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Abstract

In this paper we study homogeneous Gibbs measures on a Cayley tree,
subjected to an infinite-temperature Glauber evolution, and consider their
(non-)Gibbsian properties. We show that the intermediate Gibbs state
(which in zero field is the free-boundary-condition Gibbs state) behaves
different from the plus and the minus state. E.g. at large times, all config-
urations are bad for the intermediate state, whereas the plus configuration
never is bad for the plus state. Moreover, we show that for each state there
are two transitions. For the intermediate state there is a transition from a
Gibbsian regime to a non-Gibbsian regime where some, but not all config-
urations are bad, and a second one to a regime where all configurations are
bad.

For the plus and minus state, the two transitions are from a Gibbsian
regime to a non-Gibbsian one and then back to a Gibbsian regime again.
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1 Introduction

In this paper we consider the Gibbsian properties of homogeneous low-temperature
Ising Gibbs measures on trees, subjected to an infinite-temperature Glauber evo-
lution. This problem has been considered before on regular lattices see e.g.
[2, 15, [16, 18], 19] 21, B, 4 ©, [7, 8], for Ising spins, n-vector and unbounded spins,
and for various finite- or infinite-temperature dynamics, of Glauber, Kawasaki, or
diffusion type, and even for non-Markovian evolutions.

At high initial temperatures, or for suffiently short times, standard methods
can be used to prove Gibbsianness, also in our situation. Thus the interesting case
is to find out what happens for low initial temperatures. As usual (but see the
mean-field analysis of [9]) low-temperature dynamics are beyond reach so far. For
simplicity we will consider infinite-temperature dynamics, but high-temperature
evolutions are expected to behave qualitatively similarly.

In contrast to what happens on regular lattices such as Z¢, the Gibbsian prop-
erties of evolved Gibbs measures for models on trees turn out to depend on which
of the different Gibbs measures (plus or minus, versus intermediate) one consid-
ers. In all cases there are two transition times: for the intermediate measure after
the first transition time it becomes non-Gibbsian in the familiar sense that some,
but not all, configurations are “ bad” (that is, they are points of discontinuity),
while it turns out that after a certain later time the evolved intermediate Gibbs
measure becomes “totally bad”; thereafter it has the surprising property that all
spin configurations are discontinuity points.

This last property is something which will not happen for the other two ex-
tremal invariant Gibbs measures. For those measures, although after a first tran-
sition time they also become non-Gibbsian, after the second transition time they
become Gibbsian again.

We will provide proofs for these results on the Cayley tree, and don’t aim
for the greatest generality here, but we will indicate why these results should be
expected to hold more generally. We present our results both in zero and non-zero
external fields.

Our analysis illustrates (again) how different models on trees are as compared
to models on regular (amenable) lattices.

Non-Gibbsian properties of some other measures of statistical mechanical ori-
gin on trees have been considered before, [12, 13|, [I7]. For FK measures as well
as fuzzy Potts models on trees, the possibility of having a positive-measure set
of “bad” discontinuity points was found, and for a particular renormalised Ising
measure the set of bad points was shown to have measure zero, while having a
fractal dimension.



2 Background facts and notation

2.1 The Ising model on a Cayley tree

Let €%(d) be a Cayley tree for some d > 1, that is the unique connected tree
with |9i] = d + 1 for all i € €Z(d). Let Q = {1, +1}*? endowed with the
product topology. Elements in §2 are denoted by o. A configuration ¢ assigns to
each vertex z € €%(d) a spin value o(x) = £1. Denote by S the set of all finite
subtrees of €Z(d). For A € S and o € §2 we denote by o, the restriction of o to
A, while €, denotes the set of all such restrictions. Let A € €T (d) be any set,
finite or infinite. We denote by FE)j its set of edges and by V) its set of vertices.

Let now A € S, hence finite. We will consider the nearest-neighbour Ising
model on the tree. The finite-volume Gibbs measure on any finite subtree A for
an Ising model in an inhomogeneous external field, given by fields h; at sites
7, boundary condition w, at inverse temperature (3, is defined by the following
Boltzmann-Gibbs distribution

1
ps(op) = 720 i) exp | 3 Z oioj + Z hio; + Z OiW; (1)

{i.j1€EA i€V T
Infinite-volume Gibbs measures are defined by having their conditional probabili-
ties of finite-volume configurations, conditioned on the configurations outside the
volume, of this Gibbsian form, see e.g. [I1] and [5]. In equation form we require
that for all volumes A and configurations o, u satisfies

uon) = / i (o () 2)

The infinite-volume Gibbs measures are parametrized by the external magnetic
fields (in most of what follows we will consider a homogeneous field hg), and by
the inverse temperature 3 > 0. This will lead us to consider finite-volume Gibbs
measures with this same homogeneous field plus a possibly different boundary
field. We put (1) = oo and, for d > 1,

1. d+1
ﬁ(al)—arccothal—§1nd_1 "
1 \ 1 3
—1\2 — 2
h(B,d) = [d arctanh (gz — 1) — arctanh (Z_—Z}]) ] Is>p(a),

where w = tanh 3 = w1

It is known (see [L1]), that if 8 > ((d) and |ho| < h(5,d), then the system
exibits a phase transition. Throughout the paper we will assume |ho| < h(8,d),
B > [(d), and d > 1, whenever the opposite is not indicated. This condition
ensures the existence of three homogeneous phases p~, uf, ut.

These phases are extremal in the set of invariant infinite-volume Gibbs mea-

sures; u and p~ are also extremal in the set of all infinite-volume Gibbs measures,
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whereas ¥ becomes non-extremal in this set below a certain temperature strictly
smaller than the phase transition temperature [I], 14]; however, this second tran-
sition will not concern us here.

Let T',, be the Cayley tree with n generations and I',_; =T, \ dI',, the (sub-)
Cayley tree with n — 1 generations, where 0I',, stands for the inner boundary of
[',,. It is a known result for the Ising model on trees that the marginal on I',,_; of
the finite-volume Gibbs measure on I, is a finite-volume Gibbs measure on I',,_1,
with a possibly different external magnetic field at the boundary. See Appendix
for how this works out in marginalizing infinite-volume Gibbs measures by using
boundary laws.

