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Abstract. An ODE with non-Lipschitz right hand side has been con-
sidered. A family of solutions with Borel measurable dependence of the
initial data has been obtained.

1. Introduction

Consider a system of ordinary differential equations of the following form

ẋ = v(t, x), x ∈ Rm. (1.1)

The vector-function v is defined in the cross product of some interval [−T, T ]
and a domain D ⊆ Rm.

The simplest and often occurred situation is when the vector field v is
continuous and fulfills the Lipschitz condition in the second variable:

∥v(t, x′)− v(t, x′′)∥ ≤ c∥x′ − x′′∥. (1.2)

In such a case problem (1.1) has a unique solution x(t) that satisfies the
initial condition x(0) = x0 ∈ D. This result is known as Cauchy-Picard
existence theorem. (All the classical facts we mention without reference are
contained in [8].)

In general, the solution x(t) is defined not in the whole interval [−T, T ]
but in its smaller subinterval. In the described above conditions the solution
x(t) depends continuously on the initial data x0.

The Cauchy-Picard existence theorem as well as its proof transmit literally
from the case x ∈ Rm to the case when x belongs to an infinite dimensional
Banach space.

If we refuse Lipschitz hypothesis (1.2) then our problem becomes widely
complicated. Particularly, it is known that in an infinite dimensional Banach
space problem (1.1) may have no solutions [19], [7]. In the finite dimensional
case the existence is guaranteed by Peano’s theorem.
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So, when the function v is only continuous in [−T, T ]×D then for the same
initial datum x0 there may be several solutions. Nevertheless if by some
reason for any initial condition x0 the solution is unique then it depends
continuously on the initial data.

There are a lot of works devoted to investigating of different types of the
uniqueness conditions. As far as the author knows this activity has been
started from Kamke [9] and Levy [14]. Their results have been generalized in
different directions. See for example [15], [1] and references therein. Anther
approach is contained in [13], [2].

The problem of existence of individual solutions to ODE with measurable
in t and continuous in x right-hand side has been considered by Caratheodory
in [3].

The case when the vector field belongs to Sobolev spaces (at least H1,1)
has been studied in [5] in connection with the Navier-Stokes equation. In
this article the results on existence and dependence on the initial data have
been obtained.

When problem (1.1) admits non-uniqueness then for some initial data x0
there are many ways to pick up a solution x(t) such that x(0) = x0. Actually
we even do not know how many ways to do this we have and how many such
points x0 are there. An attempt to clarify the last question has been done
in [17]. The main result of that article is as follows: the initial data with
non-unique solution form a Borel set of the class Fσδ.

Anyway for each x0 we can choose one of the solutions x(t) such that
x(0) = x0 and write

x(t) = x(t, x0), x(0, x0) = x0.

At this moment our argument is heavily rested on the Axiom of Choice.
From analysis we know that the Axiom of Choice is the best device to pro-

duce very irregular functions. It is sufficient to recall that all the examples
of non-measurable functions are based on the Choice Axiom.

Thus a priori we should not expect anything good from the function
x(t, x0).

The aim of this article is to show that under suitable choice of the corre-
spondence x(t, x0) the function x0 7→ x(t, x0) possesses good properties.

2. Main Theorems

Equip the space Rm = {x = (x1, . . . , xm)} with a norm

∥x∥ = max
k=1,...,m

|xk|.

Let BR stands for the closed ball of Rm with radius R and the center at the
origin. By IT denote an interval IT = [−T, T ].

Introduce a vector-function f(t, x) = (f1, . . . , fm)(t, x) ∈ C(Rt×Rm
x ,Rm).

Suppose that
sup

(t,x)∈R×Rm

∥f(t, x)∥ = M < ∞.
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This assumption is made only for simplicity, actually it is sufficient to have
f defined in the closure of a bounded domain. The reader may consider f
to be continuously extendable outside BR.

