ij = 0 ,∀ 2i+ j ≤ 2 .

Moreover the assumptions (5.19), (5.20) of Theorem 5.2 hold by (7.4) and (A). By Theorem 5.2 the
Cantor set of parameters Π∞ has asymptotically full measure

|Π/Π∞|
|Π|

= O
(αµρn−1

ρn

)
= O(r2(µ−ϑ))→ 0 as r → 0 . (7.8)

By (5.9), (5.10) with pa = 1, and (7.6), we get{
|P∞11 − P ∗11| ≤ C

(
|P ∗11|+ r

)
ε3

|P∞03 − P ∗03| ≤ C
(
|P ∗03|+ |P ∗11|+ r

)
ε3

|P∞ij − P ∗ij | ≤ Cε3 , ∀ 2i+ j = 4 , (7.9)

where | · | := | · |λs/4 and C := C(γ,Θ). Moreover, (5.6), (7.4), (7.6),{
|ω∞(ξ)− a| ≤ γ−1αε3 + ‖A‖|ξ| ≤ Cr2ϑ

||Ω∞(ξ)− b||p̄−p ≤ γ−1αε3 + ‖B‖|ξ| ≤ Cr2ϑ .
(7.10)

Step 4) Apply Theorem 2.1 to H∞

Assumptions (2.3), (2.5) of Theorem 2.1 hold by (7.4). The non-resonance assumption (2.12) holds

for any ξ ∈

{
Π0 if d > 1
Π0 ∩ ω−1(Dαµ,τ ) if d = 1

where

Π0 :=
{
ξ ∈ Π : |ω∞(ξ) · k + Ω∞(ξ) · l| ≥ 2α

〈l〉d
1 + |k|τ

,∀ k ∈ Zn , l ∈ Λn̂,D
}
⊂ Π∞ (7.11)

and Λn̂,D is defined in (2.12). In the next section we prove that also Π0 has asymptotically full
measure

|Π \Π0|
|Π|

= O
(ρn−1αµ

ρn

)
= O(r2(µ−ϑ))→ 0 as r → 0 . (7.12)
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Step 5) Check the Twist condition

The matrices Â, B̂ defined in (2.8), (2.10) (with P = P∞) satisfy, by (7.9), (7.5), (7.6),

‖Â− Â‖ ≤ C(ε3 + rθ(g−4)) , ‖B̂ − B̂‖ ≤ C(ε3 + rθ(g−4)) . (7.13)

The matrix Â is invertible by (Â1). The twist condition follows for r small enough.
Step 6) Check the non-resonance condition (2.13)

By (7.10), (7.13), for every 0 < |l̂| ≤ 2∣∣(Ω̂− B̂Â−1ω̂) · l̂ − (b̂− B̂Â−1â) · l̂
∣∣ → 0 as r → 0 . (7.14)

Assumption (Â3) and remark 2.1 imply

inf
0<|l̂|≤2

|(b̂− B̂Â−1â) · l̂| > 0 ,

and (2.13) follows by (7.14) for r small enough.
Step 7) Check the smallness condition (2.14)

By (7.9), we get, for r small enough,

|P∞11 |+ |P∞03 | ≤ 2|P ∗11|+ 2|P ∗03|+O(ε3r)
(7.5),(7.6)

= O(r(g−3)ϑ + ε3r) . (7.15)

Then

(|P∞11 |+ |P∞03 |)2α−1
(7.6)

≤ Cr2(g−3)ϑ−2 + ε2
3 → 0 as r → 0 .

Proof of Theorem 3.2. We apply Theorem 5.3 to H in (7.4). The hypotheses of Theorem 5.3
hold, in particular condition (5.22) is (b− BA−1a) · l 6= 0, ∀ 1 ≤ |l| ≤ 2. Moreover 0 /∈ ω(Π) because
a 6= 0 and ρ (namely r) is small enough. We fix ρ0 := cρ. The segment [1 − cρ0, 1 + cρ0]ω̄ ⊂ ω∞(Π)
for c small enough. Moreover, α0 := ρ1+c

0 = (cρ)1+c > Kα by (7.6), for r and c small enough, where
K > 1 is the constant defined in Theorem 5.3. Then ω̄ ∈ DKα,τ and (3.10) follows by (5.23) and since
αµ/ρ→ 0 as r → 0 by (7.6).

Remark 7.2. Actually ω∞(Π) is not a neighborhood of the frequency a, since Π = (0, ρ]n is not
a neighborhood of 0. Nevertheless this small technical point is bypassed as follows. For 1 ≤ j ≤ n,

inverting the signs in the definition (7.3), namely ζj :=
√

2(ξj − yj)e+ixj , the new tangential frequency
in (7.4) becomes ω(ξ) = a + A(ξ1, . . . ,−ξj , . . . , ξn). Taking all the possible choices of 1 ≤ j ≤ n and ±
signs, ξ ∈ Π span a whole neighbourhood of the frequency a, except for n hyperplanes passing through
a (but not through the origin).

7.1 Measure estimates

The next proposition implies (7.12) concluding the proof of Theorem 3.1.

Proposition 7.1. |Π \ Π0| ≤ cρn−1αµ where µ is defined in (3.4) and the constant c depends on
a,b,A,B, n, n̂, d,D, a∗, κ, δ∗.

We have to estimate
Π \Π0 =

⋃
k∈Zn, l∈Λn̂,D

Rkl(α) (7.16)

where Rkl are the “resonant zones”

Rkl(α) :=
{
ξ ∈ Π : |ω∞(ξ) · k + Ω∞(ξ) · l| < 2α〈l〉d

1 + |k|τ

}
.

In the case d > 1 there are at most finitely many nonempty resonant zones Rkl(α). This is a
consequence of the next lemmata. The case d = 1 is more complex.
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Lemma 7.1. Let d > 1. There are D∗ ≥ 1, σ∗ > 0, such that

〈l〉d ≥ D−1
∗ |l|σ∗ |l|δ∗ , ∀l ∈ Λn̂,D . (7.17)

Proof. We consider only the more difficult case l = (l̃, l̂), l̂ = ei − ej , i > j. We have

〈l〉d ≥ id − (i− 1)d −Dn̂d ≥ id−1 −Dn̂d > id−1/2 for id−1 > 2Dn̂d . (7.18)

Defining δ0 := max{δ∗, 0}, σ∗ := d− 1− δ0 > 0, we have

|l|σ∗ |l|δ∗ ≤ Diσ∗Diδ0 = D2id−1 . (7.19)

Let D∗ := 2D3n̂d. If id−1 > 2Dn̂d then (7.17) follows by (7.18); if id−1 ≤ 2Dn̂d, by (7.19).

Remark 7.3. For d = 1, D ≥ 3 (as in this paper) the bound (7.17) is false. Taking for example
l = l(j) := en̂+j − ej − en̂ with j > n̂ we have

〈l(j)〉 = 1 , |l(j)|δ∗ ≥ n̂δ∗ , |l(j)|σ∗ ≥ jσ∗ →∞ as j →∞ .

This motivates assumption (A3) for d = 1. The bound (7.17) is true for d = 1, D = 2, see [24].

Lemma 7.2. There exists β0 > 0 (depending on d,b, n̂, D) such that

|b · l| ≥ 4β0〈l〉d , ∀l ∈ Λn̂,D . (7.20)

Proof. We consider only the subtlest case l = (l̃, l̂), |l̂| = 2, l̂ = ei − ej , i > j. We have

|b · l| ≥ |bi − bj | − c1 , 〈l〉d ≤ id − jd + c2 , (7.21)

for some c1 := c1(D,bn+1, . . . ,bn̂), c2 := c2(d, n̂,D) > 0. By (A2) and (B) there is β1 > 0 such that

|bi − bj | ≥ 2β1(id − jd) , ∀i > j . (7.22)

By (7.21), (7.22), for β0 ≤ β1/4 we have that

β1(id − jd) ≥ β1c2 + c1 =⇒ |b · l| ≥ 4β0〈l〉d . (7.23)

Let d > 1. If i > i0 we have id − jd ≥ did−1
0 , so (7.23) follows for i0 large. On the other hand, the set

of |l̃| ≤ D − 2, j < i ≤ i0 is finite and 〈l〉d ≤ Did0. Hence (7.20) follows by (Â2) for β0 small enough.
Let now d = 1. Take h large such that β1h ≥ β1c2 + c1. Then (7.23) holds for i− j ≥ h. On the other
hand, if i− j < h, we have 〈l〉1 ≤ h+ n̂D and (7.20) follows by (Â2) for β0 small enough.

In the following r is small enough.

Lemma 7.3. |Ω∞(ξ) · l| ≥ 3β0〈l〉d, ∀ξ ∈ Π, l ∈ Λn̂,D.

Proof. By (7.10), p̄− p ≥ −δ∗, and Lemma 7.2, we have

|Ω∞(ξ) · l| ≥ |b · l| − |l|δ∗ ||Ω∞(ξ)− b||−δ∗ ≥ 4β0〈l〉d − C|l|δ∗r2ϑ .

If d > 1 Lemma 7.1 implies |l|δ∗ ≤ D∗〈l〉d and the thesis follows for r small enough. If d = 1 we have
δ∗ < 0 (see (3.3)). Therefore |l|δ∗ ≤ D + 1 and we conclude again for r small.

Lemma 7.4. If Rkl(α) 6= ∅, α ≤ β0, then

|k| ≥ θ〈l〉d with θ := β0/(1 + |a|) . (7.24)
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Proof. If there exists ξ ∈ Rkl(α) then |ω∞(ξ) · k + Ω∞(ξ) · l| < 2α〈l〉d and, using Lemma 7.3,

|k||ω∞(ξ)| ≥ |k · ω∞(ξ)| ≥ |Ω∞(ξ) · l| − 2α〈l〉d ≥ 3β0〈l〉d − 2α〈l〉d ≥ β0〈l〉d .

By (7.10) we have |ω∞(ξ)| ≤ |a|+ 1 for r small enough, implying (7.24).
From now on we always assume α ≤ β0 taking r small enough. By the previous lemma we shall

restrict the union in (7.16) when |k| ≥ θ〈l〉d. In particular we shall always assume k 6= 0. In the
following al b means that there is a constant c, depending on the same quantities as the constant of
Proposition 7.1, such that a ≤ cb. Moreover M,L defined in (5.2), (5.16) respectively, are, here,

M = ‖A‖+ ‖B‖, L = ‖A−1‖ .

Lemma 7.5. If |k| ≥ 8LM |l|δ∗ then Rkl(α) l ρn−1α/(1 + |k|τ ).

Proof. Assume that r is small enough such that ε3 ≤ γ/(2LM). By remark 5.2 the frequency
map ω∞ is invertible from Π to Π̃ := ω∞(Π) with |ω−1

∞ |lip ≤ 2L. We introduce the final frequencies
ζ = ω∞(ξ) as parameters over the domain Π̃. Then Ω̃(ζ) := Ω∞

(
ω−1
∞ (ζ)

)
satisfies (see remark 5.2)

||Ω̃||−δ∗ ≤ ||Ω∞||
lip
−δ∗ |ω

−1
∞ |lip ≤ 2M2L = 4ML . (7.25)

Choose a vector v ∈ {−1, 1}n such that v · k = |k| and write ζ = sv +w with s ∈ R and w ⊥ v. Then

ζ · k + Ω̃(ζ) · l = s|k|+ Ω̃(sv + w) · l =: fkl(s) (7.26)

and the resonant zones write

R̃kl(α) := ω∞
(
Rkl(α)

)
=
{
ζ = sv + w ∈ Π̃ : |fkl(s)| < 2α

〈l〉d
1 + |k|τ

}
.

By (7.26), (7.25) we have

fkl(s2)− fkl(s1) ≥ (s2 − s1)|k| − 4ML|l|δ∗(s2 − s1) ≥ |k|(s2 − s1)/2

because |k| ≥ 8LM |l|δ∗ . Fubini’s theorem implies

|R̃kl(α)| ≤ 2
|k|

(diam Π̃)n−12α
〈l〉d

1 + |k|τ
.