Marginalizing on I',,_1, that is to a tree of one generation less, leaves us with
a finite-volume Gibbs measure on I',_;, parametrized by the following external
fields

i € Oy, hi = ho +do(hy),

4
i c Fn,Q, hl - h(_) ( )

where () = atanh(tanh  tanh z).

Thus, summarising, taking the marginal of an Ising model Gibbs measure on
a tree with n generations with homogeneous boundary field h,, results in an Ising
model on an (n—1)-generation tree with a homogeneous boundary field h,,_;. The
map from h, to h,_1, (4)), has three fixed points h*, h* and h~. (Equivalently,
one could consider the map between the magnetisation at generation n to the
magnetisation at generation n — 1, which again has the corresponding three fixed
points m*, mf and m~.) Whereas h* and h~ are stable, h* is an unstable fixed
point which implies that weak positive boundary conditions will result in a plus
state, once one is far enough from the boundary. In other words, the phase
transition is robust [20)].

These three fixed points determine the three homogeneous extremal invariant
infinite-tree Gibbs measures mentioned above.

2.2 Dynamics, non-Gibbsian measures, main questions

Let P(£2, F) be the set of all probability measures on €2 and G(3, hy) be the set of
all Gibbs measures of the Ising model with an inverse temperature 5 and external
field ho. Let Prp)(€2,§) denote the set of all p € P(€2, F) which are invariant
under all the graph automorphisms (translations, rotations, reflections etc). Let
K E gI(B)<ﬁv ho), where gI(B)<ﬁv ho) = G(B, ho) nPI(B)<Qvf)'

We aim to study here the time-dependence of the Gibbsian property of the
tree Gibbs measure p*, for x € {+, —, #}, under an infinite-temperature Glauber
dynamics. This is the stochastic evolution S(t) which is obtained by having in-
dependent spin flips at each vertex at a certain given rate. In other words, we
want to investigate whether or not p*S(t) =: fi is a Gibbs measure at a given time
t>0.

By assumption the initial measure p is a Gibbs measure. This immediately
guarantees the non-nullness of the measure p*S(t) for all ¢ (including t = 0). It
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will thus suffice to study whether the transformed measure is quasi-local or not.

Define jiz(f|w) = Eu(f|Fae)(w) to be a realization of the corresponding con-
ditional expectation for bounded f, finite A C S, w € ). We also use the no-
tation fin(flow) = Eu(f|Fw)(w) when we condition only on configurations on
a finite subset of sites W C A°. With this notation we have e.g fir(flwana) =
J fia(flw)f(dwarye), for volumes A" D A where fi(dw(ane) denotes integration over
the variables outside of A’.

The measure [i is not quasilocal, if it is not consistent with any quasilocal
specification. To prove this, it is enough to find a single, nonremovable, point of
discontinuity (in the product topology) for a single fiy for a single (quasi)local
function f [10, [5]. The definition of the non-quasilocality for the transformed
measure can be refined, see in particular [I0]. The relevant definitions read as
follows:

Definition 2.1 The measure i is not quasilocal at 1 € § if there exists Ag € S
and f local ( given that Q) is finite it suffices to look for f local, with support Ag)
such that no realization of fin,(f|-) is quasilocal at 7.

In other words, any realization of fia,(f|-) must exhibit an essential disconti-
nuity at 7; one that survives zero-measure modifications. (Remember that condi-
tional probabilities are only defined up to measure-zero sets.)

Definition 2.2 For a local function f as above, fin,(f]-) is fi-essentially discon-
tinuous at 7, if there exists an € > 0 such that

lifjl\l Sup. - sup |fro (F17ava0€AnA) — Eno (F1Tava0€ana)| > € (5)
fo &4
|A/|< o0

If fip, (f|) is fi-essentially discontinuous at 7, informally it means that there exists
an € > 0 such that for every A € S there exists A’ D A and configurations &, £2,
such that

| o (F1A\AEANAT) — fino (FITTaNa0ERNAT) | > € (6)

for n € A, where A € F(ar) is of positive ji-measure.

Definition 2.3 iy, (f|-) is strongly discontinuous at 7, iff there exists an & > 0
such that

lim sup sup inf - [fing (FIaaoEanaamar) = fiao (flimao€inataman)l > ¢ (7)
AToo €/7£A A,;’S,]A’:
|A[<oo A | < oo

Remark 2.4 Intuitively the difference is that whereas for [i-essential discontinu-
ity one needs to estimate a difference on two measurable sets of positive measure,
for a strong discontinuity one needs an estimate of a difference on open sets; how-
ever, because of the impossibility of conditioning on individual configurations, we
get the somewhat unwieldy definitions above.



A useful tool to study whether ji stays Gibbs is to consider the joint two-
time distribution v on (o,7n), where the initial spins o are distributed according
to u, and the evolved spins 7 according to fi. This joint distribution will be
denoted by either v or v*. Tt can be viewed as a Gibbs measure on {—1,+1}¥
with 2K = €%(d) U €%(d) consisting of two “layers” of €%(d). Formally, the

Hamiltonian of v/ is
Ht(o-a 77) = HM(J) - h’lpt(O', 77)7 (8)

where p;(o,n) is the transition kernel of the dynamics. We consider independent
spin-flip dynamics, so

1. 1+et
npdo) = 3 5o (@() 0
z€€X(d)
Let us denote _— .
¢ L + e
h —21111_6% (10)

This approach to study the evolved measure as the marginal of a two-layer Gibbs
measure was introduced in [3], and has been applied repeatedly since.

Remark 2.5 Here we will find for p*S(t), by making the choices & = +1,

& = —1, that in any open neighborhood of n two positive-measure sets exist, on
which the limits differ, however, in contrast to amenable graphs, these sets are not
open (which allows different behaviour between different evolved Gibbs measures y*
and put as regards their Gibbsianness, something which is excluded on amenable
graphs such as Z2). In other words we will show a fi-essential, although non-
strong, discontinuity.

