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Abstract. This paper studies properties of Tonelli Hamiltonian systems that

possess n independent but not necessarily involutive constants of motion. We
obtain results reminiscent of the Liouville-Arnol′d theorem under a suitable

hypothesis on the regular set of these constants of motion. This work continues

the work in [30] by the second author.

1. Introduction

In the study of Hamiltonian systems, a special role is played by integrable sys-
tems. These systems appear naturally in geometry and physics, where they fre-
quently have a variational character. Sometimes they are identified by the possibil-
ity of writing their solutions explicitly, i.e. as exactly solvable models. For the pur-
poses of this note, an integrable system is a Hamiltonian system that is completely
integrable if it satisfies the hypotheses of the Liouville-Arnol′d theorem (below).
This theorem states that an integrable system is tangent to a singular foliation,
whose regular leaves are Lagrangian tori and on which the system is conjugate to
a rigid rotation.

Let us explain this in a more precise way. The cotangent bundle, T ∗M , of a
smooth manifold M is equipped with a canonical Poisson structure {·, ·} that makes
the algebra of smooth functions on T ∗M into a Lie algebra of derivations, i.e. a
Lie algebra of smooth vector fields. Given a smooth function H, the vector field
XH = {H, } is a Hamiltonian system with Hamiltonian H. The skew-symmetry
of {·, ·} implies that if {H,F} ≡ 0, then the vector field XH is tangent to the
level sets of F and it commutes with XF . In such a situation, these Hamiltonians
are said to Poisson-commute, or be in involution, and F is said to be a constant of
motion, or first integral. The Liouville-Arnol′d theorem, in the more general setting
of symplectic manifolds, is

Theorem (Liouville-Arnol′d). Let (V, ω) be a symplectic manifold with dimV =
2n and let H : V −→ R be a proper Hamiltonian. Suppose that there exists n
integrals of motion F1, . . . , Fn : V −→ R such that:
i) F1, . . . , Fn are independent almost everywhere on V , i.e. their differentials
dF1, . . . , dFn are linearly independent as vectors;

ii) F1, . . . , Fn are pairwise in involution, i.e. {Fi, Fj} = 0 for all i, j = 1, . . . n.
Suppose the non-empty regular level set Λa := {F1 = a1, . . . , Fn = an} is connected.
Then there is a neighbourhood W of Λa and a symplectic system of coordinates
(I, θ) : W −→ Rn ×Tn such that I−1(0) = Λa and Fi = Fi(I). In particular, Λa is
a Lagrangian torus and the Hamiltonian flow of H is conjugate to a rigid rotation
on {0} × Tn.
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Remark. This theorem requires only that the integrals Fi are C2. There are numer-
ous proofs of this theorem in its modern formulation, see inter alia [23, 3, 5, 12, 20].
The map F := (F1, . . . , Fn) is referred to as an integral map, first-integral map and
a momentum map. The algebra generated by F ∗C∞(Rn) under the Poisson bracket
is an algebra of first integrals of H.

Complete integrability is a very strong assumption with significant implications
for the dynamics of the system. The invariance of the level set Λa simply follows
from F being an integral of motion; the fact that it is a Lagrangian torus and
that the Hamiltonian flow is conjugate to a rigid rotation, strongly relies on these
integrals being pairwise in involution and independent.

In this work, continuing the work of Sorrentino [30], we would like to address
the following question:

Question I. Without the involutivity hypothesis, what remains of the Liouville-
Arnol′d theorem?

To address this question, let us introduce the notion of a weakly integrable system.

1.1. Definition (Weak integrability). Let H ∈ C2(T ∗M). If there is a C2 map
F : T ∗Mn −→ Rn whose singular set is nowhere dense, and F Poisson-commutes
with H, then we say that H is weakly integrable.

Remark. Both complete and non-commutative integrability imply weak integrabil-
ity, but as the name suggests, weak integrability is distinctly weaker. In [8], But-
ler and Paternain show that many left-invariant, fibrewise quadratic Hamiltonians
H : T ∗G −→ R, where G is a compact semi-simple Lie group of rank 2 or more,
have positive topological entropy and are not completely integrable. However these
Hamiltonians are weakly integrable: the first-integral map in this case is the mo-
mentum map F : T ∗G −→ g∗ of the right-action of G on itself.

1.1. Results. Recall that a Hamiltonian H ∈ C2(T ∗M) is Tonelli if it is fibrewise
strictly convex and enjoys fibrewise superlinear growth. We use the variational
properties of Tonelli Hamiltonians, in particular the Aubry and Mather sets (see
section 2), to prove the following.

1.1. Theorem (Weak Liouville-Arnol′d). Let M be a closed manifold of dimen-
sion n and H : T ∗M −→ R a weakly integrable Tonelli Hamiltonian with integral
map F : T ∗M −→ Rn. If for some cohomology class c ∈ H1(M ; R) the corre-
sponding Aubry set A∗c ⊂ RegF , then there exists an open neighborhood O of c in
H1(M ; R) such that the following holds.
i) For each c′ ∈ O there exists a smooth invariant Lagrangian graph Λc′ of coho-

mology class c′, which admits the structure of a smooth Td-bundle over a base
Bn−d that is parallelisable, for some d > 0.

ii) The motion on each Λc′ is Schwartzman strictly ergodic (see [15]), i.e. all in-
variant probability measures have the same rotation vector and the union of
their supports equals Λc′ . In particular, all orbits are conjugate by a smooth
diffeomorphism isotopic to the identity.

iii) Mather’s α-function (or effective Hamiltonian) αH : H1(M ; R) −→ R is dif-
ferentiable at all c′ ∈ O and its convex conjugate βH : H1(M ; R) −→ R is
differentiable at all rotation vectors h ∈ ∂αH(O), where ∂αH(O) denotes the
set of subderivatives of αH at some element of O.

iv) If dimM = 2, then M is diffeomorphic to T2. If dimM = 3, M is diffeomorphic
to either T3 or a non-trivial principal T1-bundle over T2.

v) If dimH1(M ; R) ≥ dimM , then dimH1(M ; R) = dimM and M is diffeomor-
phic to Tn = Rn/Zn.
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Remark. (i) In (v) we conclude, in fact, that a neighborhood of Λc is foliated
by invariant Lagrangian tori on which the motion is conjugate to a rotation of
rotation vector hc′ = ∂αH(c′), where ∂αH(c′) is the derivative of αH at c′. (ii) The
theorem remains true if one replaces the hypothesis A∗c ⊂ RegF withM∗c ⊂ RegF .
(iii) We conjecture that weak integrability implies that dimH1(M ; R) ≤ dimM
with equality if and only if M is a torus even without the a priori assumption
A∗c ⊂ RegF .

Theorem 1.1 can be sharpened. Recall that a smooth manifold is irreducible if,
when written as a connect sum, one of the summands is a standard sphere. In 3-
manifold topology, a central role is played by those closed 3-manifolds which contain
a non-separating incompressible surface, or dually, which have non-vanishing first
Betti number. Such manifolds are called Haken; it is an outstanding conjecture that
every irreducible 3-manifold with infinite fundamental group has a finite covering
that is Haken [17, Questions 1.1–1.3]. This conjecture is implied by the virtually
fibred conjecture [1]. Given the proof of the geometrisation conjecture, the virtual
Haken conjecture is proven for all cases but hyperbolic 3-manifolds. Thurston and
Dunfield have shown there is good reason to believe the conjecture is true in this
case [13].

1.1. Corollary. Assume the hypotheses of Theorem 1.1. Then M is diffeomorphic
to a trivial Td-bundle over a parallelisable base B such that all finite covering spaces
of B have zero first Betti number. Therefore
i) dimM = 3 implies that M is diffeomorphic to T3;
ii) dimM = 4 implies, assuming the virtual Haken conjecture, that M is diffeo-

morphic to either T4 or T1 × E, where E is an orientable 3-manifold finitely
covered by S3.

Finally, we investigate weakly integrable Tonelli Hamiltonians that are locally
homogeneous. In particular, we consider the case of amenable homogeneous space
and see how much different the situation is from the generic case. Recall that a
topological group is amenable if it admits a left-invariant, finitely additive, Borel
probability measure. Due to the Levi decomposition, an amenable Lie group is a
semi-direct product of its solvable radical and a compact subgroup. A solvable Lie
group is said to be exponential or type (E) if the exponential map of the Lie algebra
is surjective; we will say an amenable Lie group is of type (E) if its radical is of
type (E).

1.2. Theorem. Let G be a simply-connected amenable Lie group of type (E) and let
ΓCG be a lattice subgroup, M = Γ\G and H be induced by a left-invariant Tonelli
Hamiltonian on T ∗G. If c ∈ H1(M ; R), then there is a closed, bi-invariant 1-form
φ on G such that the Mather set M∗c(H) = graph(φ). If H is weakly integrable and
there is a C1 Lagrangian graph Λ ⊂ H−1(h) and Λ∩RegF 6= ∅, then M is finitely
covered by a compact reductive Lie group with a non-trivial centre.

For the proof of this theorem we need to introduce a generalised notion of rotation
vector and a novel averaging procedure (see section 4), which are likely to be of
independent interest.

