ON THE STRUCTURE OF THE ESSENTIAL SPECTRUM
OF ELLIPTIC OPERATORS ON METRIC SPACES

VLADIMIR GEORGESCU

ABSTRACT. We give a description of the essential spectrum of a larggsabf operators on metric measure
spaces in terms of their localizations at infinity. These afmes are analogues of the elliptic operators on
Euclidean spaces and our main result concerns the ideals&waf theC* -algebra generated by them.

1. INTRODUCTION

The question we consider in this paper is whether the eséepgctrum of an operator can be described in
terms of its “localizations at infinity”. Later on we shallbgia general and precise mathematical meaning
to this notion, but for the moment let’s stick to the naiveeipretation of localizations at infinity of an
operatorH as “asymptotic operators” obtained as limits of translatesfinity of H. However, we stress
that translations have no meaning for the class of spacesgesest here and very soon we shall abandon
this interpretation.

We begin with the simplest situation wheéf = R<. Note that we are interested only in operatéfs
which are self-adjoint (quantum Hamiltonians). DenBtethe unitary operator of translation lye X

in L?(X), so that(U, f)(z) = f(z + a), and say thafi,, is an asymptotic Hamiltonian of if there

is a sequence,, € X with |a,| — oo such that/,, HU; converges in strong resolvent sensety.
ThenSp.ss(H) = U,.Sp(H,,) holds for very large classes of Sékinger operators. We refer to the paper
[HM] of Helffer and Mohamed as one of the first dealing withstiuestion in a general setting and to that
of Last and Simon [LaS] for the most recent results obtaineslimilar techniques (geometric methods)
and for a complete list of references. On the other handntipeiitance of asymptotic operators (or “limit
operators”, as they call them) has been emphasized in & sdrgapers in the nineties by Rabinovich,
Roch, and Silbermann and summarized in their book [RRS]y @he especially concerned with the case
X = 7% and they do not use geometric methods, but their resultseapjlied to the case of differential
operators orL?(R?) with the help of a discretization method.

Results of this nature have also been obtained in [GI1, GJ3& luite different method where the de-
scription of localizations at infinity in terms of asymptotiperators is not so natural and rather looks like
an accident. To explain this point, we recall one result. X die an abelian locally compact non-compact
group, defind/, as above, and for any characteof X let V}, be the operator of multiplication by on
L*(X). Let& = &(X) be the set of bounded operat@fon L?(X) such that|V; TV, — T'|| — 0 and
(U, — 1)T™| — 0 whenk — 1 anda — 0. A self-adjoint operatoi] satisfying(H —i)~! € &

is said to be affiliated t@’; it is easy to see that this class of operators is very largg s l= §(X) be
the set of ultrafilters orX finer than the Fredit filter. If H is affiliated to& then for eachr € § the
limit lim, ., U, HU} = H,, exists in the strong resolvent sense and we Bave (H) = U,.csSp(H,.).
Thus the essential spectrum of an operator affiliatefl v determined by its asymptotic operators.

The proof goes as follows. The spa€as in fact aC*-algebra canonically associatedXg namely the
crossed product of the algebra of bounded uniformly costisufunctions orX by the natural action of
X. Moreover, the spacg” = .# (X ) of compact operators ab?(X) is an ideal ofs’. Note that by ideal
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in aC*-algebra we mean “closed bilateral ideal” and we call maphé+«-homomorphism between two
x-algebras. It is easy to see that for eack ¢ and eacll” € & the strong limitr,, := lim,_,,. U,TU}
exists and that the so defined is an endomorphism aof’ so its kerneker 7,, is an ideal of& which
clearly contains’?”. The main fact is,.cs ker 7,, = 2# and the proof is not so easy. But from here
we immediately deduce the preceding formula for the esslespiectrum of the operators affiliated to
&. Indeed, it suffices to recall that the essential spectrusnodperator in & *-algebra like&” which
contains¥” is equal to the spectrum of the image of the operator in théieptealgebras’ /7 .

We shall call®(X) theelliptic C*-algebra of the groupX. It is probably not clear that this has something
to do with the elliptic operators so we justify now the terplogy. TheC*-algebra generated by a set of
self-adjoint operators on a given Hilbert space is by définithe smalles€*-algebra which contains the
resolvents of these operators. Lét= R and letP be a real elliptic polynomial of order. on X. Then
&(X) is theC*-algebra generated by the self-adjoint operators of tha 8(i V) + .S whereS runs over
the set of symmetric differential operators of ordern whose coefficients ar€*° functions which are
bounded together with all their derivatives.

We stress that althoughi(X) is generated by a small class of elliptic differential opers, the class
of self-adjoint operators affiliated to it is quite large arwhtains many singular perturbations of the
usual elliptic operators. This is obvious from the des@ipbf £ (X) we gave before and many explicit
examples may be found in [DG1, GI3].

The main object of this paper, tlig"-algebrag’ (X)) defined in (2.4), plays the same role as the preceding
algebra for the case of a general class of metric spaces (fiwshvthe notion of differential operator is
not defined). In Section 6 we show thatXfis a unimodular amenable group th&€X) is the crossed
product of the algebra of bounded uniformly continuous fioms onX by the left action ofX. Thus we
may recover as a corollary of Theorem 2.1, our main resudtrésults of [GI1, GI3] for locally compact
abelian groups and those due to Roe [Ro2] in the case of jigtzierated discrete (non-abelian) groups
(see also [RRR]). We mention that amenability is not neags$ave work with the reduced crossed
product, an analogue of Yu's Property A is sufficient.

At an abstract level, the main point of the approach sketetee is to shift attention from one ope-
rator to an algebra of operators. Instead of studying thengiss spectrum (or other qualitative spectral
properties, like the Mourre estimate) of a self-adjointrapars H on a Hilbert spacé{, we consider a
C*-algebra#s’ of operators ori{ which contains’?” = K (H) and such thalf is affiliated to it and try to
find an “efficient” description of the quotieidt*-algebras’/.# . For this, we look for a family of ideals
7. of &suchthal),, ¢, = % because then we have a natural embedding

E|H —ST1,8] 7 (1.1)
and we think of this as an efficient representatios’gt’” if the family {_7..} is rather small and, in
our concrete situation, the idealg,. have a geometrically simple interpretation. This is in apdmant
point and we get back to it later on. For the moment note that@presentation like (1.1) has important
consequences in the spectral theory of the oper&ioes &, for example ifT" is normal andr, is the
projection ofT" in &/ _Z,. then its essential spectrum is given by

Spess(T) = U,,Sp(Ts.). (1.2)
We make some more comments on the role of ideals in the spaastysis of the operators € &.
Consider an arbitrary idealy C & and denotel’/ ¢ the image ofI" in the quotient algebr&’/ 7.
ClearlySp(T'/_#) C Sp(T) and if _# contains the compacts th&m(7"/ #) C Spess(T). Itis natural
in our framework to call’/ ¢ localization ofT" at _# (this is justified in the abelian case in Section 4.4).

We refer to [ABG, BG1, BG2, DG2, Geo] for a general discussioncerning the operation of localiza-
tion with respect to an ideal and for applications in the sa¢theory of many-body systems and quantum
field theory but we shall mention here an example which cifive hope) our point of view. Léf be
the Hamiltonian of a system @¥ non-relativistic particles interacting through two-baalytentials and
let V};, be the potential linking particlesandk. For each partitiorr of the system of particles letl,
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be the Hamiltonian obtained by replacing g such thatj, k£ belong to different clusters af by zero.
Then the HVZ theorem says th@ip..s(H) = |J,Sp(H,) where the one-cluster partition is not included
in the union. In fact, this is an immediate consequence optheeding algebraic formalism: thé-body
C*-algebra is easy to describe aHg is the localization off at a certain ideal which is easy to describe.
The point is that we do not have to take some limit at infinitgébdH ,, although this could be done (this
would mean that we use “geometric methods”).

Now let’s get back to our problem. Assuming we have choserf¢beect” algebrag’(X), we must
find the relevant ideals. In the abelian group case, thisdy, dsecause there is a natural class of ideals
associated to translation invariant filters finer than threxFat filter [GI1]. In trying to find the analog of
such filters for arbitrary metric spaces one easily finds &sijpn 6.6 and see that what we call coarse
filters are good candidates. This explains our definitioB)(&here we introduce the idealg, which
play the main role in our constructions. Note that they atfindd by the behavior of the operators at
certain regions at infinity.

One should note that this strategy denotes a certain biagdaive role played by the behavior at infinity

in X (thought as physical or configuration space): we think thiaé$ a dominant role since we hope that
our choices of ideals is sufficient to describe the quoti#&nt?”. There is no a priori reason for this to

be true: there are physically natural situations in whidckald defined in terms of behavior at infinity in

momentum or phase space must be taken into account [Gl1].etAwit does not seem so clear to us
how to defined such physically meaningful objects in the gmesontext.

Now comes a crucial point: for a general metric space thesmgtrically defined ideals do not suffice to
compute’(X), i.e.we do not hav§), ;6. (X) = 2 (X) with a notation introduced in (5.28). After
several unsuccessful attempts to prove equality here tlantilly learned that this is not true, in fact an
ideal strictly larger than the compacts appears naturalthe algebras’(X), the so-calledjhost ideal
The counter-example is due to Higson, Laforgue and SkanfidliS] and is important in the context
of the Baum-Connes conjecture. And this happens in the sshphse of discrete metric spaces with
bounded geometry (the number of points in a ball of radiissbounded independently of the center of
the ball) when£(X) is theuniform Roe algebraThe ideal structure of the uniform Roe algebra [Ro1]
is studied in detail in a series of papers by Chen and Wang [@W12, Wa] and we adapted to our case
their idea of kernel truncation with the help of positive éyfoinctions in cas&’ has Yu's Property A.