As explained in the appendix we have the representation of the conditional prob-
abilities of the time-evolved measure y; of the form

ﬂt(ﬁ0|77A\o) :/M[TIA\O](dUo)Pt(UOJIO) (11)

with the perturbed 7n-dependent measure on spin configurations
pnavol(do) = p[nave. no = 0](do) whose finite-volume marginals look like

pnal(on) = Cexp q B Z 0,05 + Z hi0i+zhiai ; (12)

(i.)eN’ ieAT\OA’ i€ON
where
h’i =h + niht7
7 ’ t (13)
hi = ho + mh + h*

where the external fields at the boundaries are given in terms of h*. This value
represents the fixed point of the recursion relation with homogeneous field hy,
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(4)), and is bijectively related with the starting measure p*. More generally, such
a representation is always valid if the initial measure is a Markov chain on the
tree. Markov chains can be described by boundary laws, and conditional probabil-
ities of infinite-temperature time evolutions, are, for finite-volume conditionings,
described by boundary laws obeying recursions which are local perturbations of
those of the initial measure, see the Appendix and [11].

In what follows we choose ¢! = (+) and & = (—). With this notation, for
non-Gibbsianness it is enough to prove that, at 7, there exists an £ > 0 such that,
for all A there exists A’ D A such that

|1l Eanal (00) — 1lnvos Exnal(00)| > € (14)

2.3 DMarginals and n-dependent fields, initial field ~y =0

To prove the non-Gibbsianness of ji, we will have to consider the phase transition
behaviour of the Gibbs measures on the first layer in various external fields. These
external fields are determined by the various conditionings, as well as by the choice
of the initial Gibbs measure.

Let k,m be integers with k < m, let us denote A’ =T',, and A = I';,. Consider
first the case hy = 0. Marginalizing on I',, leaves us with a finite-volume Gibbs
measure on [',, denoted by VF; and parametrized by the following external fields

i € Oy, hy = mh' + do(h¥),

15
i € Do, by =ikt (15)

In order to apply the (marginalisation) procedure to the n-dependent finite-
volume Gibbs measure I/h; on I';,, we need to identify the role played by n. It can
be shown that taking the marginal on I',,_; of the finite-volume Gibbs measure
on I';, (summing out the spin o € 9I',,) gives us a finite-volume Gibbs measure
on I',,_1 with an external field at the boundary equal to

hi =mih' + ) o(mh') (16)
I~i

Here the sum is over the nearest neighbors [ € T',,.

The equation tells us how the configurations ngr,, will affect the field
acting on ¢ € dI',,,_; after having taken one-generation marginal.

The configuration nr,\r, will govern the value of the fields at OI';, when the
marginal on I'y is taken. Let us see how:

L nFm\Fk = +
i € Oy, hY = h' + dp(h¥),

after summing out the m-th generation we have
i €O, hi =N+ dp(hy),
i€dl; k<j<m—1, hl=h'+dp(hl™)



i € Oy, hY = —h' +dp(h*),

after summing out the m-th generation we have
i € Ol 1, hi = —h" + dp(RY),

i€l k<j<m—1, hl =—h' +do(hl™")

(18)

Note that the above chosen n-conditioning on the annulus makes the recursion
homogeneous. Choosing m big enough guarantees that the recursions , (118)
approach their time-dependent fixed points; we denote them respectively by H;-,
Hf and hi, hﬁ, see Figure.
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Figure 1: Fixed pointsﬂ

Assume that we start at time ¢t = 0 with the measure p*, then h* = h¥ = 0.
It ensures that the recursions , will approach, respectively, H,;" > 0 and

hy = —H;” < 0. H; represents the biggest stable fixed point for the n = +
recursion (17), and h; the smallest stable fixed point for the n = — recursion

(18). The fact that both recursions have as a starting point the unstable fixed
point h* = 0 guarantees that the plus conditioning will drag the field towards H;"
and the minus one towards h; . This will not be the case for u* and p~ as we will
see later.

The (nr,.\r, = %)-dependent marginals on I';, of the measure on I',,, are
finite-volume Gibbs measures parametrized by the following fields:

1“Longum est iter per praecepta, breve et efficax per exempla”, Seneca.



for the case (nr,\r, = +)

i€ Oy, b = miht + dp(H;"),
i € Ty, h) =mn;h'

and in the case (nr,\r, = —)

i€ Oy, hy% =miht 4+ do(hy),
i€ Ty, hY =n;h'

1

(20)

Remark 2.6 Notice that only the fields at 0T depend on np,\r, and not the
ones acting on the interior. We emphasize that the broadcasting is absorbed by
the boundary and has no direct influence on the interior.

Now we investigate how the recursion relation h! = miht + 37, . @o(h)™"), ob-
taining by summing out generations in I';, will depend on the fixed configurations
nr,\r, = =+, namely on the fields H;", h; acting on the generation 0T;;. We
emphasize that the annulus configurations determine the starting point of the
recursion. We will also show how the aforementioned recursion relation can be
bounded from below if we are coming from 7p,\r, = -+, and from above for
nr,\r, = —. Furthermore these bounds will turn out to be uniform with respect
to nr, and with respect to j (number of iterations).

Lemma 2.7 Given the recursion relation hl = n:ht + D o(hi™) we have :
hi > hf > 0, for all i and j, if hY = H;; and h} < H; = —h;, for all i
and j, if hY = h;. Here hi is the fized point for the homogeneous recursion

hi = —h' + dp(h 1) with h° = H;".

Proof: Fixed points of the discussed recursion relation are given in the picture
(I). The proof follows by induction. Take first the case h) = H;". Naturally
H' > hf, so h% > hf for all i. If we now assume h! > hf for all 4, then
R = bt + 37, 0(h]) > —ht 4+ dp(hf) = hf. The case h) = h; follows by
symmetry; the corresponding recursion relation will be bounded from above by
H,.

O

3 Results: total badness of the evolved p*; dif-
ference between different phases

Let t5 be defined by
h* = h(B,d) (21)

Theorem 3.1 If o is distributed according to uf, then after time to all configu-
rations m are bad configurations (points of essential discontinuity) for the trans-
formed measure 11*S(t).



