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Abstract

A survey of recent results of the authors is presented. This survey is short due to
space limitations. A Coefficient Inverse Problem for a hyperbolic PDE with backscat-
tering data is considered. A globally convergent numerical method for this problem is
presented. Analytical results are supported by computational ones.

1 Introduction

We present here a short survey of our recently obtained results of [17]. So, although some
analytical results are formulated here, ideas of their proofs are only briefly outlined. In
section 5 two numerical results are presented. Coefficient Inverse Problems (CIPs) for PDEs
are both nonlinear and ill-posed. These two factors cause substantial difficulties for their
numerical treatments. Still, because of a number of quite interesting applications, the devl-
opment numerical methods for CIPs is an important topic of the field of Inverse Problems.
In the case of such applications as search for plastic antipersonnel land mines and detection
of explosives the backscattering time resolved data is reasonable to use. Furthermore, these
data should be collected either for a single location of the point source for a single direc-
tion of the incident plane wave. Indeed, this case presents both the most economical and
the most practical scheme of data collection. Hence, exactly this case is considered in the
current publication.

Because of the nonlinearity and ill-posedness combined, least squares functionals for
CIPs, including Tikhonov regularization functionals, usually suffer from multiple local min-
ima and ravines. The is the major stumbling block on the road of the development of reliable
numerical methods. The classical regularization theory does not provide an answer on how
to overcome this obstacle. Therefore, the theory of globally convergent numerical methods
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for CIPs needs to be developed. A numerical method for a CIP is called globally convergent
if: (1) A rigorous theorem is proven which claims that this method provides a good approx-
imation for the correct solution regardless on the availability of a good first guess for this
solution, and (2) this theorem is confirmed in numerical experiments.

The development of globally convergent numerical methods, which are based on the layer
stripping procedure with respect to the positive parameter s > 0 of the Laplace transform
of a hyperbolic PDE, has started in [1] and was continued in [2, 3, 4, 5, 11, 16, 17]. We
call s pseudo frequency. However, until the recent works [16, 17] only the case of complete
data collection was considered. Namely, it was assumed that the data are given at the entire
boundary of the domain of interest. As a result, Dirichlet boundary value problems were
solved via the FEM for certain elliptic PDEs arising in this method. The case of backscat-
tering data was considered only recently in the 1-D case in [16] and in the 2-D case in [17].
In the case of backscatteting data both Dirichlet and Neumann data are given only at the
backscattering side of the boundary. Although it is reasonably to assume that the radiation-
like boundary condition is given at the rest of the boundary, this condition is independent on
the unknown coefficient and is therefore non-informative. So, the resulting over-determined
boundary value problem is solved via the Quasi-Reversibility Method (QRM). The QRM
was first proposed in [19] and was developed further in [6, 7, 9, 13, 14, 15]. It has proven to
be effective for solving boundary value problems with over-determined boundary conditions.
The first application of the QRM to a CIP was published in [16] in the 1-D case and it was
continued in [17] in the 2-D case.

Since CIPs are extremely challenging to handle, it is inevitable that an approximation
is made in the globally convergent method of [1, 2, 3, 4, 5, 11, 16, 17]. Namely, the high
value of the pseudo frequency s is truncated. This truncation is similar with the truncation
of high frequencies, which is routinely done in engineering. Because of this truncation, a new
mathematical model was proposed in [2, 11] and it was actually numerically implemented,
see subsection 7.1 of [11]. It was shown in these references that this model is neither better
nor worse than the truncation of asymptotic series, which is a part of the classical Real
Analysis.

We point out here to the publication [11], which has special importance for the method
of [1, 2]. Indeed, in the paper [11] the globally convergent method of [1] was independently
verified on experimental data. Furthermore, even though these were blind experimental
data, a surprisingly excellent accuracy of reconstructions of refractive indices of dielectric
inclusions was consistently observed, see Tables 5 and 6 in [11]. It was shown in the follow
up publication [5] that not only refractive indices but shapes of those inclusions can also be
reconstructed with an excellent accuracy. Therefore, publications [5, 11] have provided an
independent verification on real rather than synthetic data of both the globally convergent
method of [1] and the subsequently developed two-stage numerical procedure of [2, 3, 4].

As to the two-stage numerical procedure, the main reason why it was subsequently de-
veloped was that the above truncation of s. Indeed, one cannot take s exceedingly large in
real computations. Hence, although the globally convergent technique of [1, 2] provides a
guaranteed good first approximation for the correct solution of a CIP, there is a room left for
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a refinement. So, the first stage is the globally convergent method of [1, 2]. And the second
one is the refinement stage. On the refinement stage the solution obtained on the first is
taken as the starting point for a locally convergent technique. Indeed, it is well known that a
good first approximation for the solution is the true key for any locally convergent numerical
method, and the first stage provides that approximation. Furthermore, it follows from re-
sults of [4] that the resulting two-stage procedure converges globally. So, when working with
the backscattering data, we use the gradient method on the second stage. It is explained in
the recent work [18] why a locally convergent numerical method, which finds a minimizer of
the Tikhonov functional, refines the first guess for the exact solution, as long as this guess
is sufficiently close to that solution.

2 Statements of Forward and Inverse Problems

As the forward problem, we consider the Cauchy problem for a hyperbolic PDE

c (x) utt = ∆u in R3 × (0,∞) , (2.1)

u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (2.2)

Equation (2.1) governs propagation of acoustic and electromagnetic waves. In the acoustical
case 1/

√
c(x) is the sound speed. In the 2-D case of EM waves propagation, the dimensionless

coefficient c(x) = εr(x), where εr(x) is the relative dielectric function of the medium, see [8],
where this equation was derived from Maxwell’s equations in the 2-D case. It should be also
pointed out that although equation (2.1) cannot be derived from the Maxwell’s system in the
3-d case for εr(x) 6= const., still it was successfully applied to the imaging from experimental
data, and a very good accuracy of reconstruction was consistently observed [5, 11].

Since we work in this paper only with the backscattering data, we define the domain of
our interest Ω as a rectangular prism as follows. Let A,B = const. > 0. Then

Ω = {x1, x2 ∈ (−B,B) , z ∈ (0, A)} , ∂Ω = ∪3
i=1Γi,

Γ1 = {x1, x2 ∈ (−B,B) , z = 0} ,Γ2 = {x1, x2 ∈ (−B,B) , z = A} , (2.3)

Γ3 = ∂Ω� (Γ1 ∪ Γ2) .

Here and below we denote for convenience z := x3. We also assume that in (2.2)

x0 ∈ {z < 0} . Hence, x0 /∈ Ω. (2.4)

We assume that the coefficient c (x) of equation (2.1) is such that

c (x) ∈ [1, d] , d = const. > 1, c (x) = 1 for x ∈ R3�Ω, (2.5)

c (x) ∈ C4
(
R3
)
. (2.6)

We consider the following
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Inverse Problem. Suppose that the coefficient c (x) satisfies (2.4) and (2.5), where
the number d > 1 is given. Assume that the function c (x) is unknown in the domain Ω.
Determine the function c (x) for x ∈ Ω, assuming that the following two functions g0 (x, t)
and g1 (x, t) are given for a single source position x0 satisfying (2.4)

u (x, t) = g0 (x, t) , ∂νu (x, t) = g1 (x, t) , ∀ (x, t) ∈ Γ1 × (0,∞) , (2.7)

where ν is the unit outward normal vector at Γ1.
As it is always the case in the theory of CIPs, these two functions model measurements

of both he wave field and its normal derivative at the part Γ1 of the boundary ∂Ω. By (2.4)
Γ1 is the backscattering part of this boundary. In applications usually only the function
g0 (x, t) is measured. However, to get the function g1 (x, t) , we can approximately assume
that Γ1 = {z = 0} . Next, we can consider equation (2.1) with initial conditions (2.2) and
the boundary condition g0 as the initial boundary value problem in the half space {z < 0} .
Since by (2.6) the coefficient c (x) = 1 in this half space, then we can uniquely solve this
problems. Hence, we can uniquely determine the function g1 (x, t) in (2.7). After this we
again consider Γ1 only as a part of the plane {z = 0} when solving the inverse problem.

