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Abstract

We discuss the the validity of the Weyl asymptotics — in thesseof two-
sided bounds — for the size of the discrete spectrum of @isc6chrodiger
operators on thé—dimensionald > 1, cubic latticeZ? at large couplings.
We show that the Weyl asymptotics can be violated in any ajpditnension
d > 1 - even if the semi-classical number of bound states is fiRitether-
more, we prove for all dimensionk> 1 that, for potentials well-behaved at
infinity and fulfilling suitable decay conditions, the Weghanptotics always
hold. These decay conditions are mild in the case 3, while stronger for
d = 1, 2. Itis well-known that the semi-classical number of bouradest is —
up to a constant — always an upper bound on the size of thesthssectrum
of Schrodinger operators if > 3. We show here how to construct general
upper bounds on the exact number of bound states of Scigérdopera-
tors onZ< from semi-classical quantities in all space dimensiéns 1 and
independently of the positivity-improving property of thee Hamiltonian.

1 Introduction

Let V € L¥?(R? R}) be a non-negative potential in thie-dimensional space
with d > 3. From standard results of spectral theory [1] it followd th& negative
spectrumo[—A — AV (z)] N R~ of the corresponding self-adjoint Schrodinger
operator

—Aga — AV () (1)



on L?(R%) is purely discrete, i.e., consists only of isolated eigéres of finite
multiplicity. Here, Ags = Zle agi is the Laplacian ofiR? andV acts as a mul-
tiplication operator[Vy|(x) := V(z)p(z). By a well-known theorem — first
established by Weyl [2, 3] for the case of Dirichlet Laplacia a bounded do-
main — the numbeN“"*[\V] of negative eigenvalues efAr. — \V (counting
multiplicities) is asymptotically

NMAV] = Tr{1[-Aga — AV < 0]} ~ NZ"[AV] (2)
as\ — oo. The right-hand side of (2) is the volume

dz dip

e )

Nem Y] = / 1p? — V(x) < 0]

these bound states occupy in phase sjice (R*)¢ = R?? according to semi-
classical analysis. This so-called Weyl asymptotics (osplemented by the
celebratechon-asymptotibound of Rozenblum [4], Lieb [5], and Cwikel [6] on
the numbertv<"*[V] of bound states of Agr. — V' of the form

N V] < Crre(d) NZ"([V] (4)

for someCr.c(d) > 1. Lieb [7, Eq. (4.5)] has shown that the optimal choice for
Crrc(3) is smaller tharg, 9. Note that

|54
d (2m)4

N (V] = VY2 () d'z, ()
where| S| is the volume of théd — 1)—sphere.

In the present paper, we replace the Euclidéatimensional spadg? by the
d—dimensional hypercubic lattide = Z¢ and study the discrete analogues of the
Weyl asymptotics (2) and the Rozenblum-Lieb-Cwikel boudy (For a given
potentialV € (T, Ry ), the discrete Schrodinger operator corresponding to (1)
is

—Ar — AV(z), (6)
wherel” acts again as a multiplication operator ahd is the discrete Laplacian
defined by

[Argl@) = Y {elz +v) —p(@)}. (7)

lv]=1
More generally, we assume to be given a Morse functian C*(T'*,R) on the

d—dimensional torus (Brillouin zoné)* = (R/QwZ)d = [, m)4, the dual group
of I'. Given such a functiom, we consider the self-adjoint operator

H(e,V) = h(e) = V(z), (8)



on ¢*(T"), whereh(e) € B[¢*(T)] is the hopping matrix (convolution operator)
corresponding to the dispersion relatign.e.,

(72 (h(e)e) () = e(p) [F(2))(p) 9)
for all p € L*(T'*) and allp € T'*. Here,

Fo: 1) — LA(TY), [FX( = e rg(x (10)

zel

is the usual discrete Fourier transformation with inverse

Fi D) = 80, [FO) = [ 0. @

Here, 1* is the (normalized) Haar measure on the tors;(p) = (gjj)’d. Put

differently, h(e) = FeF* is the Fourier multiplier corresponding é0We assume
w.l.0.g. that the minimum of is 0, so

e(I") = [0, emax(e)], (12)

and we refer to a Morse functione C?(I'*,R) obeying (12) as aadmissible
dispersion relationNote that—Ar = h(eap1), With

d
eLapl (P Z 1 — cos pZ (13)
=1

being admissible. We require thtdecays at infinity,

V e (DR = {V I R | lim Viz) = 0}, (14)

|z|—o00

or sometimes even thaf has bounded support. Note tHat € (3°(I',R}) is
compact as a multiplication operator 61{I") and by a(nother) theorem of Weyl,

Oess[H (e, V)] = 0ess[H(e,0)] = [0, emax], (15)

wheree,.x = emax(¢). From the positivity ofl” and the min-max principle we
further obtain that all isolated eigenvalues of finite nplitity lie below 0,

oaisc[H(e,V)] € R™ := (—00,0). (16)

We note in passing that — different to Schrodinger opesatorR¢ — discrete
Schrodinger operators possibly have positive eigengalteen changing the sign



of the potential. Counting the number of positive eigengalthowever, can be
traced back to the one treated here by replaeipg by ¢...x — ¢(p).