Remark 3.2 The main idea is as follows: If the plus configuration is bad (and
by symmetry the same is true for the minus configuration), then all configurations
1 will be bad. This is because if minus boundary conditions give a minus mag-
netisation for the conditioned o-spin at the origin, and plus boundary conditions
a positive one, the same holds for all j (due to FKG e.q.). So take 1 to be plus.
Choosing £ to be plus in a large enough annulus A"\ A and integrating the outside
with pf will lead to an effective plus boundary condition at A. The reason is that
the positive magnetisation m™is an attractive fixed point for the recursive relation,
and any positively magnetised field in N will lead into its domain of attraction.
The same is true for the negative magnetisation. As there are different magneti-
sations with plus and minus boundary conditions, even in the presence of a weak
plus field (the field is plus due the 1 being plus), the choice of plus or minus in the
annulus influences the expected magnetisation at the origin, however big A 1is.

Proof. The definition of ¢, , will assure we are in the phase-transition
regime for the transformed system (for ¢ > t;). Making use of Lemma(R2.7),
the value of € we are after, in order to prove the essential discontinuity, is given
by € = 2tanh(h;"). This value corresponds to taking, for the measure coming
from nr,\r, = +, the smallest positive field along all the k£ — 1 iterations, namely
h; . The field at the origin is given by h* = noh! 4+ (d + 1)ip(h*~1) and could be
roughly bounded from below

h* =mnoh' + (d+ 1)p(h* ) > =" + do(hf) = hf

nt

Thus the corresponding single-site measure is given by v, (o) = hﬁt—goﬁ, SO
et +e 't
w7, (), (00) = tanh(h])
Analogously for the measure coming from 7, \r, = —, we take the biggest
negative value along all the k— 1 iterations, that is H; = —h;", therefore v_(0g) =
e—h?—o'o
m and

(1[7ir, (=)r,r,) (00) = tanh(=h)

For ¢ = 2tanh(h;") the inequality holds. Let us notice that ¢ is chosen uni-
formly with respect to 7, thanks to the uniform bounds appearing in Lemma.
This ensures the ji-essential discontinuity in any point.
O
As we mentioned before, the previous argument does not hold for p* and p~.
We treat here only the p* case, the u~ case is completely symmetrical. So, in
case we start with the plus measure, even conditioning on a minus configuration
in the annulus, due to the plus influence from the boundary will lead to a measure
on I'y that looks like the plus measure in a negative field.
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Lemma 3.3 Given the starting measure u*, the fields acting on O, for the
marginal measure on T,,, which are given by hY = n;ht +dp(h™), i € OT,,, satisfy
the following inequality

nib! + dpa(h*) > hi(d, B) (22)
foralld > 1, > B(d) and for all t € [ta,00).

Proof: Let t; be as in (21). We need to show that dyg(h™(d, 3)) > hi(d, B)+h in
the aforementioned region of parameters. First of all we note that the expression
on the right-hand side is zero in the limit ¢ T oo, and it is a decreasing function
of t. So in order to prove the lemma it is enough to show

dips(h*(d, 8)) > hi,(d, B) + h'* (23)
Using that th (d, B) is a fixed point for the (—) recursion at t = t5, we arrive at

dps(h*(d, B)) > dps(hi,(d, B)), (24)

Note that hﬁQ(d, B) = he(d,3) > 0, where h.(d,3) is a tangent point to dp(z)
such that d¢'(h.(d,3)) = 1. We show that h* > h.(d,3). In fact we know that
dp(h™) — h™ = 0. Using the mean-value theorem together with the fact that
dp(0) = 0, we write dy'(§)hT — h™ = 0. It implies that & is such that dy'(§) = 1.
Using then that dy’ is a decreasing function it follows that the domain of £, namely
(0,h™) has to contain h.(d, 3); so h* > h.(d,3). Using then the monotonicity of

the functions ¢g the claim is proved.
O

Theorem 3.4 If o is distributed according to pu*, then after time ty all configu-
rations 1 are good configurations for the transformed measure u*S(t).

Proof. Based on Lemma , choosing I',, big enough we make sure that the
recursion relation coming from the fixed “+”-annulus I, \ T'y will approach its
fixed value H;", so do we for the fixed “—"-annulus to approach its fixed value
hi. Then the magnetic fields for the finite-volume Gibbs measure on Iy are
respectively given by

i€ Oy, b = miht + dp(H;"),

25
Z'Ekal, h?:Thht ( )

and

i € Oy, h; " = miht + dp(hf),

26
1€ kal, h? = nlht ( )
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Define A/ = max;(h;”7 — h;”7). This maximum is always positive, as an

inductive argument shows. We are about to prove that 3§ € (0,1) such that
AJ > (1 —6)AI™!; this is equivalent to say that limjo, A; = 0.

A . A 1 A A
AT = ma(h 7T = b7 ) = max [3 > (d(h) = ds@(hl—"’))]
I~i

= max [Z dsD;(CD (h;r’j — hlj)] < (1 =) max [é Z (h;r’j — hlJ)] <

K3 3

I~ I~

A , 1 A _

=(1-19) max max ((hl’L’] —h; ) Z c_i> =(1-9) max max (B — h; )
I~i

= (1-6)A7

(27)

We used the mean-value theorem together with the fact that dy'(z) < 1 for
x > h.(d, ).
O

For o distributed according to j, we will show the existence of an intermediate
time interval, where some, but not all, configurations are bad for f. Theorem
will express this. We will show that the all plus and all minus configurations are
good for p*S(t) at all times in (0,t,). Moreover we will impose a condition on the
field h' (therefore on t itself), such that it guarantees the existence of at least one
bad configuration for p#S(t).

We will find a ¢;, which is larger than the minimal value of time for which
this condition is satisfied. This value ¢; will turn out to be strictly less than
to. This will guarantee that t; is small enough so that the transformed measure,
conditioned on an all plus or all minus 7 will not exibit a phase transition.

Remark 3.5 Note that this implies that at the same time ty the intermediate state
has a transition to a totally non-Gibbsian regime, where all spin configurations
are discontinuity points, whereas the plus and minus state have a transition to a
Gibbsian regime, without discontinuity points.

Lemma 3.6 If o is distributed according to u* then for all t € (0,ty) the n = +
and n = — configurations are good configurations for the transformed measure

pES(t).