A priori knowledge of upper and lower bounds of the coefficient c (x) corresponds well
with the Tikhonov concept about the availability of a priori information for an ill-posed
problem [10, 21]. In applications the assumption c (x) = 1 for x ∈ R3�Ω means that the
target coefficient c (x) has a known constant value outside of the medium of interest Ω.
Another argument here is that one should bound the coefficient c (x) from the below by a
positive number to ensure that the operator in (2.1) is a hyperbolic one on all iterations of
our numerical procedure. Since we do not impose a “smallness” condition on the number
d− 1, our numerical method is not a locally convergent one.

The question of uniqueness of this Inverse Problem is a well known long standing open
problem. It is addressed positively only if the function δ (x− x0) in (2.2) is replaced with a
function f (x) such that f(x) 6= 0, ∀x ∈ Ω. Corresponding uniqueness theorems were proven
via the method of Carleman estimates [12, 13]. It is an opinion of the authors that because
of many important applications, it makes sense to develop numerical methods, assuming
that the question of uniqueness of the above inverse problem is addressed positively.

3 The Globally Convergent Method

3.1 The Laplace transform

Consider the Laplace transform of the functions u,

w(x, s) =

∞∫

0

u(x, t)e−stdt, for s ≥ s = const. > 0, (3.1)

where s is a certain number. It is sufficient to choose s such that the integral (3.1) would
converge together with corresponding (x, t)-derivatives. We call the parameter s pseudo
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frequency. Note that we do not use the inverse Laplace transform in our method, since
approximations for the unknown coefficient are obtained in the pseudo frequency domain.
We obtain

∆w − s2c (x)w = −δ (x− x0) , (3.2)

lim
|x|→∞

w (x, s) = 0. (3.3)

As to the condition (3.3), it was proven in [3] that it is satisfied for sufficiently large values
s as long as s ≥ s. Furthermore, it was also proven in [3] that for these values of s we have

w (x, s) > 0. (3.4)

It follows from the classic theory of elliptic PDEs that for every s > s there exists unique
solution w ∈ C5+γ (R3� {|x− x0| < ϑ}) , ∀ϑ > 0 of the problem (3.2), (3.3). Here Ck+γ, γ ∈
(0, 1) are Hölder spaces, where k ≥ 0 is an integer. The following Lemma helps to understand
the asymptotic behavior of the function w (x, s) at s→ ∞.

Lemma 3.1 [1]. Assume that conditions (2.5) and (2.6) are satisfied . Let the function
w(x, s) ∈ C5+γ (R3� {|x− x0| < ϑ}) , ∀ϑ > 0 be the solution of the problem (3.2), (3.3).
Assume that geodesic lines, generated by the eikonal equation corresponding to the function
c (x) are regular, i.e. any two points in R3 can be connected by a single geodesic line.
Let l (x, x0) be the length of the geodesic line connecting points x and x0. Then the following
asymptotic behavior of the function w and its derivatives takes place for |α| ≤ 5, k = 0, 1, x 6=
x0

Dα
xD

k
sw(x, s) = Dα

xD
k
s

{
exp [−sl (x, x0)]

f (x, x0)

[
1 +O

(
1

s

)]}
, s→ ∞,

where f (x, x0) is a certain function and f (x, x0) 6= 0 for x 6= x0.
Remark 3.1. An separate question here is about an easily verifiable sufficient condition

of the regularity of geodesic lines. In general, such a condition is unknown, except of the
trivial case when the function c (x) is close to a constant. Still, the theory of CIPs for
equation (2.1) does not work without this assumption. We verify the asymptotic behavior
of this lemma computationally, see subsection 7.2 of [1].

3.2 The nonlinear integral differential equation

It follows from (3.4) that one can consider the function v = (lnw) /s2. Substituting w =
exp (vs2) in (3.2) and using (2.4) and (2.7), we obtain

∆v + s2 |∇v|2 = c (x) , x ∈ Ω, (3.5)

v|Γ1
= ϕ0 (x, s) , vz|Γ1

= ϕ1 (x, s) , ∀s ∈ [s, s] , (3.6)

where functions ϕ0 and ϕ1 are obtained from Laplace transform (3.1) of functions g0 and
g1 in an obvious manner. The term δ (x− x0) is not present in (3.5) because x0 /∈ Ω. An
obvious inconvenience of equation (3.5) is that it contains two unknown functions v and c.
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Thus, we now eliminate the function c (x) from equation (3.5) via the differentiation with
respect to s, using ∂sc (x) = 0. Introduce a new function

q (x, s) =
∂v (x, s)

∂s
=

∂

∂s

(
lnw

s2

)
. (3.7)

Assuming that the asymptotic behavior of Lemma 3.1 holds and using (3.7), we obtain

Dα
x (v) = O

(
1

s

)
, Dα

x (q) = O

(
1

s2

)
, s→ ∞; |α| ≤ 2, (3.8)

v (x, s) = −
∞∫

s

q (x, τ) dτ. (3.9)

We represent the integral in (3.9) as

v (x, s) = −
s∫

s

q (x, τ ) dτ + V (x, s) , (3.10)

where s > s is a large parameter which should be chosen in numerical experiments. Actually,
s is one of regularization parameters of our method. In fact, we have truncated here the
function V (x, s) , which we call the tail function,

V (x, s) = −
∞∫

s

q (x, τ ) dτ .

By (3.8)
∥∥Dk

sV (x, s)
∥∥
C2(Ω) = O

(
1

sk+1

)
, k = 0, 1; s→ ∞. (3.11)

The tail function is unknown. Although by (3.11) this function is small for large values
of s, our numerical experience as well as the numerical experience of above cited previous
publications on the globally convergent method shows one should that it would be better to
somehow approximate the tail function updating it via an iterative procedure.

Thus, we obtain from (3.5), (3.7) and (3.10) the following nonlinear integral differential
equation

∆q − 2s2∇q ·
s∫

s

∇q (x, τ ) dτ + 2s




s∫

s

∇q (x, τ ) dτ




2

+ 2s2∇q∇V − 2s∇V ·
s∫

s

∇q (x, τ ) dτ + 2s (∇V )2 = 0, x ∈ Ω.

(3.12)
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Let ψ0 (x, s) = ∂sϕ0 (x, s) , ψ1 (s) = ∂sϕ1 (x, s) . Then (3.6) implies that

q|Γ1
= ψ0 (x, s) , qz|Γ1

= ψ1 (x, s) , ∀s ∈ [s, s] . (3.13)

Using arguments of subsection 2.2 of [3] one can easily prove that for s > s and s is suffi-
ciently large the function w (x, s) tends to zero together with its appropriate (x, s)−derivatives
as |x| → ∞. Hence, assuming that numbers A and B in (2.3) are sufficiently large, we assume
below that we have the following radiation condition

∂w

∂ν
+ sw |Γi

= 0, i = 2, 3.

Hence, using (3.7) we obtain for the function q

∂q

∂ν
|Γi

=
1

s2
, i = 2, 3. (3.14)

Since the Neumann boundary condition (3.14) is independent on the function c (x) ,
we use it only for the purpose of the stabilization of the QRM. The presence of integrals
in (3.12) implies the nonlinearity, which is one of two main difficulties here. The second
main difficulty is that the tail function V is unknown. Hence, equation (3.12) contains
two unknown functions: q and V . The fact, which helps to prove the global convergence
theorem, is that for sufficiently large values of s the tail function V is small. The reason why
we can approximate both functions q and V well is that we treat them differently: while we
approximate the function q via inner iterations, the function V is approximated via outer
iterations. If the functions q and V are approximated well from (3.12)-(3.14) together with
their x−derivatives up to the second order, then the target unknown coefficient c (x) is also
approximated well from (3.5), where the function v is computed from (3.10). Thus, below
we focus on the following question: How to solve numerically the problem (3.12)-(3.14)?