Going back to the original parameter domain Π by the inverse map ω−1
∞ and noting that diam Π̃ ≤

2Mdiam Π (by remark 5.2), 〈l〉d ≤ θ−1|k| (by Lemma 7.4), the final estimate follows.
We estimate the other resonant zones Rkl(α) using that the unperturbed frequencies in (7.4) are

affine functions of ξ and assumption (A3). We have

ω∞(ξ) · k + Ω(ξ) · l = akl + bkl · ξ +Rkl(ξ) (7.27)

where
akl := a · k + b · l ∈ R , bkl := Ak + Bᵀl ∈ Rn , (7.28)

and
Rkl(ξ) := (ω∞(ξ)− ω(ξ)) · k + (Ω∞(ξ)− Ω(ξ)) · l . (7.29)

Assumption (A3) implies that

δkl := min{|akl| , |bkl|} > 0 , ∀k ∈ Zn , l ∈ Λn̂,D, (k, l) 6= 0 .

Moreover (7.29), (5.6), imply

|Rkl(ξ)|l ε3α(|k|+ |l|δ∗) , |Rkl|lip l ε3(|k|+ |l|δ∗) . (7.30)
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Lemma 7.6. Fix K∗ > 0. For all 0 < |k| ≤ K∗, l ∈ Λn̂,D, (k, l) 6= 0,

α ≤ θδkl/4 =⇒ |Rkl(α)|l ρn−1α/δkl . (7.31)

Proof. If d > 1, by Lemma 7.1, (7.24), and δ∗ < 0, we get

|l|δ∗ ≤

{
〈l〉d ≤ K∗/θ if d > 1
D + 1 if d = 1 .

(7.32)

Case I: |akl| = δkl. By (7.27), (7.30), (7.32) we get, for r small enough,

|ω∞(ξ) · k + Ω∞(ξ) · l| ≥ |akl| − (‖A‖|k|+ ‖B‖|l|)r2ϑ − |Rkl| ≥ |akl| − cK∗r2ϑ ≥ δkl/2
(7.31)

≥ 2αθ−1
(7.24)

≥ 2α〈l〉d|k|−1 ≥ 2α〈l〉d
1 + |k|τ

implying that Rkl(α) = ∅.
Case II: |bkl| = δkl. Set ξ = ξs = bkl|bkl|−1s + w with s ∈ R, w ⊥ bkl. By (7.27), (7.30), (7.32) the
function fkl(s) := ω∞(ξs) · k + Ω∞(ξs) · l satisfies, taking r small,

gkl(s2)− gkl(s1) ≥ |bkl|
2

(s2 − s1) =
δkl
2

(s2 − s1) .

Arguing as in Lemma 7.5 by Fubini’s theorem we obtain

|Rkl(α)|l ρn−1α〈l〉d
δkl(1 + |k|τ )

≤ ρn−1α|k|
δklθ(1 + |k|τ )

,

and the thesis follows (since τ ≥ 1).

We now distinguish the cases d > 1 and d = 1.
• Case d > 1
Let

L∗ := 8D∗LMθ−1 , K∗ := 8LM max
|l|σ∗≤L∗

|l|δ∗ .

Lemma 7.7. |Rkl(α)|l ρn−1α/(1 + |k|τ ), ∀k ∈ Zn, l ∈ Λn̂,D.

Proof. If |k| ≤ K∗, |l|σ∗ ≤ L∗, (7.7) follows by Lemma 7.6. Then we can suppose that |k| > K∗ or
|l|σ∗ > L∗. If Rkl(α) 6= ∅ and |l|σ∗ > L∗, then

|k| ≥ θ〈l〉d
(7.17)

≥ θ|l|σ∗ |l|δ∗/D∗
(7.24)

≥ 8LM |l|δ∗ .

On the other hand, when |l|σ∗ ≤ L∗ we have |k| > K∗ ≥ 8LM |l|δ∗ . So, in both cases Lemma 7.5
applies proving (7.7).

Lemma 7.8. card{ l : 〈l〉d ≤ θ−1|k|}l |k|
2
d−1 .

Proof. We claim that
c[〈l〉d ≥ |l|d−1 , c[ := 2D2n̂d . (7.33)

We consider only the case l = (l̃, ei − ej), i > j. We have |l|d−1 ≤ Did−1. If id−1 ≤ 2Dmd, then
c[〈l〉d ≥ c[ ≥ Did−1 ≥ |l|d−1. Otherwise by (7.18) 〈l〉d ≥ id−1/2 ≥ Did−1/c[ ≥ |l|d−1/c[ and (7.33)
follows. Therefore

card{ l : 〈l〉d ≤ θ−1|k|} ≤ card{ l : |l|d−1 ≤ c[θ−1|k|}l |k|
2
d−1 .
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By (7.16), (7.24) and Lemmata 7.7, 7.8, we deduce

|Π \Π0| ≤
∑
|k|≥θ〈l〉

|Rkl(α)|l
∑
k

ρn−1α|k|
2
d−1 /(1 + |k|τ )

(2.11)
l ρn−1α

namely Proposition 7.1 in the case d > 1.
• Case d = 1

Set
K0 := 8(D + 1)ML , L0 := K0/θ . (7.34)

Lemma 7.9. inf{δkl : 0 < |k| ≤ K0 , 〈l〉1 ≤ L0} > 0.

Proof. Let l = (l̃, l̂). Since the set {〈l〉1 ≤ L0} ∩ {|l̂| = 0} is finite, we consider |l̂| = 1 or 2. If
l̂ = l̂(j) = ±ej , j > n̂ we have akl = a · k + b · (l̃, 0) ± bj → ±∞ as j → ∞. The same holds for
l̂ = ±(ei + ej), i, j > n̂. It remains only the case l̂ = ±(ei − ej), i > j . Then l̂ = l̂(j) = ±(eh+j − ej)
for some 1 ≤ h ≤ L0 + n̂(D − 2) (since L0 ≥ 〈l〉1 ≥ h− |l̃| ≥ h− n̂(D − 2)). As j →∞ we have

akl = a · k + b · (l̃, 0)± (bh+j − bj)→ a · k + b · (l̃, 0)± h ,
bkl = Ak + Bᵀ(l̃, 0) + Bᵀ(0,±(eh+j − ej))→ Ak + Bᵀ(l̃, 0) .

We conclude by Assumption (A3).

Lemma 7.10. For all k ∈ Zn, l ∈ Λn̂,D, there hold |Rkl(α)|l ρn−1α/(1 + |k|τ ).

Proof. If |k| ≥ K0 ≥ 8LM |l|δ∗ because |l|δ∗ ≤ (D + 1) (recall δ∗ < 0) the estimate follows by
Lemma 7.5. If |k| < K0 we conclude by Lemmata 7.6 and 7.9.

We can not estimate ∪lRkl(α) with
∑
l

|Rkl(α)| because, even with the constraint 〈l〉1 ≤ |k|/θ,

there exist infinitely many l = (l̃, eh+j − ej) , j > n̂, with 〈l〉1 ≤ n̂D + h, ∀h ≥ 1. We need more
refined estimates. We decompose

Λn̂,D = Λ1 ∪ Λ2 , Λ2 :=
{
l = (l̃, l̂) , l̂ = ±(eh+j − ej) , j > n̂ , h ≥ 1

}
, Λ1 := Λn̂,D \ Λ2 .

Lemma 7.11. card
(
Λ1 ∩ {〈l〉1 ≤ |k|/θ}

)
l |k|2.

Proof. We consider only the case |l̂| = 2, l̂ = ±(ei + ej), i, j > n̂ (the cases |l̂| = 0, 1 are simpler).
We have |l̃| ≤ D − 2 and |i+ j| ≤ |k|θ−1 + n̂D l |k|, implying the lemma.

Lemmata 7.10, 7.11 imply ∣∣∣∣∣ ⋃
l∈Λ1

Rkl(α)

∣∣∣∣∣l |k|2

1 + |k|τ
ρn−1α . (7.35)

We now consider the more difficult case l ∈ Λ2. We define

Qkl̃hj(α) :=
{
ξ ∈ Π : |ω∞(ξ) · k + Ω∞(ξ) · (l̃, 0) + h| ≤ δkhj

}
where

δkhj :=
2α|k|

θ(1 + |k|τ )
+

2(1 + ‖B‖)ρ
j−δ∗

+
a∗h

jκ
.
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Lemma 7.12. Let 1 ≤ h ≤ θ−1|k|+ n̂(D − 2), j > n̂. For r small enough

|Qkl̃hj(α)|l ρn−1

(
α

1 + |k|τ
+

ρ

j−δ∗
+

1
jκ

)
. (7.36)

Moreover, if l(j) = (l̃, l̂(j)) ∈ Λ2, l̂(j) = eh+j − ej, then Rkl(j)(α) ⊆ Qkl̃hj(α).

Proof. If |k| ≥ K0, arguing as in the proof of Lemma 7.5, for r small enough we get |Qkl̃hj(α)| l
ρn−1δkhj/|k| and the estimate follows since h ≤ θ−1|k|+ n̂(D− 2). On the other hand, if |k| < K0 we
have h ≤ L0 + n̂(D− 2); by assumption (A3) and arguing as in the proof of Lemmata 7.6 and 7.9, for
r small enough we have |Qkl̃hj(α)|l ρn−1δkhj and the estimate follows as above.

We now prove that Rkl(j)(α) ⊆ Qkl̃hj(α). We have Ω∞(ξ) · l(j) = Ω∞(ξ) · (l̃, 0) + Ω∞(ξ) · (0, l̂(j)).
By (5.6) and (3.5) we have

|Ω∞(ξ) · (0, l̂(j))− h| ≤ |Ω∞(ξ) · (0, l̂(j))− b · l̂(j) − Bξ · l̂(j)|+ |Bξ · l̂(j)|+ |bj+h − bj − h|
≤ 2γ−1αε3|l̂(j)|δ∗ + ‖B‖ρ|l̂(j)|δ∗ + a∗hj

−κ

≤ 2(‖B‖+ 1)ρjδ∗ + a∗hj
−κ

(for r small enough 2α ≤ ρ); the thesis follows since 〈l〉1 ≤ θ−1|k| by Lemma 7.4.
We choose

j0 :=
(

1 + |k|τ

α

) 1
1+κ

. (7.37)

Since Rkl(j)(α) ⊂ Qkl̃hj(α) ⊆ Qkl̃hj0(α) for j ≥ j0, we have∣∣∣∣∣∣
⋃
j>n̂

Rkl(j)(α)

∣∣∣∣∣∣ ≤
∑

n̂<j<j0

|Rkl(j)(α)|+ |Qkl̃hj0 |l ρn−1

(
αj0

1 + |k|τ
+

ρ

j−δ∗0

+
1
jκ0

)
(7.38)

by Lemma 7.10 and (7.36). By (7.38), (7.37), (7.6) choosing ϑ ∈ (max{µ̄, µ + δ∗(1 + κ)−1}, µ) (note
δ∗ < 0) we get, for r small enough (recall that −δ∗ ≤ κ )∣∣∣∣∣∣

⋃
j>n̂

Rkl(j)(α)

∣∣∣∣∣∣l ρn−1 αµ

(1 + |k|τ )
δ∗
δ∗−1

.

Since 〈l〉1 ≤ |k|/θ implies h ≤ n̂(D − 2) + |k|/θ, and card{l̃ : |l̃| ≤ D − 2}l 1 we have∣∣∣∣∣ ⋃
l∈Λ2

Rkl(α)

∣∣∣∣∣l ρn−1 αµ

(1 + |k|τ )
δ∗
δ∗−1

. (7.39)

By (7.39) and (7.35) we get ∣∣∣∣∣∣
⋃

l∈Λn̂,D

Rkl(α)

∣∣∣∣∣∣l ρn−1 αµ|k|2

(1 + |k|τ )
δ∗
δ∗−1

.

Summing over k and by the choice of τ in (2.11) we get Proposition 7.1 also when d = 1.

8 Proof of the basic KAM Theorem 5.1

8.1 Technical lemmata

We first give some lemmata on composition of families of analytic functions depending in a Lipschitz
way on parameters. We recall that the Lipschitz norms defined in (1.12) satisfy the algebra property

|fg|λs,r ≤ |f |λs,r|g|λs,r .