Proof. As was shown before, the recursions ([L7), (related to the annuli) give
us respectively H;" and h; . Let first n be the plus configuration. In this case
hi7 = H;" for all i and j. In other words the field will stick to the fixed point
value along the iterations. Using an inductive argument we show that h, I = p;
that’s to say that it does not depend on i. Based on that, it is straightforward to
get a monotonicity property for A=/, namely that A=/ > h™7 for all j. Indeed

12



h=%t = ht + dp(h™7) > h™J. The last inequality follows from the fact that
do(z) > x — ht for all z € [h;, H;"), due to the chosen range of t. Recalling that
for t € (0,ty) the recursion relation A= = h' 4+ dp(h™7) has only one fixed
point, namely H;", the lemma is proven for n = +. The n = — case follows by
symmetry.

O

Remark 3.7 The chosen range of times enables the existence of a unique fixed
point for each of the recursions , , independently of h*. This means that
the fields we obtain at OI'y, depend on the annuli, but they do not depend on the

exterior I . For this reason Lemma(3.6) applies to o’s distributed according to
woand po too.

For the sake of clarity, let us recall that A" indicates the positive stable fixed
point for the recursion (4)) with hy = 0.
Lemma 3.8 Let t; be given by
hit =t (28)

then tl € (O, tz)

Proof. Recalling equation (L0, the fact that ¢; lies in the interval (0,¢) is
guaranteed by the truth of the inequality h(d,3) < de(h*), for f > [(d) and

d > 1. Indeed

h(d, 3) < datanh (w (Z:—Z) ) )
= datanh (w tanh(h.)) = dp(h,)

Knowing that h. < h™, the monotonicity of the function ¢ concludes the proof.
O
Define the “alternating” configuration 7 to be n/* = (—=1)" for i € dI',, and
n € N, ie. all vertices at each generation have the same sign different from
the sign of the previous and the next generations. Naturally the configuration
for which —p = (—1)" is also an “alternating” one. Let us call hi the field
at the vertex ¢ € OI'y_; after (j + 1) applications of the recursion formula ,
starting respectively at H,” or h; . The particular structure of the “alternating”
configuration makes the fields homogeneous at each generation; i.e., hf’j = h*,
for all 7 € O'y_;.

Theorem 3.9 If o is distributed according to pf, and t, is given by , then

for all t € [t1,t2) some, but not all, configurations n are bad for the transformed
measure pu*S(t).
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Proof. Making use of Lemma, Lemma, to prove the theorem it is enough
to find a particular configuration n that will be bad for all ¢t € [ty,t3). The
“alternating” configurations will be shown to be bad for all ¢ > #;, in other
words they transmit the influence of the annulus to the origin, no matter how
“distant” the annulus and the origin are. As remarked before, hi”’ associated
to the n configurations depend only on j, and we call the corresponding values
h*3. Without loss of generality let us assume 7! = +, for i € OI',. By an
inductive argument, based on the hypothesis t € [t1,%2) (which in terms of fields
means h' < h*), and on the particular structure of the configuration 7, we show
that h™7 > h™ and h™7 < 0, for all j even, namely for those j which relate to
generations at which 74 is set to be 4, and that h™7 < —h* and h*7 > 0 for j
odd. This will imply A*7 — h=J > h* for all j. Consider the case j even.
For 7 = 0 we have:
O = HF > ht, h=0 = ht +dp(h;) <0

Both inequalities hold, because H; is a decreasing function of ¢ whose lower bound
is given by hT.

Assuming the statement is true for j, let us see that it holds for j + 2. We
focus first on AH0U+2),

WG = Bt 4 dp(hH0HD) = Bt 4 dp(—ht + dp(hH)), (30)

where the second equality is justified by the particular structure of the alternating
configuration. Using the assumption A"/ > h* and the monotonicity of ¢ we
arrive at

U+ > bt dp(—h! 4+ dp(hT)) (31)
The fact that 0 < —h! + AT < h™ ensures that dp(—h' + h") > —h' + h*. This

concludes the proof for ht.
For h™U*2) we have:

KU+ = bt 4 dp(h—U+)) = bt 4 dp(—ht + dp(h™7)) (32)

Using always the assumption A~/ < 0, the monotonicity of ¢, and the assumption
ht < h*, which guarantees h' < dp(h'), we obtain

h=U+D < bt dp(—ht) <0 (33)

The case j odd is analogous.
OJ

Remark 3.10 The above result also applies to the evolved plus and minus mea-
sures. Indeed the alternating configuration displays a strong discontinuity here,
whereas the above analysis shows that for large times all configurations display a
p*S(t)-essential but nonstrong discontinuity. Whether the t, used above is opti-
mal in any sense is not known. We conjecture that it may be for the intermediate
state, but not for the plus or minus states.
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4 Initial field hy # 0

Recall that |ho| < h(d,5), 5 > ((d) and d > 1; these conditions guarantee
existence of three homogeneous phases for the original measure; we denote them,
even if not fully consistent with the notation we have been using so far, pJZO, U

and ,ufm, just to emphasize their dependence on hy. We show that the previous
results found for hg = 0 will also apply to the case hg # 0 but for different time
values. Let t, (ho),t_(ho) be given by the following equations:

h'[) + h't+ = h(dv ﬁ)a

ho — b= = —h(d, 3) (34

Call

ta(ho) = min {t; (ho),t(ho)}
t3(ho) = max {t (ho),t_(ho)}

Depending on the sign of the initial field, ¢, (ho) might be either bigger or smaller
then t_(ho), as follows from (10). Nevertheless the definitions of ¢2(hg), and ¢3(ho)
will always assure to(ho) < t3(ho) (e.g. for hg < 0 the order is to(ho) =t < t_ =
t3(ho)).

The time t3(hg) indicates the time value for which the dynamic field ', taken
in the opposite direction to hg, will first reach a value which guarantees phase
transition for the conditioned transformed measure. The time t3(hg) refers to the
analogous value, but for h' taken with the same sign to hy.

Suppose w.l.o.g. that hyg < 0. Note that for hy negative the magnetization
corresponding to uio is positive, see [11], chapter 12. For t > t3(hg) there exist
three fixed points for the (—)-recursion h**! = hy — h' + dp(h*), namely two
stable ones h; (ho), b (ho), and an unstable h?(hg). The existence of several fixed
points makes the convergence to them be dependent on the starting point. In
particular the recursion will take us to k) (hg) iff the starting point, h*=, lies to
the right of the unstable one, that is when h¥=0 > h¥(hy); it will take us to h; (ho)
iff h*=9 < hi(hy), and will stick to hf(ho) iff h¥=0 = h(hy).