3.3 The sequence of over-determined boundary value problems

To address the above question, we use a layer stripping procedure with respect to s ∈ [s, s] .
We assume (approximately of course) that q (x, s) as a piecewise constant function with
respect to the pseudo frequency s. That is, we assume that there exists a partition s =
sN < sN−1 < ... < s1 < s0 = s of the interval [s, s] with the sufficiently small grid step size
h = si−1 − si such that q (x, s) = qn (x) for s ∈ (sn, sn−1] . We approximate the boundary
conditions (3.13), (3.14) as

qn|Γ1
= ψ0,n(x), ∂zqn|Γ1

= ψ1,n(x), ∂νqn|Γi
= (snsn−1)

−1 , i = 2, 3. (3.15)

where ψ0,n, ψ1,n and (snsn−1)
−1 are averages of functions ψ0, ψ1 and s−2 over the interval

(sn, sn−1) . Rewrite (3.12) for s ∈ (sn, sn−1] using this piecewise constant approximation.
Then multiply the resulting approximate equation by the s-dependent Carleman Weight
Function (CWF) of the form

Cn,µ (s) = exp [−µ |s− sn−1|] , s ∈ (sn, sn−1] ,
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and integrate with respect to s ∈ (sn, sn−1] . We obtain the following approximate equation
in Ω for the function qn (x) , n = 1, ..., N

Ln (qn) : = ∆qn − A1n

(
h

n−1∑

j=1

∇qj −∇Vn
)
∇qn = (3.16)

= Bn (∇qn)2 − A2,nh
2

(
n−1∑

j=1

∇qj
)2

+ 2A2,n∇Vn
(
h

n−1∑

j=1

∇qj
)

− A2,n (∇Vn)2 .

We have intentionally inserted dependence of the tail function Vn from the iteration number
n here because we will approximate these functions iteratively. In (3.16) A1,n = A1,n (µ, h) ,
A2,n = A2,n (µ, h) , Bn = Bn (µ, h) are certain numbers depending on n, µ and h, see specific
formulas in [1]. It is convenient to set in (3.11)

q0 ≡ 0. (3.17)

It is clear that boundary value problems (3.15), (3.16) can be solved sequentially starting
from q1. Boundary boundary conditions (3.15) are over-determined. Hence, it is natural to
apply a version of the QRM here, because the QRM finds “least squares” solutions in the
case of over-determined boundary conditions.

Another important point here is that

Bn (µ, h) = O

(
1

µ

)
, µ → ∞.

Hence, taking a sufficiently large value of µ, we can ignore the nonlinear term Bn (∇qn)2 in
(3.16),

Bn (∇qn)2 := 0. (3.18)

We have used µ = 50 in our computations and have used (3.18). Hence, (3.18) allows us to
solve a linear problem for each qn.

3.4 The iterative process (in brief)

Our algorithm reconstructs iterative approximations cn,k (x) ∈ C1
(
Ω
)
of the function c (x).

On the other hand, we need to solve the forward problem (3.2), (3.3) on each iterative step in
order to obtain a new approximation for the tail. So, we need functions cn,k (x) ∈ C1

(
Ω
)
to

ensure the C2− smoothness of the corresponding function w (x, s; cn,k) in Ω. Here w (x, s; cn,k)
is the solution of the problem (3.2), (3.3) with c := cn,k. Also, we need to ensure that
cn,k (x) = 1 outside of the domain Ω. To ensure the latter, we extend each function cn,k (x)
outside of Ω, so that the resulting function ĉn,k (x) = 1 outside of Ω, ĉn,k (x) = cn,k (x) in a
subdomain Ω′ ⊂⊂ Ω and ĉn,k ∈ C1 (R3). In addition, to ensure the ellipticity of the operator
in (3.2), we need to have ĉn,k (x) ≥ const. > 0 in R3. The latter is ensured by the global
convergence Theorem 4.2. Indeed, since the exact solution c∗ of our inverse problem is such
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that c∗ (x) ≥ 1 (see (2.5)) and by Theorem 4.2 the function cn,k (x) is close to c∗ (x) in a
subdomain Ωκ ⊂ Ω defined in subsection 4.1, then we show below that ĉn,k (x) ≥ 1/2 in R3.

So, we now describe a rather standard procedure of a proper extension outside of the
domain Ω. Choose a function χ (x) ∈ C∞ (R3) such that

χ (x) =





1 in Ω′,
between 0 and 1 in Ω�Ω′,

0 outside of Ω.

The existence of such functions χ (x) is well known from the Real Analysis course. Define
the target extension of the function cn,k as ĉn,k (x) := (1− χ (x)) + χ (x) cn,k (x) , ∀x ∈ R3.

Hence, ĉn,k (x) = 1 outside of Ω and ĉn,k ∈ C1 (R2). Let a subdomain Ω̃ ⊆ Ω and Ω′ ⊂⊂ Ω̃.

In Theorem 4.2 Ω̃ := Ωκ. Suppose that cn,k (x) ≥ 1/2 in Ω̃. Then ĉn,k (x) ≥ 1/2 in Ω. Indeed,
ĉn,k (x) − 1/2 = (1− χ (x)) /2 + χ (x) (cn,k (x)− 1/2) ≥ 0. In any case, we should solve the
problem (3.2), (3.3) with c := ĉn,k.

On each iterative step n we approximate both the function qn and the tail function Vn.
Each iterative step requires an approximate solution of the boundary value problem (3.15),
(3.16). This is done via the QRM, which is described in subsection 3.5. First, we choose an
initial tail function V1,1 (x) ∈ C2

(
Ω
)
. As to the choice of V1,1, it was taken as V1,1 ≡ 0 in [1].

In later publications [2, 3, 4, 5, 11, 16, 17] the initial tail V1,1 was taken as the one, which
corresponds to the case c (x) ≡ 1, where c (x) := 1 is the value of the unknown coefficient
outside of the domain of interest Ω, see (2.5). An observation was that while both these
choices give the same result, the second choice leads to a faster convergence and both choices
satisfy conditions of the global convergence theorem.

For each qn we have inner iterations with respect to tails. Consider the kth iteration for qn.
We approximate the function qn,k in this case, where n, k ≥ 1. Recall that by (3.17) q0 ≡ 0.
Suppose that functions qi ∈ H5 (Ω) , i = 1, ..., n − 1 and tails V1, ..., Vn−1, Vn,k ∈ C2

(
Ω
)
are

constructed. To construct the function qn.k, we use the QRM to find an approximate solution
of the following boundary value problem in Ω

∆qn,k − A1n

(
h

n−1∑

j=1

∇qj −∇Vn,k
)
∇qn,k =

−A2,nh
2

(
n−1∑

j=1

∇qj
)2

+ 2A2,n∇Vn,k ·
(
h

n−1∑

j=1

∇qj
)

− A2,n (∇Vn,k)2 , (3.19)

qn,k|Γ1
= ψ0,n(x), ∂zqn,k|Γ1

= ψ1,n(x), ∂νqn,k|Γi
= (snsn−1)

−1 , i = 2, 3. (3.20)

Hence, we obtain the function qn,k ∈ H5 (Ω) . By the embedding theorem qn,k ∈ C3
(
Ω
)
. To

reconstruct an approximation cn,k (x) for the function c (x) , we first, use the discrete version
of (3.10),

vn,k (x, sn) = −hqn,k (x)− h

n−1∑

j=1

qj (x) + Vn,k (x) . (3.21)