Our interest in the case of general metric spaces was roysaddrent paper of E. B. Davies [Dav] in
which aC*-algebre&’(X) (much) larger tha# (X)) is introduced and studied, cf. our Remark 3.3. Davies
points out a class of ideals &f(X) and describes their role in understanding the essentiatrsipe of
the operators affiliated to it. In Section 4.2 we present theréi which are implicitly used in [Dav] and
in Section 6.4 we give a simple characterization of the atgel{ X) in the case of abelian groups.

We refer to [GI2] for a detailed discussion and historicainoeents in relation with our approach but
emphasize the previous work of J. Bellissard, who was onteedfitst to stress the necessity of considering
C*-algebras generated by Hamiltonians in the context of sstide physics [Bel, Be2], and that of
H. O. Cordes [Cor] who, already in the seventies, studiéehlgebras of pseudo-differential operators on
manifolds and computed their quotient with respect to thapacts in various situations.

2. MAIN RESULTS

A metric spaceX = (X, d) is properif each closed balB, (r) = {y | d(z,y) < r} is acompact set. This
implies the local compactness of the topological sp&ckut is much more because local compactness
means only that the small balls are compact. In particulax; is not compact, then the metric cannot
be bounded. We are interested in proper non-compact metces equipped with Radon measutes
with support equal to¥, sou(B,(r)) > 0 for all z € X and allr > 0, and which satisfy (at least) the
following condition

V(r) := sup u(By(r)) < oo forall realr > 0. (2.3)
reX
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To simplify the notations we setdz) = dz, L?(X) = L*(X, u), andB, = B,(1). We denote(X)
the C*-algebra of all bounded operators 6A(X) and.# (X)) the ideal of#(X) consisting of compact
operators. Fod C X we denotel 4 its characteristic function and i is measurable then we use the
same notation for the operator of multiplication by in L?(X).

SinceX is locally compact the spac€s(X ) andC.(X) of continuous functions o’ which tend to zero
at infinity or have compact support respectively are wellrdefi We use the slightly unusual notation
C(X) for the set ofbounded uniformly continuousinctions onX equipped with the sup norm. Then
C(X)is aC*-algebra and,(X) is an ideal in it. We embed(X) C #(X) by identifyingy € C with
the operatorp(Q) of multiplication by (this is an embedding because the suppoyt & equal toX).
We shall however use the notatigni@) if we think that this is necessary for the clarity of the text.

Functionsk : X2 — C on the product spack? = X x X are also called kernels o%i. We say that is a
controlled kernelf there is a real numbersuch thati(x, y) > r = k(z,y) = 0. With the terminology of
[HPR], a kernel is controlled if it is supported by an entgeaf the bounded coarse structureXdmom-
ing from the metric. We denot@,;(X?) the set obounded uniformly continuous controlled kernaigl
to eachk € Ci,1(X?) we associate an operatop(k) on L?(X) by (Op(k) f)(x) = [y k(z,y)f(x)dz.
It is easy to check (see Section 3) that the set of such opsiiatax-subalgebra of8(X). Hence

&(X) = &(X,d, ) = norm closure of Op(k) | k € Cin(X?)} (2.4)
is aC*-algebra of operators ob?(X ). We shall say that’(X) is theelliptic algebraof X.

There is a natural (X )-bimodule structure o’ (X) because(X)&(X) = &(X)C(X) = &(X)
and it is easy to check tha¥ (X) = C,(X)&(X) = &(X)Co(X) C &(X). For reasons explained
above we are interested in giving a “geometrically meaniligépresentation of the quotiett*-algebra
&(X) /2 (X). For this purpose we introduce the class of “coarse ideastxbed below.

If F ¢ X andr > 0 is real we denoté(") the set of points: which belong to the interior of and are

at distance larger thanfrom the boundary, more preciselyf ¢ d(x,y) > r. Afilter £ of subsets ofX

will be calledcoarseif F' € ¢ = F() ¢ ¢ for all . Note that the set of complements of a coarse filter
is a coarse ideal of subsets &fin the sens of [HPR]. There is a trivial coarse filter, namtebs { X},
which is of no interest for us. THeréchet filter by which we mean the set of sets with relatively compact
complement, is clearly coarse, we denotsit All the other coarse filters are finer that.

To each coarse filtef on X we associate an ideal &f(X') by defining
SeX)={T € &X) | inf [1rT] =0} ={T € &(X) | Inf || T1r[| = 0} (2.5)

where theinf is taken only over measurahlé € . We shall see that the sét(X) of ¢ € C(X) such
thatlime ¢ = Ois anideal oC(X) and_7,.(X) = Z,.(X) & (X) = &(X)L..(X).

Let 8(X) be the set of all ultrafilters oX (this is the Stone-&ch compactification of thdiscretespace
X) and letd (X)) be the set of ultrafilters finer than thegehet filter. For eack € 5(X) we denote:o()
the maximal coarse filter containedinand we seC(,.)(X) = Zeo(:)(X) andé(,o (X) = Feo()(X).
These are ideals ifi(X) and& (X)) respectively and we have

&) (X) = Co) (X)E(X) = E(X)C () (X). (2.6)
Then to each ultrafiltesr € 6(X') we associate the quotie@t-algebra

and call itlocalization of&(X) at » We denotex.T the image ofl' € &(X) through the canonical
morphismé&(X) — &,.(X) and we say thak.T is thelocalization ofT" at s.

We may now state our main result. Note that condition (ii) ¥@esion ofProperty Aof Guoliang Yu.

Theorem 2.1. Let (X, d) be a proper non-compact metric space and Borel measure oX such that

(i) u(Bz(r)) > 0andsup, u(B(r)) < oo if r > 0; moreoverinf, u(B,(1/2)) > 0;
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(i) for eache,r > 0 there is a Borel map : X — L2(X) with ||¢(z)|| = 1, suppp(z) C B.(s)
for some numbes independent of, and such thali¢(z) — ¢(y)|| < e if d(z,y) < r.

Then, c5.x)6() (X) = 2 (X). Equivalently, we have a canonical embedding

X)) (X)) [ & (2.8)
»#€8(X)

In particular, the essential spectrum of any normal operdfoe &(X) is equal to the closure of the
union of the spectra of its localizations at infinity:

SPess (1) = Usees(x)Sp(3 7). (2.9)

The choice ofi/2 in (i) is, of course, rather arbitrary, and an assumptiothefforminf,, (B,(r)) > 0
for all » > 0 would be more natural. Note that a large part of the theorybeadeveloped assuming only
the first part of condition (i), so each time we use the secamtlgs (i) or (ii) we shall say it explicitly.

Several versions of Yu's Property A appear in the literafisee [Tu] for the discrete case), we have
chosen that which was easier to state and use in our contexer bn we shall state and use a more
abstract version which can easily be reformulated in terhpositive type functions ok 2.

In view of applications to self-adjoint operators affilidt® &(X), we recall [ABG] that arobservable
affiliated to aC*-algebra.<Z is a morphismH : C,(R) — /. We setp(H) := H(p). f P: o/ — £

is a morphism between two™*-algebras therp — P(p(H)) is an observable affiliated t&# denoted
P(H). SOP(p(H)) = ¢(P(H)). If o and % are realized on Hilbert spacés,, H;, then any self-
adjoint operatoff onH,, affiliated to.«Z defines an observable affiliated4d, but the observabl®(H)

is not necessarily associated to a self-adjoint operatdripbecause the natural operator associated to
it could be non-densely defined (in our context, it often hasain equal to{0}). The spectrum and
essential spectrum of an observable are defined in an obwiay$ABG].

Now clearly, if H is an observable affiliated t6(X) thens. H defined byp(s«.H) = ».p(H) is an
observable affiliated t&,.(X). This is thelocalization of H at s and we have

Spcss(H) = U%eé(X)Sp(%H) (210)

We shall not give in this paper affiliation criteria specificthe algebras’(X) but the results of Section
6 and the examples form [GI3] should convince the readertteatlass of operators affiliated &(X)

is very large. On the other hand,f is a positive self-adjoint operator such that? ¢ &(X) thenH

is affiliated to&’(X). Or this is condition is certainly satisfied by the Laplacemtor associated to a
large class of Riemannian manifolds due to known estimatélseheat kernel of the manifold. We thank
Thierry Coulhon for an e-mail exchange on this question.

3. THE ELLIPTIC C*-ALGEBRA

In this sectionX = (X, d, u) is a metric spacéX, d) equipped with a measuyeand such that:

e (X,d)is alocally compact not compact metric space and each clusleis a compact set,
e 1 is a Radon measure oXi with support equal toX andsup,, (B, (r)) = V(r) < oo Vr > 0.

The other assumptions of Theorem 2.1 are not used for the mtortfig: is a controlled kernel then the
least number with the propertyd(z,y) > r = k(x,y) = 0 is denotedi(k). We recall that
Con(X?) = {k: X? — C| k is a bounded uniformly continuous controlled kefnel (3.11)

If k € Cir1(X?) thenOp(k) is the operator oi.?(X ) given by(Op(k) f)(z) = [ k(x,y) f(2)dz. From

0p(b)E < sup [ 1(a.)idy-sup [ [v(e.y)ldr. (312
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which is the Schur estimate, we get

10p(k)|| < V(d(k)) sup [k|. (3.13)
If k,1 € Cin(X?) then we denoté*(z,y) = k(y,x) and (k x )(z,y) = [k(x,2)l(z,y)dz. Clearly
Op( )* = Op(k*) andOp(k)Op(l) = Op(k % 1). The following S|mple factis useful

Lemma 3.1. If k,1 € Ci(X?) thenk x| € Ci1(X?), we havel(k x 1) < d(k) + d(l), and
sup |k x I| < sup |k| - sup |I| - min{V (d(k)), V (d(l))}.