Given that t3(hg) > ta(ho), the assumption ¢ > t3(ho) ensures the existence
of three fixed points also for the (+)-recursion h*™' = hy + h! + dp(h¥); they are
denoted by H;*(ho), and H?(hq).

Assume that we start at time ¢ = 0 with the measure ,ualo, then the starting
point for the (&£)-recursions is h* = h¥*(hg) > 0. However, for the chosen range of
time, t > t3(ho), it can be shown that hf(ho) will always lie to the right of H?(ho)
and always to the left of h¥(hg). So the next theorem reads:

(35)

Theorem 4.1 If o is distributed according to ,uio, then after time t3(ho) all con-
figurations n are bad configurations for the transformed measure ,uamS (1).

O
Analogously to the analysis for hy = 0, the former result will not hold for o
distributed according to “i)'
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Two other results, obtained in the previous section, have equivalents for non-
zero external field.

Lemma 4.2 [f o is distributed according to ,ugm, then for all t € (0,t5(ho)) the
n = 4+ and n = — configurations are good configurations for the transformed
measure ,ufmS (t).

O

Theorem 4.3 If o is distributed according to u,jfo, then after time t3(hg) all con-
figurations n are good configurations for the transformed measure ,ufOS (1).

O

Remark 4.4 It is worth remarking that the strict inequality to(ho) < t3(ho),
always holding for hg # 0, implies the non-emptiness of the interval of times
[ta(ho),ts(ho)). A similar result to the one given in Theorem(B.9) holds in the
case hy # 0, namely that for t € [ta(ho),ts(ho)) some, but not all, configurations
are bad. In fact, it can be shown, for example in case hy < 0, that the time ta(hg)
corresponds to the time for which the plus configuration becomes bad, while for all
times t < ts(ho) the minus configuration will remain good. In case hy > 0, as
symmetry may suggest, the time ty(ho) will be the threshold for the minus config-
uration to become bad, while the plus configuration will be good till t = t3(hg).

Encouraged by the many analogies between the hyg = 0 case and the hg # 0
case, one might ask what one can say about the (hy # 0)-equivalent of the time ¢,
. Pursuing the former, let us define the values of times 7., t_ by the following
equalities

W' = ho + dip(h* (ko)) — h*(ho),

) (36)
—h' = ho + de(h™ (hg)) — B*(ho)

and define further
t1(ho) = max {{y, i} (37)

The picture helps to understand the role played by the different times so
far defined.

It can be shown that t;(ho) < t3(ho) for |hy| < h(d,3). Nonetheless the
relation between time t1(hg) and t2(hg) is not so trivial as we will show. The next
lemma formalizes that for all time ¢ > ¢;(ho) the “alternating” configurations are
bad for o distributed according to ufm.

Lemma 4.5 If o is distributed according to ,ufm, and t1(ho) is given by (37), then
for allt > ti(hg) “alternating” configurations are bad for the transformed measure
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Figure 2: times

Proof. The proof follows the same route taken in the proof of Theorem with
some modifications on the bounds. Nontheless we reckon it is instructive to sketch
the main points at least for hg < 0. For ¢ > t;(ho) an inductive argument leads
to the following bounds:

for even j, ht > hT(hg) and h™7 < h(hy),

for odd 7, ht3 > —hf(ho) and h™7 < —h™(hy),

therefore ht9 — h=9 > h*(hgy) — h*(hg) for all j.
O
The previous lemma together with Remark shows that if ¢ is distributed
according to ufm, then for all ¢ € [t1(ho), t3(ho)) some, but not all, configurations
are bad. There are then two different time intervals where some, but not all,
configurations are bad. We will not leave the reader wondering how these two
intervals relate. We will show the existence of a critical value h§ such that for
\ho| > h§ we have [t1(ho),t5(ho)) C [t2(ho),ts(ho)), for |hg| < h§ the inclusion
is reversed, namely [t1(ho),t3(ho)) D [t2(ho),t3(ho)), and for |hy| = hf the two
intervals coincide.

Remark 4.6 In the small-field regime |ho| < h§ we have that the “alternating”
configuration becomes bad before the all plus and the all minus configurations. In
that case, the dominant effect is that the alternating character of the conditioning
provides some cancellations, just as in the zero-field case.

In the other regimes we can just say what follows from t1(hg) < t3(hg), i.e. that
the “alternating” configurations become bad before the homogeneous configuration
with all n’s aligned with hg, that is n = sign(hg). The impossibility to state
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something more in the other regimes is due to the fact that t1(ho) is not a “sharp”
threshold for the “alternating” configurations to become bad. However, in this case
having a “bad” configuration, one may need to counteract the effect of the field,
thus in a positive external field, the minus configuration becomes bad at an earlier
time than the alternating one.

To explore the latter inclusions we need to compare the values t(hg) and
ta(ho), or equivalently h'1(h0) and A*2(h0) Consider the difference between the
fields

f(hg) = hir(ho) — pi2(o) (38)

Based on the definitions of the times, , it turns out that the function f
is even. So we might focus on its behaviour only for negative values of the initial
field hg. For such values of the field the function has the following form

f(ho) = h*(ho) — h¥(ho) + ho — h(d, ) (39)
First of all the limit values of f in the interval (—h(d, 3),0) are given by

li ho) = —2h(d, ),
holg%ﬁ)f( 0) (d,)

lim f(ho) = b — h(d. 3)

Note that the second limit value is positive, as has been explained in the proof
of Lemma(3.3)), while the first one is negative by the definition of h(d, 3), and by
(3). Taking now the derivative of f with respect to hy we obtain

f'(ho) = (h* (ho)) — (h*(ho))' + 1 (40)

Using the only thing we know about h*(hg), h*(ho), namely that they are fixed
points for the recursion h*** = hy + dp(h*), the following equalities turn out to
hold

+ r_ 1
- GD))
(W (ho)) = ———

1 — dy'(h¥(ho))

Because h*(hg) < h.(d, 3) and h*(ho) > h.(d, 3), the monotonicity of dy’ assures
that f'(hg) > 0 for all hg € (—h(d, 3),0). Therefore the existence and uniqueness
of h{ is guaranteed by an application of the intermediate-value theorem. We point
out that the function f is not differentiable in hy = 0. Indeed, being f an even
function and limpgo f'(ho) > 0 clarify the discontinuity.