9



Next, using (3.5), we set for n ≥ 1

cn,k (x) = ∆vn,k (x, sn) + s2n |∇vn,k (x, sn)|2 , x ∈ Ω. (3.22)

Hence, the function cn,k ∈ C1
(
Ω
)
. Assuming that the exact solution of our Inverse Problem

c∗ ≥ 1 in R3 (see (2.5)), it follows from Theorem 4.2 that cn,k (x) ≥ 1/2 in Ωκ ⊂ Ω. Next, we
construct the function ĉn,k (x) as in the beginning of this section. In doing so we choose such
a subdomain Ω′ which is a little bit less than Ωκ. Thus, Ω

′ ⊂⊂ Ωκ ⊂ Ω. Hence, by (3.21)
and (3.22) the function ĉn,k∈Cγ (R2) . Next, we solve the forward problem (3.2), (3.3) with
c (x) := ĉn,k (x) for s := s and obtain the function wn.k (x, s) . Next, we set for the new tail

Vn,k+1 (x) =
lnwn.k (x, s)

s2
∈ C2

(
Ω
)
.

We continue these iterations with respect to tails until convergence occurs. We cannot prove
this convergence. However, we have always observed numerically that functions qn,k, cn,k and
Vn,k have stabilized at k := mn for a certain mn. So, assuming that they are stabilized, we
set

cn (x) := cn,mn
(x) , qn (x) := qn,mn

(x) , Vn (x) := Vn,mn
(x) := Vn+1,1 (x) for x ∈ Ω

and repeat the above for n := n + 1. We stop iterations with respect to n at n := N .

3.5 The quasi-reversibility method

Let Hn,k (x) be the right hand side of equation (3.19) for n ≥ 1. Denote

an,k (x) = A1,n

(
h

n−1∑

j=1

∇qj −∇Vn,k
)

(3.23)

Then the boundary value problem (3.19), (3.20) can be rewritten as

∆qn,k − an,k · ∇qn,k = Hn,k, (3.24)

qn,k|Γ1
= ψ0,n(x), ∂zqn,k|Γ1

= ψ1,n(x), ∂νqn,k|Γi
= (snsn−1)

−1 , i = 2, 3. (3.25)

Since we have two boundary conditions rather then one at Γ1, then the problem (3.24),
(3.25) is over-determined. Hence, we find the “least squares” solution of this problem via
the QRM. Specifically, we minimize the following Tikhonov functional

Jα
n,k(u) = ‖∆u− an,k · ∇u−Hn,k‖2L2(Ω) + α ‖u‖2H5(Ω) , (3.26)

subject to boundary condition (3.25), where the small regularization parameter α ∈ (0, 1).
Let u (x) be the minimizer of this functional. Then we set qn,k (x) := u (x) . Local minima do
not occur here because (3.26) is the sum of square norms of two expressions, both of which
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are linear with respect to u. The second term in the right hand side of (3.26) is the Tikhonov
regularization term. We use the H5 (Ω)−norm here in order to ensure that the minimizer
u := qn,k ∈ C3

(
Ω
)
, which implies in turn that functions ĉn,k ∈ C1 (R2).

Remarks 3.2. 1. In our computations we relax the smoothness assumptions via consid-
ering the H2 (Ω)−norm in the second term in the right hand side of (3.26). This is possible
because in computations we actually work with finite dimensional spaces. Specifically, we
work with finite differences and do not use “overly fine” mesh, which means that dimensions
of our “computational spaces” are not exceedingly large. In this case all norms are equiva-
lent not only theoretically but practically as well. To the contrary, if the mesh would be too
fine, then the corresponding space would be “almost” infinite dimensional. Indeed, we have
observed in our computations that taking too fine mesh leads to poor quality images.

2. One may pose a question on why we would not avoid the QRM via using just one of
two boundary conditions at Γ1 in (3.25), since we have the Neumann boundary condition
at ∂Ω�Γ1. However, in this case we would be unable to prove the C3− smoothness of the
function qn,k, because the boundary ∂Ω is not smooth. In the case of the Dirichlet boundary
condition only qn,k|Γ1

we would be unable to prove smoothness even assuming that ∂Ω ∈ C∞,
because of the Neumann boundary condition at the rest of the boundary. In addition, since
conditions ∂νqn,k|Γi

= (snsn−1)
−1 are independent on the unknown coefficient, it seems to be

that two boundary conditions rather than one at Γ1 should provide a better reconstruction.
3. Furthermore, even though our convergence theory in Lemmata 4.1-4.3 and Theorems

4.1, 4.2 assures that we can ignore the boundary condition ∂νqn,k|Γ3
= (snsn−1)

−1 at Γ3, we
use it in numerical studies, which brings in a better stability of the problem.

4 Global Convergence

In this section we briefly present results of our global convergence analysis, referring to [17]
for details.

4.1 Some estimates

For brevity we scale variables in such a way that in section 4

Ω =

{
x1, x2 ∈ (−1

4
,
1

4
), z ∈

(
0,

1

2

)}
.

In this section C = C (Ω) > 0 denotes different positive constants depending only on the
domain Ω. Let λ, ν > 2 be two parameters. Introduce another Carleman Weight Function
K(z),

K (z) := Kλ,ν(z) = exp(λρ−ν), where ρ (z) = z +
1

4
, z > 0.

Note that ρ (z) ∈ (0, 3/4) in Ω and ρ (z) |Γ2
= 3/4. Let the number κ ∈ (1/3, 1) . Denote

Ωκ = {x ∈ Ω : ρ (z) < 3κ/4} . Hence, if κ1 < κ2, then Ωκ1
⊂ Ωκ2

. Also, Ω1 = Ω and

11



Ω1/3 = ∅. Lemma 4.1 established the Carleman estimate for the Laplace operator. Although
such estimates are well known [13, 20], this lemma is still new, because we use a non-standard
CWF and also because only one, rather than conventional two zero boundary condition (4.1)
is given at Γ3. These were not done before.

Lemma 4.1 [17]. Fix a number ν := ν0 (Ω) > 2. Consider functions u ∈ H3 (Ω) such
that

u |Γ1
= uz |Γ1

= ux |Γ3
= 0. (4.1)

Then there exists a constant C = C (Ω) > 0 such that for any λ > 2 the following Carleman
estimate is valid for all these functions
∫

Ω

(∆u)2K2dxdz ≥ C

λ

∫

Ω

(
u2xx + u2zz + u2xz

)
K2dxdz + Cλ

∫

Ω

[
(∇u)2 + λ2u2

]
K2dxdz

−Cλ3 ‖u‖2H3(Ω) exp

[
2λ

(
4

3

)ν0]
.

We now establish both existence and uniqueness of the minimizer of the functional (3.26).
Lemma 4.2 is proven using the Riesz theorem.

Lemma 4.2 [17]. Suppose that in (3.26) Hn,k ∈ L2 (Ω) and that there exists a function

Φ ∈ H5 (Ω) satisfying boundary conditions (4.1). Assume that in (3.23) components a
(j)
n,k, j =

1, 2, 3 of the vector function an,k are such that a
(j)
n,k ∈ C

(
Ω
)
and

∥∥∥a(j)n,k

∥∥∥
C(Ω)

≤ 1. Then there

exists unique minimizer uα ∈ H5 (Ω) of the functional (3.26). Furthermore,

‖uα‖H5(Ω) ≤
C√
α

(
‖Hn,k‖L2(Ω) + ‖Φ‖H5(Ω)

)
.