Our goal in this paper is to give — in all dimensions — both gstatic and
non-asymptotic bounds on the number

Nle,V] := Tr{1[H(e,V) < 0]} (17)

of negative eigenvalues df (¢, V') in terms of the corresponding semi-classical
guantity

Nyle,V] = Z/ ) < 0]du* (p) (18)

zel’
| vl o) (19)
where the size£ [a] of the level sets of” are defined by
Lyla] == #{z €T |V(z) > a} (20)

for o > 0. Note thatCy [«] is independent of the localization propertiedofThis
lets us introduce the notion of rearrangement®& oGivenV, V € (5°(T, RS ), we
say that

Vis arearrangementol/ <=  Vau: Lyla) = Lyla].  (21)

In other words,V\Supp 7 = V o J for some bijection/ : supp vV — supp V. A
key condition for many of our results is the following:

Hypothesis (H-1). The admissible dispersianis dominated by a positivity pre-
serving admissible dispersiani.e.,

Vis0 ¢ ’<5 } exp(—th(e y>} < (4, } exp(—t h(8)) 6,), (22)

whereé, (y) := 4., is an element of the canonical ONB,|z € T'} C ¢*(T).

1.1 Non-Asymptotic Semi-classical Bounds

We first formulate our non-asymptotic results which coroegpto the Rozenblum-
Lieb-Cwikel bound (4) in the continuum case.

Theorem 1.1 (Non-asymptotic upper bound with (H-1)letd > 3 ande an
admissible dispersion fulfilling (H-1). Then there existsamstantC' ;(d,¢) €
[1,00) such that

Nle,V] < C11(d,e) Ngfe,V] < o0 (23)

forall V e (42T, RY).



If ¢ does not satisfy (H-1), the following weighted version & tton-asymptotic
bound onN e, V] still holds:

Theorem 1.2(Non-asymptotic upper bound without (H-1)etd > 1 ande be
any admissible dispersion. df = 1,2 assume, moreover, thate C3(I'*,R7).
Then there is a constaft, »(d, ¢) < oo such that, for any potentidl € ¢°(I', R} ),

Ne,V] < Cra(d, e)(1+Nsc[e, |:E|C“dVD. (24)

Here,ad:u =d+ 5, A>3 1= d—1-— (Q/d)

Our results show that the right quantity to compare the nurabeigenvalues
to is the phase space volumg.[e, V] of the set{ (p, z) | e(p)—V (z) < 0} and not

(thegth power of) the/”/2—norm ofV. In the case of Schrodinger operatorsksh
these quantities agree up to a multiplicative constant(se&Vhile it is possible
to boundN,.[¢, V] and hence alsd/[e, V] by a multiple of|V|§g = > V¥2(z),
this bound grossly overestimates the number of eigenvatuee limit of large
couplings. For example, ik C T'is a finite subset then

Ni[e, A14] = [A] < X2 [A] = [A14]35 (25)

for sufficiently large\ > 0.
In Sect. 3.2 we prove the optimality of Theorem 1.1 with respe the class
(20, RS 3 V.

Theorem 1.3(Optimality of ¢4/2(I",R}) > V in Thm. 1.1) Letd > 1 ande be an
admissible dispersion for whidh(e), .| < const {(x)~24+1) for someconst < oo,
Then, for any: > 0, there exists a potentiaf, € ((/2+(I RS) \ ¢4/2(I',Ry)
such thatN[e, V.] = Ng.[e, V] = oc.

Here, h(¢),,, = |(0.| h(¢)d, )| are the matrix elements w.t.r. to the canonical
basis of¢?(T") of the hopping matrix(e) of the dispersion relatiom, and (z) :=
L+ |x|.

This does not, however, imply thaf[e, V] = oo wheneverN,.[e, V] = oc.
Forinstance, it/ (z) = (z)~2(log(z))~" for somey € (0,2/d) thenN ey, V] <
00 but Ny.[erap1, V] = 0o. See the example in [8, Section 5.2].

We complement the non-asymptotic upper bounds by correspgrower
bounds:

Theorem 1.4(Non-Asymptotic Lower Bound without (H-1))Letd > 1 ande
be an admissible dispersion. Then, for any poteritiak ¢3°(T", RJ) and all
& > emaXa

Nle,V] > Ly[d = #{z eT|V(z) > c}. (26)



From Theorems 1.1 and 1.4 emerges the interesting questi@therN,.[e, V]
or Ly [emax] (Or both) are saturated in certain limits. It turns out tBafr(e)] cor-
rectlly describesV|[e, V| for sparse potentialg, see, for instance, Lemma 3.8 and
proof of Corollary 4.6. Here) < 7(e) <euay is defined by

1 [ dw(p)
ORI /. ) @7

for d > 3, andn(e) := 0 for d = 1,2. Observe that, ag(¢) < emax, Lv[emax]

< Ly[n(e)]. Since for anys > 0 there is a potential’ € ¢5°(T", R for which
Lyn(e)]/Ly[emax] < 1+ 9, the following theorem implies the optimality — w.r.t.
rearrangements — of the lower bound in Theorem 1.4.