We would like to remark that the case hy = 0 might be obtained from
the previous analysis by taking the limit hg T 0. Indeed limpy0t1(ho) = t1,
hthTO tQ(hQ) = lithTo tg(ho) = tQ.
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5 Conclusion and final remarks

We have shown that the Gibbs-non-Gibbs transition on trees has a number of
different aspects, as compared to that on regular lattices. In particular, we have
shown that different evolved Gibbs measures can have different Gibbsian proper-
ties. For the evolved intermediate state there are two transitions, one from being
Gibbsian to being “standard non-Gibbsian” (having some, but not all configura-
tions bad) and a second transition to a “totally non-Gibbsian” regime where all
configurations are bad. Both these properties do not occur in the more familiar
lattice and mean-field situations.

For the plus and minus measure there are also two transitions, namely one
after which the evolved measure becomes non-Gibbsian, and some, but not all,
configurations become discontinuity points and a second one after which the mea-
sure becomes Gibbsian again; this is the behaviour which on the lattice occurs for
an initial Gibbs measure in an external field.

High-temperature dynamics should behave in a similar way as infinite-tempera-
ture dynamics, but although the proofs probably will be messier, qualitatively we
don’t expect anything new.

Although we have worked out the case of Cayley trees, we expect our results
to hold for a much wider class of trees. The instability of the fixed point A
for example corresponds with the phase transition being robust, which is true
in general for Ising models on trees [20]. Also, the property of plus boundary
conditions in a not too strong minus field inducing a positively magnetised state,
which was used in the proof that the plus configuration was good for the plus state
holds quite generally. The choice of bad configuration in the intermediate regime
may be somewhat tree-dependent. Moreover, it seems problematical to identify a
unique measure 4 in a field (on random Galton-Watson trees for example).

Acknowledgements: The research of G.I. was supported by NWO. A.C.D.v.E.
thanks Gerhard Keller for first asking him the question whether non-Gibbsianness
can become worse as time progresses, which triggered this work.

6 Appendix: Boundary laws, beyond homogene-
ity

It is the purpose of this appendix to explain the relation between the notion of a
boundary law as it is used in the book by Georgii [11] and the one-sided simple
recursions which are used in the paper. The notion of a boundary law is necessary
to describe all the extremal phases (or more generally, all Markov chains on trees).

To follow the notation used in Georgii, let us denote, for i ~ j, by Q;;(0;,0;) =
eP7i9+9:9i+9;%; the transition matrix of the random field Ising model on the tree
with Hamiltonian —(3 Z{l}j}eE o;0; — >, hjo;, where g; = h;/(d + 1), so the lo-
cal field at each site has been symmetrically distributed among the edges to its
neighbors.
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Every extremal Gibbs measure p for the random field Ising model on the
Cayley tree is a Markov chain on the tree (Theorem 12.12 of Georgii). To define
what it means to be a Markov chain on the tree, consider an oriented bond ¢7, draw
this bond horizontally such that ¢ lies to the left of j, and draw the tree embedded
into the plane in such a way that there is no intersection between the tree and
the axis crossing the oriented bond ij in a perpendicular way. A measure y is a
Markov chain on the tree if conditioning on the semi-infinite spin configurations
extending from i to the left (the past) is the same as conditioning on the spin
configuration at the site ¢ alone, and this holds for all oriented bonds ij. Not all
Markov chains are extremal Gibbs measures however, as the example of the free
boundary condition Gibbs measure of the Ising model in zero field at sufficiently
low temperatures shows. The meaning and importance of a boundary law lies in
the following fact. A Markov chain on the tree always has a representation in
terms of a boundary law /;;(a), a = &, that is for the finite-volume marginals it
holds

M[h](UAumA):m IT wealon) JI Qisloioy) (41)

kedy A {ij}NA£D

where 0, A denotes the outer boundary of A and k, is the unique nearest neighbor
of kin A. A boundary law is a function on oriented edges ij which depends on the
possible spin values. From its appearance in the last formula we see that, at any
17, it is defined only up to a multiplicative constant, not depending on the spin
configuration a. Define therefore ¢;; = %log Z;E—j in the Ising case. This quantity
has the character of a local field at the site ¢ and contains the full information
about the boundary law in the Ising case. More precisely g, has the meaning
of a local field acting on the spin o which has to be added to the Hamiltonian
with free boundary conditions in the volume A U 0, A if the site k is attached at
the site kj.

Assuming the validity of the last formula for the finite-volume marginals one
arrives at a ()-dependent consistency (or recursion) relation that a boundary law
has to satisfy. This recursion is formulated as (12.10) in Georgii; in the case of the
Ising model with site-dependent fields it translates equivalently into the recursion

1 e2kitBtartgi 4 o=B—gutgi

Q5 = Z 9 log e2aki—B+9k—9i - eB—9k—9i
ko i\j

(42)

Conversely, a function g;; on all oriented bonds which is consistent in the sense
of defines a Markov chain by formula (41)) with the corresponding boundary
law lz]

Note that is a one-sided recursion which has no beginning and no end. It
is interesting in the first step to look at homogeneous solutions, i.e. solutions not
depending on the bond 77, but there may be also many other solutions, even in the
case when the local magnetic field in the initial Hamiltonian is site-independent.
In that case there can be non-homogeneous solutions when there are more than
one fixed points for the homogeneous recursion. Indeed, to construct a non-
homogeneous solution one picks a site 5 and looks to all oriented bonds i pointing
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to it, and picks values of ¢;; not at the fixed point. Then one defines a boundary
law by preimages for ¢,’s for the oriented bonds b going up to 7j. In order to make
sure that there are such preimages under all orders of iterations, the value has to
be chosen such that it lies between a stable and an unstable fixed point.

