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Abstract
We consider a magnetic Laplacian —A 4 = (id + A)*(id + A)

on a noncompact hyperbolic surface M with finite area. A is a real
one-form and the magnetic field dA is constant in each cusp. When
the harmonic component of A satifies some quantified condition, the
spectrum of —A 4 is discrete. In this case we prove that the counting
function of the eigenvalues of —A 4 satisfies the classical Weyl formula,
even when dA = 0. !

1 Introduction

We consider a smooth, connected, complete and oriented Riemannian sur-
face (M, g) and a smooth, real one-form A on M. We define the magnetic

! Keywords : spectral asymptotics, magnetic field, Aharanov-Bohm, hyperbolic surface.
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Laplacian, the Bochner Laplacian

—Ay = (id+ A (id+A), (1.1)
(Gd+Au=idut+uA, YVu € C(M;C)) . '

The magnetic field is the exact two-form pg = dA .

If dm is the Riemannian measure on M ;| then
pp = bdm, with b € C°(M;R). (1.2)

The magnetic intensity is b = |b|.

It is well known, (see [Shu] ), that —A 4 has a unique self-adjoint extension
on L*(M) , containing in its domain C§°(M;C) , the space of smooth and
compactly supported functions. The spectrum of —A 4 is gauge invariant :
for any f € C*(M;R), —Ay4 and —A 4,4 have the same spectrum.

We are interested in constant magnetic fields on M in the case when
(M, g) is a non-compact geometrically finite hyperbolic surface of finite
area; (see [Per| or [Bor] for the definition and the related references). More
precisely

J
M = | M (1.3)

where the M, are open sets of M, such that the closure of M, is compact,
and (J > 1) the other M, are cuspidal ends of M.

This means that, for any j, 1 < j < J | there exist strictly positive
constants a; and L; such that M; is isometric to Sx]a?,—i—oo[ , equipped
with the metric

ds? = y7?( L3 d¢* + dy*) ; (1.4)
(S = S' is the unit circle and M; "M, = Qifj £k ).
Let us choose some 25 € M, and let us define

d: M — Ry; d(z) = dy(z, 2); (1.5)

dy( ., .) denotes the distance with respect to the metric g.
It is not possible to have a constant magnetic field on M , but for any

b € R’ there exists a one-form A , such that the corresponding magnetic
field dA satisfies

dA = b(z)dm with b(z) = b;Vz € M, . (1.6)

The following statement on the essential spectrum is proven in [Mo-Tr1] :
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Theorem 1.1 Assume (1.3) and (1.6). Then for any j , 1 < j < .J and
for any z € M; there exists a unique closed curve through z , C;, in
(M;, g) , not contractible and with zero g—curvature. The following limit
exists and is finite:

Ay, = lim /C A (1.7)

d(z)—+o00 i 2

IfJ* = {jeN, 1<j<Jst [Aly, €2aZ} # 0, then

1 .o

Spess(_AA) = [Z_l +]II€1}% bj > +OO[ . (18)
[fJA = ®7 then Spess(_AA) = @ :

—Ay has purely discrete spectrum, (its resolvent is compact).

When the magnetic Laplacian —A, has purely discrete spectrum, it is
called a magnetic bottle, (see [Col]).

If A=df+ A" + A% is the Hodge decomposition of A with A* harmonic,
(dA" =0 and d*A" =0) , then V j , [A]la, = [A"]a, , so the discreteness
of the spectrum of —A 4 depends only on the harmonic component of A . So
one can see the case J* = () as an Aharonov-Bohm phenomenon [Ah-Bo],
a situation where the magnetic field dA is not sufficient to describe —A 4
and the use of the magnetic potential A is essential : we can have magnetic
bottle with null intensity.

2 The Weyl formula in the case of finite area
with a non-integer class one-form

Here we are interested in the pure point part of the spectrum. We assume
that J4 = (), then the spectrum of —A, is discrete. In this case, we denote
by (A;); the increasing sequence of eigenvalues of —A 4 , (each eigenvalue is
repeated according to its multiplicity). Let

N\ =Ay) = > 1. (2.1)

We will show that the asymptotic behavior of N()) is given by the Weyl
formula :



Theorem 2.1 Consider a geometrically finite hyperbolic surface (M, g) of
finite area, and assume (1.6) with J* = 0, (see (1.7 for the definition).

Then M \

O(—).
4 (ln)\)

Remark 2.2 As J4 depends only on the harmonic component of A, J4 is
not empty when M is simply connected. In [Go-Mo] there are some results
close to Theorem 2.1, but for simply connected manifolds.

The cases where the magnetic field prevails were studied in [Mo-Tr1] and
in [Mo-Tr2].

(2.2)

Proof of Theorem 2.1. Any constant depending only on the b; and on

min inf |[A]y, — 2kn| will be denoted invariably C .
1<j<J k€eZ J

Consider a cusp M = M; = Sx]a?,+o00[ equipped with the metric
ds?> = L?e2'd#? + dt* for some o >0 and L >0 .