Theorem 1.5(Optimality of Thm. 1.4 under rearrangementsgtd > 3, ¢ be an
admissible dispersion. Givene (0,1) and a potentialV € (5°(T",R}), there
exists a rearrangemenf € (5°(T', R{) of V such that

Nle,V] < Lpl(1—em(e)] = #{aeT|V(x) > (1 —e)ne)}.  (28)

The semi-classical number of bound stafés[e, A\V] is not in general — even
up to prefactors — a lower bound a¥i[e, \V]. This is illustrated by the following
theorem.

Theorem 1.6.Letd > 3 ande be an admissible dispersion. Then there exists a
potentialV ¢ |J ¢*(I") with Ne, V] = 0.

p>1

1.2 (Weyl-)Asymptotic Semi-classical Bounds
The Weyl asymptotics (2) states that, for all fixed potestialc L¥/2(R%),

Ncont[)\v]
lm —— =1 2
et Neont[\V] ’ (29)

and thatNe"[\V] = X2 N [V]. For discrete Schrodinger operators, only
weaker statements hold true, as is illustrated by the faigdemma.
Lemma 1.7. Assumel > 3, (H-1) andV € (¥/*(T,R}). Then

lim {X™2Nle,AV]} = lim {A™? No[e, AV]} = 0. (30)

A—00

For a precise formulation of our asymptotic bounds, we thiice the numbers

o : i —A—r] __ —/
g (V) = ?»1>1I0) hrgiilolp P (ln Ly [e } In Ly [e ]), (32)
(V) := infliminf 2 ( InLyle™"] —InL [e’ZD (32)
9- ’ r>0 {(—o0 r v v ’



built from the level sets of/. While the significance of_ (V') is made clear in
Section 4.1¢. (V') directly enters the following theorem.

Theorem 1.8(Asymptotic bounds with (H-1))Assumel > 3, (H-1) andV €
(42(T,R}). Then there are constants< () s:(d,¢) < C)g,(d,e) < oo such
that

(1—94+(V)) Ciss(d,e) < liminf {

A—00

Nle, \V]
Nyc[e, \V]
. Nle, \V]
< 1 _— - < .
= lii‘ip{zvsc[e, m} < Culde)

A somewhat weaker form of Theorem 1.8 still holds in case thdaes not
fulfill (H-1).

Theorem 1.9(Asymptotic Bounds without (H-1))Assume thatl > 1 andV €
(42(T,R}). Then there are constants< () .gs(d,e) < C)g,(d,e) < oo such
that

(33)

(1—94+(V)) Cros(d,e) < liminf {

A—00

Nle, \V]
Nse[e, )\V] }7

. Nle, \V]
1 < .
11;1_)5;p { TF Nofe, ANz [*V] } < Chgy(d,e)

Here,ay—12 =d+5andags3 :=d—1—(2/d).

We remark that ifi” is rapidly decaying then typically, (V') = 0. For in-
stance, if

(34)

cp el < Viz) < ¢ ezl (35)
for some constantg;, ay, s > 0, ¢ < o0, and allz € T, theng, (V) = 0.
Moreover, by the bounds proven here, in this case the usugl 3&€eni-classical
asymptotics hold true in all dimensiods> 1 and for all admissible dispersion
relations (not necessarily satisfying (H-1)), in the sethsg

, Nle, \V] , Nle, \V]
ALTO{NSC[e,AV]} Aligo{1 + NoJe, N[ V] (36)
We further remark that it behaves at infinity like an inverse power|of, i.e., if

the limit
fim {M} _ 3 37)

jal—o0 | log|7]
exists, theng, (V) = ¢g_(V) = 24/d. In particular, in this case, (V) < 1
impliesV € (4/2(I',R{), andg_ (V) > 1 impliesV ¢ (%/2(T",Ry).
In contrast to the continuum case, the boundednebsinf*/? alone does not
suffice to ensure the semi-classical asymptotic behavidief\V/], but details of
the behavior of/ at infinity enter, too, as is illustrated by the following drem.




Theorem 1.10.Letd > 3 ande be an admissible dispersion satisfying (H-1).
Then there exists a potentilll with Ny.[e, \V] < oo for all A > 0 for which
. . Nsc[ea )\V] . Nsc[eu )‘V] -
ll)I\Il)g.}f W < 0 and hI}\n_}SOlip W = 0.
In fact, potentials on the lattice can be so peculiar that gigenvalue asymp-
totics assumes any prescribed behavior in the sense ofltbeiftg theorem.