In the course of the proof of Theorem 4.2 we need
Lemma 4.3 [17]. Consider an arbitrary function g ∈ H5 (Ω) . Let the function u ∈

H5 (Ω) satisfies boundary conditions (4.1) as well as the variational equality

(Gn,ku,Gn,kv) + α [u, v] = (Hn,k, Gn,kv) + α [g, v] , (4.2)

for all functions v ∈ H5 (Ω) satisfying (4.1). Then

‖u‖H5(Ω) ≤
‖Hn,k‖L2(Ω)√

α
+ ‖g‖H5(Ω) .

Proof. Set in (4.2) v := u and use the Cauchy-Schwarz inequality. �
Theorem 4.1 [17]. Consider an arbitrary function g ∈ H5 (Ω) . Let u ∈ H5 (Ω) be

the function satisfying (4.1) and (4.2). Let
∥∥∥a(j)n,k

∥∥∥
C(Ω)

≤ 1, where a
(j)
n,k, j = 1, 2, 3 are two

components of the vector function an,k in (3.23). Choose an arbitrary number κ such that
κ ∈ (κ, 1) . Consider the numbers b1, b2,

b1 =
1

2
(
1 + (1− κν0) (3κ)−ν0

) < 1

2
, b2 =

1

2
− b1 > 0,

12



where ν0 is the parameter of Lemma 4.1. Then there exists a sufficiently small number
α0 = α0 (ν0,κ,κ) ∈ (0, 1) such that for all α ∈ (0, α0) the following estimate holds

‖u‖H2(Ωκ)
≤ C

‖Hn,k‖L2(Ω)

αb1
+ αb2 ‖g‖H5(Ω) .

Proof. Setting (4.2) v := u and using the Cauchy-Schwarz inequality, we obtain

‖Gn,ku‖2L2(Ω) ≤ F 2 := ‖Hn,k‖2L2(Ω) + α ‖g‖2H5(Ω) . (4.3)

Note that K2 (0) = maxΩK
2 (z) = exp (2λ · 4ν0) . Hence, K−2 (0) ‖K ·Gn,ku‖2L2(Ω) ≤ F 2.

Clearly (Gn,ku)
2K2 ≥ (∆u)2K2/2− C (∇u)2K2. Hence,

∫

Ω

(∆u)2K2dxdz ≤ C

∫

Ω

(∇u)2K2dxdz +K2 (0)F 2. (4.4)

Using Lemma 4.1, we can estimate the left hand side of (4.4) from the below for sufficiently
large λ > 1. Then the with (∇u)2 in (4.4) will be absorbed. We obtain

λK2 (0)F 2 + Cλ4 ‖u‖2H3(Ω) exp

[
2λ

(
4

3

)ν0]

≥ C

∫

Ω

(
u2xx + u2zz + u2xz + |∇u|2 + u2

)
K2dxdz

≥ C

∫

Ωκ

(
u2xx + u2zz + u2xz + |∇u|2 + u2

)
K2dxdz

≥ C exp

[
2λ

(
4

3κ

)ν0]
‖u‖2H2(Ωκ)

.

Comparing the first line with the last in this sequence of inequalities, dividing by the expo-
nential term in the last line, taking λ ≥ λ0 (C,κ,κ) > 1 sufficiently large and noting that
for such λ

λ4 exp

[
−2λ

(
4

3κ

)ν0]
< exp

[
−2λ

(
4

3κ

)ν0]
,

we obtain a stronger estimate,

‖u‖2H2(Ωκ)
≤ CK2 (0)F 2 + C ‖u‖2H3(Ω) exp

[
−2λ

(
4

3κ

)ν0

(1− κν0)

]
(4.5)

Applying Lemma 5.3 to the second term in the right hand side of (5.15), we obtain

‖u‖2H2(Ωκ)
≤ CF 2

{
exp (2λ · 4ν0) + α−1 exp

[
−2λ

(
4

3κ

)ν0

(1− κν0)

]}
. (4.6)
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Since α ∈ (0, α0) and α0 is sufficiently small, we can choose sufficiently large λ = λ (α) such
that

exp (2λ · 4ν0) = α−1 exp

[
−2λ

(
4

3κ

)ν0

(1− κν0)

]
. (4.7)

We obtain from (4.7) that 2λ · 4ν0 = lnα−2b1 . Hence, using (4.3) and (4.5)-(4.7) we obtain
the desired result. �

4.2 Global convergence theorem

We follow the concept of Tikhonov for ill-posed problems [21]. By this concept, one should
assume that there exists an “ideal” exact solution of an ill-posed problem with the “ideal”
exact data. Next, one should prove that the regularized solution is close to the exact one.

4.2.1 Exact solution

First, we need to introduce the definition of the exact solution. We assume that there
exists a coefficient c∗ (x) satisfying conditions (2.5), (2.6), and this function is the unique
exact solution of our Inverse Problem with the exact data ϕ∗

0 (x, s) , ϕ
∗
1 (x, s) in (3.6). Let

w∗ (x, s) be the Laplace transform (3.1) of the solution u∗ (x, t) of the problem (2.1), (2.2)
with c (x) := c∗ (x) . Let

v∗ (x, s) = s−2 ln [w∗ (x, s)] , q∗ (x, s) = ∂sv
∗ (x, s) , V ∗ (x) = v∗ (x, s) .

Hence, q∗ (x, s) ∈ C5+γ (Ω) × C1 [s, s]. The function q∗ satisfies equation (3.12) where V is
replaced with V ∗. Boundary conditions for q∗ are the same as ones in (3.13), where functions
ψ0 (x, s) , ψ1 (x, s) are replaced with the exact boundary conditions ψ∗

0 (x, s) , ψ
∗
1 (x, s) for

s ∈ [s, s] ,
q∗|Γ1

= ψ∗
0 (x, s) , q

∗
z |Γ1

= ψ∗
1 (x, s) , ∂nq

∗ |Γi
= s−2, i = 2, 3. (4.8)

We call the function q∗ (x, s) the exact solution of the problem (3.12), (3.13) with the exact
boundary conditions (4.8). For n ≥ 1 let q∗n, ψ

∗

0,n and ψ
∗

1,n be averages of functions q∗, ψ∗
0

and ψ∗
1 over the interval (sn, sn−1) . Hence, it is natural to assume that

q∗0 ≡ 0, max
1≤n≤N

‖q∗n‖H5(Ω) ≤ C∗, C∗ = const. > 1, (4.9)

∥∥∥ψ∗

0,n − ψ0,n

∥∥∥
H2(Γ1)

+
∥∥∥ψ∗

1,n − ψ1,n

∥∥∥
H1(Γ1)

≤ C∗ (σ + h) , (4.10)

max
s∈[sn,sn−1]

‖q∗n − q∗‖H5(Ω) ≤ C∗h (4.11)

Here the constant C∗ = C∗
(
‖q∗‖C5(Ω)×C1[s,s]

)
depends only on the C5

(
Ω
)
× C1 [s, s] norm

of the function q∗ (x, s) and σ > 0 is a small parameter characterizing the level of the error
in the data ψ0 (x, s) , ψ1 (x, s) . We use the H5 (Ω) norm because of the quasi-reversibility,
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see (3.26). The step size h = sn−1 − sn can also be considered as a part of the error in the
data. In addition, by (4.8)

q∗n|Γ1
= ψ

∗

0,n(x), ∂zq
∗
n|Γ1

= ψ
∗

1,n(x), ∂νq
∗
n|Γi

= (snsn−1)
−1 , i = 2, 3. (4.12)

The function q∗n satisfies the following analogue of equation (3.12)

∆q∗n −A1,n

(
h

n−1∑

i=1

∇q∗i (x)−∇V ∗

)
· ∇q∗n = −A2,nh

2

(
n−1∑

i=1

∇q∗i (x)
)2

+ 2A2,n∇V ∗ ·
(
h

n−1∑

i=1

∇q∗i (x)
)

− A2,n (∇V ∗)2 + Fn (x, h, µ) .