26



Lemma 8.1. If h(·; ξ) is analytic in Tns and |ψ|λs−σ ≤ σ/2 then

g(x; ξ) := h(x+ ψ(x; ξ); ξ) satisfies |g|λs−σ ≤ |h|λs +
2
σ
|h|s|ψ|λs−σ ≤ 2|h|λs . (8.1)

If Ψ ∈ Es−σ (see (5.4)) satisfies

|x00|λs−σ
σ

,
|y00|λs−σ
r2

,
|y01|λs−σ

r
, |y10|λs−σ , |y02|λs−σ ,

|w00|λs−σ
σr

,
|w01|λs−σ

σ
≤ δ

16
, (8.2)

with 0 ≤ δ ≤ 1, then, for all H(·; ξ) analytic in D(s, r),

H̃(x, y, w; ξ) := H
(
(x, y, w) + Ψ(x, y, w; ξ); ξ

)
satisfies |H̃|λs−σ,r−δr ≤ 2|H|λs,r . (8.3)

Proof. Since h(·; ξ) is analytic in Tns , by Cauchy estimates,

|ψ|s−σ ≤
σ

2
=⇒ |g|lips−σ ≤ |∂xh|s−σ2 |ψ|

lip
s−σ + |h|lips ≤

2
σ
|h|s|ψ|lips−σ + |h|lips

and (8.1) follows. The proof of (8.3) is similar.
We now estimate derivatives of the composed functions.

Lemma 8.2. Given H : D(s, r)×Π→ C. There exists c0 > 0 such that, if

Φ : D(s̃, r̃) 3 (x+, y+, w+) 7→ (x, y, w) ∈ D(s, r) with 0 < r̃ ≤ r

2
, 0 < s̃ ≤ s

2
,

and Φ = I + Ψ with Ψ ∈ Es̃ satisfies

|x00|λs̃
s

,
|y00|λs̃
r2

,
|y01|λs̃
r

, |y10|λs̃ , |y02|λs̃ ,
|w00|λs̃
sr

,
|w01|λs̃
s
≤ c0 , (8.4)

then H̃ := H ◦ Φ is analytic on D(s̃, r̃), ∀ξ ∈ Π, and

|∂yi+wj+H̃|
λ
s̃,r̃ ≤ 3Θ , ∀ 2i+ j = 4 , where Θ := max

{
1,
∑

2i+j=4

|∂yiwjH|λs,r
}

(8.5)

(we use the short notation H ◦ Φ to mean H(·, ξ) ◦ Φ, ∀ξ ∈ Π).

Proof. For c0 small enough, conditions (8.4) imply (8.2) with

s→ 3s
4
, r → 3r

4
, σ :=

3s
4
− s̃ ≥ s

4
, δ :=

3r − 4r̃
3r

≥ 1
3
.

Then (8.3) implies, for c0 small enough,

|∂y+w2
+
H̃|λs̃,r̃ ≤ 2

[
|∂y3H|λ3s

4 ,
3r
4

(|y01|λs̃ + |y02|λs̃ r)2 + 2|∂y2wH|λ3s
4 ,

3r
4

(1 + |w01|λs̃ )(|y01|λs̃ + |y02|λs̃ r)

+ 2|∂y2H|λs,r|y02|λs̃ + |∂yw2H|λs,r(1 + |w01|λs̃ )2
]
(1 + |y10|λs̃ ) ≤ 3Θ ,

using that, by Cauchy estimates,

|∂y3H|λ3s
4 ,

3r
4
≤ 16r−2|∂y2H|λs,r ≤ 16r−2Θ , |∂y2wH|λ3s

4 ,
3r
4
≤ 4r−1|∂y2H|λs,r ≤ 4r−1Θ .

The other estimates are analogous.
We conclude with a lemma on Fourier series. Fixed an integer K > 0, we denote

TKf(x; ξ) :=
∑

k∈Zn,|k|≤K

fk(ξ)eik·x and T⊥K := I − TK .
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Lemma 8.3. Let f(·; ξ) be analytic on Tns . There is C := C(n) such that, ∀0 ≤ σ ≤ s, Kσ ≥ 1,

K−neKσ|T⊥Kf |λs−σ , σK−neKσ|T⊥Kf ′|λs−σ , σn|TKf |λs−σ , σn+1|TKf ′|λs−σ ≤ C|f |λs . (8.6)

Proof. We have

|T⊥Kf ′|s−σ ≤
∑
|k|>K

|k||fk|e|k|(s−σ) ≤ |f |s
∑
|k|>K

|k|e−|k|σ ≤ |f |s
∑
l>K

4nlne−lσ

and the last sum is bounded by C(n)σ−1Kne−Kσ if Kσ ≥ 1. The other estimates are analogous.
In the following we will always assume Kσ ≥ 1.

8.2 A class of symplectic transformations

We introduce the space of Hamiltonians

Fs :=
{
F (x; ξ) = F00(x; ξ) + F01(x; ξ) · w + F10(x; ξ) · y + F02(x; ξ)w · w (8.7)

where Fij are analytic and bounded on Tns and Lipschitz in ξ ∈ Π
}
.

Note that the terms that we want to eliminate from the perturbation through the KAM iteration have
such a form. We shall also take “auxiliary” Hamiltonians in Fs whose time one flow generates the
KAM symplectic transformations, see Lemma 8.9.

The next lemmata will be used to estimate the perturbation after the KAM step, see Lemma 8.11.
The time one flow map generated by Hamiltonians in Fs has the form I + Ψ with Ψ as in (5.4), see
Lemma 8.6. Lemma 8.4 shows that Fs is closed under composition with such maps. We estimate the
transformed map in a slightly smaller analytic strip for the convergence of the KAM iteration.

Lemma 8.4. (Composition) If F ∈ Fs, Ψ ∈ Es−σ, 0 < σ ≤ s, with |x00|λs−σ ≤ σ/2, then S :=
F ◦ (I + Ψ) ∈ Fs−σ and

S00 = F̃00 + F̃10 · y00 + F̃01 · w00 + F̃02w00 · w00

S01 = (I + wᵀ
01)F̃01 + yᵀ

01F̃10 + 2(I + wᵀ
01)F̃02w00

S10 = (I + yᵀ
10)F̃10

S02 = F̃10 · y02 + (I + wᵀ
01)F̃02(I + w01)

where F̃ij = F̃ij(x+) := Fij
(
x+ + x00(x+)

)
. By (8.1), |F̃ij |λs−σ ≤ 2|Fij |λs .

It is a merely algebraic calculus that the space Fs is closed under the Poisson brackets (see (1.4)).

Lemma 8.5. (Poisson bracket) Let R,F ∈ Fs then G := {R,F} ∈ Fs′ , ∀0 < s′ < s, and

G00 = F10 ·R′00 −R10 · F ′00 − iR01 · JF01

G01 = F10 ·R′01 −R10 · F ′01 + 2iF02JR01 − 2iR02JF01

G10 = F10 ·R′10 −R10 · F ′10

G02 = F10 ·R′02 −R10 · F ′02 − 4iR02JF02 .

Given F ∈ Fs, we consider the associated Hamiltonian system (see (1.3)) ẋ = F10(x)
ẏ = −F ′00(x)− F ′01(x)w − F ′10(x)y − F ′02(x)w · w
ẇ = −iJF01(x)− 2iJF02(x)w

(8.8)
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with initial condition (x0, y0, w0) = (x+, y+, w+). For all ξ ∈ Π, the hamiltonian flow at time t

Xt
F (·; ξ) : (x+, y+, w+) 7→ (xt, yt, wt)(x+, y+, w+)

defines a symplectic diffeomorphism which is close to the identity for 0 ≤ t ≤ 1 and F small. In the
next lemma we estimate each component of these symplectic diffeomorphisms separately. These finer
estimates are required by our approach. This is a difference with respect to [24].

Lemma 8.6. (Hamiltonian flow) Let 0 < σ < s ≤ 1 and F ∈ Fs satisfy, for some λ ≥ 0,

|F10|λs ≤ σ/12 , |F02|λs ≤ 1/12 . (8.9)

Then, for all t ∈ [0, 1], Xt
F = I + Ψt with Ψt ∈ Es−σ satisfying

|xt00|λs−σ ≤ 2|F10|λs , |yt00|λs−σ ≤
12
σ

(
|F00|λs + 9(|F01|λs )2

)
, |yt10|λs−σ ≤

6
σ
|F10|λs , (8.10)

|yt01|λs−σ ≤
36
σ
|F01|λs , |yt02|λs−σ ≤

27
σ
|F02|λs , |wt00|λs−σ ≤ 6|F01|λs , |wt01|λs−σ ≤ 6|F02|λs .

Moreover, if, for 0 < δ < 1,

|F00|s ≤
δr2σ

72
, |F01|s ≤

δrσ

216
, |F10|s ≤

δσ

24
, |F02|s ≤

δσ

108
, (8.11)

then Xt
F (·; ξ) : D(s− σ, r − δr) ⊆ D(s, r), ∀0 ≤ t ≤ 1, ∀ξ ∈ Π.

Proof. In the Appendix.
Finally we study the composition of two symplectic maps of the form I + Ψ with Ψ ∈ Es. The

symplectic transformation (5.7) of Theorem 5.1 is the composition of infinitely many maps of this
form, see the iterative Lemma 8.17-(S6)ν .

Lemma 8.7. (Composition of diffeomorphisms) Let 0 < s < s̃, Φ̃ = I + Ψ̃ with Ψ̃ ∈ Es̃, and
Φ = I + Ψ with Ψ ∈ Es satisfy 2|x00|λs̃/(s̃− s) ≤ η ≤ 1. Then the composite map has the form

Φ̃ ◦ Φ = I + Ψ̂ with Ψ̂ ∈ Es and

|x̂00 − x00|s ≤ (1 + η)|x̃00|s̃ , |ŵ00 − w00|s ≤ (1 + η)|w̃00|s̃ + 2|w̃01|s̃|w00|s
|ŵ01 − w01|s ≤ (1 + η)|w̃01|s̃(1 + |w01|s)
|ŷ00 − y00|s ≤ (1 + η)|ỹ00|s̃ + 2|ỹ01|s̃|w00|s + 2|ỹ10|s̃|y00|s + 2|ỹ02|s̃|w00|2s
|ŷ01 − y01|s ≤ (1 + η)|ỹ01|s̃(1 + |w01|s) + 2|ỹ10|s̃|y01|s + 4|ỹ02|s̃|w00|s(1 + |w01|s)
|ŷ10 − y10|s ≤ (1 + η)|ỹ10|s̃(1 + |y10|s)
|ŷ02 − y02|s ≤ (1 + η)|ỹ02|s̃(1 + |w01|s)2 + 2|ỹ10|s̃|y02|s (8.12)

where for brevity | · |s̃ := | · |λs̃ , | · |s := | · |λs .

Proof. We have Ψ̂ − Ψ = Ψ̃ ◦ (I + Ψ). The estimate on x̂00 follows by x̂00(x+) − x00(x+) =
x̃00

(
x+ + x00(x+)

)
and (8.1). All the other estimates follow analogously.

8.3 The KAM step

At the generic ν-th step we have an Hamiltonian Hν = Nν + P ν like in (5.18). Both ων , Ων are
Lipschitz in Πν with |ων |lip + ||Ων ||lip−δ∗ ≤Mν . We set

Θν := max
{

1, |P ν11|λνsν , |P
ν
03|λνsν ,

∑
2i+j=4

|∂iy∂jwP ν |λνsν ,rν
}

with λν :=
αν
Mν

. (8.13)

We simplify notations in the next section dropping the index ν and writing “+” for ν+1. So P = P ν ,
P+ = P ν+1, etc.
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The symplectic change of coordinates

We write
H = N + P = N +R+ (P −R) where R := TKP≤2 (8.14)

and P≤2 is defined in (1.8). Then we consider the homological equation

{N,F}+R = [R] (8.15)

where

[R] := ê+ ω̂ · y + Ω̂z · z̄ , ê := 〈P00〉 , ω̂ := 〈P10〉 , Ω̂ := diagj≥1〈∂2
zj z̄jP|y=0,w=0〉 (8.16)

and 〈·〉 denotes the average with respect to the angles.