Theorem 1.11.Letd > 3 ande be any admissible dispersion. Let further:
[1,00) — N be an arbitrary monotonically increasing, positively igéz-valued,
right-continuous function. Then, for any € (0,1/2), there exists a potential
Vi € £3°(I') such that

Vis2:  F((1—¢)A) < N[e,AVr] < F((1+e)N). (38)

We give an overview on where to find the proofs of the theorebosex
e Theorem 1.1 is proved as Theorem 3.4 in Section 3.1.
e Theorem 1.2 is proved as Theorem 3.5 in Section 3.1 in the£as8, and as
Corollary 5.5 inthe casé = 1, 2.
e Theorem 1.3 is proved as Theorem 3.6 in Section 3.2 .
e Theorem 1.4 is repeated as Lemma 3.7 in Section 3.2 and ptiogen
e Theorem 1.5 is proved as Corollary 4.6 in Section 4.2.
e Lemma 1.7 is proven as Lemma 4.2 in Section 4.2.
e Theorems 1.8 and 1.9 are proven at the end Section 4.1.
e Theorems 1.6, 1.10 and 1.11 are repeated as Corollary 4énrdim 4.8 and
Theorem 4.7, respectively, in Section 4.2 and proven there.

1.3 \Validity of Hypothesis (H-1)

The main example of a positivity preserving dispersiagiven in the following
lemma:

Lemma 1.12(Markovian hoppings satisfy (H-1)Let ¢ be any admissible dis-
persion. Assume that(e),, = h(e)o,—y, < 0, forall z,y € I', z # y. Then
> ver [R(e)o] < oo, and, for allt > 0, e~*"¥) is positivity preserving. Moreover,
e satisfies (H-1).

This result is standard. Its proof is given in Appendix A.1 éompleteness.
An admissible dispersion is called Markovianif it fulfills the assumptions of
Lemma 1.12. In particulaey,,p,; is Markovian and satisfies (H-1). There are other
physically relevant dispersions fulfilling Hypothesis (Hi-which are, however,
not of the type described by Lemma 1.12:



Lemma 1.13(Non-Markovian dispersions satisfying (H-1)ete be any admis-
sible dispersion. For eack’ € I'* define the non-negative functief) : I' — R
by

¢(p) = e(p)+e(K —p)—min{e(P)+e(K-p)}. (39
Then, fore = ¢y and all K € (—m,m)¢ C T, o5 = e(Lf;zl is an admissible
dispersion satisfying (H-1).

Proof: Let K € (—x, 7)% and consider the admissible dispersion

e(p) = Y 2c08(K;/2) (1 — cos(p;)).- (40)

j=1

It follows from straightforward computations using the fles-formula that the
positivity preserving admissible dispersi?:{ri;l € C>~(I'",R) dominateSt(Lfgl. U

Dispersions of the form (39) come about in the analysis ofesgys of two
particles on the lattic& both having the same dispersieand interacting by a
(translation invariant) potentidl (z; — x2). Indeed, the two-particle Hamiltonian
is unitarily equivalent to the direct integral

/ ; H(eE) V) dp*(K). (41)

The functione™) is viewed as the (effective) dispersion of a pair of particle
travelling with total quasi-momentuld € I'*.

Observe that in Lemma 1.13 above the fact tﬂﬁgl dominatese(LI,;Z1 holds
true due to special properties of trigonometric functiombkich are not fulfilled
by arbitrary dispersions— even ifi(¢) is Markovian. Thus, it is not obvious that
if a (one-particle) dispersionsatisfies (H-1) then so do the (effective two-particle)
dispersions (%),

2 Birman-Schwinger Principle and the
Rozenblum-Lieb-Cwikel Bound
Operators of the form (8) are known to have eigenvalues béhav essential

spectra (i.e. below). This fact follows from the following lemma, for whose
formulation we recall thag(e) := 0, ford = 1,2, and0 < n(e) <eyax ford > 3,

where . o
1 / o (p) (42)
n(e) - e(p)

The integral above is finite because all critical points afe non-degenerate.
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2.1 The Birman-Schwinger Principle

Lemma2.1.Letd > 1 ande be an admissible dispersion relation. Th¥ie, V] >
1ifand only if

sup  sup (| V2 [p+h(e)] ' VI20) > 1. (43)

p>0 (), lpl2=1
In particular, if d > 3 and max V(z) > n(e)orifd = 1,2 andV # 0 then
Te
Nle,V] > 1.

This result follows immediately from the min-max princigte compact op-
erators and the Birman-Schwinger principle given below:

Lemma 2.2(Birman-Schwinger principle)Letd > 1, ¢ be an admissible disper-
sion relation and/ € ¢ (I',R}). For anyp > 0, define the compact, self-adjoint,
non-negativaBirman-Schwinger operatday

B(p) = Blp,e,V) == V2 [p+h(e)] V2 (44)
Then the following assertions (i)—(iv) hold true.

(i) If ¢ € (*(T) solvesH (e,V)p = —pyp theny = V1/2p € (*T) solves
v = B(p)¢.

(i) If v € (2(') solvesy = B(p)i theny = [p+h(e)]"*V1/2¢ € £2(T') solves
H(e, V) = —pep.

(iii) —p is an eigenvalue of{ (e, V') of multiplicity M if and only if 1 is an
eigenvalue of3(p) of multiplicity M.

(iv) Counting multiplicities, the number of eigenvaluedfdk, V') less or equal
than—p equals the number of eigenvaluesifp) greater or equal than.