Proof: If we sets = d(k) andt = d(I) then clearly

(k1) (z, )| < sup [k| - sup|[l] - 1 (Bz(s) N By(t))
which gives both estimates from the statement of the lemmardve the uniform continuity we use

[(kx1)(z,y) — (kx1)(2',y)] <bup|k(x 2) (2, 2 |/|l z,y)|dz
< blzlp|k(l’72) —k(a',2)| -sup |l - V(1)

and a similar inequality fol(k x 1) (x, y) — (kx1)(z,9")]. U

ThusC:1(X?), when equipped with the usual linear structure and the tipesk* andk x [, becomes a
x-algebra and: — Op(k) is a morphism inta(X ) hence its range is &subalgebra of4(X). Hence
the elliptic algebras’(X) defined in (2.4) is @'*-algebra of operators ab?(X).

The uniform continuity assumption involved in the definiti(8.11) ofCy,1(X) hence in that of(X)
is important because thanks to it we haeX) = C(X) x, X if X is a unimodular locally compact
group, cf. Section 6. Heré(X) is the C*-algebra of left uniformly continuous functions o¥i on
which X acts by left translations and, denotes the reduced crossed product. In particular, thaligqu
C(X) x, X = &(X) gives a description of the crossed product independeneajitbup structure ok .
The following example shows the role played by the uniformtowity condition.

Remark 3.2. From the results of Section 6 we see thakif= R one can describe the elliptic algebra
in very simple terms. Lel/,, V,, be the unitary operators ib*(R) given by (U, f)(z) = f(x — a) and
(Vuf)(z) = ¢*® f(x). Then&(R) is the set of operatofE € %(R) such that|(U, — 1)T™)| — 0 and
|VaTV; —T|| — 0 asa — 0. HereT™) means that the relation holds férand7*. We clearly may
takek(x,y) = o(z)0(x — y) with ¢ € C(R) andd € C.(R) and thenOp(k) = »(Q)y(P) € &(R)
with ¢ the Fourier transform (conveniently normalizedpofThe advantage now is that we can see what
happens ifp is only bounded and continuous. Then it is easy to checkgh@)y (P) € &(R) if and
only if ||(p(Q + a) — ¢(Q))(P)|| — 0 whena — 0. For example, ifp(z) = €' the last condition is
equivalent t|(e'*? — 1)(P)|| — 0, which is equivalent ta)(P) = n(Q)S for somen € C,(R) and

S € #(R). Butthemy(P) is compact as a norm limit of operators of the faf(d) ) (P) with ¢ € C,(R),
which is not true ifyy # 0. Thus,the operator associated to a kernel of the fakfn, y) = e“”QH(x —y)
with 6 € C°(R) and not zero does not belong&qR).

Remark 3.3. We recall that' € #(X) is acontrolled operatorfRo1] if there isr > 0 such that if
F, G are closed subsets &f with d(F,G) > r thenlpT1s = 0. The class of controlled operators
has also been isolated in [Dav] and in [GG2] (under the nammétéfrange operators”). Observe that
the Op(k) with k € Cy1(X?) are controlled operators but X is not discrete then there are many
others and most of them do not belong&6X) (cf. Remark 3.2). Then the norm closure of the set of
controlled operators is th€*-algebra®’(X) of pseudo-locabperators, which clearly contairs(X).

If X is a proper metric space this is the “standard algebra” fidav]. If X is a discrete metric space
with bounded geometry the#i(X) = &(X) is the "uniform RoeC*-algebra” from [CW1, CW2, Wa].
Anticipating on some of our later results, note that is a coarse filter onX then the set of’ € ¢ (X)
such thatinf pc¢ || 17| = 0 is an ideal of¢’(X) (see the proof of Lemma 5.1). ButX is not discrete
this class of ideals is too small to allow one to describe thatignt#’ (X )/.# (X) even in the simplest
cases (see Proposition 6.14).
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Since the kernel op(Q)Op(k) is p(z)k(x,y) and that ofOp(k)¢(Q) is k(z, y)¢(y), we clearly have
C(X)&(X) =&(X)(X) =8&(X).

This defines & (X )-bimodule structure o#’(X). We note that, as a consequence of the Cohen-Hewitt
theorem,|if A is a C*-subalgebra of(X) then the setA€(X) consisting of productslT of elements
A e AandT € &(X) is equal to the closed linear subspacefdfX ) generated by these products.

Proposition 3.4. We have’? (X) = C,(X)&(X) = §(X)Co(X) C &(X).

Proof: If ¢ € C. andk € Cyy, then the operatopOp(k) has kernelp(x)k(x, y) which is a continuous
function with compact support o2, hencepOp(k) is a Hilbert-Schmidt operator. Thus we have
Co(X)E(X) C 2 (X) and by taking adjoints we also gét(X)C,(X) C £ (X). Conversely, an
operator with kernel il (X ?) clearly belongs t@. (X)&(X) for example. [l

&(X) is a non-degeneratg (X )-bimodule and there is a natural topology associated to astiucture,
we call it the local topology o# (X). Its utility will be clear from Section 6.

Definition 3.5. Thelocal topologyon &(X) is the topology associated to the family of seminorms
1T]le = 1TO(Q)]| + 10(Q)T|| with 6 € Co(X).

This is the analog of the topology of local uniform convergeonC(X). Obviously one may replace
the § with 1, whereA runs over the set of compact subsetsXof If T € &(X) and{T,} is a net of
operators in5’(X) we writeT,, — T orlim, T,, = T locally if the convergence takes place in the local
topology. SinceX is o-compact there i8 € C,(X) with 8(x) > 0forall z € X and then| - ||¢ is a norm
on & (X) which induces on bounded subsets4fX ) the local topology.

The local topology is finer than thestrong operator topology inherited from the embeddiiid() C
Z(X). We may also consider ofi( X) the (intrinsically defined) strict topology associatedhe small-
est essential ideal? (X); this is weaker than the local topology and finer than tkstrong operator
topology, but coincides with the last one on bounded sets.

Lemma 3.6. The involutionT — T* is locally continuous oré’(X). The multiplication is locally
continuous on bounded sets.

Proof: Since||T™*||y = ||T||5 the first assertion is clear. Now assufie— S locally and||S,|| < C' and
T, — T locally. If 8 € C, thenTd is a compact operator so thereflise C, such thatl'd = ¢'K for
some compact operatdf. Then we write(S, T, — ST)0 = Sy (To, — T)0 + (So. — S)0' K. O

Clearly . is the smallest ideal of’ but there is a second ideal which appears quite naturallien t
theory. This is thghost idealdefined as follows:
G(X)={Te&X)| lim |1, »T||=0Vr} ={T € &X) | lim ||T1p, || =0Vr}. (3.14)

The fact that/ is an ideal of£” follows from the equality stated above which in turn is prdbees follows:
for eachs > 0 there is a controlled kernélsuch that|T' — Op(k)| < ¢ hence ifR = r + d(k) we have

1715, <&+ 10p(k)1p, =€+ 15,(r)Op(k)lp, (| <2+ 15, T
which is less thase for largez.
Itis known that# (X) C ¢(X) strictly in general [HLS, p. 349] and the role of the Property A is elyact
to exclude this possibility. We refer to [CW1, CW2, Wa] for aalktd study of this question in the case

of discrete spaces with bounded geometry and in the restiook#ttion we consider it in the present
framework.

Lemma 3.7. If inf, u(B,(1/2)) > 0 then there is a subséf C X and for each realr > 1 there is
a numberN(r) € N such thatX = U,czB.(r) and for anyz € X the number ot € Z such that
B,(r) N B,(r) # 0 is at mostN (r).
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Proof: Let Z be a maximal subset of such thati(a,b) > 1 if a,b are distinct points irZ. Then we
have X = U,cz B, (the contrary would contradict the maximality &f). Now fixr > 1, letx € X,
denoteZ, the set ofz € Z such thatB,(r) N B, (r) # 0, and letN, be the number of elements &F,.
Choose: € Z such thate € B,. ThenB,(r) C B,(r+1) henceifz € Z, thenB,(r) N By(r+1) # 0
sod(z,a) < 2r + 1. Since the ball$3,(1/2) corresponding to theseare pairwise disjoint and included
in B, (2r +2), the volume of their union is larger thatV,,, wherev = inf, ¢ x 11(B,(1/2)), and smaller

thanV (2r + 2), henceN, < V(2r + 2)/v. Thus we may takév(r) = V(2r + 2)/v. [l
Lemma 3.8. Assume thainf,. (B, (1/2)) > 0. Then forT € £(X) we have
Te¥%(X)e lim |[15,T]| =0« lim ||[T1p,] =0. (3.15)

Proof: LetT € ¢(X) with [[15,T|| — 0 asxz — oo and letr > 1; we prove thaf|1, T'|| — 0
if x — co. Lete > 0 and, with the notations of Lemma 3.7, |Btbe a finite subset of such that
15, T < e/N(r)if z € Z\F. We consider points such thati(z, F') > r+1 and denot& (z, r) the set
of z € Z suchthatB, N B, (r) # 0. ThenZ(z,r) has at mostV (r) elements an®,(r) C U.cz(q,r) B-
hencel|lp, () T|| < N(r)max.cz, |18, 1| < € becausé” N Z(x,r) = 0. O

An operatorl’ € #(X) is calledlocally compac{Ro1] if for any compact sek the operators 7" and
T1k are compact. Clearlginy operator in£(X) is locally compact

Lemma 3.9. If T € #(X) is a controlled locally compact operator arid 5, T'|| — 0 asz — oo, then
T is compact.