(4.13)

Here Fn (x, h, µ) is the error function characterizing the error in the approximate equation
(4.13). Since by (3.18) we have dropped the nonlinear term Bn (∇qn)2, we incorporate this
term in the function Fn (x, h, µ). So, it is reasonable to assume that

‖Fn (x, h, µ) ‖L2(Ω) ≤ C∗
(
h+ µ−1

)
;µh ≥ 1. (4.14)

4.2.2 Global convergence theorem

Assume that
s > 1, µh ≥ 1. (4.15)

Then [1] max
1≤n≤N

{|A1,n|+ |A2,n|} ≤ 8s2. We assume for brevity that

ψ
∗

0,n = ψ0,n, ψ
∗

1,n = ψ1,n. (4.16)

The proof of Theorem 4.2 for the more general case (4.10) can easily be extended along the
same lines. Still, we keep the parameter σ of (4.10) as a part of the error in the data and
incorporate it in the function Fn. Thus, we obtain instead of (4.14)

‖Fn (x, h, µ) ‖L2(Ω) ≤ C∗
(
h + µ−1 + σ

)
;µh ≥ 1. (4.17)

We also recall that by the embedding theorem H5 (Ω) ⊂ C3
(
Ω
)
and

‖f‖C3(Ω) ≤ C ‖f‖H5(Ω) , ∀f ∈ H5 (Ω) . (4.18)

The following global convergence theorem was proven in []
Theorem 4.2 [17]. Let the exact solution c∗ (x) satisfy conditions (2.5), (2.6). Suppose

that conditions (4.8)-(4.13) and (4.15)- (4.17) are satisfied. Assume that for each n ∈ [1, N ]
there exists a function Φn ∈ H5 (Ω) satisfying boundary conditions (3.25). For any function

15



c ∈ Cγ (R2) such that c (x) ∈ [1/2, d], c (x) = 1 in R3�Ω consider the solution wc (x, s) ∈
C2+γ (R2� {|x− x0| < ϑ}) , ∀ϑ > 0 of the problem (3.2), (3.3). Let

Vc (x) =
lnwc (x, s)

s2
∈ C2+γ

(
R2� {|x− x0| < ϑ}

)
, ϑ > 0

be the corresponding tail function and V1,1 (x, s) ∈ C2
(
Ω
)
be the initial tail function.

Suppose that the cut-off pseudo frequency s is so large that the following estimates hold

‖V ∗‖C1(Ω) ≤
ξ

2
, ‖V1,1‖C1(Ω) ≤

ξ

2
, ‖Vc‖C1(Ω) ≤

ξ

2
, (4.19)

for any such function c (x) . Here ξ ∈ (0, 1) is a sufficiently small number. Introduce the
parameter β := s − s, which is the total length of the s-interval covered in our iterative
process. Let α0 be so small that it satisfies the corresponding condition of Theorem 4.1 . Let
α ∈ (0, α0) be the regularization parameter of the QRM. Assume that numbers h, σ, ξ, β, are
so small that

h+ µ−1 + σ + ξ ≤ β,

β ≤
√
α

136s2 (C∗)2C1

, (4.20)

where the constant C1 ∈ (1, C∗) depends only on the domain Ω. Let b2 be the number
introduced in Theorem 4.1. Then the following estimates hold for all α ∈ (0, α0) and all
n ∈ [1, N ]

‖qn‖H5(Ω) ≤ 3C∗,

‖qn − q∗n‖H2(Ωκ)
≤ 2C∗αb2 ,

‖cn − c∗‖C1(Ωκ) ≤ 2C∗αb2 , cn ≥ 1

2
in Ωκ.

The proof of this theorem consists in sequential estimates of norms
‖qn − q∗n‖H2(Ωκ)

, ‖cn − c∗‖C1(Ωκ) using Theorem 4.1 and Lemmata 4.1-4.3. To estimate

the norm ‖qn − q∗n‖H2(Ωκ)
, we subtract equation (4.13) from equation (3.19) and consider

the equation for the difference qn − q∗n. Next, the estimate of the norm ‖cn − c∗‖C1(Ωκ) is

obtained via subtracting from (3.21) its analog for the function v∗ and using the estimate
for ‖qn − q∗n‖H2(Ωκ)

as well (4.18).
Remarks 4.1.
1. Because of the term s−2 in inequalities (4.20), there is a discrepancy between these

inequalities and (3.11). This discrepancy was discussed in detail in subsection 3.3 of [11] and
in subsection 6.3 of [2], also see Introduction above. A new mathematical model proposed in
these references allows the parameter ξ in (4.19) to become infinitely small independently on
the truncation pseudo frequency s, also see discussion in the Introduction section above. We
point out that this mathematical model was verified on experimental data. Indeed, actually
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the derivatives ∂sVn,k instead of functions Vn,k were used in the numerical implementation
of [11], see subsections 7.1 and 7.2 of [11]. It follows from (3.11) that one should expect
that ‖∂sVn,k‖C2(Ω) << ‖Vn,k‖C2(Ω) = O (1/s) , s → ∞. Finally, we believe that, as in any

applied problem, the independent verification on blind experimental data in [11] represents
a valuable justification of this new mathematical model.

2. In our definition “global convergence” means that, given the above new mathematical
model, there is a rigorous guarantee that a good approximation for the exact solution can
be obtained, regardless on the availability of a good first guess about this solution. Further-
more, such a global convergence analysis should be confirmed by numerical experiments. So,
Theorem 4.2, complemented by our numerical results below, satisfies these requirements.

3. The assumption of the smallness of the parameter β = s− s is a natural one because
equations (3.19) are actually generated by equation (3.12), which contains the nonlinearity
in Volterra-like integrals. It is well known from the standard Ordinary Differential Equations
course that solutions of nonlinear integral Volterra-like equations might have singularities on
large intervals.

5 Numerical Studies

In these studies we have tested a simplified mathematical model of imaging of plastic land
mines. The first main simplification of our model is that we consider the 2-D instead of the 3-
D case. Second, we ignore the air/ground interface, assuming that the governing PDE is valid
on the entire 2-D plane. The third simplification is that we consider a plane wave instead
of the point source in (2.1). This is because we have discovered that our algorithm works
better with the case of the incident plane wave rather than with the case of a point source.
The point source was considered above only for the convenience of analytical derivations due
to Lemma 2.1.

5.1 Modeling imaging of plastic land mines

Let the ground be {x = (x1, z) : z > 0} ⊂ R2. Suppose that a polarized electric field is
generated by a plane wave, which is initialized at the point (0, z0), z0 < 0 at the moment of
time t = 0. The following hyperbolic equation can be derived from the Maxwell equations [8]

εr(x)utt = ∆u, (x, t) ∈ R2 × (0,∞) , (5.1)

u (x, 0) = 0, ut (x, 0) = δ
(
z − z0

)
, (5.2)

where the function u(x, t) is a component of the electric field. Recall that εr (x) is the spatially
distributed dielectric constant, see the beginning of section 2. We assume that the function
εr (x) satisfies the same conditions (2.3), (2.4) as the function c (x) . The Laplace transform
(2.5) leads to the following analog of the problem (2.6), (2.7)

∆w − s2εr(x)w = −δ
(
z − z0

)
, ∀s ≥ s, (5.3)

lim
|x|→∞

(w − w0) (x, s) = 0, ∀s ≥ s, (5.4)
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where

w0 (z, s) =
exp (−s |z − z0|)

2s

is such solution of equation (5.3) for the case εr(x) ≡ 1 that lim|z|→∞w0 (z, s) = 0. Actually
the function w0 (z, s) corresponds to the case of the plane wave propagating in the free space.