We will look for solutions to the following IVP.

ut(t, x) = f(t, u(t, x)), u(0, x) = x. (2.1)

In such a setup problem (2.1) is no longer a Cauchy problem for finite-
dimensional ODE, it is an infinite dimensional Cauchy problem. Indeed, for
any fixed t the function u(t, x) is a function of variable x i.e. t 7→ u(t, x) is
a curve of an infinite dimensional functional space.

In the Introduction it has already been noted that such an infinite dimen-
sional Cauchy problems may have no solutions. All the existence results
concerning this type of IVP use some compactness argument. For exam-
ple in [18] it is imposed that f is weakly continuous mapping of a reflexive
Banach space. Another approach see for example in [10].

Theorem 1. For any positive constants T and R problem (2.1) has a so-
lution w(t, x) such that the functions x 7→ w(t, x), x 7→ wt(t, x) are Borel
measurable mappings of BR to the Banach space C(IT ).

2.1. Proof of Theorem 1. Consider a set

K = {u(·) ∈ C1(IT ) | ut(t) = f(t, u(t)), u(0) ∈ BR}.
First, we intent to show that K is a compact set in C(IT ).

The functions from K satisfy the integral equation

u(t) = u(0) +

∫ t

0
f(s, u(s)) ds. (2.2)

Thus the set K is uniformly bounded: for every u(t) ∈ K it follows that
∥u(t)∥ ≤ R+MT and uniformly continuous: for every t′, t′′ ∈ IT one has

∥u(t′)− u(t′′)∥ ≤ M |t′ − t′′|.
Thus by Ascoli theorem [16] the set K is relatively compact in C(IT ).
It remains to note that K is closed in C(IT ). Indeed, if a sequence

{un(t)} ⊆ K and this sequence is uniformly convergent to the function
u(t) then from standard theorems of analysis we know that u ∈ C(IT ) and
u satisfies equation (2.2). Thus u ∈ K.

The following proposition is a consequence from the Measurable Selection
Theorem [11].

Proposition 1. Let K be a compact metric space and let Y be a separable
Hausdorff topological space. Then for any continuous mapping g : K → Y
there exists a Borel set B ⊆ K such that g(B) = g(K) and g |B is an
injection and g−1 : g(K) → B is Borel measurable.

On a role Y we take BR and let g(u(·)) = u(0). By Proposition 1 we obtain
the Borel function x 7→ w(t, x) that solves problem (2.1). The mapping
x 7→ wt(t, x) is Borel measurable as a composition of measurable functions.

Theorem 1 is proved.
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2.2. Corollaries. Let G : BR → K stands for the papping x 7→ w(t, x).

Corollary 1. There is a set U ⊂ BR of the first Baire category such that
G is a continuous function of BR\U to K.

This directly follows from the properties of the Borel functions [12].
Let µ stands for the standard Lebesgue measure in BR.
As a consequence of Lusin’s theorem [16] we have the following assertion.

Corollary 2. For any ε > 0 there is a closed set Pε ⊂ BR such that
µ(BR\Pε) < ε and the mapping G |Pε is continuous.

Theorem 2. For any p > 0 the mapping t 7→ w(t, x) belongs to the space
C1(IT , L

p(BR)).

2.2.1. Proof of Teorem 2. According to Corollary 2 there are closed sets
Pn ⊆ BR, n ∈ N such that µ(BR\Pn) < 1/n and w(t, x) ∈ C(Pn, C(I)).
Introduce a sequence of functions wn(t, x) by the rule wn(t, x) = w(t, x)
provided x ∈ Pn and wn(t, x) = 0 otherwise. Then we have

wn(t, x) ∈ C(Pn, C(I)) ⊂ C(I × Pn),

and for each t ∈ IT the sequence {wn(t, ·)} converges to w(t, ·) in measure.
Let us check that the functions {wn} are uniformly continuous in t in the

following sence:

sup
n∈N

∥wn(t
′, ·)− wn(t

′′, ·)∥Lp(BR) ≤ M(µ(BR))
1/p|t′ − t′′|. (2.3)

Indeed,∫
BR

∥wn(t
′, x)− wn(t

′′, x)∥pdx

=

∫
Pn

∥wn(t
′, x)− wn(t

′′, x)∥pdx+

∫
BR\Pn

∥wn(t
′, x)− wn(t

′′, x)∥pdx

=

∫
Pn

∥w(t′, x)− w(t′′, x)∥pdx

From formula (2.2) we know that ∥w(t′, x) − w(t′′, x)∥ ≤ M |t′ − t′′|. This
implies formula (2.3).