Proof: Assume thafl” € #(X) is locally compact and has the propettyT'l¢ = 0if F,G C X satisfy
d(F,G) > r for some fixedr. To prove the compactness Bfit suffices to show thaf1zT'|| — 0 as
R — oo, wherelp, is the characteristic function of the set of pointsuch thati(x,0) > R for some
fixedo € X. We seflz| = d(z, 0) and below denote by points inZ. Then

NraTflI? < Y IB.TAP = Y e Tlp i/l < S 5. TH2ZH1B 1y fII?
|2I>R |2[>R

and the last sum is: C(r)?(| f[|> by Lemma 3.7. Thu§lz 1 T|| < C(r) sup, s g 1.7 O

Our next purpose is to show that under the conditions of Téred2.1 we have? (X) = 4(X). For
this we use an idea from [CW1] (truncation of kernels with tkeéphof functions of positive type) and the
technique of the proof of Theorem 5.1 from [Pi].

Let H be an arbitrary separable Hilbert space (in Theorem 2.1 kesta= L?(X)) and letp : X — H
be a Borel function such thdty(x)|| = 1 for all z. DefineM,; : L*(X) — L*(X;H) = L?*(X) @ H by
(Mg f)(x) = f(z)¢(x). ThenM, is alinear operator withM || = 1 and its adjointM; : L*(X; H) —
L?(X) acts as follows{ M F)(z) = (¢(x)|F(x)). LetT — T, be the linear continuous map o#(X)
given byTy = M (T ® 1) My. Clearly || Ty|| < ||T|.

Lletk : X2 — Cbea Iocally integrable function. We say that an operdioe #(X) has inte-
gral kernelk if (f|Tg) = [y k( (x)g(x)dzdy for all f,g € C.(X). If kis a Schur kernel, i.e.
sup, [y ([k(z, y)| + |k(y, z)|)dy < 00, then we say thdl’ is a Schur operator and we have the estimate
(3.12) for its norm. AndI" is a Hilbert-Schmidt operator if and only if € L?(X?). From the relation
(fITwg) = (fo|T ® 1g¢) valid for f, g € C.(X) we easily get:

Lemma 3.10. If T has kernek thenT,, has kernek,(z,y) = (¢(x)|¢(y))k(z,y). In particular, if T is
a Schur or Hilbert-Schmidt operator théry is a Schur or Hilbert-Schmidt operator respectively. And if
T is compact therl, is compact too.

This follows easily from the relatio)f |T,g) = (f¢|(T ® 1)g¢) valid for f, g € C.(X).

Lemma 3.11. Assume tha{é(x)|¢(y)) = 0if d(z,y) > r. Then for eacll” € #(X) the operatorTy, is
controlled, more precisely: i, G are closed subsets &f with d(F, G) > r thenlpTyls = 0.
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Proof: We have to prove thatl » f|Ts1cg) = Oforall f, g € L*(X) andT € #(X). The mapl’ — T}
is continuous for the weak operator topology and the set défiange operators is densedf(X) for
this topology. Thus it suffices to assume tfiats Hilbert-Schmidt (or even of rank one) and then the
assertion is clear by Lemma 3.10. O

Observe that i : X — C is a bounded Borel function thel4,6(Q) = (0(Q) ® 1)M, hencedT; =
(0T)4 andT 0 = (T9),4 with the usual abbreviatioft = 6(Q). In particular, Lemma 3.10 implies:

Lemma 3.12. LetT € #(X). If T is locally compact thefi is locally compact. If|1z, ) T|| — 0 as
r — oo, then||1p, )Tyl — 0asx — oo.

Proposition 3.13. Under the conditions of Theorem 2.1 we hav€ X ) = 4(X).

Proof: LetT € ¢(X) and¢ as above. Thefl is locally compact henc&, is locally compact, and
we have||lp,Ty|| — 0 asz — oo by Lemma 3.12. Moreover, i is as in Lemma 3.11 thef, is
controlled so, by Lemma 3.9;, is compact. Thus it suffices to show that @y &(X) is a norm limit
of operatorsly, with ¢ of the preceding form. Sinc€ — T} is a linear contraction, it suffices to show
this for operators of the fori = Op(k) with k € Cy,1(X?). But thenT — Ty is an operator with kernel
E(x,y)(1 — (p(x)|o(y))) hence, if we denotdf = sup |k|, d = d(k), from (3.12) we get

=Tl < Mswp [ L {o@lo)
Until now we did not use the fact th&t = L?(X) in Theorem 2.1. If we are in this situation note that
we may replace(z) by |¢(x)| without loss of generality and the(z)|¢(y)) is real. More generally,
assume that the(x) belong to a real subspace of the (abstract) Hilbert spase that(¢(z)|¢(y)) is
real for allz, y. Thenl — (¢(z)|o(y)) = ||¢(z) — ¢(y)||?/2 so we have

T =Tl < (a2 [ ote) — o) P

Under the conditions of Theorem 2.1 it is clear that one mapsk¢ such that this be smaller than any
given number. O

x

4. COARSE FILTERS ONX AND IDEALS OF C(X)

4.1. Filters. We recall some elementary facts; for the mom&nis an arbitrary set. Ailter on X is a
nonempty sef of subsets ofX which is stable under finite intersections, does not cortta@rempty set,
and has the propertyy > F € { = G € £. If Y is a topological space angl: X — Y thenlime ¢ =y
orlim,_¢ ¢(z) = y means thay € Y and if V is a neighborhood of then¢ = (V) € €.

The set of filters onX is equipped with the order relation given by inclusion. Thieatrivial filter { X }
is the smallest filter and the lower bound of any nonempty/set filters exists:inf F = Ngc €. A set
F offilters is calledadmissiblef N¢c 7 Fe # 0 if F¢ € ¢ for all ¢ and Fe = X but for a finite number of
indices¢. If F is admissible then the upper bousith F exists: this is the set of sets of the formac » F
whereF, € ¢ for all ¢ andF: = X but for a finite number of indices

Let 3(X) be the set of ultrafilters oiX. If ¢ is a filter let¢ be the set of ultrafilters finer than it. Then
¢ = inf £7. We equipB(X) with the topology defined by the condition: a nonempty subet(X) is
closed if and only if it is of the forng' for some filter¢. Note that for the trivial filter consisting of only
one set we havex }' = 3(X). Then3(X) becomes a compact topological space, this is the Stk
compactification of theliscretespaceX, and is naturally identified with the spectrum of tié-algebra
of all bounded complex functions o¥i. There is an obvious dense embeddiig- 5(X), any bounded
functiony : X — C has a unique continuous extensjéfy) to 3(X), and any map : X — X has a
unique extension to a continuous mag@b) : 5(X) — B(X).

More generally, ifY” is a compact topological space, each mapX — Y has a unique extension to a
continuous map(¢) : S(X) — Y. The following simple fact should be noticed:ifs a filter ando is a
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pointinY” thenlimg ¢ = o is equivalent ta3(¢)|¢T = o. Indeed)im¢ ¢ = o is equivalent tdim,, ¢ = o
for any » € ¢ (for the proof, observe that if this last relation holds tfieneach neighborhootl” of o
the setp~! (V') belongs tox for all >« € £F, hencep™' (V) C N,,ce15¢ = &).

Now assume thaX is a locally compact non-compact topological space. ThefRtbchet filteris the set
of complements of relatively compact sets; we denoteitso thatlim, ..., ¢(x) = y has the standard
meaning. Le¥(X) = oo be the set of ultrafilters finer than it. Thd&X) is a compact subset ¢f( X )
and we have (X)) C B(X) \ X (strictly in general):

§(X)={»ep(X)] if K C X isrelatively compact thek ¢ }.

Indeed, ifs is an ultrafilter then for any sét either K € > or K¢ € ». If we interpretsc as a character
of £, (X) thensc € §(X) meansi«(p) = 0forall ¢ € Co(X).

4.2. Coarse filters. Now assume thaX is a metric space. I C X thenF isits closure and™ = X\ F’
its complement. We setp(z) := inf,cp d(z,y). Note thatdp = dz and|dp(z) — dr(y)| < d(z,y).
If 7 > 0 let F(") be the set of points such thatd(x, F°) > r, this is an open subset f at distance-
from the boundary. Lef, := {z | d(z, F) < r} be the neighborhood “of ordet of F'.

We say that a filte€ is coarseif for any F' € ¢ andr > 0 we haveF(") ¢ £. We emphasize that this
should hold forall » > 0. If for eachF € ¢ there isr > 0 such thatF'(") € ¢ then the filter is called
round Equivalently is coarse if for eaclt” € £ andr > 0 there isG € ¢ such thaiG(,) C F' and{ is
round if for eachF” € ¢ there arer € £ andr > 0 suchthatG(,y C F.

Our terminology is related to the notion of coarse ideabidtrced in [HPR] (our spack being equipped
with the bounded metric coarse structure). More precisatparse ideals a setZ of subsets ofX such
thatBC AcZ=BecZandAecZ= A,y cZforalr>0.ClearlyZ — I¢:={A°|AcTI}isa
one-one correspondence between coarse ideals and filters.

Coarse filters on groups are very natural objeift’ is a group, then a round filter is coarse if and only
if it is translation invariant(Proposition 6.6).