It is well known that the maximal depth of an antipersonnel land mine does not ex-
ceed about 10 cm=0.1 m. So, we model these mines as small squares with the 0.1 m
length of sides, and their centers should be at the maximal depth of 0.1 m. We set Ω =
{x= (x, z) ∈ (−0.3m, 0.3m)× (0m, 0.6m)} . Consider dimensionless variables x′ = x/0.1, z0′ =
z0/0.1. For brevity we keep the same notations for both these variables and the new domain
Ω,

Ω = (−3, 3)× (0, 6) . (5.5)

We now use the values of the dielectric constant given at http://www.clippercontrols.com.
Hence, εr = 5 in the dry sand and εr = 22 in the trinitrotoluene (TNT). We also take εr = 2.5
in a piece of wood submersed in the ground. Since the dry sand should be considered as
a background outside of our domain of interest Ω, we introduce parameters ε′r = εr/5, s

′ =
s ·0.1 ·

√
5, and again do not change notations. Hence, we now can assume that the following

values of this scaled dielectric constant

εr (dry sand) = 1, εr (TNT) ∈ [4, 6] . (5.6)

In addition, centers of small squares modeling our targets should be in the following rectangle

{x = (x, z) ∈ [−2.5, 2.5]× [0.5, 1.0]} . (5.7)

The side of each of our small square should be 1, i.e. 10 cm. The interval z ∈ [0.5, 1.0] in
(5.7) corresponds to depths of centers between 5 cm and 10 cm and the interval [−2.5, 2.5]
means that any such square is fully inside of Ω.

The data for the inverse problem were generated by solving numerically equation (5.3) in
the rectangle R = [−4, 4] × [−2, 8] with z0 = −1. By (5.5) Ω ⊂ R. To avoid the singularity
in δ (z − z0), we actually solve in R the equation for the function

w̃ = w − w0 (5.8)

with the zero Dirichlet boundary condition for this function, see (5.4). We solve the resulting
Dirichlet boundary value problem via the FDM with the uniform mesh size hf = 0.0675.

It is quite often the case in numerical studies that one should slightly modify the numerical
scheme given by the theory, and so we did the same. Indeed, it is well known in computations
that numerical results are usually more optimistic than analytical ones. We have modified
our above algorithm via considering the function ṽ = s−2 · ln (w/w0) . In other words, we
have divided our solution w of the problem (5.3), (5.4) by the initializing plane wave w0.
This has resulted in an insignificant modification of equations (3.19). We have observed
in our computations that the function w/w0 at the measurement part Γ1 ⊂ ∂Ω is poorly
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sensitive to the presence of abnormalities, as long as s > 1.2. Hence, one should expect that
the modified tail function for the function ṽ should be small for s > 1.2, which is exactly
what is required by the above theory. For this reason, we have chosen the truncation pseudo
frequency s = 1.2 and the initial tail function V1,1 ≡ 0.

5.2 Some details of the numerical implementation of the globally
convergent method

We have generated the data for s ∈ [0.5, 1.2] with the grid step size h = 0.1 in the s direction.
Since the grid step size in the s-direction is h = 0.1 for s ∈ [0.5, 1.2] , then β = 0.7 and N = 7.
Also, we took the number of iterations with respect to the tail m1 = m2 = ... = mN :=
m = 10, since we have numerically observed the stabilization of functions qn,k, ε

(n,k)
r , Vn,k at

k = 10. In our computations we have relaxed the smoothness assumption in the QRM via
taking in (3.26) the H2−norm instead of the H5−norm, see the first Remark 3.2. We have
taken the following analog of the H2−norm



∫

Ω

(
u2 + (∇u)2 + u2x1x1

+ u2zz
)
dxdz




1/2

,

i.e. we have not included the mixed second derivative ∂z∂x1
u.

Based on the experience of some earlier works on the QRM [9, 14, 15] for linear ill-
posed Cauchy problems, we have implemented the QRM via the FDM. Indeed, the FDM
has allowed in [14] to image sharp peaks. On the other hand, the FEM of [9] did not let to
image such peaks. So, we have written both terms under signs of norms of (3.26) in the FDM
form. Next, to minimize the functional (3.26), we have used the conjugate gradient method.
It is important that the derivatives with respect to the values of the unknown function at
grid points should be calculated explicitly. This was done using the Kronecker symbol, see
details in [14]. As soon as discrete values ε̃(n,k)r were computed, we have averaged each such
value at the point (xi, zj) over nine (9) neighboring grid points, including the point (xi, zj) :

to decrease the reconstruction error. The resulting discrete function was taken as ε
(n,k)
r .

We have used the 49×49 mesh in Ω. However, an attempt to use a finer 98×98 mesh led to
a poor quality results. Most likely this is because the dimension of our above mentioned finite
dimensional space was becoming too large, thus making it “almost” infinitely dimensional,
which would require to use in (3.26) the H5−norm instead of the H2−norm, see the first
Remark 3.2. The regularization parameter in (3.26) was taken α = 0.04.

We have made several sweeps over the interval s ∈ [0.5, 1.2] as follows. Suppose that

on the first s-sweep we have computed the discrete function ε
(1)
r (x) := ε

(N,10)
r (x), which

corresponds to the last s-subinterval [sN , sN−1] = [0.5, 0.6]. Hence, we have also computed
the corresponding tail function V (1) (x) . Next, we return to the first s−interval [s1, s] =

[1.1, 1.2], set V
(2)
1,1 (x) := V (1) (x) and repeat the above algorithm. We kept repeating these
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s−sweeps p times until either the stabilization has was observed, i.e.

‖ε(p)r − ε(p−1)
r ‖ ≤ 10−5

or an “explosion” of the gradient of the functional Jα
n,k on the sweep number p took place.

“Explosion” means that
‖∇Jα

n,k(q
(p)
n,k)‖ ≥ 105,

for any appropriate values of indices n, k. Here and below ‖·‖ is the discrete L2 (Ω)−norm.
After the stopping criterion is achieved, we apply a post processing truncation procedure.

We look for values of εr > 1. Hence, in this procedure we first truncate to unity all values
of ε

(p)
r (x) which are less than 1. Next, we truncate to unity 85% of the max ε

(p)
r (x) , i.e.

we truncate the treshhold. If we have several local maxima of ε
(p)
r (x), then we apply the

truncation procedure as follows. Let {xi}ri=1 ⊂ Ω be points where those local maxima
are achieved, and values of those maxima are respectively {ai}ri=1 . Consider certain circles
{B (xi)}ri=1 ⊂ Ω with the centers at points {xi}ri=1 and such that B (xi) ∩ B (xj) = ∅ for
i 6= j. In each circle B (xi) set

ε̃(p)r (x) :=

{
ε
(p)
r (x) if ε

(p)
r (x) ≥ 0.85ai

1, otherwise.

Next, for all points x ∈ Ω� ∪r
i=1 B (xi) , we set ε̃(p)r (x) := 1. As a result, we have obtained

the truncated function ε̃(p)r (x) . Finally we set εglobr (x) := ε̃(p)r (x) . We consider the function
εglobr (x) as the result obtained on the first stage of our two-stage numerical procedure. Next,
we go to Stage 2. Figure 1 represents the typical example of the image obtained on the first
stage of our two-stage numerical procedure.

5.3 The second stage of our two-stage numerical procedure: a

modified gradient method

Recall that this method is used on the second stage of our two-stage numerical procedure.
A complete, although space consuming derivation of this method, including the rigorous
derivation of Frechét derivatives, can be done using the framework developed in [3, 4]. To
save space, we derive it only briefly here. We call our technique the “modified gradient
method” because rather than following usual steps of the gradient method, we find zero of
the derivative Frechét of the Tikhonov functional via solving an equation with a contractual
mapping operator.