Proof: We recall that, due to the compactness/gfthe Birman-Schwinger op-
erator B(p) is compact and has only discrete spectrum alibv&imilarly, the
spectrum ofH (e, V') below 0 is discrete becauseV = H(e,V) — H(e,0) is
compact.

Suppose that-p < 0 is an eigenvalue off (e, V') of multiplicity A/ € N and
let{¢,,..., ¢} C ¢*(T) be an ONB of the corresponding eigenspace. Set

Y=V 20,y =V %0 (45)
Theny,, € (*(T) sinceV € ¢>(T'). Moreover,

O = [P+ ()] Ve, = [p+h(e)] 'V, (46)
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and the boundedness [pf + h(e)]~'V/2 implies that{v,, ... 1, } C ¢3(T) is
linearly independent. Clearly, (45) and (46) also yield

B(p)t,, = V2o +h(e)] 'V, = 1, (47)

and hence the eigenspace®fp) corresponding to the eigenvaluiéhas at least
dimension)//.

Conversely, if{v,,...,%,} C ¢*(T) is an ONB of the eigenspace &f(p)
corresponding to the eigenvalliehen we set

p1:=[p+ h(@]ilvl/zdﬁa =t h(e)]ilvl/QwL- (48)
Since[p + h(e)]"'V'/2 is boundedy, € ¢*(T). Moreover,
Y, = Blp), = Vl/QWa (49)

and the boundedness Bf/2 implies that{y,, ..., ¢} C ¢3(T) is linearly inde-
pendent. Clearly, (48) and (49) also yield

H(Q,V)(Pg = — PPy, (50)

and hence the eigenspacefdfe, V') corresponding to the eigenvalue has at
least dimensiorL.
These arguments prove (i) and (ii) and, furthermare,= L and thus (iii),
Le.,
Vys0: dimker [H(e,V)+ p| = dimker [B(p) — 1]. (51)

Observe that for alp’,p with p" > p > 0: B(p') < B(p). As the map —
B(p) is norm continuous ofR* and lim B(p) = 0, by the min-max principle,
p—00

if z; > 1is thek—th eigenvalue oB3(p) counting from above with multiplicities,
then there is @, > p such thatl is thek—th eigenvalue oB(p,,) (counting from
above with multiplicities). Clearlyp,, < p,, wheneverk’ > k. By (iii), this
implies thatH (e, V') has at least as many eigenvalues less or egpahs B(p)
has eigenvalues greater or equal 1. By similar argume®ig) has at least as
many eigenvalues greater or equal 1/As, V') has eigenvalues less or equal.
O

Corollary 2.3. Letd > 1 ande be an admissible dispersion relatiol, > 0
a potential decaying at infinity, ang > 0. Then, for allm € N, the compact
operator

Kpp = > (-1)F @) VY2[kV + p+ h(e)] T V2, (52)
k=0
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is nonnegative, and the numbéf,[e, V] of eigenvalues off (¢, V') below —p
(counting multiplicities) is bounded by
Nyle,V] < dimRan {1[K,,, > (m+1)"']} < (m+1) Tr{K,,}. (53)

Proof: Our proof follows Lieb’s argument, patterned after the probTheo-
rem XI11.12 in [9]. We first introduce

Folu] == ) (-1)* (’Z) (14 ku)™ (54)

k=0
for all v > 0 and observe that
K, = Fn[B(p)] B(p). (55)
To check Identity (55), we first repladé by V5 := V - 1[V > §] and observe
thatd < V5 < |V]e andé(ptemax) ! < Bs(p) < |V]wp !, whereVs and
Bs(p) == V;/Q [p+ h(e)]*lvél/2 act as a bounded operators with bounded inverses
on ¢?(supp Vs). Thus we have

m

Kops = S (-1)F (m)v;” KVs + p+ h(e)| " V2

—~ k
- i(_nk (7;) [k + Vi 2 (p+ hie) vy /)7 (56)
k=0
= Y vr () e kBso)] Bale) = FulBs(o)] Bs(o)
A limiting argurl;eont establishes (55), &s— 0. Note that
Folu] = / N e '(1—e)"dt, (57)
as is easily checked by using 0
(1+ku)™t = /Ooo e teThutqt, (58)

Due to (57), the functioi¥},, is obviously nonnegative. Sindg(p) > 0,
K = Fu[B(p)] B(p) = 0. (59)

Moreover, F,, is strictly monotonically increasing and souis— uF,,[u]. There-
fore the numbetV,[e, V] of eigenvalues ofi (e, V') below —p equals the number
of eigenvalues of3(p) abovel which, in turn, equals the number of eigenvalues
of K,,, abovel - F,,[1] = F,[1] = (m + 1)~'. This establishesV,e,V] <
dim Ran{1[K,, , > (m + 1)~']}. The second inequality in (53) follows from the
positivity of K,,, , and hence [K,,, , > (m + 1)7'] < (m + 1)K, ,, in the sense
of quadratic forms. O
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2.2 The Rozenblum-Lieb-Cwikel Bound

We derive two bounds on the number of negative eigenvalwes the Birman-
Schwinger principle. The first is a simple upper bound statég&mma 2.4 below,
the second is the Rozenblum-Lieb-Cwikel bound given in Taen2.6 which is
preceded by a preparatory lemma entering its proof.