1.2. Methodological remarks. The reason why Question I is particularly hard
to tackle and cope with, is that the involution condition is essential for any rea-
sonable theorem à la Liouville to be proven. Without such an ingredient it is
impossible to deduce any property of these level sets, apart from their being invari-
ant and smooth (smoothness simply follows from the independence of the integrals
of motion). Therefore, in order to deduce any further geometric, topological and
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dynamical property, one needs to recover the involution hypothesis or find a suitable
replacement.

The main idea that we shall pursue consists in combining classical methods
with the action-minimizing methods – generally known as Aubry-Mather theory –
that have revealed quite powerful in the study of convex and superlinear systems.
Following the ideas outlined in [30], we shall study the relationship between the
existence of integrals of motion and the structure of the invariant sets obtained
by action-minimizing methods, the Mather, Aubry and Mañé sets, and use their
intrinsic Lagrangian structure to make up for the lack of involution.

To give a näıve description of the difference between our method and the classical
one used to prove Liouville-Arnol′d theorem, we could say that while the latter
follows an inward direction, we rather move in the outward one. More specifically,
in the classical proof of Liouville theorem, what one does is restrict to a regular
level set of the integral map and prove, using the involution hypothesis, that this
possesses the desired properties. Contrarily, we consider the action-minimizing sets
– the Mather and Aubry sets – which lie in the regular level sets of the integral
map (their existence follows from Mather’s theory and it is independent of the
integrals of motion) and prove, using the properties of the integral map, that they
must be sufficiently large, namely they must be smooth n-dimensional Lagrangian
graphs. Observe that these graphs being Lagrangian translates into a local Poisson-
commutation of the integrals of motion, that will be therefore deduced from the
intrinsic symplectic structure of these sets and not asked a priori!

2. Action-minimizing sets and integrals of motion

In the study of weakly integrable systems, or more generally of convex and
superlinear Hamiltonian systems, the main idea behind dropping the hypothesis
on the involution of the integrals of motion consists in studying the relationship
between the existence of integrals of motion and the structure of some invariant sets
obtained by action-minimizing methods, which are generally called Mather, Aubry
and Mañé sets.

In this section we want to provide a brief description of this theory, originally de-
veloped by John Mather, and the main properties of these sets. We refer the reader
to [14, 21, 22, 19, 31] for more exhaustive presentations of this material. Roughly
speaking these action-minimizing sets represent a generalization of invariant La-
grangian graphs, in the sense that, although they are not necessarily submanifolds,
nor even connected, they still enjoy many similar properties. What is crucial for our
study of weakly integrable systems is that these sets have an intrinsic Lagrangian
structure, which implies many of their symplectic properties, including a forced
local involution of the integrals of motion, as noticed in [30].

More specifically, we are interested in studying the existence of action-minimizing
invariant probability measures and action-minimizing orbits in the following setting.

Let H : T ∗M → R be a C2 Hamiltonian, which is strictly convex and uniformly
superlinear in the fibres. H is called a Tonelli Hamiltonian. This Hamiltonian
defines a vector field on T ∗M , known as Hamiltonian vector field, that can be
defined as the unique vector field XH such that ω(XH , ·) = dH, where ω is the
canonical symplectic form on T ∗M . We call the associated flow Hamiltonian flow
and denote it by ΦtH .

To any Tonelli Hamiltonian system one can also associate an equivalent dy-
namical system in the tangent bundle TM , called Lagrangian system. Let us
consider the associated Tonelli Lagrangian L : TM → R, defined as L(x, v) :=
maxp∈T∗xM (〈p, v〉 −H(x, p)). It is possible to check that L is also strictly convex
and uniformly superlinear in the fibres. In particular this Lagrangian defines a flow
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on TM , known as Euler-Lagrange flow and denoted by ΦtL, which can be obtained
by integrating the so-called Euler-Lagrange equations:

d

dt

∂L

∂v
(x, v) =

∂L

∂x
(x, v).

The Hamiltonian and Lagrangian flows are totally equivalent from a dynamical
system point of view, in the sense that there exists a conjugation between the two.
In other words, there exists a diffeomorphism LL : TM −→ T ∗M , called Legendre
transform, defined by LL(x, v) = (x, ∂L∂v (x, v)), such that ΦtH = L ◦ ΦtL ◦ L−1.

In classical mechanics, a special role in the study of Hamiltonian dynamics is
represented by invariant Lagrangian graphs, i.e. graphs of the form Λ := {(x, η(x) :
x ∈ M} that are Lagrangian (i.e. ω

∣∣
Λ
≡ 0) and invariant under the Hamiltonian

flow ΦtH . Recall that being a Lagrangian graph in T ∗M is equivalent to say that η is
a closed 1-form ([9, Section 3.2]). These graphs satisfy many interesting properties,
but unfortunately they are quite rare. The theory that we are going to describe
aims to provide a generalization of these graphs; namely, we shall construct several
compact invariant subsets of the phase space, which are not necessarily subman-
ifolds, but that are contained in Lipschitz Lagrangian graphs and enjoy similar
interesting properties.

Let us start by recalling that the Euler-Lagrange flow ΦtL can be also char-
acterised in a more variational way, introducing the so-called Lagrangian action.
Given an absolutely continuous curve γ : [a, b] −→ M , we define its action as
AL(γ) =

∫ b
a
L(γ(t), γ̇(t)) dt. It is a classical result that a curve γ : [a, b] −→M is a

solution of the Euler-Lagrange equations if and only if it is a critical point of AL,
restricted to the set of all curves connecting γ(a) to γ(b) in time b − a. However,
in general, these extrema are not minima (except if their time-length b− a is very
small). Whence the idea of considering minimizing objects and seeing if - whenever
they exist - they enjoy special properties or possess a more distinguished structure.

Mather’s approach is indeed based this idea and is concerned with the study
of invariant probability measures and orbits that minimize the Lagrangian action
(by action of a measure, we mean the collective average action of the orbits in its
support, i.e. the integral of the Lagrangian against the measure). It is quite easy to
prove (see [15, Lemma 3.1] and [31, Section 3]) that invariant probability measures
(resp. Hamiltonian orbits) contained in an invariant Lagrangian graph Λ (actually
its pull-back using L) minimize the Lagrangian action of L−η, which we shall denote
AL−η, over the set M(L) of all invariant probability measures for ΦtL (resp. over the
set of all curves with the same end-points and defined for the same time interval).
This idea of changing Lagrangian (which is at the same time a necessity) plays an
important role as it allows one to magnify some motions rather than others. For
instance, consider the case of an integrable system: one cannot expect to recover all
these motions (which foliate the whole phase space) by just minimizing the same
Lagrangian action! What is important to point out is that even if we modify L,
because of the closedness of η we do not change the associated Euler-Lagrange
flow, i.e. L − η has the same Euler-Lagrange flow as L (see [21, p. 177] or [31,
Lemma 4.6]). This is a crucial step in Mather’s approach in [21]: consider a family
of modified Tonelli Lagrangians given by Lη(x, v) = L(x, v)− 〈η(x), v〉, where η is
a closed 1-form on M . These Lagrangians have the same Euler-Lagrange flow as
L, but different action-minimizing orbits and measures. Moreover, these action-
minimizing objects depend only on the cohomology class of η [21, Lemma p.176].

Hence, for each c ∈ H1(M ; R), if we choose ηc to be any smooth closed 1-form
on M with cohomology class [ηc] = c, we can study action-minimizing invariant
probability measures (or orbits) for Lηc := L− ηc. In particular, this allows one to
define several compact invariant subsets of TM :
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• M̃c(L), the Mather set of cohomology class c, given by the union of the
supports of all invariant probability measures that minimize the action of
Lηc (c-action minimizing measure or Mather’s measures of cohomology class
c). See [21].

• Ñc(L), the Mañé set of cohomology class c, given by the union of all orbits
that minimize the action of Lηc on the finite time interval [a, b], for any
a < b. These orbits are called c- global minimizers or c-semi static curves.
[21, 22, 19].

• Ãc(L), the Aubry set of cohomology class c, given by the union of the so
called c−regular minimizers of Lηc (or c-static curves). These are special
kind of c-global minimizers that, roughly speaking, do not only minimize
the Lagrangian action to go from the starting point to the end-point, but
that - up to a change of sign - also minimize the action to go backwards,
i.e. from the end-point to the starting one. A precise definition would
require a longer discussion. Since we are not using this definition in the
following, we refer the interested reader to [22, 19, 31].

2.1. Remark. i) These sets are non-empty, compact, invariant and moreover they
satisfy the following inclusions:

M̃c(L) ⊆ Ãc(L) ⊆ Ñc(L) ⊆ TM .

ii) The most important feature of the Mather set and the Aubry set is the so-
called graph property, namely they are contained in Lipschitz graphs over M
(Mather’s graph theorem [21, Theorem 2]). More specifically, if π : TM → M

denotes the canonical projection along the fibres, then π|Ãc(L) is injective and
its inverse

(
π|Ãc(L)

)−1: π
(
Ãc(L)

)
−→ Ãc(L) is Lipschitz. The same is true for

the Mather set (it follows from the above inclusion). Observe that in general
the Mañé set does not necessarily satisfy the graph property.

iii) As we have mentioned above, when there is an invariant Lagrangian graph Λ of
cohomology class c (i.e. it is the graph of a closed 1-form of cohomology class
c), then Ñc(L) = L−1(Λ). A priori Ãc(L) ⊆ L−1

L (Λ) and M̃c(L) ⊆ L−1
L (Λ). In

particular M̃c(L) = L−1
L (Λ) if and only if the whole Lagrangian graph is the

support of an invariant probability measure (i.e. the motion on it is recurrent).
iv) Similarly to what happens for invariant Lagrangian graphs, the energy E(x, v) =〈

∂L
∂v (x, v), v

〉
− L(x, v) (i.e. the pull-back of the Hamiltonian to TM using the

Legendre transform) is constant on these sets, i.e. for any c ∈ H1(M ; R) the
corresponding sets lie in the same energy level αH(c). Moreover, Carneiro
[10] proved a characterization of this energy value in terms of the minimal
Lagrangian action of L− ηc. More specifically:

αH(c) = − min
µ∈M(L)

AL−ηc(µ).