Consider a wider rectangle Ω′ ⊃ Ω, where Ω′ = (−4, 4) × (0, 6) . We assume that both
Dirichlet ϕ0 and Neumann ϕ1 boundary conditions in (2.7) are given on a wider interval

Γ′
1 = {z = 0} ∩ Ω

′
, Γ1 ⊂⊂ Γ′

1. Let the function w̃ be the one defined in (5.8). Hence, the
following two functions g̃0 (x, s) , g̃1 (x, s) are known

w̃ (x, s) |Γ′

1
= g̃0 (x, s) , (5.9)

w̃z (x, s) |Γ′

1
= g̃1 (x, s) + e−s|z0|, (5.10)
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Figure 1: A typical example of the image resulting from the globally convergent stage. The rectangle is the

domain Ω. This is the image of Test 1 (subsection 5.4). a) The correct coefficient. Inclusions are two squares

with the same size d = 1 of their sides, which corresponds to 10 cm in real dimensions. In the left square

εr = 6, in the right one εr = 4 and εr = 1 everywhere else, see (7.5) and (7.6). However, we do not assume

knowledge of εr(x) in Ω. Centers of these squares are at (x∗

1
, z∗

1
) = (−1.5, 0.6) and (x∗

2
, z∗

2
) = (1.5, 1.0).

b) The computed coefficient before truncation. Locations of targets are judged by two local maxima. So,

locations are imaged accurately. However, the error of the computed values of the coefficient ?r in them is

about 40%. c) The image of b) after the truncation procedure, see the text.

Using (5.4), we obtain the following approximate boundary condition for the function w̃

∂νw̃ |∂Ω′�Γ′

1
= 0. (5.11)

In addition, by (5.3)

∆w̃ − s2εr(x)w̃ − s2(εr(x)− 1)w0(z, s) = 0, in Ω′. (5.12)

So, we now consider the solution of the boundary value problem (5.10)-(5.12). We want
to find such a coefficient εr (x) , which would minimize the following Tikhonov functional

T (εr) =
1

2

b∫

a

∫

Γ′

1

(w̃(x, 0, s)− g̃0 (x, s))
2dxds+

θ

2

∥∥εr − εglobr

∥∥2
L2(Ω)

(5.13)

+

b∫

a

∫

Ω′

λ[∆w̃ − s2εr(x)w̃ − s2(εr(x)− 1)w0(z, s)]dxds,

where θ > 0 is the regularization parameter and λ (x, s) is the solution of the so-called
“adjoint problem”,

∆λ− s2εr(x)λ = 0, in Ω′, (5.14)

21



λz |Γ′

1
= w̃(x, 0, s)− g̃0(x, s), ∂νλ|∂Ω′�Γ′

1
= 0. (5.15)

Because of (5.12), the second line in (5.13) equals zero. Although boundary value problems
(5.10)-(5.12) and (5.14), (5.15) are considered in the domain Ω′ with a non-smooth bound-
ary, we have always observed in our computations existence of numerical solutions with no
singularities. Although, by the Tikhonov theory, one should consider a stronger Hk−norm
of εr − εglobr in (5.13) [21], we have found in our computations that the simpler L2−norm is
sufficient. This is likely because we have worked computationally worked with not too many
grid points. The same was observed in [2, 3, 4, 5]. We obtain the following expression for
the Fréchet derivative T ′ (εr) of the functional T

T ′ (εr) (x) = θ
(
εr − εglobr

)
(x)−

b∫

a

s2 [λ(w̃ + w0)] (x, s) ds, x ∈ Ω.

Hence, to find a minimizer, one should solve the equation T ′ (εr) = 0. We solve it iteratively
as follows

εnr (x) = εglobr (x) +
1

θ

b∫

a

s2 [λ(w̃ + w0)] (x, s, ε
n−1
r )ds, x ∈ Ω, (5.16)

where functions w̃(x, s, εn−1
r ) and λ(x, s, εn−1

r ) are solutions of problems (5.10)-(5.12) and
(5.14), (5.15) respectively with εr (x) := εn−1

r (x) . One can easily prove that one can choose
the number (b− a) /θ so small that the operator in (5.16) will get the contractual mapping
property. In our computations we took a = 0.01, b = 0.05, θ = 0.15. We have iterated
in (5.16) until the stabilization has occurred, i.e. we have stopped iterations as soon as
‖εnr − εn−1

r ‖/‖εn−1
r ‖ ≤ 10−5, where ‖·‖ is the discrete L2 (Ω) norm. Then we set that our

computed solution is εnr (x) .

5.4 Two numerical results

We present results of two numerical tests. Test 1 is in 2-D [17] and Test 2 is in 3-D. One can
find one more test in 2-D in [17]. In our numerical tests we have introduced the multiplicative
random noise in the boundary data using the following expression

wσ (xi, 0, sj) = w (xi, 0, sj) [1 + ωσ] , i = 0, ...,M ; , j = 1, .., N,

where w (xi, 0, sj) is the value of the computationally simulated function w at the grid point
(xi, 0) ∈ Γ′

1 and at the value s := sj of the pseudo frequency, ω is a random number in
the interval [−1, 1] with the uniform distribution, and σ = 0.05 is the noise level. Hence,
the random error is presented only in the Dirichlet data (5.9) but not in the Neumann data
(5.10).

Test 1 (the 2-D case) [17]. We test our numerical method for the case of two squares
with the same length l = 1 of their sides. In the left square εr = 6, in the right one εr = 4
and εr = 1 everywhere else, see (5.7). Centers of these squares are at (x∗1, z

∗
1) = (−1.5, 0.6)
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and (x∗2, z
∗
2) = (1.5, 1.0). This models two plastic land mines whose centers are at 6 cm and

10 cm depths and the size of each mine is 10cm×10cm. However, we do not assume a priori
in our algorithm neither the presence of these squares nor a knowledge of εr (x) at any point
of the rectangle Ω. Figure 1 displays the result obtained on the globally convergent stage and
Figure 2-b) displays the result obtained by the gradient method, which has used the image
of Figure 1-c) as the starting point of iterations. Locations of both inclusions are imaged
well. The computed function εr (x) = 1 outside of these inclusion. The maximal value of
the computed coefficient εr (x) in the left inclusion is 6 and in the right inclusion is 4, which
is exactly the same as they should be. Both these values are achieved at correct centers of
these inclusions, (x∗1, z

∗
1) = (−1.5, 0.6) and (x∗2, z

∗
2) = (1.5, 1.0). Hence, Figure 2-b) displays

quite an accurate image of the unknown coefficient.
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Figure 2: Test 1. The image obtained on the globally convergent stage is displayed on Fig. 1-c). a) The

correct image. Centers of small squares are at (x∗

1
, z∗

1
) = (−1.5, 0.6) and (x∗

2
, z∗

2
) = (1.5, 1.0) and values of

the target coefficient are εr = 6 in the left square, εr = 4 in the right square and εr = 1 everywhere else.

b) The imaged coefficient εr(x) resulting of our two-stage numerical procedure. Both locations of centers of

targets and values of εr(x) at those centers are imaged accurately.

Test 2 (the 3-D case). Our studies in 3-D are not complete yet at the time of the
submission of this paper. So, we provide only a preliminary result here. An additional effort
is required to finalize the 3-D case. We have imaged a 3-D analog of the left inclusion of
Figure 2-a). Namely, instead of the square whose sides are of the length 1, we have imaged
the rectangular prism (x, y, z) ∈ (−2, 2) × (−3, 3) × (0, 3). The center of the small cube
to be imaged is at the point (0,−1.5, 0.6) . The length of the side of this cube is 1. Next,
εr = 6 inside of this cube and εr = 1 outside of it. A certain post processing procedure was
applied. Figure 3 displays the final result. The center of the inclusion is imaged with a good
accuracy. The maximal value of the computed function εr (x) is εr = 6 and it is achieved at
this center. Also, εr = 1 outside of the imaged inclusion.
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