Lemma 2.4 (a priori upper bound oV]e, V). Letd > 3, ¢ be an admissible
dispersion relation and’ € ¢*(T", R{) a summable potential. Then

Vi

Nle,V] < )

: (60)

where|V]; := >~ _.V(z) denotes thé'-norm of V.

zel

Proof: Letp > 0. By Lemma 2.2, the numbéY ¢, V] of eigenvalues of{ (¢, V)
(counting multiplicities) lying below—p is N, = Tr {1[B(p) > 1]}. Observe
that, for allp > 0,

1[B(p) > 1] < B(p), (61)

as a quadratic form. Thus, for all> 0,

N, < St B = (Sve) ([ A8 - Tk e

zel zel’

where we recall that, (y) := d,,,. O
The following bound on the time-decay of the semi-group$(® is an im-
portant ingredient of the proof of Theorem 2.6.

Lemma 2.5.Letd > 1 ande be an admissible dispersion. Then there is a constant
Cs5(d, e) < oo such that, for all: € T"and allt > 0:

(6,]e798,) < Cos(d,e) (1) (63)

Proof: Let Min(¢) = {pM, p?, ... p™} C I'* be the set of points at which the
minimum of ¢ is attained, i.e.Min(¢e) = ¢~!(0). Observe that, asis a Morse
function andl™ is compact, this set is finite. Clearly,

(Gl 05,) = [ v (64)

Again by the fact that is a Morse function an@l* is compact, there is a constant
a > 0 such that
Voer- : e(p) > adist M, p)>. (65)
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Thus
<5x’e_th(e)5m> < / exp(—t acdist{ M, p)?) dp*(p) (66)
F*
< Cys(d,e) (1) (67)
for someCy 5(d, ¢) < oo. O

The upper bound oiV[e, V] in Lemma 2.4 has the advantage of not imposing
any condition on the dispersian If the dispersiore satisfies (H-1), however, it
follows from Theorem 2.6 below that the a priori upper boud@) (overestimates
Nle, V] in case of slowly decaying potentials a#id> 3.

Theorem 2.6(Rozenblum-Lieb-Cwikel bound)etd > 3 ande be any admissi-
ble dispersion satisfying (H-1). Then, for some consanf(d, ¢) < oo,

N[e,V] < Cagld, o) [V]1a. (68)

This kind of upper bound is known to be true in the continucasec See, for
instance, [9, Theorem XIIl.12] or [10, Theorem 9.3]. It wasyen by Rozen-
blum [4], Lieb [5], and Cwikel [6] by three different methodsthe continuous
case. More recently, it was shown by Rozenblum and Solomyakl1[2] that the
Rozenblum-Lieb-Cwikel bound is not only true for Schragkn Operators of the
form (1), but also for a very large class of operators inaigdin particular, lattice
Schrodinger operators.

Proof: Our proof of Theorem 2.6 is an adaption of Lieb’s originalthwal [7]
based on path integrals for lattice Hamiltoniakge, V') with e satisfying (H-
1). We first observe that, due to the monotonicity1of— N,[e, V] and of
p+— N,le, V], we have that

Nygle, V] = Nyfe,V = p] < Ny[e,(V = p)s] < N[e,V1[V > p]], (69)

whereN ,[e, V] denotes the number of eigenvaluegtik, V') below—p (counting
multiplicities) and(f), := max{ f, 0} denotes the positive part. Thus

= i >
Nle, V] 11)1\%]\7,) e,V 1[V > p]] (70)
and it suffices to prove
Nye,V] < Chg(d.e) |V, (71)

uniformly in p > 0 and for allV : T' — R with finite support# supp(V) < .
To this end we observe that, thanks to Corollary 2.3, we have

Nyle,V] < (m+1) Tr{/oong{pdt}, (72)
0
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m

LY, = e Z(—U’f(z) VY2 exp { —t[kV +h(e)]} V2 (73)
k=0

Note that the trace above is a finite sum, thus
N, V] < <m+1)/ T {20 ) dt. (74)
0

By the Trotter product formula we have, for al> 0,

<5:1: ‘ Veft(kVJrh(e > — lim <5 ‘V[ —tkV/n fth(e)/n} 5 > (75)

n—oo

Hence, the cyclicity of the trace and the finiteness of thgettmof V' imply that,
Tr {V1/2 —t[kV+h(e) V1/2}
— Z lim <5m } V [e’tw/” e’th(e)/”]n5x>

zel

= lim Z <5x ‘ V [e_tkv/" e_th(e)/"}n5$>

zell

= lim Tr {V [ —tkV/n e*th(e)/”]n} (76)

n—0o0

= lim Tr { [e_tkv/" et h(e)/n}j" Vv [e—tk\//n et h(e)/n} (n*jn)}

n—oo

I

forall j, € {0,1,...,n}.
Next, we fixz € I" andt > 0 and define a measuyéff;t onI" ! 35w :=
(wi,...,w,_1), for eachn € N, by

P = (e M98,) (B et HO8,) - (8 | 05,). (77

Note that,ue" is complex, in general, but dominated by the positive measur

uwt, due to (H 1), i.e.