This defines a function αH : H1(M ; R) −→ R that is generally called Mather’s
α-function or effective Hamiltonian (see also [21, p. 177]).

v) It is possible to show that Mather’s α-function is convex and superlinear [21,
Theorem 1]. In particular, one can consider its convex conjugate, using Fenchel
duality, which is a function on the dual space (H1(M ; R))∗ ' H1(M ; R) and is
given by:

βH : H1(M ; R) −→ R
h 7−→ max

c∈H1(M ;R)
(〈c, h〉 − αH(c)) .

This function is also convex and superlinear and is usually called Mather’s
β-function, or effective Lagrangian. It has also a meaning in terms of the



A WEAK LIOUVILLE-ARNOL′D THEOREM 7

minimal Lagrangian action. In fact, one can interpret elements in H1(M ; R) as
rotation vectors of invariant probability measures [21, p. 177] (or ‘Schwartzman
asymptotic cycles’ [28]). In particular βH(h) represents the minimal Lagrangian
action of L over the set of all invariant probability measures with rotation vector
h. Observe that in this case we do not need to modify the Lagrangian, since
the constraint on the rotation vector will play somehow the role of the previous
modification (it is in some sense the same idea as with Lagrange multipliers
and constrained extrema of a function). We refer the reader to [21, 31] for a
more detailed discussion on the relation between these two different kinds of
action-minimizing processes.

Using the duality between Lagrangian and Hamiltonian, via the Legendre trans-
form introduced above, one can define the analogue of the Mather, Aubry and Mañé
sets in the cotangent bundle, simply considering

M∗c(H) = LL
(
M̃c(L)

)
, A∗c(H) = LL

(
Ãc(L)

)
and N ∗c (H) = LL

(
Ñc(L)

)
.

These sets continue to satisfy the properties mentioned above, including the graph
theorem. Moreover, it follows from Carneiro’s result [10], that they are contained
in the energy level {H(x, p) = αH(c)}. However, one could try to define these
objects directly in the cotangent bundle. For any cohomology class c, let us fix
a representative ηc. Observe that if Λ := {(x, η(x) : x ∈ M} is an invariant
Lagrangian graph of cohomology class c, i.e. η = ηc+du for some u : M → R, then
H(x, ηc + du(x)) = const. Therefore, the Lagrangian graph is a solution (and of
course a subsolution) of Hamilton-Jacobi equation H(x, ηc + du(x)) = k, for some
k ∈ R. In general solutions of this equation, in the classical sense, do not exist.
However Albert Fathi proved that it is always possible to find weak solutions, in
the viscosity sense, and use them to recover the above results. This theory, that
can be considered as the analytic counterpart of the variational approach discussed
above, is nowadays called weak KAM theory. We refer the reader to [14] for a more
complete and precise presentation.

It turns out that for a given cohomology class c these weak solutions can exist
only in a specific energy level, that - quite surprisingly - coincides with Mather’s
value αH(c). This is also the least energy value for which Hamilton-Jacobi equation
can have subsolutions:

(1) H(x, ηc + du(x)) ≤ k

where u ∈ C1(M). Observe that the existence of C1-subsolutions corresponding
to k = αH(c) is a non-trivial result due to Fathi and Siconolfi [16]. Moreover they
proved that these subsolutions are dense in the set of Lipschitz subsolutions. We
shall call these subsolutions, ηc-critical subsolutions. Patrick Bernard [6] improved
this result proving the existence and the denseness of C1,1 ηc-critical subsolutions,
which is the best result that one can generally expect to find. The main problem
in fact is represented by the Aubry set itself, that plays the role of a non-removable
intersection (see also [25]). More specifically, for any ηc-critical subsolution u,
the value of ηc + dxu is prescribed on π(A∗c(H)), where π : T ∗M −→ M is the
canonical projection. Therefore, if the Aubry set is not sufficiently smooth (it is
at least Lipschitz), then these subsolutions cannot be smoother. However, on the
other hand this obstacle provides a new characterization of the Aubry set in terms
of these subsolutions. Namely, if one denotes by Sηc the set of C1,1 ηc-critical
subsolutions, then:

A∗c(H) =
⋂

u∈Sηc

{(x, ηc + dxu) : x ∈M} .(2)
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As we have already recalled, in T ∗M , with the standard symplectic form, there
is a 1-1 correspondence between Lagrangian graphs and closed 1-forms (see for in-
stance [9, Section 3.2]). Therefore, we could interpret the graphs of the differentials
of these critical subsolutions as Lipschitz Lagrangian graphs in T ∗M . Therefore the
Aubry set can be seen as the intersection of these distinguished Lagrangian graphs
and it is exactly this property that provides to this set the intrinsic Lagrangian
structure mentioned above and that will play a crucial role in our proof.

In [30], in fact, Sorrentino used this characterization to study the relation be-
tween the existence of integrals of motion and the size of the above action-minimizing
sets. Let H be a Tonelli Hamiltonian on T ∗M and let F be an integral of motion
of H. If we denote by ΦH and ΦF the respective flows, then:

2.1. Proposition (see Lemma 1 in [30]). The Mather set M∗c(H) and the Aubry
set A∗c(H) are invariant under the action of ΦtF , for each t ∈ R and for each
c ∈ H1(M ; R).

Moreover one can study the implications of the existence of independent integrals
of motion, i.e. integrals of motion whose differentials are linearly independent, as
vectors, at each point of these sets. It follows from the above proposition that this
relates to the size of the Mather and Aubry sets of H. In order to make clear what
we mean by the ‘size’ of these sets, let us introduce some notion of tangent space.
We call generalized tangent space to M∗c(H) (resp. A∗c(H)) at a point (x, p), the
set of all vectors that are tangent to curves in M∗c(H) (resp. A∗c(H)) at (x, p). We
denote it by TG(x,p)M

∗
c(H) (resp. TG(x,p)A

∗
c(H)) and define its rank to be the largest

number of linearly independent vectors that it contains. Then:

2.2. Proposition (See Proposition 1 in [30]). Let H be a Tonelli Hamiltonian on
T ∗M and suppose that there exist k independent integrals of motion on M∗c(H)
(resp. A∗c(H)). Then, rank TG(x,p)M

∗
c(H) ≥ k (resp. rank TG(x,p)A

∗
c(H) ≥ k) at all

points (x, p) ∈M∗c(H) (resp. (x, p) ∈ A∗c(H)).

2.2. Remark. In particular, the existence of the maximum possible number of inte-
grals of motion (i.e. k = n) implies that these sets are invariant smooth Lagrangian
graphs (see [30, Lemma 2 and Lemma 3]).

However the most important peculiarity of these action-minimizing sets observed
in [30], at least as far as we are concerned, is that they force the integrals of motion
to Poisson-commute on them. In fact, using the characterization of the Aubry set in
terms of critical subsolutions of Hamilton-Jacobi and its symplectic interpretation
given above (see (2) and the subsequent comment), one can recover the involution
property of the integrals of motion, at least locally.

2.3. Proposition (See Proposition 2 in [30]). Let H be a Tonelli Hamiltonian on
T ∗M and let F1 and F2 be two integrals of motion. Then for each c ∈ H1(M ; R)
we have that {F1, F2}(x, π̂−1

c (x)) = 0 for all x ∈ Int
(
Ac(H)

)
, where π̂c = π|A∗c(H)

and Ac(H) = π
(
A∗c(H)

)
.

2.3. Remark. Observe that the above set Int
(
Ac(H)

)
may be empty. What the

proposition says is that whenever it is non-empty, the integrals of motion are forced
to Poisson-commute on it. In the cases that we shall be considering hereafter,
Ac(H) = M and therefore it is not empty.

3. Proof of Theorem 1.1

3.1. Proposition. Let Λ ⊂ H−1(h) be a C1 Lagrangian graph. If H is a weakly
integrable Tonelli Hamiltonian and Λ ⊂ RegF , then M admits the structure of a
smooth Td-bundle over a parallelisable base Bn−d for some d > 0.
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Proof (Proposition 3.1). Since Λ is a C1 Lagrangian graph that lies in an energy
surface of H, Λ is the graph of a C1 closed 1-form λ with cohomology class c. It
follows that λ solves the Hamilton-Jacobi equation and from (2) that A∗c(H) ⊆ Λ
(see also [30, Section 3]). Moreover, Proposition 2.2 and Remark 2.2 allow us to
conclude that A∗c(H) = Λ. Therefore, Proposition 2.1 implies that each vector
field XFi , i = 1, . . . , n is tangent to Λ. Let Y = XH |Λ and Yi = XFi |Λ. Since
Λ ⊂ RegF , {Yi} is a framing of TΛ.