Lemma 8.8. (homological equation) Suppose that, uniformly on Π,

|ω(ξ) · k + Ω(ξ) · l| ≥ α 〈l〉d
1 + |k|τ

, ∀ (k, l) 6= 0, |k| ≤ K, |l| ≤ 2 . (8.17)

Let 0 < σ < s. Then, ∀R ∈ Fs, the equation (8.15) has a solution F ∈ Fs−σ satisfying [F ] = 0 and

|Fij |λs−σ ≤
K|Pij |λs

ασ2τ+n+1
, 0 ≤ 2i+ j ≤ 2 , 0 ≤ λ ≤ α

M
, (8.18)

with K := K(n, τ) ≥ 1. We can take K = (τ + n)c(τ+n) for some absolute constant c > 0.

Proof. The proof is given in [24], Lemmata 1-2 with the only difference that (8.17) holds for every
k. The truncation |k| ≤ K does not affect the estimates, since TKPij and, therefore, Fij are Fourier
polynomials of order K.

By Lemma 8.8 and 8.6 we deduce:

Lemma 8.9. (symplectic map) There exist C0 := C0(n, τ) > 1 large enough -we can take C0 := Kc

for some absolute constant c > 0 with K defined in Lemma 8.8- such that, if

|P00|λs
r2

,
|P01|λs
r

, |P10|λs , |P02|λs ≤
δασβ

16C0
, (8.19)

where
β := 2τ + n+ 2 , (8.20)

0 < 2σ < s < 1, 0 < δ < 1, 0 ≤ λ ≤ α/M, the symplectic maps

Φt = I + Ψt := Xt
F : D(s− 2σ, r − δr)→ D(s− σ, r − δr/2) (8.21)

are well defined ∀t ∈ [0, 1], and Ψt ∈ Es−2σ satisfy

|xt00|λs−2σ ≤ C0
|P10|λs
ασβ−1

, |yt00|λs−2σ ≤ C0
|P00|λs
2ασβ

+ C0
(|P01|λs )2

2α2σ2β−1
,

|yt10|λs−2σ ≤ C0
|P10|λs
ασβ

, |yt01|λs−2σ ≤ C0
|P01|λs
ασβ

, |yt02|λs−2σ ≤ C0
|P02|λs
ασβ

,

|wt00|λs−2σ ≤ C0
|P01|λs
ασβ−1

, |wt01|λs−2σ ≤ C0
|P02|λs
ασβ−1

. (8.22)

Note that (8.19)-(8.22) imply (8.2) (with | · |λs−2σ instead of | · |λs−σ).
The Hamiltonian transformed under the symplectic map Φ+ := X1

F defined in (8.21) is

H+ := H ◦ Φ+ = N + N̂ +
∫ 1

0

{(1− t)N̂ + tR, F} ◦Xt
F dt + (P −R) ◦ Φ+ =: N+ + P+ (8.23)

where N+ := N + N̂ and N̂ := [R] is defined in (8.16).
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The new normal form N+

We now estimate N+ := N + N̂ where N̂ := ê+ ω̂ · y + Ω̂z · z̄. We identify Ω̂ with the vector

Ω̂ = (Ω̂i)i≥n+1 , Ω̂i := 〈∂2
ziz̄iP|y=0,w=0〉 .

Lemma 8.10. |ω̂| ≤ |P10|s, |ω̂|lip ≤ |P10|lips , ||Ω̂||p̄−p ≤ |P02|s, ||Ω̂||lipp̄−p ≤ |P02|lips and

|ω̂ · k + Ω̂ · l| ≤ |P10|s|k|+ 2|P02|s〈l〉d , ∀(k, l) ∈ Zn × Z∞ . (8.24)

Proof. We have Ω̂j = (〈P02〉ej , ej)p where (·, ·)p and ej (respectively (·, ·)p̄ and ēj) denote the
scalar product and the j-th element of the basis in `a,pb (respectively `a,p̄b ). We have ēi = ip−p̄ej and,
if u ∈ `a,p̄b , u =

∑
i

ūiēi =
∑
i

uiei, then ui = ip−p̄ūi. Denoting u := 〈P02〉ei, we get

ip̄−p|Ω̂i| = ip̄−p|(u, ei)p| = ip̄−p|ui| = |ūi| = |(u, ēi)p̄| ≤ ‖u‖a,p̄ ≤ |P02|s

(recall that |P02|s = sup
x∈Ts

‖P02(x)‖L(`a,pb ,`a,p̄b )) implying ||Ω̂||p̄−p ≤ |P02|s. Similarly |ω̂| ≤ |P10|s. Then

|ω̂ · k + Ω̂ · l| ≤ |ω̂||k|+ ||Ω̂||−δ∗ |l|δ∗ ≤ |ω̂||k|+ ||Ω̂||p̄−p2〈l〉d ≤ |P10|s|k|+ 2|P02|s〈l〉d

using (3.3) and |l|δ∗ ≤ |l|d−1 ≤ 2〈l〉d, ∀|l| ≤ 2. The same estimates holds for | · |lip.

The new perturbation P+

Notation. For the rest of this section, AlB means that A ≤ KcB where K is defined in Lemma 8.8
and c > 0 is some absolute constant.

By (8.23), and since N̂ = [R], we have to estimate P+ = P ∗ + P̃ where

P ∗ :=
∫ 1

0

{(1− t)[R] + tR, F} ◦Xt
F dt , P̃ := (P −R) ◦ Φ+ .

We estimate P ∗ in Lemma 8.11 and P̃ in Lemma 8.13.
We introduce the rescaled quantities

a :=
|P00|λs
r2αpa

, b :=
|P01|λs
rαpb

, c :=
|P10|λs
α

, d :=
|P02|λs
α

(8.25)

where pa, pb are defined in (5.11). Since pa, pb ≥ 1, if

a, b, c, d ≤ δσβ

16C0
(8.26)

(the constant C0 is defined in Lemma 8.9), then (8.19) and, so, (8.22) hold.
Note that the P ∗ij in (8.27), 0 ≤ 2i+ j ≤ 2, are “quadratic” in the variables a, b, c, d (i.e. Pij).

Lemma 8.11. P ∗ :=
∫ 1

0

{(1− t)[R] + tR, F} ◦Xt
F dt ∈ Fs−2σ and

|P ∗00|λs−2σ l σ2−6βr2αpa(ac+ b2) , |P ∗01|λs−2σ l σ2−6βrαpbb(c+ d) ,

|P ∗10|λs−2σ l σ2−6βαc2 , |P ∗02|λs−2σ l σ2−6βαd(c+ d) , (8.27)

where β is defined in (8.20).
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Proof. We estimate
∫ 1

0

t{R,F} ◦ Xt
F dt. The term

∫ 1

0

(1 − t){[R], F} ◦ Xt
F dt is analogous. The

statement follows by Lemma 8.4 (with s→ s− 3σ
2

, s− σ → s− 2σ), Lemma 8.5 (with G = {R,F}),
Lemma 8.3, and (8.1), (8.6), (8.18), (8.19), (8.25) (8.26). Indeed, using r, α < 1 and 2pb ≥ pa + 1, we
get

|P ∗00|λs−2σ l |G00|λs− 3σ
2

+ |G10|λs− 3σ
2
|y00|λs−2σ + |G01|λs− 3σ

2
|w00|λs−2σ + |G02|λs− 3σ

2
(|w00|λs−2σ)2

l |F10|λs−σ|TKP ′00|+ |TKP10||F ′00|+ |F01||TKP01|

+
(
|TKP ′10||F10|+ |TKP10||F ′10|

)
σ1−2βr2αpa−1(a+ b2)

+
(
|F10||TKP ′01|+ |TKP10||F ′01|+ |TKP01||F02|+ |TKP02||F01|

)
σ1−2βrαpb−1b

+
(
|F10||TKP ′02|+ |TKP10||F ′02|+ |TKP02||F02|

)
σ2−4βr2α2pb−2b2

l α−1σ2−6β
[
|P00|λs |P10|+ |P01|2 + |P10|2r2αpa−1(a+ b2)

+(|P10|+ |P02|)|P01|(1 + rαpb−1b) + |P02|2r2α2pb−2b2
]

l α−1σ2−6β
[
r2αpa+1ac+ r2αpbb2 + r2αpa+1(a+ b2)c2

+r2α2pb(c+ d)b2 + r2α2pb−2b2d2
]

l σ2−6βr2αpaac

where in the second term of the chain of inequalities all the norms are | · |λs−σ, in the third term all
the norms are | · |λs , and we used Cauchy inequalities. Next

|P ∗01|λs−2σ l |G01|λs− 3σ
2

+ |G10|λs− 3σ
2
|y01|λs−2σ + |G02|λs− 3σ

2
|w00|λs−2σ

l |F10|λs−σ|TKP ′01|+ |TKP10||F ′01|+ |F02||TKP01|+ |TKP02||F01|
+
(
|TKP ′10||F10|+ |TKP10||F ′10|+ |F10||TKP ′02|+ |TKP10||F ′02|+ |TKP02||F02|

)
×

×σ1−2βrαpb−1b

l σ1−4βrαpb [b(c+ d) + bc2 + bd(c+ d)] l σ1−4βrαpbb(c+ d)

where in the second line all the norms are | · |λs−σ. Moreover

|P ∗10|λs−2σ l |G10|λs− 3σ
2

l |F10|λs−σ|TKP ′10|λs−σ + |F ′10|λs−σ|TKP10|λs−σ l σ−2βαc2 .

Finally

|P ∗02|λs−2σ l |G10|λs− 3σ
2
|y02|λs−2σ + |G02|λs− 3σ

2

l
(
|F10|λs−σ|TKP ′10|+ |TKP10||F ′10|

)
σ1−2βd

+|TKP ′02||F10|+ |F ′02||TKP10|+ |TKP02||F02|
l σ1−4βα(c2d+ cd+ d2) l σ1−4βα(c+ d)d

where in the second line all the norms are | · |λs−σ.
We define the higher order terms of the perturbation

P4 :=
∑

2i+j≥4

Pij(x)yiwj so that P = P≤2 + P11yw + P03w
3 + P4 (8.28)

(P≤2 was defined in (1.8)). Note that ∂iy∂
j
wP = ∂iy∂

j
wP4 if 2i+ j = 4. We also define

Φ00 := Φ+
|{y+=0,w+=0} =

(
x+ + x00(x+; ξ), y00(x+; ξ), w00(x+; ξ)

)
.

By Lemma 8.9, Φ00 : D(s− 2σ)→ D(s− σ, r − δr/2), ∀ξ ∈ Π.
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Lemma 8.12. We have

|P4 ◦ Φ00|l Θ
(
δ−1|y00|2 + δ−1|y00||w00|2 + |w00|4

)
|(∂yP4) ◦ Φ00|l Θ

(
δ−1|y00|+ |w00|2

)
, |(∂2

ywP4) ◦ Φ00|l Θ
(
(δr)−1|y00|+ |w00|

)
|(∂wP4) ◦ Φ00|l Θ

(
(δr)−1|y00|2 + δ−1|y00||w00|+ |w00|3

)
|(∂2

wwP4) ◦ Φ00|l Θ
(
δ−1|y00|+ |w00|2

)
, |(∂3

wwwP4) ◦ Φ00|l Θ
(
(δr)−1|y00|+ |w00|

)
|(∂3

yywP4) ◦ Φ00|l Θ(δr)−1 , |(∂3
yyyP4) ◦ Φ00|l Θ(δr)−2

where all the norms | | := | |λs−2σ and Θ is defined in (5.5).