The Feéchet filter is coarse becauséifis relatively compact thei((,.y is compact for any (the function
dk is proper under our assumptions &n. The trivial filter { X'} is coarse.

More general examples of coarse filters are constructedlas/fo[Dav, GlI1]. LetL C X be a set such
thatL,) # X forallr > 0. Then the filter generated by the séts) = {x | d(x, L) > r} whenr runs
over the set of positive real numbers is coarse (indeedglea that thel,(,.y generate a coarse ideal). If
L is compact the associated filterss. If X = R andL =] — oo, 0] then the corresponding filter consists
of neighborhoods of-oo and this example has obviousdimensional versions. If. is a sparse set (i.e.
the distance betweenc L andL \ {a} tends to infinity ass — oo) then the ideal i€ (X') associated to

it (cf. below) and its crossed product by the action®o{if X is a group) are quite remarkable objects,
cf. [GI1]. It should be clear however that most coarse filaesnot associated to any det

Let X be an Euclidean space and(@{X) be the set of finite unions of strict vector subspace¥ ofrhe
setsL{,, when L runs overG(X) andr overR, form a filter basis and the filter generated by it is the
Grassmann filtery of X. This is a translation invariant hence coarse filter whi@ygpla role in a general
version of thelV-body problem, see [GI3, Section 6.5]. The relation, ¢ = 0 means that the function
 vanishes when we are far from any strict affine subspace.

Lemma 4.1. If F is a nonempty set of coarse filters thefi 7 is a coarse filter. IfF is admissible then
sup F is a coarse filter.

Proof: If F € inf F = N¢ex€ then for anyr > 0 and¢ we haveF (") € ¢ and soF € NgerE. Now
assume for example thdt € £ andG € x with £, x € F and letr > 0. Then there ard”’ € £ and
G' € x suchthatF(, ) C F andG(,, C G hence(F' NG')() C F(,)NG(,) C FNG. The argument for
sets of the fornm, F with Fr = X but for a finite number of indice§is similar. [l
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Lemma 4.2. A coarse filter is either trivial, and theai” = 3(X), or finer than the Fechet filter, and
then¢’ C §(X).

Proof: Assume that # ( is not finer than the Fchet filter. Then there is a compact $étsuch that
K¢ ¢ ¢. Hence for anyF' € £ we haveF' ¢ K°soF N K # (. Note that the closed sets §nfform a

basis of¢ (if F' € ¢ then the closure of ®) belongs to¢ and is included inF(") hence inF). The set
{FNK | F e ¢andis closeflis a filter basis consisting of closed sets in the compadkseénce there
isa € K such thau € F forall F' € £&. Thenif I € { andr > 0 there isG € £ such thatG(,y C F'and

sincea € G we haveB,(r) C G(,) C F. ButX = U,By(r)soX C I\

4.3. Coarse ideals ofC(X'). We now recall some facts concerning the relation betweeanditinX and
ideals ofC(X). To each filtef on X we associate an ide}(X) of C(X):

Te(X) ={p e C(X) | li?up =0} (4.16)

If ¢ is the Féchet filter therim, ¢ = 0 meandim,_.., ¢(z) = 0 in the usual sense and so the corre-
sponding ideal i€, (X). The ideal associated to the trivial filter clearly{i$}. We also have:

§Cn= LX) C Iy(X) (4.17)

Zern(X) = Ze(X) N Ty (X) = Ze(X) Ty (X) (4.18)
The round envelopé&® of ¢ is the finer round filter included ig. Clearly this is the filter generated by
the setg’(,.y whenF' runs over¢ andr overR . Note thatZ (X) = Z¢ (X), i.e. forp € C(X) we have

lime ¢ = 0 if and only iflim¢eo ¢ = 0. Indeed, ife > 0 let F' be the set of points werle(z)| < /2 and
letr > 0 be such thatp(z) — ¢(y)| < e/2if d(z,y) < r. Then|p(z)| < eif x € F,.

We recall a well-known description of the spectrum of theshlgC (X)) in terms of round filters.

Proposition 4.3. The magt — Z.(X) is a bijection between the set of all round filters &nand the set
of all ideals ofC(X).

An idealZ of C(X) will be calledcoarseif for each positivep € Z andr > 0 there is a positive) € 7
such that
d(z,y) <randy(y) <1= p(z) < 1. (4.19)

Lemma 4.4. Let F', G be subsets ok such thatG(,y C F'. Then the functiod = dp- (dp- + de) ™!

belongs ta’(X) and satisfies the estimates < 0 < 1 and|f(z)—0(y)| < 3r~'d(x,y). In particular,

a filter £ is coarse if and only if for any’ € £ and anys > 0 there isG € ¢ and a functiory such that
lg <6 <1lpand|f(z)—0(y)| <ed(z,y).

Proof: If « € G andb ¢ F thenr < d(a,b) < d(z,a) + d(x,b) for anyz. By taking the lower bound of
(

the right hand side over, b we getr <dg(z ) +dpe (x = ) Hence ifd(z) = dp-(x) then

)

To prove the last assertion, notice that if suchexists for some < 1/r and ifx € Gandd(z,y) <r
thend(z) = 1 and|f(z) — O(y)| < 1 henced(y) > 0soy € F. ThusG|, O

Proposition 4.5. The filter¢ is coarse if and only if the idedl; (X) is coarse.

Proof: Assumet is not trivial and coarse and let € Z, positive and- > 0. ThenO,, := {p < 1} € ¢
hence there i€&x € ¢ such thatG,,y C O,. By using Lemma 4.4 we constru¢t € C such that
0<¢<1,9¢|g=0, andw\c;?r) = 1. Clearlyy € Z¢. If ¢(y) < 1 theny € G,y hence ifd(z,y) < r
thenz € G(2,) SOp(x) < 1. ThusZ; is coarse. Reciprocally, assume tiatis a coarse ideal and let
F € ¢andr > 0. There isp € I, positive such tha®, C F and there is a positive function € 7
such that (4.19) holds. But theé, € £ and(Oy)() C O, so§ is coarse. O
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4.4, Coarse envelopellf ¢ is a filter then the family of coarse filters includedéms admissible, hence
there is a largest coarse filter includedine denote ito(¢) and call itcoarse envelope @t Clearly, a
setF belongs taco(&) if and only if for anyr > 0 there isG' € ¢ such thatF’ O G .

By Lemma 4.2 we have only two possibilities: eithef¢) = {X} or co(¢) D oo. Sinceco(§) C &, we
see that eithef is finer than Fechet, and thero(£) D oo, or not, and thero(¢) = {X}.

To each ultrafiltess € 5(X) we associate a compact subsefof 5(X) by the rule
% :=co(x)! = set of ultrafilters finer than the coarse covebof (4.20)

Thus we have either € §(X) and thersr C 6(X), or > ¢ 6(X) and therse = §(X). On the other
hand, we have), ;v * = §(X) becauser € 3.

We introduce now the ideals which play the main role in oulysisof £(X): to each ultrafiltersc on
X we associate the coarse idegl,,(X) of C(X) defined by

C(%) (X) = Lco(x) = {99 € C(X) ‘ lilnco(%)sﬁ = O}~ (4.21)

The quotienC*-algebraC,.(X) := C(X)/C(,. (X) will be calledlocalization ofC(X) at». If ¢ € C(X)
then its image in the quotient is denotedy and is calledocalization ofy at ». The next comments
give another description of these objects and will makerdleat localization means extension followed
by restriction

Observe thap € C(X) belongs tC,.)(X) if and only if the restriction of3(¢) to 3 is zero. Hence two
bounded uniformly continuous functions are equal modylg (X) if and only if their restrictions t6z
are equal. Thug — S(p)|3 induces an embedding, (X) — C(3¢) which allows us to identifg,.(X)
with an algebra of continuous functions @n From this we deduce

Nices(x)Cia (X) = Co(X). (4.22)

Indeed,p belongs to the left hand side if and onlydify)|5c = 0 for all 5« € §(X). But the union of the
setsi is equal tad(X) hence this means(y)|6(X) = 0 which is equivalent te € C,(X).

A maximal coarse filteis a coarse filter which is maximal in the set of coarse filtamsigped with
inclusion as order relation. This set is inductive (the nreban increasing set of coarse filters is a coarse
filter) hence each coarse filter is majorated by a maximal Bully, we say that a subs&tC 6(X) is
coarseif it is of the form T" = ' for some coarse filter.. Note that if7" is a minimal coarse set then
T = » for any ultrafiltersc € T. In general the coarse sets of the formwith > € §(X) are not minimal.

5. IDEALS OF&(X)

For any filter¢ on X we define
Se(X) ={T € (X) | jnf |[15T]| = 0}, (5.23)

Hereinf pe¢ |1#T| is the lower bound of the numbelid »T'|| when F' runs over the set of measurable
F € ¢ and we definénf pe¢ ||T1r| similarly. Note thatl|1xT|| < |17 and||[T1r| < ||T1g] if
F C G are measurable.

Lemma5.1. If T € & and¢ is a coarse filter themf pee || 15T = infpee | T1F]).

Proof: If infree |1¢T|| = a ande > 0 then there isF € ¢ such that|1z7T|| < a + . We may
choosek € Ciy such that|T — Op(k)| < e and then|1pOp(k)|| < a + 2¢. Assume thak(z,y) =
0if d(z,y) > rand letG € ¢ such thatG(,y C F. Thenk(z,y)lc(y) = lg, (2)k(z,y)1c(y)
henceOp(k)1c = lg,,Op(k)le = lg,,1FOp(k)lc so||Op(k)lc|| < [1FOp(k)| < a + 2¢ and so
IT1g| < a+ 3e. L
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Proposition 5.2. If { is a coarse filter onX then ¢ (X) is an ideal of¢’ (X)) and we have
Fe(X) = Te(X)E(X) = 6(X)Te(X). (5.24)
For the Fréchet filter we haveZ (X) = 2 (X).