@) < p (). (78)
Moreover, using:(¢) > 0 andV > 0, we have that

n—1
YD Viwy) eXp(——V —%Zv )uwtw) (79)
zel’ welr'n—1 /=1
< D V() < oo,

zel
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and we obtain from (76) that

Tr {V1/2 eft[kVJrh(e)] V1/2} (80)
= lim Z Z
noee zel’ wern—1
1 1 kt, ke
v -Nv N V(w
(v Vi) e (= Svie =X v i)

_ JL%;%/(/O V(W(T))df) exp(—k/OtV(w(T))dT) dp™) (),

where, for givent > 0, z € T', andn € N, we identify any element € ™!
with the piecewise constant functian: [0,¢) — I defined by

n—1

w(s) = z-1[se hUIL] + ng-l[s € I, (81)

(=1

with I, == [(¢ = 1/2)t/n, ((+1/2)t/n), ¢ =1,2,...n — 1, I := [0,t/2n),
I, == [t —1/2n,t), and we write

S F@)ul (w / F(@) Al (w (82)

gel‘n—l

Egs. (80) and (73) yield

(o) = S [ ([ v T)ale. @

where

Gonlu) = i(-gk(?)uek“ —u(l—e™)" >0 (84)

k=0
for all v > 0. Using this positivity and (78), we obtain an upper bound on
Tr{LﬁfL),p} by replacinge by ¢ on the right-hand side of (83),

) < tm S [ ([ v T) s e
: nggo e t " 0 wAT t ME,x,t W
Next we observe that — e~ < min{1, u} which implies that

G(u) < min {u™" u} < Gp(u) == min {u™", (m+1)u}  (86)
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forallu > 0. AsG,, : Ry — Ry is convex, we obtain from Jensen’s inequality
that

n—oo

T {2} < hmZ/ <’ / ) drdul” (). (87)

We observe that

Z// 7)) dr dul ()

zel

- // ZG V(z +w(r))) drdply, (w)

< Cys(d, &)t /2 (ZG (tV(x ) (88)
zel
using
[ ) = (] 0 60) ®9)

and Lemma 2.5 in the last inequality. Inserting this estematio (87) and then the
resulting inequality into (72), we arrive at

N,e,V] < (m+1)025de/ (ZG (tV(z )t1+‘fd/2) (90)

xeF

- (m+1)02.5<d,z)(/000 i) )ZV s
= (m+1)02.5<d,z)< 2 2m+2) S V()

2m+1_ zel

using thatd > 3 and assuming that we choo®e. > d — 1 which is guaranteed
by m := 41, ford = 3,5,7,...,andm := ¢ + 1, ford = 4,6,8, ... O

3 Non-Asymptotic Semi-classical Bounds

3.1 Derivation of Non-Asymptotic Bounds

Now we are in position to use Theorem 2.6 to yield a semi-tdabbound, i.e.,
a bound onV|e, V] by multiples of Ny.[e, V]. The following lemma is a standard
estimate on the size of the discrete spectrum of a sum oad@int operators. Its
proof is given for completeness.
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Lemma 3.1. Let A = A*, B = B* € B[H] be two bounded self-adjoint operators
on a separable Hilbert spack. Then

N[A+ B] < N[A]+ N[B]. (91)

N[Q] := Tr {1[Q < 0]} denotes the number of negative eigenvalues of a bounded
self-adjoint operato) € B[H]. N[Q] := o0 if 0e(Q) NR™ # .

Proof: We assume thaV[B], N[A] < oo, otherwise there is nothing to prove. As
N[A+ B] < N[A — B_]andN|[B] = N[—B_], it suffices to show that

N[A-B_] < N[A] + N[-B_].

Here, B_ := |B|1[B < 0]. Let M := N[B] = dim Ran(B_) and assume
that A — B_ has at leastV[A] + M + 1 eigenvalues (counting multiplicities)
below0. Then, by the min-max principle, there is a subspdce H, dim X =
NI[A] + M + 1, for which

sup ([ (A= B)(¥)) <0.

YEX, [hl2=1

Hence

sup (W[ (A= B)(Y)) = sup (V] A¥)) <0.

peXnker(B_), [|2=1 YpeXnker(B_), [|2=1

dim X Nker(B-) > dim X — M = N[A] + 1. Again by the min-max principle,
this would then imply thafV[A] > N[A] + 1. O

A simple application of Lemma 3.1, witd := H(e,V}), B = V5, andA +
B = H(e,V; + V3), is the following corollary.

Corollary 3.2. Letd > 1, ¢ be an admissible dispersion relation, abg V5 €
((T',RY) be two potentials. Then

Nle,Vi + V5] < Nle, V4] + #supp{Va}. (92)

In order to compare the contributio[e, ;] and# supp{V>} on the right-
hand side of (92) taV,.[e, V], we use the following definition.