Proof. We only prove the estimate for ∂3
wP4 ◦ Φ00 where, for brevity, ∂3

w := ∂www. For all
(x, y, w; ξ) ∈ D(s, r − δr/2)×Π, since ∂3

wP4(x, 0, 0; ξ) = 0 (by definition of P4), we have

‖∂3
wP4(x, y, w; ξ)‖ = ‖∂3

wP4(x, y, w; ξ)− ∂3
wP4(x, 0, 0; ξ)‖

≤ sup
0≤t≤1

‖∂3
w∂yP4(x, ty, tw; ξ)‖|y|+ sup

0≤t≤1
‖∂4
wP4(x, ty, tw; ξ)‖‖w‖a,p ≤ Θ((δr)−1|y|+ ‖w‖a,p)

(‖ · ‖ denote the operatorial norm) because, by Cauchy estimates, and the definition of Θ,

|∂3
w∂yP4|s,(1− δ2 )r l (δr)−1|∂2

w∂yP4|s,r l Θ(δr)−1 . (8.29)

Then ∀|y| < (r − δr/2)2, ‖w‖a,p < r − δr/2,

|∂3
wP4(·, y, w; ·)|s , σ|∂3

w∂xP4(·, y, w; ·)|s−σ l Θ((δr)−1|y|+ ‖w‖a,p) . (8.30)

Then, since Lemma 8.9 implies |x00|λs−2σ ≤ σ/16, |y00| < (r − δr/2)2, |w00|s−2σ < r − δr/2,

|∂3
wP4 ◦ Φ00|s−2σ ≤ sup

x∈Tns , ζ∈Π
|∂3
wP4(x, y00(x+; ξ), w00(x+; ξ); ζ)|l Θ

( |y00|s−2σ

δr
+ |w00|s−2σ

)
.

With similar estimates |∂3
wP4 ◦ Φ00|lips,r l Θλ−1(|y00|λs−2σ(δr)−1 + |w00|λs−2σ).

We now estimate P̃ := (P −R) ◦ Φ+. Note the “linear” term in the variables a, b, c, d.

Lemma 8.13. P̃ := (P −R) ◦ Φ+ = (P11yw + P03w
3 + P4 + T⊥KP≤2) ◦ Φ+ ∈ Fs−2σ and

σ8β−4|P̃00|λs−2σ l |P11|λs r3αpa+pb−2(ab+ b3) + |P03|λs r3α3pb−3b3 + Θδ−1r4α2pa−2(a2 + b4)

+Kne−Kσr2αpa(a+ b2)
σ6β−3|P̃01|λs−2σ l |P11|λs r2αpa−1(a+ b2) + |P03|λs r2α2pb−2b2 + Θδ−1r3αpa+pb−2(a+ b2)b

+Kne−Kσrαpbb

σ4β−2|P̃10|λs−2σ l |P11|λs rαpb−1b+ Θδ−1r2αpa−1(a+ b2) +Kne−Kσαc

σ4β−2|P̃02|λs−2σ l (|P11|λs + |P03|λs )rαpb−1b+ Θδ−1r2αpa−1(a+ b2) +Kne−Kσαd

σ2β−1|P̃11 − P11|λs−2σ l |P11|λs (c+ d) + Θδ−1rαpa−1(a+ b)

σ2β−1|P̃03 − P03|λs−2σ l (|P11|λs + |P03|λs )d+ Θδ−1rαpa−1(a+ b) ,

where β is defined in (8.20).

Proof. Let for simplicity Φ+ := Φ. We have

P̃00 =
(
(P −R) ◦ Φ

)
|y+=0,w+=0

, P̃01 = ∂w+

(
(P −R) ◦ Φ

)
|y+=0,w+=0

, (8.31)

P̃10 = ∂y+

(
(P −R) ◦ Φ

)
|y+=0,w+=0

, P̃02 =
1
2
∂2
w+w+

(
(P −R) ◦ Φ

)
|y+=0,w+=0

,

P̃11 = ∂2
y+w+

(
(P −R) ◦ Φ

)
|y+=0,w+=0

, P̃03 =
1
6
∂3
w+w+w+

(
(P −R) ◦ Φ

)
|y+=0,w+=0

.
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For brevity we set | · | := | · |λs , | · |∗ := | · |λs−2σ. The P⊥ij (x+) := T⊥KPij(x
+ + x00(x+)), 0 ≤ 2i+ j ≤ 2,

satisfy, since |x00|λs−2σ ≤ δσ/16 (by Lemma 8.9),

|P⊥ij |∗
(8.1)

≤ |T⊥KPij |s−σ
(8.6)
l Kne−Kσ|Pij | . (8.32)

All the following estimates are a consequence of (8.31), the definition of P4 in (8.28), Lemmata 8.12
and 8.9, (8.25), (8.26), (8.32) and 2pb ≥ pa + 1. Setting Q := P4 + T⊥KP≤2 we have

|P̃00|∗ l |P11||y00|∗|w00|∗ + |P03||w00|3∗ + |Q ◦ Φ00|∗
l |P11|σ2−4βr3αpa+pb−2(ab+ b3) + |P03|σ3−3βr3α3pb−3b3

+Θ
(
δ−1|y00|2∗ + δ−1|y00|∗|w00|2∗ + |w00|4∗

)
+|P⊥00|∗ + |P⊥01|∗|w00|∗ + |P⊥10|∗|y00|∗ + |P⊥02|∗|w00|2∗

l |P11|σ2−4βr3αpa+pb−2(ab+ b3) + |P03|σ3−3βr3α3pb−3b3

+Θδ−1σ4−8βr4
(
α2pa−2(a+ b2)2 + α4pb−4b4

)
+Kne−Kσσ2−4βr2αpa

(
a+ b2 + c(a+ b2) + db2

)
.

Next

|P̃01|∗ l |P11|
(
|y01|∗|w00|∗ + |I + w01|∗|y00|∗

)
+ |P03||w00|2∗|I + w01|∗ + |∂w+(Q ◦ Φ)|y+=0,w+=0|∗

l |P11|σ2−4βr2αpa−1(a+ b2) + |P03|σ2−4βr2α2pb−2b2 + |(∂yQ) ◦ Φ00|∗|y01|∗
+|(∂wQ) ◦ Φ00|∗|I + w01|∗

l |P11|σ2−4βr2αpa−1(a+ b2) + |P03|σ2−4βr2α2pb−2b2 + Θ
(
δ−1|y00|∗ + |w00|2∗

)
|y01|∗

+Θ
(
(δr)−1|y00|2∗ + δ−1|y00|∗|w00|∗ + |w00|3∗

)
+|P⊥01|∗|I + w01|∗ + |P⊥10|∗|y01|∗ + |P⊥02|∗|w00|∗|I + w01|∗

l |P11|σ2−4βr2αpa−1(a+ b2) + |P03|r2σ2−4βα2pb−2b2 + Θδ−1σ3−6βr3αpa+pb−2(a+ b2)b
+Kne−Kσσ1−2βrαpbb .

Moreover

|P̃10|∗ l |P11||w00|∗|I + y10|∗ + |∂y+(Q ◦ Φ)|y+=0,w+=0

l |P11|σ1−2βrαpb−1b+ Θ
(
δ−1|y00|∗ + |w00|2∗

)
+ |P⊥10|∗|I + y10|∗

l |P11|σ1−2βrαpb−1b+ Θδ−1σ2−4βr2αpa−1(a+ b2) +Kne−Kσαc .

By (8.22) and (8.26) we have |y01|∗ l δr and then

|P̃02|∗ l |P11|
(
|y02|∗|w00|∗ + |I + w01|∗|y01|∗

)
+ |P03||w00|∗|I + w01|2∗

+|∂2
w+w+

(Q ◦ Φ)|y+=0,w+=0|∗
l (|P11|+ |P03|)σ2−4βrαpb−1b+ |(∂2

yyQ) ◦ Φ00|∗|y01|2∗ + |(∂2
ywQ) ◦ Φ00|∗|I + w01|∗|y01|∗

+|(∂yQ) ◦ Φ00|∗|y02|∗ + |(∂2
wwQ) ◦ Φ00|∗|I + w01|2∗

l (|P11|+ |P03|)σ2−4βrαpb−1b+ Θ
(
(δr)−1|y00|∗ + |w00|∗

)
|y01|∗

+Θ
(
δ−1|y00|∗ + |w00|2∗

)
|y02|∗ + Θ

(
δ−1|y00|∗ + |w00|2∗

)
+ |P⊥10|∗|y02|∗ + |P⊥02|∗|I + w01|2∗

l (|P11|+ |P03|)σ2−4βrαpb−1b+ Θδ−1
(
|y01|2∗ + |y00|∗ + |w00|∗|y01|∗ + |w00|2∗

)
+|P⊥10|∗|y02|∗ + |P⊥02|∗

l (|P11|+ |P03|)σ2−4βrαpb−1b+ Θδ−1σ2−4βr2αpa−1(a+ b2) +Kne−Kσσ1−2βαd .

The estimates of |P̃11 − P11|∗ and |P̃03 − P03|∗ follow in the same way.
Recollecting the previous informations we state the following key lemma of the KAM step.
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Lemma 8.14. (KAM step) Assume (8.26). Then, ∀ξ ∈ Π satisfying (8.17), there is a symplectic
map

Φ+(·; ξ) : D(s− 2σ, r − δr)→ D(s− σ, r) with 0 < 2σ < s , 0 < δ < 1 ,

satisfying (8.22), such that

H+ := H ◦ Φ+ = N+ + P+ = (N + N̂) + P+ = (N + [P ]) + P+

and P+ = P ∗ + P̃ satisfies the estimates of Lemmata 8.11 and 8.13.

We define a+, b+, c+, d+ like a, b, c, d in (8.25), with P+
ij , s+ := s− 2σ, α+, r+ instead of Pij , s, α, r.

Lemma 8.15. Assume (8.26), Θr2 ≤ 18α and |P11|λs ≤ 9αpe/r, |P03|λs ≤ 9αpf /r, where

pe := 3− pa − pf =


1/2 if (H1)
5/4 if (H2)
1 if (H3)

and pf :=

{
1/2 if (H1) or (H2)
1 if (H3) .

(8.33)

We have that

a+ ≤ C1(ac+ b2 + a2 +Kne−Kσa)/δσβ̃

b+ ≤ C1(a+ b2 + bc+ bd+Kne−Kσb)/δσβ̃

c+ ≤ C1(b+ c2 + a+Kne−Kσc)/δσβ̃

d+ ≤ C1(b+ cd+ d2 + a+Kne−Kσd)/δσβ̃ (8.34)

where β̃ := 16τ + 8n+ 12 and C1 = Kc for some absolute constant c > 0 (K defined in Lemma 8.8).

Proof. By Lemma 8.14 (see the estimates of Lemmata 8.11 and 8.13), β̃ = 8β − 4, we get

σβ̃a+ l ac+ b2 + (ab+ b3)αpb+pe−2 + b3α3pb+pf−pa−3 + Θδ−1(a2 + b4)r2αpa−2 +Kne−Kσa

σβ̃b+ l bc+ bd+ (a+ b2)αpa+pe−pb−1 + b2αpb+pf−2 + Θδ−1(ab+ b3)r2αpa−2 +Kne−Kσb

σβ̃c+ l c2 + bαpb+pe−2 + Θδ−1(a+ b2)r2αpa−2 +Kne−Kσc

σβ̃d+ l cd+ d2 + bαpb+pe−2 + bαpb+pf−2 + Θδ−1(a+ b2)r2αpa−2 +Kne−Kσd

which imply (8.34) thanks to Θr2 ≤ 18α, (5.11), (8.33) and (8.26).

8.4 KAM iteration

We fix χ such that
1 < χ < 21/3 , χ4 + 1 > χ5 . (8.35)

Below an “absolute constant ” (denoted by c, ci, c′, . . .) is a constant depending (possibly) on χ only.

Lemma 8.16. Let {(aj , bj , cj , dj)}0≤j≤ν a sequence of positive numbers satisfying

aj+1 ≤ κj+1(ajcj + b2j + a2
j +Kn

∗ e
−K∗2jaj)

bj+1 ≤ κj+1(aj + b2j + bjcj + bjdj +Kn
∗ e
−K∗2j bj)

cj+1 ≤ κj+1(bj + c2j + aj +Kn
∗ e
−K∗2jcj)

dj+1 ≤ κj+1(bj + cjdj + d2
j + aj +Kn

∗ e
−K∗2jdj) , ∀ 0 ≤ j ≤ ν − 1 , (8.36)

where κ > ee and K∗ ≥ 26 + 6 lnκ+ 16n2. There exist 0 < γ0 := γ0(κ, χ) ≤ 1/3 such that

a0, b0, c0, d0 ≤ ε0 ≤ γ0 =⇒ aj , bj , cj , dj ≤ γ−1
0 ε0 e

−χj , ∀ 0 ≤ j ≤ ν . (8.37)

In particular one can take γ0 = κ−c ln(lnκ) for some c = c(χ) ≥ 1.
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Proof. In the last three inequalities in (8.36) appear the linear terms aj , bj . This seems in contrast
with a superconvergent iterative scheme, i.e. (8.37). However we recover a quadratic scheme iterating
three times, i.e. the estimate of (aj+3, bj+3, cj+3, dj+3) in terms of (aj , bj , cj , dj) is quadratic. The
detailed computations are given in the Appendix.