Let φi (resp. φ) be the flow of Yi (resp. Y ). Let Γ be the group of diffeo-
morphisms generated by the flows φi and φ. The Stefan-Sussman orbit theorem
implies that Λ is the orbit of Γ: Λ =

{∏m
j=1 φ

ij
tj (p) : tj ∈ R,m ∈ N

}
for any

p ∈ Λ [34, 33, 32]. Since H Poisson-commutes with each of the Fi, the vector field
Y commutes with Yi for all i. Therefore, the flow φ of Y commutes with each φi,
i.e. φ lies in the centre Z of Γ.

Let p ∈ Λ be a given point and q ∈ Λ a second point. Let Φ =
∏m
j=1 φ

ij
tj be

an element in Γ satisfying Φ(p) = q. If ϕt is a 1-parameter subgroup of Z, then
ϕt(q) = Φ(ϕt(p)) for all t ∈ R. Therefore, each orbit of ϕ is conjugate by a smooth
conjugacy isotopic to the identity. We have seen that φt ∈ Z for all t, and the
above shows that each orbit of φt (indeed, of Z) is conjugate.

Define a smooth Riemannian metric g on Λ by defining {Yi} to be an orthonormal
framing of TΛ. Then, we see that each element in Z preserves g. Therefore Z is
a group of isometries of a compact Riemannian manifold. The closure of Z in the
group of C1 diffeomorphisms of Λ, Z̄, is therefore a compact connected abelian Lie
group by the Montgomery-Zippin theorem [24]. Therefore, Z̄ is a d-dimensional
torus for some d > 0 (since it contains the 1-parameter group φt).

Since Z centralises Γ, so does its closure Z̄. Therefore, each orbit of Z̄ is conju-
gate. It follows that Z̄ acts freely on Λ. This gives Λ the structure of a principal
Td-bundle.

Finally, let p ∈ Λ be given. Possibly after a linear change of basis, we can
suppose that Yi, i = 1, . . . , d, is a basis of the tangent space to the Td-orbit through
p, and Yi, i = d+ 1, . . . , n is a basis of the orthogonal complement. Therefore, Yi,
i = d+ 1, . . . , n is a basis of the orthogonal complement to the fibre at all points on
Λ. Since each vector field Yi is Td-invariant, it descends to B = Λ/Td. Therefore,
the vector fields on B induced by Yi, i = d+ 1, . . . , n frame TB. �

3.1. Remark. A few remarks are in order. First, there is a ξ ∈ t = Lie Td such that
exp(tξ) ·p = φt(p) for all t ∈ R and p ∈ Λ. This follows from the fact that {φt} ⊂ Z̄
is a 1-parameter subgroup. Therefore, there is a torus T of dimension c ≤ d which
is the closure of {exp(tξ)} in Td such that each orbit closure of φ is the orbit of T .
Second, for almost all constants (αi) ∈ Rd, the vector field Yα = Y +

∑d
i=1 αiYi

will have dense orbits in each Td orbit. In particular, by means of bump functions
αi = αi(F ), we can perturb H in a neighbourhood of Λ to a Tonelli Hamiltonian Hα

that is weakly integrable with the same integrals F but Yα = XHα |Λ is in general
position. Third, since each orbit of φ is conjugate by a diffeomorphism isotopic
to 1, the asymptotic homology of Λ is unique (see [15, Proposition A.1]). Finally,
if, as in Theorem 1.1, one has an upper semicontinuous family of such Lagrangian
graphs Λc′ , then the dimension d′ of the torus is an upper semicontinuous function
of c′.

Proof (Theorem 1.1). Since A∗c is contained in the set of regular points of F , it fol-
lows from Proposition 2.2 and Remark 2.2 that the Aubry set A∗c is a C1 invariant
Lagrangian graph Λc of cohomology class c and that it coincides with the Mather
set M∗c (see also [30, Lemmas 2 & 3]). Therefore, Λc supports an invariant proba-
bility measure of full support. In particular, since all c-critical subsolutions of the
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Hamilton-Jacobi equation (1), with k = αH(c), have the same differential on the
(projected) Aubry set [14, Theorem 4.11.5], it follows that, up to constants, there
exists a unique c-critical subsolution, which is indeed a solution. It follows then
that the Mañé set N ∗c = A∗c (see [14, Definition 5.2.5]). We can use the upper semi-
continuity of the Mañé set (see for instance [2, Proposition 13]) to deduce that the
Mañé set corresponding to nearby cohomology classes must also lie in RegF (note
in fact that in general the Aubry set is not upper semicontinuous [7]). Hence, there
exists an open neighborhood O of c in H1(M ; R) such that A∗c′ ⊆ N ∗c′ ⊂ RegF for
all c′ ∈ O and applying the same argument as above, we can conclude that each A∗c′
is a smooth invariant Lagrangian graph of cohomology class c′ and that it coincides
with the Mather set M∗c′ .

At this point (i) and (ii) follow from Proposition 3.1 and Remark 3.1.
The proof of (iii) is the same as in [30, Corollary 4], but in this case we also know

that these graphs are Schwartzman uniquely ergodic, i.e. all invariant probability
measures on Λc′ have the same rotation vector hc′ ∈ H1(M ; R) (see Remark 3.1).
The differentiability of αH follows then from [15, Corollary 3.6]. The differentia-
bility of βH follows the disjointness of these graphs (see for instance [15, Theorem
3.3] or [31, Remark 4.26 (ii)]).

Let us now prove (iv). If dimM = 2, then it follows from (i) that M is orientable
and has genus 0, therefore it must be T2. If dimM = 3, we have several cases:
(d = 1) we have an orientable Seifert manifold over a compact parallelisable surface,
hence a principal T1 bundle over T2; (d = 2) we have an orientable principal T2

bundle over T, hence T3; (d = 3) we obtain T3. This completes the proof of (iv).
As for (v), let us denote Λc′ = {(x, λc′(x)) : x ∈M}. Observe that the map:

Ψ : O ×M −→ T ∗M

(c′, x) 7−→ λc′(x)

is continuous. It is sufficient to show that if cn → c′ in O, then λcn converge
uniformly to λc′ . In fact, the sequence {λcn}n is equilipschitz (it follows from
Mather’s graph theorem [21, Theorem 2]) and equibounded, therefore applying
Ascoli-Arzelà theorem we can conclude that - up to selecting a subsequence - λcn
converge uniformly to λ̃ = ηc′ + du, for some u ∈ C1(M). Observe that since
H(x, λcn(x)) = αH(cn) for all x ∈ M and all n, and αH is continuous, then
H(x, λ̃(x)) = αH(c′) for all x. Therefore, u is a solution of Hamilton-Jacobi equa-
tion H(x, ηc′ + du) = αH(c′). As we have observed in the beginning of this proof,
for each c′ ∈ O there is a unique solution of this equation, hence λ̃ = λc′ . This
concludes the proof of the continuity of Ψ. Notice that this could be also deduced
from the fact that Ψ is injective and semicontinuous.

The continuity of Ψ implies that these Lagrangian graphs Λc′ foliate an open
neighborhood of Λc. It follows from Proposition 2.3 that the components of F
commute in this open region. Therefore, each Λc′ is an n-dimensional manifold
which is invariant under the action of n commutating vector fields, which are linearly
independent at each point. It is a classical result that Λc′ is then diffeomorphic to
an n-dimensional torus and that the motion on it is conjugate to a rotation (see for
instance [3]). �

Proof (Corollary 1.1). Let d be the largest dimension of the torus fibre of Λc for
c ∈ O. The upper semicontinuity of this dimension implies that there is an open
set on which the dimension of the fibre equals d; without loss of generality, it can
be supposed that this open set is O. By (iii) of Theorem 1.1, Mather’s α-function
is differentiable on O. Since αH is a locally Lipschitz function, it is continuously
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differentiable on O. Therefore, the map

c � // h = ∂αH(c), O
∂αH // H1(M ; R)

is continuous and one-to-one (by [15, Theorem 3.3]) and hence a homeomorphism
onto its image.

Let b1(M) = dimH1(M ; R) be the first Betti number of M . By remark 3.1, we
can assume that, for a residual set of c ∈ O, the orbits of the Tonelli Hamiltonian
are dense in the torus fibres of Λc, i.e. in the notation of the proof of Proposition
3.1, the 1-parameter group φt is dense in the torus Z̄. It follows that if d > b1(M),
then there exists c, c′ ∈ O such that the rotation vectors ρ(Λc) and ρ(Λc′) coincide.
This contradicts the injectivity of ∂αH . Therefore d ≤ b1(M) and so d = b1(M).

Let κ : M̌ −→M be a finite covering. It is claimed that b1(M̌) = b1(M).