Proof: Since ¢, a closed right ideal, the fact that itis an ideal follows fraemma 5.1. That?,, = ¢
follows from the fact thal 7" is compact ifK is compact (or use (5.24) and Proposition 3.4).

We now prove the first equality in (5.24) (the second one Yadldy taking adjoints). Clearly € I if
and only if for eache > 0 there iSE' € £ such that|1r¢|| < ¢ hence if and only iinfpc¢ || 17| = 0.
This impliesZ:& C 7 and so it remains to be shown that for edck 7, there arep € Z, andS € &
such thafl’ = pS. If £ is trivial this is clear, so we may suppose thas finer thanso.

Choose a poind € X and letK,, = B,(n) for n > 1 integer. We get an increasing sequence of compact
sets such that,, K,, = X and K, € £. We construct by induction a sequente> G1 D F» D Gs...
of sets in¢ such that:

F,CcKS, |NpT|<n™2 d(Gn, FS)>1, d(F,1,GS) > 1.

We start withFy € ¢ such that|1,,T|| < 1, we setFy = F{ N K and then we choosé; € § such
thatd(G1, FY) > 1. Next, we choosd? € & with |[1T| < 1/4andG] € € with G} C G, and
d(G},GS) > 1. We takeF, = F; NG| N K§, sod(F»,G§) > 1, and then we choos@, € ¢ with
G2 C F» such thal(Gz, F5) > 1, and so on.

Now we use Lemma 4.4 and for eagtwe construct a functiofi,, € C such thatlg, < 6,, < 1, and
|0, (2) — 0, (y)| < 3d(x,y). Let B, = B,(1). Thenitis clear that eitheB, N F; = () or there is a unique
m such thatB, N F,,, # 0 andB, N F,,,.1 = @ and in this casé,, = 1 on B, if n < m andf,, = 0 on
B, if n > m. Let(z) = >, 0,(x). Thenf(z) = 0 on Ff and ifa € X is such thaB, N F,, # 0 and
B,NF,11 = 0weget

0(x) = Y On(x) =m — 1+ 0 (2). (5.25)

n<m
Thusf : X — R, is well defined and fod(z,y) < 1 and a conveniently chosen we have
0(x) = 6(y)| = |0m () — O (y)| < 3d(z,y).
On the other hand
1
10T < [I1p, Tl < —5-

Thus if6y = 1 then the limit of) 0, T asm — oo exists in norm and so defines an elemgmf &

n<m
Then
T = (anmen)_l(zngmen)T — (1+6)71S
because(zngmen)_1 — (14 6)~ ! strongly onL?(X). If ¢ := (1 +6)~ ! then0 < ¢ < 1 and

p(x) — (Yl < [0(x) - 0(y)| < 3d(z,y) ifd(z,y) <1
Thusy € C. If z € B, with B, N F,,, # 0 andB, N F,,, 1 = () then (5.25) gives
o) =14+m—1+0,()"' <1/m
hencep(z) < 1/m onF,,. Thuslim¢ ¢ = 0 andT’ = ¢S with ¢ € Z,, andS € &. O
Lemma 5.3. If { is a coarse filter and” € _7,(X) then
}Clj{}i 11z, Tl = ilgé IT1p,| =0 vr>0. (5.26)

If inf,, (B, (1/2)) > 0, T € &£(X) is controlled, andim,_.¢ || T'1p,|| = 0thenT € #(X).
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Proof: Recall thatim, ¢ ||T'1 5, (|| = 0 means: for each > 0 there isG' € { suchthal|T'1p, (|| < ¢
forallz € G. If T € #Z¢(X) ande > 0 then there i" € ¢ such thal|T'1x| < ¢ and for anyr there
is G € { such thatG(,) C F. Hence forz € G we have|T1p, ()| < [[Tlg, || < [[T1F| < e hence
lim, ¢ [|T1p, | = 0. Replacingl” by T* we also getim, ¢ |15, (T[] = 0.

Now assumeénf, u(B;(1/2)) > 0 and letT" € #(X) be a controlled operator. Then there is aseis
in Lemma 3.7 and there is> O such thall'l g, = 15, (,yT'15, forall z. If F'is a measurable set and if
we denoteZ (F) the set of: € Z such thatB, N F # () then for anyf € L?(X) we have

T fIP < Y IeTfIP= Y eI 1p.m /I

z2€Z(F) 2€Z(F)
< swp 15T Y e fIP < sup 15, TPC(r)?|If )
z€Z(F) 2€Z(F) z€F (1)

hence||T1r| < C(r) SUD,ep .y, IT1p, || whereC(r) is a number which depends only @¥i(r), cf.
Lemma 3.7. Thus for any controlled operator we hag.c¢ |T1r| = 0 if lim,_.¢ ||T15,] = 0. And
if T e &(X)thismeand” € _7Z¢(X).

Proposition 5.4. Under the conditions of Theorem 2.1¢ifs a coarse filter and” € &(X) then
Te 7:X) & lirrz IT1p,|| =0« lim5 11, T| = 0. (5.27)

Proof: We use the same techniques as in the proof of Proposition 3887 < &(X) such that
lim,_.¢ || T1p,|| = 0. Then as we saw in Section 3 we hg®@l s, )4 = T41p, hence for conveniently
choseng the operatofl, € &(X) is controlled andim,_.¢ [|T415,| = 0. From Lemma 5.3 we get
Ty € Z¢(X) which is closed, so sincE, — 7' innorm asp — 1, we getl’ € _Z¢(X). O

Remark 5.5. The relation (5.27) is not true in general if Property A is matisfied. Indeed, if we take
& = oo then this would mean? (X') = ¢(X), which does not hold generally.

The ideals of¢(X) which are of real interest in our context are defined as falow
S 6(X) = é‘o(%)(X) = jco(%)(X) = {T € g(X) | Felgjfé%) HlFTH = 0} (5.28)

By Proposition 5.2 this can be expressed in terms of thesdsf&l(X ) introduced in (4.21) as follows:
Ee)(X) = Co0 (X)E(X) = E(X)Co) (X). (5.29)

Prof of Theorem 2.1: Assume thafl" € &,,) for all » € 6(X); we have to show thaf is a compact
operator (the converse being obvious)xIE §(X) andr > 0 then for anye > 0 there isF' € co(s) such
that||1-T'|| < ¢ and there i€ € » such thati(,, C F, hence for any: € G we have||lp, T < e.
This proves thatim, ... |15, T = 0. Now defined(z) = |15, T'||, we obtain a bounded function
on X such thatlim, = 0 for any > € 6(X). The continuous extensiof(f) : 5(X) — R has the
property 3(6)(») = lim,. 6 thus 3(6) is zero on the compact subsHtX) = oof of 3(X) hence we
havelim, 6 = 0 according to a remark from Section 4.1. Thus we have . ||15, 7| = 0, which
means thai” belongs to the ghost ide@. Now the compactness @f follows from Proposition 3.13_]

6. LOCALLY COMPACT GROUPS

6.1. Crossed products. In this section we assume that is a locally compact topological group with
neutral element andy is a left Haar measure. We write(lr) = dx and denote\ the modular function
defined by dry) = A(y)dz or dz=! = A(x)~'dz (with slightly formal notations). There are left and
right actions ofX on functionsy defined onX given by(a.¢)(x) = ¢(a~'z) and(y¢.a)(z) = p(za).

The left and right regular representation ®fare defined by\,f = a.f andp.f = /A(a)f.a for
f € L*(X). Then), andp, are unitary operators oh?(X) which induce unitary representation &f
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on L%(X). These representations commuigp, = py )\, for all a,b € X. Moreover, forp € L (X)
we have,p(Q)A; = (a.¢)(Q) andpap(Q)p; = (¢.a)(Q).

The convolution of two functiong, g on X is defined by
(F9)@ = [ 1o o)y = [ Fay)Aw) gl)d.

Fory € LY(X) let Ay, = [¢(y)\,dy € B(X). Then|[Ay|| < [[¢||: andep * g = Ayg for g € L2.

We recall the definition of the-algebral!(X): the product is the convolution produgts g and the
involution is given byf*(z) = A(z)~'f(z~!); the factorA~! ensures thal f*||;1 = ||f||z:. The
envelopingC*-algebra ofL! (G) is thegroup C*-algebraC*(X). The norm closure if8(X) of the set
of operators\,, with 1y € L' (X) is thereduced groug*-algebraC; (X). There is a canonical surjective
morphismC*(X) — C*(X) which is injective if and only ifX is amenable.

Lemma6.1. If T € C¥(X) thenp,T = Tp,Va € X. If X is not compact the@(X) N7 (X) = {0}.

Proof: The first assertion is clear becaysg\, = A\yp,. If X is not compact, thep, — 0 weakly on
L?(X) hence ifl" € C}(X) is compact|T f| = || Tpaf| — 0hence|Tf|| =0forall f € L3(X). [

In what follows by uniform continuity we mean “right uniforoontinuity”, soy : X — C is uniformly
continuous if for any: > 0 there is a neighborhood of e such thatry ™! € V = |p(z) — p(y)| < €
(see page 60 in [RS]). L&X(X) be theC*-algebra of bounded uniformly continuous complex funciion
If ¢ : X — Cis bounded measurable thene C(X) if and only if ||\, o(Q)A: — p(Q)| — 0 asa — e.