For ν ∈ N we define

• σν := σ02−ν , σ0 :=
s0

8
, sν+1 := sν − 2σν ↘

s0

2
,

• δν := 2−ν−3 , rν+1 := (1− δν)rν ↘ r0

∞∏
ν=0

(1− δν) >
r0

2
, Dν := D(sν , rν) ,

• 1 > α0 ≥ αν :=
α0

2
(1 + 2−ν)↘ α0

2
, Mν := M0(2− 2−ν)↗ 2M0 , λν :=

αν
Mν
↘ α0

4M0
,

• Kν := K04ν , K0 :=
8K∗
s0

, K−1 := 0 , K∗ := 26 + 6 lnκ+ 16n2.

Note that Kνσν = K∗2ν ≥ 1. Let us define

κ := 4C1(4/s0)β̃ (8.38)

where C1 = Kc, β̃ = 16τ + 8n+ 12 are introduced in Lemma 8.15 and K = (n+ τ)c(n+τ) in Lemma 8.8
(here c denotes absolute, possibly different, costants). We set

γ0 := γ0(κ, χ) as in Lemma 8.16 with κ in (8.38) . (8.39)

Note that, for some 1 < c1 < c2,

ec1τ0 ≤ κ ≤ ec2τ0 , τ−c2τ00 ≤ γ0 ≤ τ−c1τ00 , with τ0 := (τ + n) ln
(
(τ + n)/s0

)
. (8.40)

In the following lemma we set | · |ν := | · |λνsν for brevity.

Lemma 8.17. (Iterative Lemma) Let H0 = N0 + P 0 : D0 × Π−1 → C be analytic in D0 with
Π−1 ⊂ Rm, N0 := e0 + ω0(ξ) · y + Ω0(ξ) · zz̄ in normal form and |ω0|lip + ||Ω0||lip−δ∗ ≤M0. Define

a0 :=
|P 0

00|0
r2
0α

pa
0

, b0 :=
|P 0

01|0
r0α

pb
0

, c0 :=
|P 0

10|0
α0

, d0 :=
|P 0

02|0
α0

.

There exist C? = γ−c
∗

0 > 1, γ? = γc?0 < 1 (for some absolute constants c? > c∗ > 1 ), such that, if the
smallness conditions

max{a0 , b0 , c0 , d0} =: ε0 ≤ γ? , r0|P 0
11|0 ≤ α

pe
0 , r0|P 0

03|0 ≤ α
pf
0 , 2Θ0r0 ≤

√
α0 , (8.41)

are satisfied (the constant Θ0 is defined as in (5.5) for P 0), then:
(S1)ν ∀0 ≤ j ≤ ν there exist Hj = N j + P j : Dj × Πj−1 → C, analytic in Dj, with N j :=
ej + ωi(ξ) · y + Ωi(ξ) · zz̄ in normal form and

Πj :=
{
ξ ∈ Πj−1 : |ωj(ξ) · k + Ωj(ξ) · l| ≥ αj

〈l〉d
1 + |k|τ

, ∀(k, l) 6= 0 , |k| ≤ Kj , |l| ≤ 2
}
. (8.42)

Moreover, ∀1 ≤ j ≤ ν, Hj = Hj−1 ◦ Φj where Φj : Dj ×Πj−1 → Dj−1 are a Lipschitz family of real
analytic symplectic maps of the form Φj = I + Ψj with Ψj ∈ Esj satisfying

|xj00|j , |y
j
10|j ≤ C?2(2β−1)(j−1)cj−1 , |yj00|j ≤ C?2(2β−1)(j−1)r2

0α
pa−1
0 (aj−1 + b2j−1) ,

|yj01|j , |w
j
00|j ≤ C?2(2β−1)(j−1)r0α

pb−1
0 bj−1 , |yj02|j , |w

j
01|j ≤ C?2(2β−1)(j−1)dj−1 , (8.43)
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where

aj :=
|P j00|j
r2
jα

pa
j

, bj :=
|P j01|j
rjα

pb
j

, cj :=
|P j10|j
αj

, dj :=
|P j02|j
αj

. (8.44)

(S2)ν ∀0 ≤ j ≤ ν there exist Lipschitz extensions ω̃j, Ω̃j of ωj, Ωj defined on Π−1 and, for j ≥ 1,

|ω̃j − ω̃j−1| , |ω̃j − ω̃j−1|lip ≤ |P j−1
10 |sj−1 , ||Ω̃j − Ω̃j−1||p̄−p , ||Ω̃j − Ω̃j−1||lipp̄−p ≤ |P

j−1
02 |sj−1 , (8.45)

|ω̃j |lip + ||Ω̃j ||lip−δ∗ ≤Mj . (8.46)

(S3)ν {(aj , bj , cj , dj)}0≤j≤ν satisfy (8.36) with κ defined in (8.38).

(S4)ν ∀0 ≤ j ≤ ν − 1, the aj , bj , cj , dj ≤ γ−1
0 ε0 e

−χj with γ0 defined in (8.39).
(S5)ν ∀ 1 ≤ j ≤ ν − 1 we have Θj ≤ 9Θ0 (see (8.13)), and

|P j11 − P
j−1
11 |j ≤ 2−j−1C?ε0(|P 0

11|0 + α
pa−1/2
0 ) , (8.47)

|P j03 − P
j−1
03 |j ≤ 2−j−1C?ε0(|P 0

03|0 + |P 0
11|0 + α

pa−1/2
0 ) . (8.48)

(S6)ν ∀1 ≤ j ≤ ν, the composed map Φ̃j := Φ1 ◦ Φ2 ◦ · · · ◦ Φj = I + Ψ̃j with Ψ̃j ∈ Esj satisfies

|x̃j00|j , |ỹ
j
10|j , |ỹ

j
02|j , |w̃

j
01|j ≤ C2

?(1− 2−j)ε0 , (8.49)

|ỹj00|j ≤ C2
?(1− 2−j)r2

0α
pa−1
0 ε0 , |ỹj01|j , |w̃

j
00|j ≤ C2

?(1− 2−j)r0α
pb−1
0 ε0 .

Proof. The statements (S1)0, (S2)0, (S5)0, follow by the hypothesis of the lemma, (8.41) and
setting ω̃0 := ω0, Ω̃0 = Ω0. The (S4)0 holds by (8.41) because γ0 ≤ 1/3 (see Lemma 8.16). The (S6)1

follows by (S1)0. Note that (S3)0 trivially holds since there is nothing to verify in (8.36) for ν = 0.
Then, by induction, we prove the statements (Si)ν+1, i = 1, . . . , 6.

(S4)ν+1 follows by (8.41), (S3)ν and Lemma 8.16.
(S1)ν+1. By (S4)ν+1 we have, since ε0 ≤ γ? = γc?0 ,

aν , bν , cν , dν ≤ γ−1
0 ε0e

−χν ≤ γc?−1
0 e−χ

ν

≤ δνσ
β
ν

16C0
(8.50)

for c? large enough. Indeed, since σν := s02−ν/8, δν := 2−ν−3, β := 2τ + n+ 2, we get

sup
ν≥0

e−χ
ν

δνσ
β
ν

= sup
ν≥0

s−β0 e−χ
ν

2(β+1)(ν+3) ≤
( β
s0

)cβ
≤
(τ + n

s0

)c(τ+n)

.

Then (8.50) follows, for c? large enough, by (8.40) and C0 = Kc = (τ + n)c
′(τ+n), see Lemma 8.9.

Then, by (8.50), ∀ξ ∈ Πν , Lemma 8.14 applies with N = Nν , P = Pν , s = sν , σ = σν , r = rν ,
α = αν , δ = δν , M = Mν . There exists a real analytic symplectic map Φν+1 : Dν+1 × Πν → Dν ,
Lipschitz in Πν , such that,

Hν+1 = Hν ◦ Φν+1 =: Nν+1 + P ν+1 , Nν+1 := Nν + [P ν ] .

The estimates (8.43) follow by (8.22) and (8.44), taking C? large enough (namely c∗ large enough).
(S2)ν+1. The frequency maps ων+1 Ων+1 are defined on Πν and, by Lemma 8.10, satisfy the estimates

|ων+1 − ων | ≤ |P ν10|sν , |ων+1 − ων |lip ≤ |P ν10|lipsν (8.51)

||Ων+1 − Ων ||p̄−p ≤ |P ν02|sν , ||Ων+1 − Ων ||lipp̄−p ≤ |P ν02|lipsν . (8.52)
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By the Kirszbraun theorem (see e.g. [23]), used componentwise, they can be extended to maps ω̃ν+1,
Ω̃ν+1 defined on the whole Π−1 preserving the same sup-norm and Lipschitz seminorms (8.51)-(8.52).
As a consequence, and since || ||−δ∗ ≤ || ||p̄−p (recall (3.3)), we get

|ω̃ν+1|lip + |Ω̃ν+1|lip−δ∗ ≤ Mν + |P ν10|lipν + |P ν02|lipν ≤Mν + λ−1
ν αν(cν + dν)

= Mν(1 + cν + dν) ≤Mν+1

by (S4)ν and for c? large enough.
(S3)ν+1 follows by (8.34) and the definition of κ. The assumptions of Lemma 8.15 hold by (8.50), by

Θνr
2
ν

(S5)ν
≤ 9Θ0r

2
ν ≤ 9Θ0r

2
0

(8.41)

≤ 9α0/2 ≤ 18αν

and |P ν11|ν ≤ 9αpeν /rν , |P ν03|ν ≤ 9αpfν /rν , that follow by (S5)ν . Indeed, by (8.48) with j = ν, and,
since pa ≥ pe ≥ pf , we get by (8.41)

|P ν03|ν ≤ |P 0
03|0 + C?ε0(|P 0

03|0 + |P 0
11|0 + α

pa−1/2
0 ) ≤ 2|P 0

03|0 + |P 0
11|0 + α

pa−1/2
0 (8.53)

≤ 3r−1
0 α

pf
0 + α

pf−1/2
0 ≤ 4r−1

0 α
pf
0 ≤ 9r−1

ν α
pf
ν ,

for c? large enough (with respect to c∗). The estimate |P ν11|ν ≤ 9αpeν /rν follows as well.
(S5)ν+1. By the last inequality of Lemma 8.13, (S4)ν+1, (8.41) and Θν ≤ 9Θ0 we deduce

|P ν+1
03 − P ν03|ν+1 ≤ Kcγ−1

0 ε023βνe−χ
ν

(|P ν11|ν + |P ν03|ν + Θνrνα
pa−1
ν )

≤ 2−ν−2C?ε0(|P 0
11|0 + |P 0

03|0 + α
pa−1/2
0 )

with c∗ large enough. The proof of (8.47) for j = ν + 1 is analogous.
Finally, by (S6)ν and c? large enough, we apply Lemma 8.2 with Φ = Φ̃ν = I + Ψ̃ν+1. Then (8.5)

yields Θν+1 ≤ 9Θ0 because ∂yiwjHν+1 = ∂yiwjP
ν+1 for 2i+ j = 4.

(S6)ν+1 By (S1)ν we can apply Lemma 8.7 with Φ̃ = Φ̃ν , Φ = Φν+1, Ψ̂ = Ψ̃ν+1. Then Ψ̃ν+1 ∈ Esν+1

and (S6)ν+1 follows. The estimate for ỹν+1
00 follows by the bound in (S6)ν for |ỹν00|ν and the inequalities

|ỹν+1
00 − ỹν00|ν+1

(8.12)

≤ |yν+1
00 |ν+1 + 2ν+3s−1

0 |x
ν+1
00 |ν+1|ỹν00|ν

+2(|ỹν01|ν |wν+1
00 |ν+1 + |ỹν10|ν |yν+1

00 |ν+1 + |ỹν02|ν |wν+1
00 |2ν+1)

(S1)ν+1

≤ C2
?2−ν−1r2

0α
pa−1
0 ε0

with c∗ large enough and, then, c? large enough (w.r.t. c∗). All the other estimates are analogous.