Λ̌c
� � //

K|Λ̌c
����

T ∗M̌ // //

K
����

M̌

κ
����

η̌c=κ
∗ηc

||

Λc
� � // T ∗M // // M

ηc

``

(3)

Since the cotangent lift of κ, K, is a local symplectomorphism, the Tonelli Hamil-
tonian Ȟ = K∗H is weakly integrable with the first-integral map F̌ = K∗F . Let
c ∈ O be a cohomology class and ηc a solution to the Hamilton-Jacobi equation
for H whose graph Λc equals the Mather set M∗c (diagram (3)). The pullback
η̌c = κ∗ηc solves the Hamilton-Jacobi equation for Ȟ and its graph Λ̌c is an invari-
ant C1 Lagrangian graph. By Proposition 3.1, there is a ď > 0 such that Λ̌c admits
the structure of a principal Tď-bundle. This torus action is defined by ď commuting
vector fields Y̌i = XF̌i

|Λ̌c, i = 1, . . . , ď induced by the first-integral map F̌ . Since
K is a local symplectomorphism, K|Λ̌c is a local diffeomorphism. This shows that
the dimension ď equals d. By the previous paragraph, weak integrability implies
that ď = b1(M̌) so b1(M̌) = b1(M).

When dimB ≤ 2, B has the homotopy type of a point, hence it is a point.
Assume that dimB = 3. If π1(B) is a free product of irreducible finitely-presented
groups Gi (i = 0, . . . , g), then Kneser’s theorem [18] implies that B = B0# · · ·#Bg
where Bi is a closed 3-manifold with π1(Bi) = Gi. Since H1(B) =

⊕
iH1(Bi), each

homology group H1(Bi) is finite. According to [27, Proposition 2.1], if H1(B) is
finite and π1(Bi) is not perfect for some i, then the universal abelian covering B̂, or
a 2-fold cover thereof, is a finite cover of B which has first Betti number at least 1.
Thus, the only case to be resolved is that when π1(Bi) is perfect for all i = 0, . . . , g.
By [27, Remark at bottom of p. 570], Stallings’ theorem implies that Gi = [Gi, Gi]
is isomorphic to π1 of the Klein bottle – which is absurd. This proves that B is
an irreducible 3-manifold. If π1(B) is infinite, then the virtual Haken conjecture
implies that B has a finite covering with non-zero first Betti number. Therefore,
π1(B) is finite and so by the proof of the Poincaré conjecture, B is finitely covered
by S3.

Let us prove that M is a trivial principal Td-bundle. This argument is indebted
to that of Sepe [29]. A principal Td-bundle is classified up to isomorphism by a
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classifying map

TdK k

yysssssssssss � _

��

� s

%%KKKKKKKKKK

M = f∗ETd //

πf

����

ETd

π

����

∏d
i=1 S

∞

Hopf fib.
����

B
f // BTd

∏d
i=1 CP∞.

(4)

The classifying map f is null homotopic if and only if the pullback bundle is trivial.
Classical obstruction theory shows that the single obstruction to a null homotopy
of f is a cohomology class – the Chern class – with the following description. The
trivial section ∗ 7→ ∗ × 0 of ETd restricted to its 0-skeleton extends over the 1-
skeleton. The obstruction to extending this section over the 2-skeleton defines a
cohomology class η ∈ H2(BTd;π1(Td)) = H2(BTd;H1(Td)). By naturality, the
obstruction to extending the trivial section of f∗ETd over the 2-skeleton is the
cohomology class ηf = f∗η ∈ H2(B;H1(Td)) – called the Chern class.

In terms of the E2 page of the Leray-Serre spectral sequence with Z-coefficients
for the bundle Td ↪→ M −→ B, one has the differential d0,1

2 : E0,1
2 = H1(Td) −→

E2,0
2 = H2(B). It has been shown above that the inclusion map Td ↪→ M is

injective on H1, hence surjective on H1. Since a class in E0,1
2 survives to a class

in E∞ if and only if it is in the kernel of d0,1
2 , the differential d0,1

2 must therefore
vanish. Since the differential d2,0

2 vanishes, it follows that H2(B) survives to E∞.
On the other hand, for any cohomology class φ ∈ H1(Td), the class η∪φ = 〈η, φ〉

is a class in H2(BTd) which satisfies π∗(η ∪ φ) = 0 in H2(ETd). By naturality,
the class ηf ∪ φ ∈ H2(B). This class, if non-zero, survives to E∞. On the other
hand, π∗f (ηf ∪ φ) = 0 in H2(M). This shows that ηf ∪ φ = 0 in H2(B). Since the
class φ was arbitrary, it follows that ηf vanishes. Therefore M = f∗ETd is a trivial
principal Td-bundle. Finally, since M ' Td × B and b1(M) = d, the first Betti
number of B vanishes.

Let us now prove (i–ii).
When dimM = 3, one cannot have d < 3, since there are no parallelisable

(3− d)-dimensional manifolds with trivial first Betti number. Therefore, d = 3 and
M = T3.

When dimM = 4, if d = 1, then the base B is a compact orientable 3-manifold.
The proof now proceeds in the same way as in the proof of Corollary 1.1.

1

2

3

1 2 3

B

T

Figure 1. E2 page of the spectral sequence.

�
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4. Amenable groups, measures and rotation vectors

In this section it is assumed that X is a compact, path-connected, locally simply-
connected metrizable space and (G,mG) is a locally compact, simply-connected,
metrizable, amenable topological group with Haar measure mG. We will use d
to denote a metric on both spaces; it will be assumed that the metric on G is
right-invariant, without loss of generality. The space of mG-essentially bounded
measurable functions on G is denoted by L∞(G). L∞(G)∗ has a distinguished
subspace of functionals invariant under G’s left (resp. right) action; this subspace
will be denoted by L∞(G)∗G− (resp. L∞(G)∗G+

). A functional ν ∈ L∞(G)∗ which
satisfies ν(1) = 1 is called a mean. The set of left-invariant (resp. right-invariant)
means is denoted by m(G)G− (resp. m(G)G+); amenability of G implies that both
m(G)G± is non-empty, as is the intersection m(G).

Let π̂ : X̂ −→ X be the universal abelian covering space of X, i.e. the regular
covering space whose fundamental group is [π1X,π1X] and on which H1(X; Z)
(singular homology) acts as the group of deck transformations of π̂.

Let φ : G −→ X be a uniformly continuous map (it is not assumed that there is
an action of G on X). The simple-connectedness of G implies that there is a lift φ̂ of
φ to X̂. It is well-known that the first singular cohomology group of X is naturally
isomorphic to the group of homotopy classes of maps from X to S1, denoted by
[X,S1]. For each f ∈ [X,S1], let us construct the following commutative diagram

X̂

π̂
����

f̂ // R

p
����

G φ //

φ̂���

??���

g
66

ĝ ''

X f //

f̂

>>

S1

(5)

where p(x) = x mod 1 and f̂ is a lift of f to X̂ — the dotted diagonal line exists if
and only if f is null-homotopic. Define the map

G×G
ζ // R1 (s, t) � ζ // g(st)− g(t) .(6)

A priori, ζ is a map into S1, but the simple-connectedness of G implies there is a
unique lift of the map in (6) that is identically zero when s = 1 (the lift is trivially
ĝ(st)− ĝ(t)). For a fixed s ∈ G, let ζs(t) = ζ(s, t).

4.1. Lemma. For each s ∈ G, ζs ∈ L∞(G).

Proof. Since X is compact, f is uniformly continuous. Since φ is assumed to be
uniformly continuous, g and therefore ĝ is uniformly continuous. Therefore, there
is a δ > 0 such that if a, b ∈ G and d(a, b) < δ then |ĝ(a)− ĝ(b)| < 1. Let N be an
integer exceeding d(s, 1)/δ. Then the right-invariance of the metric d implies that
for all t ∈ G, d(st, t) = d(s, 1) < Nδ, so by the triangle inequality, one concludes
|ĝ(st)− ĝ(t)| < N . Thus |ζs(t)| < N for all t ∈ G. �

4.2. Lemma. Let ν ∈ m(G)G− be a left-invariant mean on G. If g ∈ L∞(G), then
〈ν, ζs〉 = 0 for all s ∈ G. In particular, if

(1) f is null-homotopic; or
(2) Im φ̂ is contained in a compact set,

then 〈ν, ζs〉 vanishes for all s ∈ G.

Proof. If g ∈ L∞(G), then 〈ν, ζs〉 = 〈s∗ν, g〉 − 〈ν, g〉 = 0 by left-invariance of ν. If
f is null-homotopic, then the image of f̂ is a compact subset of R, so g ∈ L∞(G);
likewise, if Im φ̂ has compact closure. �



14 LEO T. BUTLER & ALFONSO SORRENTINO

4.3. Lemma. Let φ, φ′ : G −→ X be uniformly continuous maps. If there is a
K > 0 such that their lifts φ̂, φ̂′ : G −→ X̂ satisfy d(φ̂(s), φ̂′(s)) < K for all s ∈ G,
then 〈ν, ζs − ζ ′s〉 vanishes for all s ∈ G and ν ∈ m(G)G− .

Proof. The proof of this lemma mirrors the preceding. By the assumption that
d(φ̂(t), φ̂′(t)) < K for all t ∈ G, one has that ĥ(t) := f̂ φ̂(t)− f̂ φ̂′(t) lies in L∞(G).
Therefore, 〈ν, ζs − ζ ′s〉 = 〈s∗ν, ĥ〉 − 〈ν, ĥ〉 = 0 by left-invariance of the mean ν. �

4.4. Lemma. Let ν ∈ m(G)G− be a left-invariant mean and φ : G −→ X a uni-
formly continuous map. For each s ∈ G, the map

f 7−→ 〈ν, ζs〉(7)

(see (6)) induces a linear function ρs(ν) : H1(X; R) −→ R. The function ρs :
m(G)G− −→ H1(X; R) is affine and continuous in the weak-* topology on L∞(G)∗∗.