We consider now crossed products of the fodnx X whereA C C(X) is aC*-subalgebra stable under
(left) translations (sa.¢ € A if ¢ € A; only the cased = C(X) is of interest later). We refer to [Wil]
for generalities on crossed products. THealgebrad x X is the enveloping’*-algebra of the Banach
x-algebral!(X; A), where the algebraic operations are defined as follows:

(f*g)() = / fW) vl a)dy, £ (@) = Ae) o f@ ).

ThusC*(X) = C x X. If we defineA : L'(X; A) — B(X) by A(¢) = [ #(a)A,da itis easy to check
that this is a continuous-morphism hence it extends uniquely to a morphxsm X — AB(X) for which
we keep the same notatidn A short computation gives fas € C.(X;.A) andf € L*(X)

0) = [ dlear AW Wy

where for an element € C.(X;.A) we setp(x,a) = ¢(a)(x). ThusA(¢) is an integral operator with
kernelk(z,y) = ¢(x, zy~1)A(y)~* or A(¢) = Op(k) with our previous notation.

The next simple characterizationAffollows from the density it€.(X; .A) of the algebraic tensor product
A ®a1¢ Co(X): there is a unique morphisth : A x X — Z#(X) such thatA(p ® ¥) = o(Q)Ay for

p € Aandy € C.(X). Here we take) = ¢ ® ¢ with ¢ € Aandy € C.(X), so¢(a) = py(a). Note
that the kernel of the operataQ)\, is k(z,y) = o(z)(zy~1)A(y) L.

The reduced crossed produtt«, X is a quotient of the full crossed produdt« X, the precise definition
is of no interest here. Below we give a description of it whHikhore convenient in our setting. As usual,
we embedA C A(X) by identifyingy = ¢(Q) and if #, .4 are subspaces oB(X) then.# - .4 is
the closed linear subspace generated by the operafdisvith M € .7 andN € 4.

Theorem 6.2. The kernel ofA is equal to that of4A x X — A x, X, henceA induces a canonical
embeddingd x, X C #(X) whose range isA-C;(X). This allows us to identifyl x, X = A-C}(X).

We thank Georges Skandalis for showing us that this is an eassequence of results from the thesis
of Athina Mageira. Indeed, it suffices to take= A and B = C,(X) in [Mag, Proposition 1.3.12] by
taking into account that the multiplier algebra@®f X ) is C,(X), and then to us€,(X) x X = 7 (X)
(Takai’s theorem, cf. [Mag, Example 1.3.4]) and the fact tha multiplier algebra of? (X)) is #(X).
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The crossed product of interest hereCisX) x, X = C(X) - Cf(X). Obviously we have? (X) =

Co(X) %y X C C(X) %, X, the first equality being a consequence of Takai's theoreralso of the fol-
lowing trivial argument: ifp, 1) € C.(X) then the kernep(z)y(zy~1)A(y)~! of the operatorp(Q) Ay,

belongs ta’.(X?) hencep(Q) A, is a Hilbert-Schmidt operator.

We recall that théocal topologyon C(X) x, X (see Definition 3.5 here and [GI3, page 447]) is defined
by the family of seminorms of the forffil’||» = || 17| + || 714 with A C X compact.

The following is an extension of [GI3, Proposition 5.9] irethresent context (see also pages 30-31 in
the preprint version of [GI1] and [Ro2]). Recall that any hdad functiony : X — C extends to a
continuous functiom(y) on 8(X). If »r € 5(X) we definep,, : X — C by

() = Bz™p)(3¢) = lim (za). (6.30)

Lemma6.3. If p € C(X) thenforany € C,(X) the se{fp.a | a € X} is relatively compact i€, (X)
and the mam — 6Oy, € C,(X) is norm continuous. In particular, for any € 5(X) the limit in (6.30)
exists locally uniformly inc and we havep,, € C(X).

Proof: By the Ascoli-Arzela theorem, to show the relative compastiof the set of functions of the form
fp.a it suffices to show that the set is equicontinuous. For eagh) there is a neighborhodd of e such
that|o(z)—p(y)| < eif zy~! € V. Then|p(za)—p(ya)| < eforalla € X, which proves the assertion.
In particular,lim,_. ,, f¢.a exists in norm irC,(X), hence the limit in (6.30) exists locally uniformly in
x. Moreover, we shall havep..(z) — ¢,.(y)| < € S0, belongs taC(X). Finally, we show that for any
compact sef¢ and anye > 0 there is a neighborhodd of e such thasupy |¢(xza) — ¢(z)| < € for all
a € V. For this, let{ be an open cover ak such that the oscillation @ over anyU € U is < ¢ and
note that there is an neighborho@dof e such that for any: € K there isU € U such thattV C U (use
the Lebesgue property for the left uniform structure). O

Proposition 6.4. For eachT € C(X) x, X and eaclu € X we haver,(T) := p,Tp’ € C(X) x, X
and the mam — 7,(T) is locally continuous oK and has locally relatively compact range. For each
ultrafilter »» € B(X) and eachl’ € C(X) x, X the limit7,.(T) := lim,_,,. 7,(T) exists in the local
topology ofC(X) x, X. The so defined mag, : C(X) x, X — C(X) x, X is a morphism uniquely
determined by the property. (p(Q)Ay) = ©(Q)Ay.

Proof: If T = o(Q)Ay thenp,Tp! = (p.a)(Q)\y is an element of(X) x, X and sor, is an
automorphism o€ (X) x, X. If we takey with compact support andl is a compact set thek, 1, =
1xAyla Where K = (supmp)A is also compact. Then,(T)1x = (¢.a)(Q)1xAy1la and the map

a — (p.a)(Q)1k is norm continuous, cf. Lemma 6.3. This implies that 7, (7T) is locally continuous

on X for anyT. To show that the range is relatively compact, it sufficesragia consider the case

T = ¢(Q)Ay with 1) with compact support and to usg(7)1x = (.a)(Q)1lxAy1a and the relative
compactness of th¢(p.a)(Q)1x | a € X} established in Lemma 6.3. The other assertions of the
proposition follow easily from these facts. L

6.2. Elliptic C*-algebra. From now onX is a locally compact non-compact topological group. Since
we do not require thak be metrizable, we have to adapt some of the notions used iméteéc case

to this context. Of course, we could use the more generaldvark of coarse spaces [Rol] to cover
both situations, but we think that the case of metric grospready sufficiently general. So the reader
may assume thaX is equipped with an invariant proper distanteOur leftist bias in Section 6.1 forces
us to taked right invariant, i.ed(x,y) = d(zz,yz) for all z,y, z. If we set|z| = d(z, e) then we get

a function| - | on X such thatiz=!| = |z|, |vy| < |2| + |y|, andd(x,y) = |xy~!|. The ballsB(r)
defined by relations of the forijzz| < r are a basis of compact neighborhoods0é function onX is
d-uniformly continuous if and only if it is right uniformly aginuous, etc.

Note thatB,,(r) = B(r)x so in the non-metrizable case the role of the b&l$r) is played by the sets
Vz with V' compact neighborhoods ef Recall that the range of the modular functianis a subgroup
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of the multiplicative groug0, co[ hence it is eithe{1} or unbounded. Sincg(Vz) = u(V)A(z) our
assumption (2.3) is satisfied onlyXf is unimodular and in this case we hav@/x) = p(V) for all .

We emphasize the importance of the condition that the miériproper. Fortunately, it has been proved
in [HP] that a locally compact group is second countable d anly if its topology is generated by a
proper right invariant metric.

For coherence, in the non metrizable case we are forced tthatg kernek : X2 — C is controlled
if there is a compact sek C X such thatk(x,y) = 0if 2y~! ¢ K. The symbold(k) should be
defined now as the smallest compact&ewith the preceding property. On the other hahds uniformly
continuous if it is right uniformly continuous, i.e. if fonge > 0 there is a neighborhodd of e such that
|k(az, by) —k(z,y)| < eforalla,b € V andz,y € X. Then the Schur estimate (3.12) giyeESp(k)|| <

sup |k| sup, p(Ka) so only if X is unimodular we have a simple estimd@p(k)|| < p(K) sup |k|.

To summarize, ifX is unimodular ther€,;(X?) is well defined and Lemma 3.1 remains valid if we set
V(d(k)) = p(d(k)) so we maydefine the elliptic algebra’(X') as in(2.4). But in fact, what we get is
just a description of the crossed prodG¢X) x, X independent of the group structure sf

Proposition 6.5. If X is unimodular ther8(X) = C(X) x, X =C(X) - C}(X).

Proof: From the results presented in Section 6.1 and the factshat 1 we get thatC(X) x X is
the closed linear space generated by the operalp(s) with kernelsk(x,y) = ¢(z)y(zy~—1), where
¢ € C(X) andy € C.(X). ThusC(X) x X C &(X). To show the converse, lét € C;,1(X?) and
let k(z,y) = k(z,y 'z) hencek(z,y) = k(z,zy~1). If K = K~' C X is a compact set such that
k(z,y) # 0= xy~! € K then supf C X x K. Fixe > 0 and letV be a neighborhood of the origin
such thatk(z,y) — k(z, z)| < e if yz—! € V. Then letZ c K be a finite set such thdt C U,c;V =z

and let{6.} be a partition of unity subordinated to this covering.l(f,y) = > ., k(z,2)0.(y) or
=3, k(,2)®0, then

(@, y) — Wz, ) = | > (k) — k(z, 2)0:)| < Y [k(@,y) — bz, 2)|0.(y) <

z€Z z€Z

z€Z

because sugh C Vz. Now let us sel(z,y) = l(z,2y~!) = ZZGZ%(m,z)GZ(xy—l). If i(x,y) # 0
thend, (zy~') # 0 for somez hencery~! € Vz C VK. In this construction we may choo$e C U
whereU is a fixed compact neighborhood of the origin. Then we willdx:, y) # 0 = 2y~ C UK
which is a compact set independent afnd from (3.13) we getOp(k) — Op(1)|| < Csup |k — 1] < Ce
for some constant’ independent of. But clearlyOp(l) € C(X) x, X. 0

Thus if X is a unimodular group then we may apply Proposition 6.4 ahég@omorphisms,, of £ (X)
indexed by:r € §(X). These will play an important role in the next subsection.