Corollary 8.1. For all ξ ∈ Πα0 := ∩ν≥0Πν the sequence Φ̃ν = I + Ψ̃ν converges uniformly on
D(s0/2, r0/2) to an analytic symplectic map Φ = I + Ψ where Ψ ∈ Es0/2 satisfies

|x00|λ0
s0/2

, |y00|λ0
s0/2

α1−pa
0

r2
0

, |y01|λ0
s0/2

α1−pb
0

r0
, |y10|λ0

s0/2
, |y02|λ0

s0/2
, |w01|λ0

s0/2
, |w00|λ0

s0/2

α1−pb
0

r0
≤ γ−c0 ε0 (8.54)

and the perturbation P∞≤2(·, ξ) = 0.

Proof. The Φ̃ν+1− Φ̃ν = Ψν+1 ◦ Φ̃ν is a Cauchy sequence by (8.43), (S4)ν+1 and (S6)ν . Estimates
(8.54) follow by (8.49) and since | · |λ0/4

s0/2
≤ 4| · |λ0

s0/2
. Finally P∞≤2(·, ξ) = 0, ∀ξ ∈ Πα0 , follows by

(8.44) and (S4)ν .
Let us define

ω∞ := lim
ν→∞

ω̃ν , Ω∞ := lim
ν→∞

Ω̃ν .

It could happen that Πν0 = ∅ for some ν0. In such a case Πα0 = ∅ and the iterative process stops
after finitely many steps. However, we can always set ω̃ν := ω̃ν0 , Ω̃ν := Ω̃ν0 , ∀ν ≥ ν0, and ω∞, Ω∞
are always well defined.
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Lemma 8.18. |ω̃ν − ω∞|, ||Ω̃ν − Ω∞||p̄−p, |ω̃ν − ω∞|lip, ||Ω̃ν − Ω∞||lipp̄−p ≤ γ−c0 α0ε0e
−χν .

Proof. By (8.45), (8.44), (S4)ν , we have

|ω̃ν − ω∞| ≤
∣∣∣ ∞∑
j=ν

ω̃j+1 − ω̃j
∣∣∣ ≤ γ−1

0 α0ε0

∞∑
j=ν

e−χ
j

≤ γ−c0 α0ε0e
−χν .

The other estimates are analogous.

End of the proof of Theorem 5.1

Case 1: Hypotheses (H1), (H2), or (H3)-(d > 1). We apply the iterative Lemma with

s0 := s, r0 :=
r

2
, α0 := α, N0 := N, P 0 := P, Θ0 := Θ, M0 := M, Π−1 := Π .

The smallness assumption (8.41) follows by (5.5), (H1), (H2), (H3), (8.33), taking γ ≤ γ?. Theorem
5.1 follows by the conclusions of Lemma 8.17, Corollary 8.1 and Lemma 8.18. Finally we prove the
characterisation of the Cantor set in terms of the limit frequencies (ω∞,Ω∞).

Lemma 8.19. Π∞ ⊆ Πα := ∩ν≥0Πν .

Proof. By (3.3) we get |l|p−p̄ ≤ |l|d−1 ≤ 2〈l〉d. If ξ ∈ Π∞, we have, ∀ν ≥ 0, ∀|k| ≤ Kν , |l| ≤ 2,

|ων(ξ) · k + Ων(ξ) · l| ≥ 2α
〈l〉d

1 + |k|τ
− |ων(ξ)− ω∞(ξ)||k| − 2||Ων − Ω∞||p̄−p〈l〉d ≥ α

〈l〉d
1 + |k|τ

(8.55)

because, by Lemma 8.18, for γ small enough,

|ων(ξ)− ω∞(ξ)| ≤ α

2(1 +Kτ
ν )Kν

, ||Ων − Ω∞||p̄−p ≤
α

4(1 +Kτ
ν )
.

Since α ≥ αν , by (8.55) we deduce Π∞ ⊂ Πν , ∀ν ≥ 0.
Case 2: Hypothesis (H3)-(d = 1). We first perform one step of averaging. The homological
equation

{N,F}+ P00 = 〈P00〉

has a solution F̂ := F̂00, for all ξ ∈ Π such that5 ω(ξ) ∈ Dαµ,τ (see (1.14)). The symplectic map
Φ̂ := X1

F̂
: D(s/2, r/2)→ D(s, r) has the form

Φ̂(x+, y+, w+) = (x+, y+ + ŷ00(x+), w+)

and |ŷ00|s/2 lα−µ|P00|s, where, here and in the following, | · |s and | · |s/2 are short for | · |λs and | · |λs/2
respectively. Then Ĥ := H ◦ Φ̂ = N + P̂ satisfies

|P̂00|s/2 l α−µ|P00|s|P10|s + α−2µ|P00|2s l ε2
3r

2α+ ε2
3r

4 ≤ 2ε2
3r

2α

|P̂01|s/2 l |P01|s + α−µ|P11|s|P00|s l |P01|s + α1/2ε3r
2 ≤ αε3r

|P̂10|s/2 l |P10|s + α−µ|P00|s l |P10|s + ε3r
2 ≤ ε3α

|P̂02|s/2 l |P02|s + α−µ|P00|s ≤ ε3α

and so
ε̃ := max

{
r−2α−1|P̂00|s/2 , α−1r−1|P̂01|s/2 , α−1|P̂10|s/2 , α−1|P̂02|s/2

}
l ε3 .

5Actually it is sufficient to require in (1.14) only finitely many non-resonance conditions, i.e. for |k| ≤ K̄.

39



Moreover
|P̂11 − P11|s/2 , |P̂03 − P03|s/2 l |ŷ00|s/2 l α−µ|P00|s ≤ ε3r

2 ≤ ε3α ,

whence |P̂11|s/2 , |P̂03|s/2 ≤ 2α/r, if γ is small enough. By Lemma 8.2 we get Θ̂ ≤ 3Θ. We apply the
iterative Lemma with

H0 := Ĥ, N0 := N, P 0 := P̂ , s0 :=
s

2
, r0 :=

r

2
, α0 := α, Θ0 := 3Θ , M0 := M , ε0 := ε̃ ,

Π−1 := Π \ ω−1(Dαµ,τ ) .

Then (8.41) follows since ε̃l ε3 ≤ γ, taking γ small enough (with respect to γ?).
We now prove remark 5.1 for analytic Hamiltonians.

Remark 8.1. We only modify the statement (S2)ν stating the existence of C∞-extensions of the
frequency maps ω∞, Ω∞. We follow the cut-off procedure of [5]. The small divisor condition (8.42)
holds with αj/2 instead of αj in the neighborhood

N (Πj) :=
{
ξ ∈ Πj−1 : dist(ξ,Πj) ≤ cαjK−(τ+1)

j

}
(8.56)

where c is a small constant. Then Hj+1 exists for all ξ ∈ N (Πj) and, the KAM iteration implies

|ωj+1 − ωj | , ||Ωj+1 − Ωj ||p̄−p ≤ Cαjε0e
−χj .

By a cut-off procedure we define C∞-functions Ω̃j+1 − Ω̃j for all the parameters ξ ∈ Π−1 coinciding
with Ωj+1 − Ωj on Πj and equal to zero outside N (Πj). Moreover, by (8.56), the derivatives of such
extended frequency maps satisfy

||Dq(Ω̃j+1 − Ω̃j)||p̄−p ≤ Cαjε0e
−χj/(αjK

−(τ+1)
j )q ≤ C(q)

ε0

αq−1
e−χ

j

K
(τ+1)q
j , ∀q ≥ 1 .

An analogous estimate hold for ω̃j+1 − ω̃j. Summing in j ≥ 1 we get (5.15).

We now discuss the estimates of remark 5.3.

Remark 8.2. By Lemma 8.17 the small constant γ := γ(n, τ, s) of Theorem 5.1 can be taken γ := γc0
where γ0 is defined in (8.39). Then (8.40) implies the estimate for γ given in Remark 5.3.

Proof of remark 5.2. By (5.6), (1.13), λ = α/M , we get

|ω∞ − ω|lip, ||Ω∞ − Ω||lip−δ∗ ≤Mεi/γ (8.57)

By (5.2), (3.3) we have |ω∞|lip, ||Ω∞||lip−δ∗ ≤ M + Mεi/γ ≤ 2M . Let ξ1, ξ2 ∈ Π and ωj := ω∞(ξj),
j = 1, 2. We have |ξ1 − ξ2| = |ω−1

∞ (ω1)− ω−1
∞ (ω2)| ≤ L|ω1 − ω2| and

|ω∞(ξ1)− ω∞(ξ2)| ≥ |ω1 − ω2| − |(ω∞ − ω)(ξ1)− (ω∞ − ω)(ξ2)|
≥

(
L−1 − |ω∞ − ω|lip

)
|ξ1 − ξ2|

(8.57)

≥ (L−1 − γ−1Mεi)|ξ1 − ξ2| ≥ (2L)−1|ξ1 − ξ2| .

Therefore ω∞ is injective and |ω−1
∞ |lip ≤ 2L.

Proof of Theorem 5.3. We have ω(ξ) = a + Aξ, detA 6= 0, Ω(ξ) = b + Bξ and (B∗) implies

bi = id + lower order terms , i > n , B ∈ L(Cn, `−δ∗∞ ) , δ∗ < d− 1 . (8.58)

Since Π is compact and 0 /∈ ω(Π) there exist 0 < t− < t+ such that

ω∞(Π) ∩ ω̄R+ ⊂ [t−, t+]ω̄ .
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By remark 5.2, for εi small enough, the perturbed frequency map ω∞ is invertible. Then, for all
t ∈ [t−, t+] such that tω̄ ∈ ω∞(Π) we define

Ω̄∞(t) := Ω∞
(
ω−1
∞ (tω̄)

)
= b + BA−1(tω̄ − a) + r(t)

where r(t) is a Lipschitz map satisfying, by (5.6) and (8.58),

||r||−δ∗ α−1, ||r||lip−δ∗ ≤ cεi ≤ cγ . (8.59)

The map r(t) can be extended to a Lipschitz map on the whole R preserving the bounds (8.59) by
the Kirszbraun theorem applied componentwise. Defining

fkl(t) := tω̄ · k + Ω̄∞(t) · l = (b− BA−1a) · l + t(k + A−1Bᵀl) · ω̄ + r(t) · l (8.60)

we have to estimate the resonant set

ω∞(Π \Π∞) ∩ ω̄R+ ⊆
⋃

k∈Zn,|l|≤2,(k,l)6=0

Rkl where Rkl :=
{
t ∈ [t−, t+] : |fkl(t)| <

2α〈l〉d
1 + |k|τ

}
.

Let Λi0 := {|l| ≤ 2 : li = 0 , ∀ i > i0}. Note that Λi0 is a finite set.

Lemma 8.20. There exists β1 > 0 (small enough) and i0 (large enough) such that

α ≤ β1 , l /∈ Λi0 , |k| ≤ 〈l〉d/8t+ =⇒ Rkl = ∅ . (8.61)

Proof. We first prove that if i0 is large enough then

|(b− BA−1a + tBA−1ω̄) · l| ≥ 〈l〉d/4 , ∀ t ∈ [t−, t+] , 0 < |l| ≤ 2 , l /∈ Λi0 . (8.62)

We consider only the subtlest case l = ei − ej , i > j. Since l /∈ Λi0 , we have i > i0. By (8.58) we get
|b · l| ≥ 〈l〉d/2 for i0 large enough. If d > 1 then 〈l〉d = id − jd ≥ did−1. Then (8.62) follows for i0
large enough since, by (8.58), |(BA−1a + tBA−1ω̄) · l| ≤ Ciδ∗ and δ∗ < d− 1. If d = 1, δ∗ < 0 and it
is enough to prove that i − j ≥ Cjδ∗ for some C > 1. For all j > j0 such that Cjδ∗0 ≤ 1 the thesis
follows because i− j ≥ 1. For all j ≤ j0 the thesis follows taking i0 ≥ j0 +C. By (8.60), (8.62), (8.59),
if t+|k| ≤ 〈l〉d/8 and α ≤ β1 is small enough, then

|fkl(t)| ≥
1
4
〈l〉d − const α− t+|k| ≥

1
9
〈l〉d >

2α〈l〉d
1 + |k|τ

implying that Rkl = ∅.