To see the meaning of the boundary law in a more intuitive or physical way let
us make explicit the difference to the field which is already present in the original
Hamiltonian. We look at the asymmetric quantity which is centered at the local
field for the first spin, namely f;; = ¢;; — g;d and note that it satisfies the equation

k€d+i\j
with ¢g(t) = 5 log 2222%&2; With this variable we have
1 214 Boioi+>; hioi+3 frkr @
h — T 2 {iynA#0 PTiITi T2 e Aua A T 2 ko A ThEN Tk 44
ul ](UAua+A) Zn (3, h)e (44)

So the f;; has the meaning of an additional boundary field at the site ¢ acting
on top of the local fields which are present already in the Hamiltonian, when one
computes the finite-volume marginals in a volume with a boundary site ¢ when
is attached via the site 7 to the inside of the volume.

Now, let us enter in more detail the discussion on the dependence of boundary
laws on a variation of local fields entering in the Hamiltonian. Suppose that a
boundary law [[h], not necessarily homogeneous, is given for the (not necessarily
but possibly homogeneous) Hamiltonian with a field hA. Recall that, as we just
explained, homogeneous fields h may have very well inhomogeneous boundary
laws. Let us consider the system now in the presence of a local perturbation of
the field h+ Ah, possibly site-dependent, but bounded, i.e. sup; |Ahg| < co. Any
Gibbs measure plh| gives rise to a Gibbs measure p[h + Ah] which is related by
the formula involving the local perturbation of the Hamiltonian of the form

plh] (p(5)ex: 2h1)

(5 )

plh + Ahl(e(5)) =

where it is understood that integration is over ¢. If the original Gibbs measure is
actually a Markov chain described by the boundary law [;; = [;;[h], the perturbed
measure is described by the boundary law /;;|[h+ Ah| which is obtained by putting
lijlh + Ah] := [;;[h] for oriented bonds ¢j in the outside of the region of the
perturbation of the fields which are pointing towards the perturbation region.
When passing with the recursion through the perturbation region of the local
fields the [;;’s obtain a dependence on the size of the perturbations. Then the
forward iteration is used to obtain an assignment of I’s to all oriented bonds.
Summarizing we have the following lemma.

Lemma 6.1 Suppose that h is an arbitrary external-field configuration, Ah is an
arbitrary finite-volume perturbation of the external fields, and ulh + Ah] is the
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measure which results from a local perturbation from a Markov chain u[h] which
is described by a boundary law l[h).

Then plh+Ah] behaves in a quasilocal way (i.e. all expected values p[h+Ah](p)
on local spin functions ¢ are quasilocal functions of Ah) if and only if the boundary
laws Ah — l;;lh + Ah], depending on field perturbations Ahy’s for k in the past
of the oriented bond ij, behave in a quasilocal way, and this holds for all oriented
bonds 17.

Here a vertex k is said to be in the past of ij if the path from k to j passes
through 7. Quasilocality is meant in the same way as it has been introduced in the
context of finite-volume variations of spins, i.e. we say that [ depends quasilocally
on a variation of fields iff

lim su su I[AR|p] — UAR ] =0
Arzé A’:A’I;AAh\Azgh’\A| [Ahlw] =~ AR ] (46)

where the supremum is taken over perturbations Ah|x/, AR/ |y in the finite volume
A" which look the same on A.

Proof. The proof follows from the representation of the finite-volume Gibbs
measures of u[h + Ah] in terms of the boundary laws l;;[h + Ah].

O

We note again that there is a one-to-one correspondence between simple di-
rected field recursions with d neighbors, as used in the paper, and boundary laws.
So we obtain the following corollary, which is used extensively in the paper.

Corollary. Suppose that h is a homogeneous external field, Ah is an arbi-
trary finite-volume perturbation of external fields, and u[h + Ah] is the measure
which results from a local perturbation from either one of the homogeneous mea-
sures p[hl], corresponding to the plus, the minus or the unstable fixed points.
Then the measures u[h + Ah] behave in a non-quasilocal way on the field pertur-
bations Ah iff the corresponding solutions of the one-sided simple recursions for
the effective fields behave in a non-quasilocal way.

Some non-homogeneous Gibbs measures. The discussion just given has
consequences also for those Gibbs measures 1 = pe) o Wwhich are obtained by
pasting boundary laws [* for oriented bonds b of the form kk, for some fixed
subtree A, so that is true for the particular volume A. Then extend the
boundary laws to have a prescription in the whole volume. Then the parameter
region for non-quasilocal behavior of the resulting measure will be the union of
the parameter regions of non-Gibbsianness of the original measures taken over the
b’s.

Connection to Gibbs vs. non-Gibbs under time evolution. Since the
Gibbs properties of time-evolved Ising measures in infinite-temperature evolution
can be expressed via quasilocality properties of Ah +— plh+ Ah], for finite-volume
Ah, we are left with the investigation of the locality properties of the boundary law
iteration. A local variation of the image spins amounts to a local perturbation Ah
of the local fields. Indeed, denoting the time-evolved measure by [i;(dn), starting
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from the measure p(do), we have for finite A 3 0 the formula

(1o Mav0) = fu(dU)Pt(UOaT]o)@ht 2ien\o i
RAUMUIN Y f ,u(da)eht > ieavo M0

= /u[nA\o](dUO)Pt(UOa o)

(47)

with a measure p[na\o](do) of the form p[h + Ah] with a perturbation in the fi-
nite volume A\0. Finite-volume marginals of this measure have a representation,
according to Lemma , of the form with an n-dependent transition matrix

ht"ilieA\O+ht"j1j€A\0 . .
iin(os,05) = e a+1 ii(0;,07) where Q;;(0;,0;) is the transition
31 J J J j J

matrix for the initial measure p, and an 7,\p-dependent boundary law [;;[na\o]
which obeys the locally modified iterations for the boundary law described be-
low (45). Hence, non-Gibbsianness of time-evolved measures is detected by non-
quasilocality of the perturbed boundary laws ;;[na\o]-

A consequence of these remarks is that a time-evolved measure resulting from
an initial Gibbs measure which is constructed by pasting finitely many boundary
laws [° as described above, will be non-Gibbsian at a parameter regime which
is the union of the non-Gibbsian parameter regimes of the time-evolved Markov
chains corresponding to [°, over b.
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