We make now some comments on the relation between amepaititProperty A in the case of groups.
First, the Property A is much more general than amenabdity,the discussion in [NY] for the case
of discrete groups. To show that amenability implies PrigpArwe choose from the numerous known
equivalent descriptions that which is most convenient incomtext [Pat, page 128K is amenable if and
only if for anye > 0 and any compact subs&t of X there is a positive functiop € C.(X) with ||¢]] =1
such that|p, — ¢|| < e forall a € K. Now let us sety(x) = pip, S0p(x)(2) = Az) "V 2p(za71).
We get a strongly continuous functign: X — L?(X) such thaf|é(x)| = 1, supps(x) = (suppp)z,
and||¢(z) — ¢(y)|| = llpey—19¢ — ¢l < eif zy~' € K. In the metric case we get a function as in
condition (ii) of Theorem 2.1, so the metric version of thepparty A is satisfied.

6.3. Coarse filters in groups. A filter £ on a locally compact non-compact grotipis calledround if
the sets of the forlV G = {zy | x € V,y € G}, whereV runs over the set of neighborhoodseddnd G
overé, are a basis of. And ¢ is (left) invariantif x € X, F' € £ = «F € £. Naturally,£ is coarseif for
any F' € £ and any compact séf C X there isG € ¢ such that G C F.
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The simplicity of the next proof owes much to a discussiormwdt Rugh. In our initial argument Propo-
sition 6.6 was a corollary of Proposition 4.5.

Proposition 6.6. A filter is coarse if and only if it is round and invariant.

Proof: Note first thatt is invariant if and only if for eacli{ € ¢ and each finiteéV C X there isG € ¢
such thatd > NG. This is clear becaus§ G C H is equivalent ta& C N,cyz~'H. Now assume that
£ is also round. Then for ank' € £ there is a neighborhood of e and a sefd € £ such thatF > V H.
If K is any compact set then there is a finite 8esuch thatV' N O K. Then there ig7 € ¢ such that
H D> NG.SoF D VNG D KH. |

Proposition 6.7. Let X be unimodular and le§ be a coarse filter. Then for ariy € _7.(X) we have
lim,_¢ 7,(T") = 0 locally. If X is amenable then the converse assertion holds, so

Je(X) = {T € 8(X) | lim 7,(T) = 0locally} = {T € £(X) | 7(T) =0¥x € &1}, (631)

Moreover, if X is amenable then for any compact neighborh®odf e and anyT’ € £(X) we have:
T e fe(X) & I |[Tlva] =0 & lim [[7a(T)1v]| =0 (6.32)

Proof: We havely,(Q) = pilv(Q)pa. hence|T1v .|| = | Tpx1v(Q)pall = |7a(T)1v(Q)| hence for
T € Z¢(X) we havelim,_.¢ 7,(T") = 0 locally. If X is amenable then Proposition 5.4 in the metric
case and a suitable modification in the non-metrizable goase gives (6.31). Then (6.32) is easy[ ]

Theorem 6.8. Let X be a unimodular amenable locally compact group. Then foheace §(X)
and for eachT’ € &(X) the limit 7,.(T) := lim,—,,. p,Tp} exists in the local topology of (X), in
particular in the strong operator topology 68(X). The mapsr,. are endomorphisms ef(X) and
Nyes(x) ker 7o = 2 (X). In particular, the mag” — (7,.(T)) is amorphisme (X)) — [ c5(x) €'(X)
with Z (X)) as kernel, hence the essential spectrum of any normal apethE £ (X) or any observable

H affiliated to&’(X) is given bySpess(H) = U,,Sp(7:.(H)).

Proof: We have seen in Section 4.4 thdf .5 v > = 6(X) and from (6.31) we get

Eie)(X) =z kermy for eachs € 5(X). (6.33)
On the other hand, we have shown before that s x)&(..) (X) = £ (X) is a consequence of Property
A, hence of amenability. [

Remark 6.9. Recall that after (2.7) we defined the localizatier¥" at s € §(X) of someT € & as the
quotient of 7" in &,, = & /&,.). If T is normal then from (6.33) we g&p(».T) = UXeQSp(TX(T))
but many of the operators, (7") which appear here are unitary equivalent, in particulaetthe same
spectrum. Indeed, note that there is a natural (left) actfo¥i on 3(X) which leaves (X)) invariant and
» is the minimal closed invariant subset&fX') which containss. And if y € §(X) anda € X then

by usingax = lim,_., abwe getry, (T') = pa 7y (T) o5k

6.4. Pseudo-local and quasi-local operatorsWe describe briefly other*-algebras of operators which
are analogs of’(X). We need an analogue of Lemma 3.7 in the group context.

Lemma 6.10. Letw be a compact neighborhood efand Z a maximalw-separated subset of (i.e.
if a,b are distinct elements of then (aw) N (bw) = 0). Then for any compact sét > ww™! we
have ZK = X and for anya € Z the number oz € Z such that(zK) N (aK) # 0 is at most
WEK ™ w)/p(w).

Proof: That such maxima¥ exist follows from Zorn lemma. By maximalityzw)N(Zw) # () for anyz,
hencer € Zww™!,50X = ZK if K D ww™!. Nowfix a € Z and letN be the number of points € Z
such that zK) N (aK) # (). For each such we have: € a K K~! hencexw C aK K ~'w. But the sets
2w are pairwise disjoint and have the same meagg soNu(w) < u(aK K 'w) = (KK ~'w). [J
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Remark 6.11. By using the homeomorphism+— x~!, or just by takingu a right Haar measure in the
proof, we get a “left” version of this result: if we defineseparation bywa) N (wb) = @, then for any
compactk D w lwwe haveX = KZ and#{z € Z | (Kz) N (Ka) # 0} < p(wK 1K) /u(w)

By analogy with the notion of controlled operator introddde Remark 3.3, we say th&t € #(X) is
controlledif there is a compact set C X such that ifF, G are closed subsets &f with F N (AG) = 0
thenlpSlg = 0. If X is a metric group this is equivalent to: there is a number 0 such that ifF’, G
are closed subsets &f with d(F, G) > r then1rS1s = 0, which is the definition of Remark 3.3. This
version of the definition is clearly independent of the grstrpcture ofX. As before, we denot#'(X)
the norm closure of the set of controlled operators, thikég’t*-algebra of pseudo-local operators

Now assume thak is an abelian group. LeX* be the dual group and to eaphe X* let us associate
the unitary operator, on L2(X) defined by(v, f)(z) = p(z) f(x). Then (see [GI3]):

Proposition 6.12. If X is an abelian group the# (X) = C(X) x X = C(X) %, X is the set of operators
T € %(X) such that|v,Tv; — T|| — 0 and||(Ae — 1)T™)|| — 0if p — ein X* anda — ein X.

Remark 6.13. The relation£’(X) C C(X) »x X follows easily from Proposition 6.12 X is abelian.
The operators, Op(k)v;; and\,Op(k) have kernelg(x)k(x, y)p(y) = p(zy~")k(z,y) andk(za™!, y).

Hence from (3.13) we géf, Op(k)v; — Op(k)|| < sup,,-1cx |p(xy~") —1||k(z,y)|n(K) which tends
to zero ap — e in X* by the definition of the topology oX *. Similarly ||(A, — 1)Op(k)| — 0 as
a — ein X. HenceOp(k) € C(X) x X for eachk € Cy(X?).

If X is an abelian group then the set@fregular operators more precisely the operatdfs € Z(X)
which satisfy only the first condition from Proposition 6,12. such that the map — v, Tv, is norm
continuous, is &@™*-algebra which containg(X), strictly if X is not discrete, which seems to depend on
the group structure oX. But in fact this is not the case, it depends only on the costrseture ofX.

Proposition 6.14. If X is an abelian group the# (X) = {T' € B(X) | lim,_.. ||v,Tv; — T| = 0}.

For the proof, it suffices to use [GG2, Propositions 4.11 ad@4arXiv version) and Lemma 6.10.

Finally, we mention anothef*-algebra which is of a similar nature @(X) and makes sense and is
useful in the context of arbitrary locally compact spageand arbitrary geometric HilbeX' -modules,
see [GG2, Rol]. Let us say théte B(H) is quasilocal(or "decay preserving”) if for eaclr € C,(X)
there are operatorS;, S; € B(H) and functionspy, p2 € Co(X) such thatSe(Q) = ¢1(Q)S; and
©(Q)S = S2¢p2(Q). The set of quasilocal operators igg-algebra which contains strictly’(X) if X

is a locally compact non-compact abelian group. Indeed dfL°°(X*) has compact support theiiP)

is quasilocal (becausg P)¢(Q) andp(Q)u(P) are compact) but it belongs @6(X) if and only if u is
continuous. Here(P) = F~'M,F whereM,, is the operator of multiplication by on L?(X*) and.F

is the Fourier transformation.
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