Proof. It suffices to show that this map is additive on H1(X; Z) = [X,S1], since it
is extended by multiplicativity to a map on H1(X; R). First, let us show the map is
well-defined on homotopy classes. Let f, f ′ be representatives of the homotopy class
[f ]. By compactness of X × [0, 1], there is an N > 0 such that |f̂(x)− f̂ ′(x)| < N

for all x ∈ X̂. Therefore, |g(st) − g′(st)| < N and |g(t) − g′(t)| < N for all t ∈ G
(using the obvious notation), so both s∗(g − g′) and g − g′ are in L∞(G). Thus,
〈ν, ζs − ζ ′s〉 = 〈s∗ν, g − g′〉 − 〈ν, g − g′〉 = 0 by left-invariance of ν. This proves the
map (7) is well-defined on [X,S1].

To prove that the map (7) is additive, let f, h : X −→ S1 be representatives
of the homotopy classes [f ], [h]. The homotopy class [f ] + [h] is represented by
[f + h]. From the diagram (5), it is clear that ζf+h = ζf + ζh where ζ• denotes ζ
constructed with •. This suffices to prove additivity, and that suffices to show that
ρs(ν) is a linear form on H1(X; R).

Since the pairing defining ρs(ν) is the bilinear pairing between L∞(G)∗ and
L∞(G), it follows that ρs is an affine map that is continuous in the weak-* topology
on linear maps Hom(L∞(G)∗;H1(X; R)∗). �

4.1. Definition. Let s ∈ G. The set

Rs = ρs
(
m(G)G−

)
(8)

is the rotation set of the left translation s.

4.1. Theorem. The map ρ : G −→ Hom(m(G)G− ;H1(X; R)) is continuous. For
each s ∈ G, the rotation set Rs is a compact, convex subset of H1(X; R). The
rotation-set map

s 7−→ Rs(9)

is an upper semi-continuous set function.

Proof. If sn → s in G, then for a fixed f : X −→ S1, one sees that ζsn → ζs in
L∞(G) ∩ C0(G; R). Therefore, for any ν ∈ m(G)G− , 〈ρsn(ν), [f ]〉 −→ 〈ρs(ν), [f ]〉.
This proves ρ is continuous in the weak-* topology.

Clearly m(G)G− is convex. Since m(G)G− ⊂ L∞(G)∗ is a closed subset of the unit
ball in L∞(G)∗, it is a compact set in the weak-* topology. Since ρs is continuous
and affine, its image is compact and convex. �

4.1. Examples. Let us compute some rotation sets.
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4.1.1. Translations on tori. Let X = Tn and let G = Rn = X̃ be the universal
covering group acting in the tautological manner; the map φ is the orbit map of
θ0 ∈ Tn. A cohomology class f ∈ [X,S1] has a canonical representative, viz.f(θ) =
〈v, θ〉 mod 1 where v ∈ Hom(Zn; Z). One arrives at the map g̃(t) = 〈v, t+ θ̃0〉 and
ζs(t) = 〈v, s〉 – which is independent of t ∈ G –, whence the mean of ζs equals 〈v, s〉
for any mean ν ∈ m(G)G. If one employs the tautological isomorphism between the
real homology (resp. cohomology) group of Tn and Rn (resp. Hom(Rn; R)), one
obtains

ρs(ν) = s

for all s ∈ G, ν ∈ m(G)G.
We note that this calculation computes the rotation vector/set of a subgroup,

given a mean on the whole group. Lemma 4.6 below shows that there is no loss of
generality.

4.1.2. Translations on quotients of contractible amenable Lie groups of type (E).
Let G be a contractible, amenable Lie group of type (E) (hence a solvable Lie
group of type (E)), ΓCG be a co-compact subgroup and X = Γ\G. Let g, g′ ∈ G
and let φ : G −→ X be the map φ(t) = Γgt−1g′. Let N be the commutator
subgroup of G; it is known that Γ ∩ N is a lattice in N , that the commutator
subgroup of Γ is of finite index in Γ ∩N and therefore ΓN is closed subgroup of G
[11, Lemma 3]. The map F : X −→ N\X is therefore a submersion onto a torus
whose dimension is the codimension of N in G. From the fact that the derived
subgroup of Γ is of finite index in Γ ∩N , one sees that [X,S1] = F ∗[N\X,S1].

Therefore, we have reduced the problem to the case of a translation on a torus,
whence ρs(ν) = −Ns in the simply connected abelian Lie group N\G, ν ∈ m(G)G− .

4.1.3. Translations on quotients of amenable Lie groups of type (E). The situation
with simply-connected amenable Lie groups of type (E) is somewhat more compli-
cated than the previous example, as exemplified by [11, Examples 1 & 2]. These
examples show how the first Bieberbach theorem may fail, but in these examples
the Levi decomposition is trivial: the groups themselves are solvable and one might
be lead to believe that this is the only way that such pathological examples can
arise.

Example. Let us give an example where the Levi decomposition is non-trivial and
the first Bieberbach theorem fails. That is, let us give an example where G = SK
is a simply-connected amenable Lie group of type (E) where S is its solvable radical
and K is a maximal compact subgroup, and Γ < G is a lattice subgroup such that
Γ ∩ S is not a lattice subgroup of S.

Let k > 2 be integers and let N be the nilpotent Lie group whose multiplication
is defined by

(x1, y1, z1) · (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 +
1
2

(x1 ⊗ y2 − x2 ⊗ y1))(10)

where xi, yi ∈ Rk, zi ∈ Rk ⊗ Rk.

The cyclic group generated by

a =

2 1 0
1 1 0
0 0 1

(11)

acts as a group of automorphisms of N , and this group is a discrete subgroup of
a 1-parameter group of automorphisms A. Let S = NA, a solvable group of type
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(E). On the other hand, let K be the universal covering group of SOk × SOk (since
k > 2, K is compact) and let K act on N via

κ · g = (u · x, v · y, (u⊗ v) · z)(12)

where g = (x, y, z) ∈ N,κ ∈ K 7−→ (u, v) ∈ SOk × SOk.

This is an action by automorphisms of N and this action commutes with the action
of A, so this action induces a natural action of K on S. This suffices to describe
the group G = SK, an amenable Lie group of type (E).

The lattice subgroup Γ is described as follows. Let

NZ =
{
g = (x, y, z) ∈ N : x, y ∈ Zk, 2z ∈ Zk ⊗ Zk

}

and observe that a preserves NZ. Let b ∈ K and let γ = ab. The group Γ generated
by γ and NZ is discrete and co-compact in G for any choice of b. If b is of infinite
order, then the intersection of Γ with S is just NZ and is not a lattice in S. The
projection of Γ to K = S\G is the group generated by b; if b is chosen in general
position, then the identity component of the closure is a maximal torus.

This example shows how the first Bieberbach theorem can fail for type (E)
amenable Lie groups. However, the representation of K as a group of auto-
morphisms of S is almost faithful, and this implies many of the nice proper-
ties mentioned in the previous paragraph. On the other hand, if one takes the
amenable Lie group G = Cn × SUn with the lattice subgroup Γ generated by the
set {(ej , ρj), (iej , ρj) : j = 1, . . . , n} where each ρj is a generic element in the max-
imal torus of diagonal matrices, then one sees that the intersection of Γ with S is
trivial and the projection of Γ onto SUn is dense in the maximal torus.

Let G = SK be a simply-connected, amenable Lie group where S is its radical
and K its maximal compact subgroup, and let Γ < G be a lattice subgroup. Let
us consider two cases in successive generality:

K is virtually a subgroup of Aut(S). In this case, we suppose that the action of K
on S by conjugation has a finite kernel. In this case, the machinery of [11, 4] is
applicable.

Let S∗ be the identity component of the closure of ΓS in G and let Γ∗ = S∗ ∩Γ.
By [11, Lemma 3] and [4], one knows that S∗ is a solvable subgroup containing
S, Γ∗ is of finite index in Γ, S\S∗ is a torus subgroup, T , of K, the nilradical of
S∗ equals the nilradical R of S, Γ ∩ R is a lattice subgroup of R. Likewise, the
derived subgroup of S, N = [S, S] = [S∗, S∗], intersects Γ in a lattice subgroup
of N . This information is summarised in the commutative diagram (13), where
B = Γ ∩N,F = B\N,Z = B\G, T ∗ = (B\N)\(N\S∗) (a torus) and A = S\S∗.
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B //

��

##GGG B

��

""DDD

N //

��

## ##HHH G // //

��

"" ""FFF N\G = AK

����

F //

��

Z

����

33 33hhhhhhh

B\Γ∗
&&NN Γ∗ //

��

""EEE
oooo Γ∗

��

!!BBB

N\S∗
&& &&LLL S∗ //

��

## ##HHH
oooo G // //

��

"" ""FFF S∗\G = T\K

����

T ∗ Y ∗ //

����

oooo X∗

����

33 33hhhhhhh

Γ //
##FFF Γ

!!CCC

ΓS //
## ##GGG G // //

"" ""EEE ΓS\G = WT\K

Y // X
44 44hhhhhhh

(13)

In diagram (13), all southeast sequences are fibrations with discrete fibre (covering
spaces), all eastern sequences are fibrations, as are the backwards L sequences.
In particular, X∗ is a finite regular covering space of X which is fibred by the
solvmanifold Y ∗ over the K-homogeneous space T\K; the solvmanifold Y ∗ is itself
fibred by the nilmanifold F over the torus T ∗. Since S∗ is the identity component
of ΓS, the group W = Γ∗\Γ permutes the components of ΓS, which shows that
Y ∗ = Y , so X is fibred by solvmanifolds, also.