The following proposition is a corollary from the Vitali convergence the-
orem [6].

Proposition 2. Let (X,S, µ) be a measure space, µ(X) < ∞. And a
sequence of measurable functions {fn} is such that for all n ∈ N and for
almost all x ∈ X we have |fn(x)| ≤ const. Assume that {fn} is a Cauchy
sequence in measure. Then it converges in measure to a measurable function
f and

∫
X(fn − f)dµ → 0.

From Proposition 2 it follows that for each t ∈ IT the function w(t, ·) is
measurable and

∥wn(t, ·)− w(t, ·)∥Lp(BR) → 0.
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The functions wn(t, ·) are uniformly continuous as mappings of IT to Lp(BR)
thus the pointwise convergence implies the uniform one [16]:

sup
t∈IT

∥wn(t, ·)− w(t, ·)∥Lp(BR) → 0.

This implies that w(t, x) ∈ C(IT , L
p(BR)). To finish the proof it remains to

observe that wt(t, x) = f(t, w(t, x)) ∈ C(IT , L
p(BR)).

Theorem 2 is proved.

References

[1] M. Bownds, A Uniqueness Theorem for Non-Lipschitzian Systems of Ordinary Dif-
ferential Equations. Funkcialaj Ekvacioj 13 (1970) ,61-65.

[2] F. Brauer S. Sternberg, Local uniqueness, existence in the large, and the convergence
of successive approximations, Amer. J. Math., 80 (1958), 421-430.

[3] Coddington, Earl A.; Levinson, Norman (1955), Theory of Ordinary Differential
Equations, New York: McGraw-Hill .

[4] R. Engelking General Topology. Warszawa, 1977.
[5] R.J. DiPerna P.L. Lions Ordinary Differential Equations, Transport Theory and

Sobolev Spaces. Invent. math. 98, 511-547 (1989).
[6] G. B. Folland Real Analysis modern Techniques and Their Applications. John Willey

and Sons, Inc. New York, 1999.
[7] A. N. Godunov, Peano’s theorem in Banach spaces, Functional Anal. Appl. 9 (1975),

53-55.
[8] Ph. Hartman Ordinary Differential Equations Jhon Wiley New York 1964.
[9] E. Kamke, Differentialgleichungen reeler Functionen, Academische Verlagage-

sellschaft, Giest and Portig, Leipzig, 1930, 96-100.
[10] S.Kato, On existence and uniqueness conditions for nonlinear ordinary differential

equations in Banach spaces, Funkcial. Ekvac. 19 (1976), no 3, 239-245.
[11] Kechris A.S. Classical descriptive set theory. Springer, Berlin - New York, 1995, xviii

p. 402 [52,290,448,454]
[12] K. Kuratowski, Topology, vol. 1, Warszawa, 1966.
[13] M. A. Krasnoselskii S. G. Krein, On a class of uniqueness theorems for the equations

y′ = f(x, y). Uspehi Mat. Nauk (N.S.) 11 (1956) No 1, (67), 209-213.
[14] P. Levy, Provessus stochastiques et mouvement Brownien, Gauthier-Villars, Paris,

1948, 46-47.
[15] P. Ramankutty Kamke’s Uniqueness Theorem, J. London Math. Soc. (2), 22 (1980),

110-116.
[16] L. Schwartz Analyse mathématique, Hermann, 1967.
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