Lemma 8.21. For ω̄ ∈ DKα,τ with K > 2/t− then Rk0 = ∅. Moreover for α small

|Rkl| ≤ const
α〈l〉d

1 + |k|τ
, ∀ k ∈ Zn , |l| ≤ 2 , (k, l) 6= 0 . (8.63)

Proof. Since ω̄ ∈ DKα,τ with K > 2/t− then, for t ∈ [t−, t+],

|fk0(t)| = |tω̄ · k| ≥ t−|ω̄ · k| ≥ 2α/(1 + |k|τ ) =⇒ Rk0 = ∅ .

We then discuss l 6= 0. Moreover, by Lemma 8.20, we consider only l ∈ Λi0 or |k| > 〈l〉d/8t+. By the
hypotheses (5.22) and (8.58), arguing as in Remark 2.1,

cl := (b− BA−1a) · l satisfies |cl| ≥ δ̄ > 0 , ∀ 0 < |l| ≤ 2 . (8.64)

Now set mkl := (k + A−1Bᵀl) · ω̄. If |mkl| < δ̄/(3t+), by (8.60), (8.64), (8.59), for α small enough,

|fkl(t)| ≥ |cl| −
δ̄

3
− 2cγα ≥ δ̄

2

(8.61)

≥ 2α〈l〉d
1 + |k|τ

=⇒ Rkl = ∅ .

If |mkl| ≥ δ̄/(3t+) we have |fkl(t2) − fkl(t1)| ≥ |t2 − t1|(|mkl| − 2cγ) ≥ |t2 − t1|δ̄/(4t+) for γ small
enough and (8.63) follows with const = 8t+/δ̄.
Now the proof of (5.23) proceeds as in [24] or in subsection 7.1 above (recalling Remark 7.3, now
(7.17) holds also for d = 1 since n̂ = n, D = 2). Note that (8.61) and (8.63) are the analogue of
Lemma 7.4 and Lemmata 7.7 (case d > 1), 7.10 (case d = 1) respectively.
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9 Appendix

Proof of Lemma 8.6. We take 0 ≤ t ≤ 1. For brevity we write | · | instead of | · |λ.
Step 1. The solution of the first equation in (8.8) with x0 = x+ has the form

xt = x+ + xt00(x+) where xt00(x+) =
∫ t

0

F10

(
x+ + xτ00(x+)

)
dτ .

By (8.9) and (8.1) we get |xt00|s−σ ≤ σ/2 and the estimate (8.10) for xt00 follows.
Step 2. Substituting xt in the third equation in (8.8) we get

ẇt = −iJF̃ t01 − 2iJF̃ t02w
t =: bt +Atwt where F̃ tij := Fij

(
x+ + xt00(x+)

)
. (9.65)

By (8.1) we have |F̃ tij |s−σ ≤ 2|Fij |s and so

|bt|s−σ ≤ 2|F01|s , |At|s−σ ≤ 4|F02|s
(8.9)

≤ 1/3 . (9.66)

Let M t be the solution of the homogeneous system Ṁ t = AtM t with M0 = I. We have

|M t − I|s−σ ≤
∫ t

0

|Aτ |s−σ|Mτ |s−σ dτ
(9.66)

≤ 1
3

sup
0≤t≤1

|M t|s−σ ≤
1
3

+
1
3

sup
0≤t≤1

|M t − I|s−σ

whence

|M t|s−σ ≤
3
2

and |M t − I|s−σ ≤
3
2

sup
0≤t≤1

|At|s−σ
(9.66)

≤ 6|F02|s
(8.9)

≤ 1
2
. (9.67)

Then, by Neumann series,
|(M t)−1|s−σ ≤

∑
j≥0

|M t − I|js−σ ≤ 2 . (9.68)

The solution of the non-homogeneous problem (9.65) with w0 = w+ is

wt = w+ + (M t − I)w+ +M t

∫ t

0

(Mτ )−1bτ dτ =: w+ + wt01(x+)w+ + wt00(x+) . (9.69)

The estimates (8.10) on wt00 and wt01 follow by (9.69), (9.67), (9.68), (9.66).
Step 3. Finally, substituting xt and wt in the second equation (8.8), we get

ẏt = −F̂ t00 − F̂ t01w
t − F̂ t02w

t · wt − F̂ t10y
t =: b̂t + Âtyt (9.70)

where F̂ tij := F ′ij
(
x+ + xt00(x+)

)
, Ât = −F̂ t10, and, using (9.69),

b̂t = −
(
F̂ t00 + F̂ t01w

t
00 + F̂ t02w

t
00 · wt00

)
−
(
F̂ t01(I + wt01) + 2(wt00)ᵀF̂ t02(I + wt01)

)
w+

−
(

(I + wt01)ᵀF̂ t02(I + wt01)
)
w+ · w+ . (9.71)

Since |xt00|s−σ ≤ σ/2, by Cauchy estimates and (8.1) we get

|F̂ tij |s−σ ≤ 2|F ′ij |s−σ2 ≤
4
σ
|Fij |s =⇒ |Ât|s−σ ≤

4
σ
|F10|s

(8.9)

≤ 1
3
. (9.72)

Let M̂ t be the solution of ˙̂
M t = AtM̂ t with M̂0 = I. Reasoning as in Step 2 we get

|M̂ t|s−σ ≤
3
2
, |M̂ t − I|s−σ ≤

3
2
|Ât|s−σ ≤

6
σ
|F10|s

(8.9)

≤ 1
2

and |(M̂ t)−1|s−σ ≤ 2 . (9.73)
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The solution of the non-homogeneous system (9.70) with y0 = y+ is

yt = y+ + (M̂ t − I)y+ + M̂ t

∫ t

0

(M̂τ )−1b̂τ dτ

= y+ + yt00(x+) + yt01(x+)w+ + yt10(x+)y+ + yt02(x+)w+ · w+

where, by (9.71),

yt00 = −M̂ t

∫ t

0

(M̂τ )−1
(
F̂ τ00 + F̂ τ01w

τ
00 + F̂ τ02w

τ
00 · wτ00

)
dτ

yt01 = −M̂ t

∫ t

0

(M̂τ )−1
(
F̂ τ01(I + wτ01) + 2(wτ00)ᵀF̂ τ02(I + wτ01)

)
dτ

yt10 = M̂ t − I

yt02 = −M̂ t

∫ t

0

(M̂τ )−1
(

(I + wτ01)ᵀF̂ τ02(I + wτ01)
)
dτ .

The estimates (8.10) on ytij follow by (9.73), (9.72) and the previous estimates for w00, w01.

We finally prove that Xt
F : D(s− σ, r − δr)→ D(s, r). If (x+, y+, w+) ∈ D(s− σ, r − δr) then

|Imxt(x+)| = |Imx+ + Imxt00(x+)| ≤ s− σ + |xt00|s−σ
(8.10)

≤ s− σ + 2|F10|s
(8.9)
< s .

The estimates |yt(x+, y+, w+)| < r2, ‖wt(x+, w+)‖a,p < r, follow as well by (8.10), (8.11).

Proof of Lemma 8.16. Let γ0 := γ̃3
0e
−χ4

where

γ̃0 :=
1
8

inf
j≥0

{
κ−j−1e(χ−1)χj+1

, κ−j−1e(2−χ)χj , κ−j−1e(χ4+1−χ5)χj , κ−j−1e(2−χ3)χj+2
}
.

Note that γ̃0 ≥ κ−c̃ ln(lnκ) for some c̃ = c̃(χ) ≥ 1, since inf
j≥1

κ−jeαχ
j

≥ κ−c̄ ln(lnκ) for some c̄ = c̄(χ, α) ≥

1, (recall κ > ee). By the choice of χ we have 0 < γ̃0 < 1.
We claim that

aj ≤ ε0e
χ4−χj+4

, bj ≤ γ̃−1
0 ε0e

χ4−χj+2
, cj , dj ≤ γ̃−2

0 ε0e
χ4−χj , ∀ 0 ≤ j ≤ ν . (9.74)

Note that (8.37) follows by (9.74) since γ̃−2
0 eχ

4
≤ γ−1

0 . We prove (9.74) by induction over j. The case
j = 0 follows by a0, b0, c0, d0 ≤ γ0. Then we prove that (9.74) holds for j + 1. We have

aj+1 ≤ κj+1(ajcj + b2j + a2
j +Kn

∗ e
−K∗2jaj)

≤ e2χ4
ε2

0κ
j+1(γ̃−2

0 e−χ
j+4−χj + γ̃−2

0 e−2χj+2
+ e−2χj+4

) + ε0κ
j+1Kn

∗ e
χ4−χj+4−K∗2j

≤ ε0e
χ4−χj+5

since, ∀ j ≥ 0,

ε0γ̃
−2
0 eχ

4
≤ γ̃0 ≤

1
8
κ−j−1e(χ4+1−χ5)χj , ε0γ̃

−2
0 eχ

4
≤ γ̃0 ≤

1
8
κ−j−1e(2−χ3)χj+2

,

ε0e
χ4
≤ γ̃0 ≤

1
8
κ−j−1e(2−χ)χj+4

, κj+1Kn
∗ e

1+χj+5−χj+4−K∗2j ≤ 1 .

The first three estimates directly follow by the definition of γ̃0. The last one holds since, by

K∗ ≥ 26 + 6 lnκ+ 16n2 , 1 + χj+5 − χj+4 −K∗2j ≤ χj+5 −K∗2j ≤ −K∗2j−1
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and6 (j + 1) lnκ+ n lnK∗ −K∗2j−1 ≤ 0. We have

bj+1 ≤ κj+1(aj + b2j + bj(cj + dj) +Kn
∗ e
−K∗2j bj)

≤ eχ
4
ε0κ

j+1(e−χ
j+4

+ γ̃−2
0 ε0e

χ4−2χj+2
+ 2γ̃−3

0 ε0e
χ4−χj+2−χj ) + γ̃−1

0 ε0κ
j+1Kn

∗ e
χ4−χj+2−K∗2j

≤ γ̃−1
0 ε0e

χ4−χj+3

since, ∀ j ≥ 0, κj+1Kn
∗ e

1+χj+3−χj+2−K∗2j ≤ 1 and

γ̃0 ≤
1
8
κ−j−1e(χ−1)χj+3

, γ̃−1
0 eχ

4
ε0 ≤ γ̃0 ≤

1
8
κ−j−1e(2−χ)χj+2

,

γ̃−2
0 eχ

4
ε0 ≤ γ̃0 ≤

1
8
κ−j−1e(χ2+1−χ3)χj .

reasoning as above (note that χ2 + 1 > χ3). Finally

cj+1 ≤ κj+1(aj + bj + c2j +Kn
∗ e
−K∗2jcj)

≤ eχ
4
ε0κ

j+1(e−χ
j+4

+ γ̃−1
0 e−χ

j+2
+ γ̃−4

0 eχ
4
ε0e
−2χj ) + γ̃−2

0 ε0κ
j+1Kn

∗ e
χ4−χj−K∗2j

≤ γ̃−2
0 ε0e

χ4−χj+1

since, ∀ j ≥ 0, κj+1Kn
∗ e

1+χj+1−χj−K∗2j ≤ 1, and

γ̃2
0 ≤ γ̃0 ≤

1
8
κ−j−1e(χ3−1)χj+1

, γ̃0 ≤
1
8
κ−j−1e(χ−1)χj+1

, γ̃−2
0 eχ

4
ε0 ≤ γ̃0 ≤

1
8
κ−j−1e(2−χ)χj .

The estimate dj+1 ≤ γ̃−2
0 ε0e

χ4−χj+1
follows as well.
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