Since WT\K has finite fundamental group, its first cohomology group over Z
vanishes. Therefore, the Leray-Serre spectral sequence for the fibring of X by Y
shows that the restriction to a fibre induces an injection of H1(X; R) into H1(Y ; R)
(the image is the kernel of d0,1

2 in the figure 1). The fibring of Y by the nilmanifold
F over the torus T ∗ is exactly as described in the previous example. In particular,
the projection map induces an isomorphism of H1(Y ; R) and H1(T ∗; R). Since
S∗ = ST , we see that N\S∗ = AT where A = N\S. Since T is contractible in G,
one sees that the first real homology group of X∗ is naturally identified with A; or
Z is visibly the universal abelian covering space of X∗. It follows that H1(X; R) is
naturally identified with AW , the fixed-point set of W acting on A.

Let φ : G −→ X be defined by φ(t) = Γgt−1g′ for some g, g′ ∈ G. A few appli-
cations of Lemma 4.3 imply that one can suppose, without changing the rotation
map, that φ(t) = Γaκα−1κ−1b where a, b ∈ S, κ ∈ K and t = βα is the decompo-
sition into β ∈ K and α ∈ S. Let F̂ : Z −→ A = N\G/K be the map that induces
the isomorphism of [X∗, S1]⊗R with A. Concretely, if Nt ∈ Z, let t = βtαt be the
decomposition of t into βt ∈ K, αt ∈ S; then F̂ (Nt) = KαtN . One computes that

ζs(t) = −K(κβ−1
t ) · αs · (κβ−1

t )−1N s, t ∈ G.(14)

It is clear that ζs is S-invariant since t 7→ βt is the projection G −→ K. Since the
restriction of any mean on a compact Lie group to its continuous functions is the
Haar probability measure [26], one sees that for any ν ∈ m(G)G− , ρs(ν) = −ᾱsN
is the projection of αsN onto the subspace of K-invariant vectors.

Note that if one restricts φ to S, then the rotation vector of s ∈ S with respect
to the mean ν ∈ m(S)S− is the projection of −κsκ−1N onto the subspace of W -
invariant vectors.

When K is not a virtual subgroup of Aut(S). Let us now examine the case where
the kernel of representation K −→ Aut(S) is not finite. Let K1CK be the identity
component of this kernel. Since K is compact and simply-connected, K is semi-
simple and so K = K0⊕K1 is a sum of semi-simple factors, and the representation
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of K0 −→ Aut(S) has finite kernel. By construction, K1 is a normal subgroup of
G and the lattice Γ intersects K1 in a compact set, hence Γ∩K1 is a finite, normal
subgroup of Γ. We obtain the fibration

Γ ∩K1\K1
// Γ\G ρ // // Γ̄\Ḡ = (Γ ∩K1\Γ)\(K1\G) .(15)

The quotient Ḡ = SK0 has the property that K0 is a virtual subgroup of Aut(S).
The fibre Γ ∩ K1\K1 has a finite fundamental group. It follows that the map
ρ∗ : H1(Γ̄\Ḡ; R) −→ H1(Γ\G; R) is an isomorphism. From this, one concludes
that the preceding computations of the ζ-map (14) and the rotation vectors of a
mean remain correct in this enlarged setting.

4.1.4. Quotients of amenable Lie groups of type (E) – II. Let us continue with the
notations of the previous example. LetH = G×G′ be a product of simply connected
amenable Lie groups (in applications, G′ = R, but what follows is perfectly general).
Let ϕ : G′ −→ X be a uniformly continuous map and let

φ : H −→ X φ(h) = Γg−1ϕ(g′), where h = (g, g′) ∈ H.(16)

Similar to that above, one computes that with s = (1, b) and t = (g, a), one has

ζs(t) = −Kδb(a)N δb(a) = the projection of ϕ(ba)−1 · ϕ(a) onto S,(17)

using the factorisation of an element in G as in the previous example. In particular,
this implies that ζs is independent of g when s = (1, b). This implies that if
ν ∈ m(H)H− is a mean on H, then the rotation vector ρs(ν) (s = (1, b)) equals the
rotation vector ρb(ν̄) for the map ϕ and the projected mean ν̄ ∈ m(G′)G

′
− .

In the next section we show how this result can be interpreted in terms of the
rotation vector of two measures with different sized supports.

4.2. Relation to Schwartzman cycles. Let us suppose that Φ : G×X −→ G is
a left-action of G on X. For each x ∈ X, one has the orbit map φx(t) := Φ(t, x).
The action will also be denoted by Φ(t, x) = t · x.

4.5. Lemma. The orbit map φx : G −→ X is uniformly continuous for all x ∈ X.

Proof. Let us define ε(δ) = max {d(Φ(1, x),Φ(t, x)) : x ∈ X, d(1, t) ≤ δ}. By local
compactness of G and compactness of X, the maximum is attained. Moreover, ε is
a continuous increasing function of δ that vanishes at δ = 0. This implies uniform
continuity of the orbit map φx. �

Let ν ∈ m(G)G− be a left-invariant mean on G. For each x ∈ X, the pull-
back of C0(X) by the orbit map φx lies inside L∞(G). Thus, φx,∗ν determines a
positive, continuous linear functional on C0(X) and so by the Riesz representation
theorem, φx,∗ν induces a Borel probability measure µx on X. It is clear that µx is
G-invariant. The support of µx is clearly contained in the ω-limit set of x,

ωG(x) =
⋂
T>0

{t · x : d(1, t) > T}.(18)

In [15, Appendix A], one finds a definition of the rotation vector of an invariant
measure of a flow (an R-action). Let µ be an invariant Borel probability measure
of the flow ϕ : R × X −→ X and [f ] ∈ [X,S1] a cohomology class. The rotation
vector of µ is defined as

〈[f ], ρϕ(µ)〉 =
∫
x∈X

ζϕ(x) dµ(x),(19)

where ζϕ(x) = f(ϕ1(x))− f(x) similar to (6). We have:
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4.2. Theorem. Let Φ : G × X −→ X be a G-action, ϕ be an action of a 1-
dimensional subgroup with ϕ1 = s, and let ν ∈ m(G)G− , µx = φx,∗ν for some
x ∈ X. Then

ρxs (ν) = ρϕ(µx),(20)

where ρx is the rotation map for the orbit map φx.

The proof is an application of change of variables.

4.3. Averaged rotation vectors. In this subsection, let us suppose that G fits
in the exact sequence of (amenable) groups

H
� � / G // // F.(21)

Let νH ∈ m(H)H− (resp. νF ∈ m(F )F−) be left-invariant means. One can define
an invariant mean νG as follows: let f ∈ L∞(G) and define fH ∈ L∞(F ) by
averaging over H, fH(Ht) = 〈νH , ft〉 where ft(x) = f(tx). The normality of H and
left-invariance of νH implies that fH is well-defined and fH ∈ L∞(F ). Then, one
defines the left-invariant mean νG by 〈νG, f〉 := 〈νF , fH〉.

4.2. Definition. The mean νG ∈ m(G)G− is denoted by νG = νF × νH and called
a product mean.

Let us suppose that H acts on X by an action ϕ and that there is a uniformly
continuous map φ : G −→ X satisfying

φ(s · t) = ϕ(s) · φ(t) ∀s ∈ H, t ∈ G.(22)

Let t0 ∈ G, x = φ(t0) and µH,x = ϕx,∗νH is the pushed forward measure on X.
The measure µG = φ∗νG (where νG = νF × νH) is H-invariant due to the cocycle
condition (22) and supp µH,x ⊂ supp µG.

The following lemma shows that under a suitable condition on the map φ, one
can average over the group G to obtain a measure µG with a larger support and
the same rotation set.

4.6. Lemma. Suppose that the lift φ̂ (see (5)) has the property that for each t ∈ G,
there is a K > 0 such that d(ϕ̂(s) · φ̂(t0), ϕ̂(s) · φ̂(t)) < K for all s ∈ H. Then for
all s ∈ H, ρs(µH,x) is independent of the point x ∈ Imφ. In particular,

ρs(µH,x) = ρs(µG).(23)

To be clear, ρs refers to the rotation map of the flow generated by the 1-parameter
group through s, as in (19). The proof of this lemma follows from Lemma 4.3 and
Theorem 4.2 along with an unravelling of the product mean.

Note that the example in section 4.1.3 does not contradict this lemma. In that
example, the map φ does not satisfy the uniform boundedness condition.