Let us denote by —AX! the Dirichlet operator on M | associated to —A 4 .
The first step will be to prove that

| M| A
— 4+ O(—) .
w Oy
Since —A} and —AJ, |, are gauge equivalent for any ¢ € C*>(M;R)
and any k£ € Z , we can assume that

N, =AY = A (2.3)

1
—AYN = L72e*(Dy — A))? + D? + 70 With Ar=—¢+ bLe™", € €]0,1],

(b=10b;, 2n¢ — [A]m € 27Z) . Then we get that

1 L+ 8
2
= Jsp(P) ; D+4+( s ib) :
tez
for the Dirichlet condition on L?*(I;dt) ; I =]a?, +oo[ . This implies that
N -AY) = Y N P)=) N(\P) (2.4)
LeL e Xy

withX,\:{K/eQQM—iL_g’ <VA—1/4-b}.

Denoting by @, the Dirichlet operator on I associated to

2 1 (U7
Qv = D—|—4+ 72 ;
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we easily get that

Q—CVQe < P < Qu+CVQ,. (2.5)

Therefore one can find a constant C'(b) , depending only on b , such that,
for any A >> 1+ C(b) ,

NA=VACD), Q) < N\ P) < NA+VAC(h), Q) ; (2.6)
Applying the Weyl formula we thus get the following

Lemma 2.3 There exists Cy > 1 such that, for any A\ >> 1 and any
e X,
we(A — CoVA) < TN\ P) < we(A+ CovA)

we(p) = /a -~ {u - <£+£)262t] " dt (2.7)

2
. L N

T(1,L) 2 1/2

2
’ L .

with

("8 = Ly/ji/ (inf [€ — k) ) -
€z
In view of (2.4) we now compute ), ., we(u). We first get the following

Lemma 2.4 There exists Cy > 1 such that, for any pu >> 1 and any
t € [a®T(u L),

2 1/2 / 9 1/2
/R{M_ (z Zf) th} de — Z {M_( ‘Li‘f) 62t}+

+ LeZ

< G+ 5).

This leads to

Lemma 2.5 There exists Cy > 1 such that, for any pu>>1,

T(u,L) 2 1/2
/2 H /R |:,u _ (37 225) e2t:| drdt — ZwAM)
a +

LeZ

< Covplnp .

Changing variables in the integral in the right-hand side we get



Lemma 2.6 There exists Cy > 1 such that, for any pu>>1,

(p,L) 1/2 )
‘/ / x—|—§ e } drdt — plLe ™ /[1—x2]i/2dx
i R

Noticing that |M| = 2rLe~*" we deduce from Lemmas 2.5 and 2.6 that

Co
Inp

Lemma 2.7
1 M 1
LS = P o) e s oo
T ez T nH

In view of (2.4) this ends the proof of (2.3).
Now it remains toJconsider the whole surface M.

We have: M = UMJ-

where the M, are open sets of M, such that the closure of M, is compact,
and the other M; are cuspidal ends of M and

J
M;N My =0, if j # k. We denote M§ =M\ (| J11;), then
j=1

M = M7 (OM) . (2.8)

Let us denote by —A$ the Dirichlet operator on an open set  of M asso-
ciated to —Ay4 .
The minimax principle and (2.8) imply that

N\, —AY 4 + Y N -AY) SN —A) (2.9)

1<5<J

To get an upper bound we use a partition of unity. Let us consider, for any
1 < j < J the diffeorphism

®; : M; — Sx[aj, 400
and define the sets

1
0} = @5 (Sx[aj,ozj—i—ln)\[) :



Then we have the following covering of M with open sets

J J
M = M@U(UMj) . with M) = M3U<Uo§> :
J=0 0

We associate to this covering, a smooth partition of unity (1;);j=01,..7 ,
Z %2,’/\(@ =1, Vo € M, such that

0<j<J

Yia=1on M;\ O}, (1<k <)
iy = 0on M if k # j,

1#07)\ =1on M(?

|Vipa(z)] < Cln A

Using again minimax principle as in [Mo-Tr1], we get the following upper
bound

N ~Ax) S NA+CIP A, -AY) + 3 N+ om? A, -al) (2.10)

1<j<J

The Weyl formula with remainder, (see [Hor| for smooth boundary and [Ivr]
for boundary with cone-like singularities), gives that

N =230 = (4m) 1 [MFIA+ O(V) 2.11)
N+ CIn? A, =AY = (4m) MMM + CIn® A) + O(VA)

Noticing that |M3|(A 4+ CIn*\) = [MJ|XA +O(\/In ) ),

we get (2.2) from (2.3) (with M = M, , j =1,...,J ), (2.9), (2.10) and
(2.11) O

Remark 2.8 Theorem 2.1 still holds if the metric of M is modified in a
compact set.
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