5. Homogeneous structures

Let G be a connected Lie group. Define the left (resp. right) translation map by

Lh(g) := hg, Rh(g) := gh(24)

for all g, h ∈ G. These two maps define a left action of G− = G (resp. G+ = Gop)
on G and therefore on T ∗G by Hamiltonian symplectomorphisms. The momentum
maps of these actions are

Ψ− : T ∗G −→ g∗− Ψ+ : T ∗G −→ g∗+(25)

Ψ−(g, µg) := (T1Rg)∗µg Ψ+(g, µg) := (T1Lg)∗µg,

for each g ∈ G, µg ∈ T ∗gG.
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A co-vector field µ : G −→ T ∗G is left- (resp. right-) invariant if µ(1) =
(T1Lg)∗µ(g) (resp. µ(1) = (T1Rg)∗µ(g)) for all g ∈ G. If one trivialises T ∗G
with respect to the left-invariant co-vectors, then the momentum maps are simply

Ψ−(g, µ) := Ad∗g−1µ Ψ+(g, µ) := µ,(26)

for all g ∈ G,µ ∈ g∗ = T ∗1G, where Ad∗g = (T1LgRg−1)∗.
One says that a function H : T ∗G −→ R is collective for the left-action (resp.

right-action) if H = Ψ∗−h (resp. H = Ψ∗+h) for some h : g∗ −→ R. If H is
collective for the left-action (resp. right-action) then (25) shows it is right-invariant
(resp. left-invariant). In particular, a Hamiltonian that is collective for the left-
action [right-invariant] (resp. right-action [left-invariant]) Poisson-commutes with
Ψ+ (resp. Ψ−).

Let H : T ∗G −→ R be a smooth, left-invariant (= right collective) Tonelli
Hamiltonian. Therefore, there is a smooth convex Hamiltonian h : g∗ −→ R such
that H = Ψ∗+h. Moreover, since H is left-invariant, it Poisson-commutes with the
momentum map of the left action Ψ−.

Let ΓCG be a co-compact lattice subgroup and M = Γ\G. It is assumed that
G is simply connected, so that the universal cover of M , M̃ , is G. Let [Γ,Γ] = Γ1

be the commutator subgroup of Γ, which is the fundamental group of the universal
abelian cover M̂ . This leads to the commuting diagram of covering maps:

(27) T ∗G = T ∗M̃ // //

Π̂����
Π

'' ''

G = M̃

π̃
����

π

wwww

T ∗(Γ1\G) = T ∗M̂ // //

Π̂
����

Γ1\G = M̂

π̂
����

T ∗(Γ\G) = T ∗M // // Γ\G = M .

We adopt the notational convention that the pull-back of x to M̂ (resp. M̃) is
denoted by x̂ (resp. x̃).

Let c ∈ H1(M ; R) be a cohomology class, let (x, p) ∈ M∗c(H) be a recurrent
point in the Mather set and let δ : R −→ M be the minimizer with initial condi-
tions δ(0) = x and L(x, δ̇(0)) = (x, p), where L denotes the associated Legendre
transform (see section 2). By the arguments of [21], we can suppose that the ro-
tation set of δ is a singleton {h} ⊂ H1(M ; R) and any weak-* limit of uniform
measures along the orbit is a minimizing measure. Fix a lift δ̃ of δ to M̃ . For each
g ∈ G, let δ̃g = Lg−1 ◦ δ̃ be a left-translate of this lift. Left invariance of H implies
that δ̃g is the projection of an integral curve, which implies that the projection of
δ̃g to M̂ and M are also projections of orbits. All of this allows the definition of a
map

G× R
φ //

φ̄
##GGGGGGGGGG T ∗M

��

φ(g, t) = Π ◦ (TLg−1)∗ϕ̃t(x, p),

M φ̄(g, t) = Γg−1δ̃(t) = Γδg(t)

(28)

where ϕ̃ is the flow of H on the universal cover T ∗G. By the example in section
4.1.4, the rotation vector of the map δg is independent of g for any mean on G×R.
This implies the same is true for φ(g, t).
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Let νR ∈ m(R)R be an invariant mean such that the rotation vector of νR at
s = 1 under the map δ is h. By hypothesis, there is such a mean. The preceding
discussion proves the following Lemma.

5.1. Lemma. Let νR ∈ m(R)R, νG ∈ m(G)G− and µ = φ∗(νR × νG). Then µ
minimizes Ac - i.e. it is c-action minimizing - and the projection of supp µ covers
M .

Therefore, by [21, Theorem 2], we know that supp µ is a Lipschitz graph over
M . Therefore, the lift to T ∗M̃ contains the smooth manifold φ̃(G × 0) which is a
smooth graph over M̃ . Therefore supp µ is a smooth Lagrangian graph over M ,
supp µ = graph(η), and lifting this picture to T ∗M̃ shows that η̃ is closed and
left-invariant. Therefore, η̃ is a bi-invariant 1-form. This proves

5.1. Theorem. Let M = Γ\G be a compact manifold, where G is a simply connected
amenable Lie group and Γ C G is a lattice subgroup. If H : T ∗G −→ R is a
left-invariant Tonelli Hamiltonian and c ∈ H1(M ; R), then there is a bi-invariant
1-form on G, η̃, with cohomology class c such that M∗c(H) = graph(η).

5.1. Remark. Let Λ ⊂ T ∗M be a C1 Lagrangian graph that is contained in an energy
level of H. That is, there is a closed 1-form η on M such that H(q, η(q)) = E is
constant for all q ∈M . The previous theorem implies that η is a closed, bi-invariant
1-form. Since H is left-invariant, it follows that

E = H(q, η(q)) = h ◦Ψ+(q, η(q)) = h((T1Lg)∗η(q)) = h(η(1))(29)

Ψ−(q, η(q)) = η(1),(30)

for all q ∈ M . (30) follows because η is bi-invariant, which implies that the co-
adjoint orbit of η(1) is a single point.

Hamilton’s equations for the Hamiltonian H are

XH(g, µ) :
{
ġ = (T1Lg) · dh(µ),
µ̇ = −ad∗dh(µ)µ.

∀g ∈ G,µ ∈ g∗.(31)

In particular, if µ is a closed form, then ad∗ξµ vanishes for all ξ ∈ g. Therefore, the
orbit of (g, µ) is {(T1Rexp(tξ))∗(g, µ) = (g exp(tξ), µ) : t ∈ R} where ξ = dh(µ),
i.e. it is the orbit of a 1-parameter subgroup.

Proof (Theorem 1.2). The sole remaining thing to prove is that if H is weakly
integrable and Λ ⊂ T ∗M lies inside an iso-energy surface and intersects RegF ,
then M is a homogeneous space of a compact reductive Lie group. By Remark
5.1, Λ = graph(η) where η is a bi-invariant, closed 1-form on G. By Corollary
1.1, M is diffeomorphic to Tb × B where B is a parallelisable manifold with finite
coverings having zero first Betti number. Therefore, the lattice Γ = π1(M) splits
as Γ = Zb ⊕ P where P = π1(B). From the description in (13), one knows that B
and hence N must be trivial. This implies that dimS = b (we do not claim that
the Zb factor is a lattice in S). On the other hand, one also sees that P = π1(B)
must be finite: since Γ is virtually polycyclic, so is Zb\Γ = P , but a virtually
polycyclic group is either finite or it contains a finite index subgroup that has
non-zero first Betti number.1Additionally, since P < G is a finite subgroup, it is
compact and therefore a subgroup of a maximal compact subgroup; up to an inner
automorphism, we can assume that P < K.

1If D is solvable, then the derived series Dk = [Dk−1, Dk−1], D0 = D, terminates at 1 for
some k. If each quotient Dk−1/Dk is finite, then D is finite; if D is not finite, then there is a least
k such that Dk/Dk+1 is infinite. This Dk is therefore of finite index with non-zero first Betti

number.
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Therefore M is finitely covered by M̂ = Tb × B̃ and Remarks 3.1 & 5.1 show
that Tb is the closure of the projection of a 1-parameter subgroup of S. This proves
that S is abelian.

Finally, let Γ1 < Γ be a torsion-free subgroup such that M̂ = Γ1\G. One knows
that Γ1 is generated by elements εi = eiδi for i = 1, . . . , b where ei ∈ S, δi ∈ K.
Since Γ1 is abelian, the δi pairwise commute and ei commutes with δj for all i 6= j.
From the argument of section 4.1.3 one knows that there are integers ni > 0 such
that δnii generate a torus subgroup T < K. It follows that there are torsion elements
ci ∈ K and ξi ∈ LieT such that δi = ci exp(ξi) and the ci pairwise commute and
commute with all δj . Let us define εi,t = eici exp(tξi) and Γt be the lattice subgroup
of G generated by εi,t. The identity map on G induces a diffeomorphism of Γ0\G
with Γ1\G = M̃ . The lattice Γ0 is generated by εi,0 = eici. Since Γ0 is abelian,
the ci must fix each cj , j 6= i, and ci must send ei to ±ei. If cieic−1

i = −ei,
then εi,0 is a torsion element in the free abelian group Γ0, hence it is 1, absurd.
Therefore, ci fixes ei, too. Since {ei} generates a lattice in S, each ci commutes
with S. Therefore, ci ∈ ker(K −→ Aut(S)) for each i.

To sum up: let Γt0 C Γ0 be the sublattice generated by the pure translations in
Γ0. Then Γt0\G is diffeomorphic to Tb×K, a reductive Lie group and it is a smooth
covering space of M . �
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