Definition 3.3. Letd > 1. Given a dispersion relatiom and a potentiall” <
(T, RY), we define:
NZ[e,V] == #{z €T |V(2) > emax}, (93)
Nile, V] = D 1[V(2) < ema] V3(2). (94)

zel
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Observe that, because dispersion relations are Morsaduascthere are con-
stants) < c¢;(e) < co(e) < oo such that for any potentidl > 0,

cl(e)(zv;[e, V]+N8<C[e,V]> < Nyfe,V] < 02(2)(N8>C[2,V]+NS<C[2,V]>. (95)

Corollary 3.2, (95), and the Rozenblum-Lieb-Cwikel bounariediately im-
ply Theorem 1.1:

Theorem 3.4(Thm. 1.1) Letd > 3 ande¢ an admissible dispersion fulfilling
(H-1). Then there exists a constari 4(d, ¢) € [1, 00) such that

Nle,V] < Cs4(d,e) Ngfe,V] < o0 (96)
forall V e (42T, RY).

Proof: We apply Corollary 3.2t0" = Vi +V,, with Vi (z) := V(2)1[V(2) <emax]
andVy(z) := V(x)1[V(z) >emax), and then Theorem 2.6 t§ e, V1]. This gives

Nle,V] < Nle,Vi] + #supp V2 (97)
Cog+ 1

S CQ.GN;[Q,V] —+ N;[Q,V] S
ci(e)

Ngcle, V] (98)

OJ
Similarly, Corollary 3.2, (95), and Lemma 2.4 imply Theoré&r® in case that
d>3:

Theorem 3.5(Thm. 1.2 ford > 3). Letd > 3 ande be any admissible dispersion.
Then

Nie,V] < #{z €T | V(2) > emax} + > 1V(2) < tmae] Vi(z).  (99)

zel

Moreover, there is a constant; 5(d, ¢) < oo such that
Nle,V] < Cas(d,e) (1+ Nocle, |z = o~ v]) (100)

for any potential € ¢°(I", R¢) and any pointr € T

Proof: By shifting the origin, we may clearly assume thgt= 0. Just as in the
proof of Theorem 3.4, we obtain (99) from Corollary 3.2 — tiise, however, in
connection with Lemma 2.4. We then use Holder’s Inequéatitybtain

1/q 1/p
Vil < b+ (2 lal) (Sllv) L aon

zel\{0} zel
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where; + 1 = 1andx > 0 is such thatq > d. We choose := ¢, ¢ := 3%, and
) o= 4l — &=d=2 Then|y|-% = |z|~¢-! is summable and hence

q d
2 2/d
|‘/1|1 S C|:]_ + <Z|x|%(d —d—2) Vd/2($)> :|
zel
12 d/2
< C’ |:1 + Z (|x|3(d —d—2) V(l‘)) :| (102)
zel

for suitable constants < C' < ¢’ < 0. 0

3.2 Saturation of the Non-Asymptotic Semi-classical Boursd

We discuss in the following the optimality of the bound in ©hem 1.1 in three
different situations: For slowly decaying potentials, &trong and finitely sup-
ported potentials, and for weak potentials which are sloxalying in space.

We first show that ifi” decays slower thafw|=2 then0 is an accumulation
point of the discrete spectrum éf(e, V') and, in particularH (e, V') has infinitely
many negative eigenvalues, i.&V]e, V] = N[e,V] = oo. To formulate the
statement, we recall that, , = h(e),, = (0. | h(e) d,) denotes matrix elements
of h(e).

Theorem 3.6(N[e, V] = oo for slowly decaying potentials) et e be an admis-
sible dispersion relation with hopping matriXe) andV € (°(I',R}). Assume
that there are constani®nst < oo andconst’, o, @’ > 0 with @ < min{«/, 2}
such that, for allz € T'\{0},

V(z) > const’ |z|7®,  |ho.| < const x|, (103)
ThenH (e, V) has infinitely many eigenvalues below

The proof of this theorem is a bit lengthy and is given in ApiigrA.2. For
the case = ep,, andd = 1, see also [13].

Note that — assuming’ > 2 — Theorem 3.6 together with the bound (68)
implies that the cas® (z) ~ || 72 is critical in dimensioni > 3 in the sense that

V
= sup{ (23:) } < oo = Nle,V], Ngle,V] < o0, (104)
zel |~T‘ Fe
v
o0 inf{ (z) } S0 = Ne,V] = Nae,V] = oo (105)
:L‘EF ‘x|2 €

Observe also that Theorem 1.3 follows from Theorem 3.6.
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Lemma 3.7 (Lower bound onN e, V] without (H-1) and ford > 1). Letd > 1
ande be an admissible dispersion relation. Furthermorellet ¢°(T', R ) be a
potential decaying abo. Then, for allc > ¢y,

N[e,V] > Ly[ = {z €T | V(z) > c}. (106)
Proof: For all p > 0,
1 1
B(p) = VYV?— V2> _— V. 107
) PRSI (107)

By the min-max principle and Lemma 2.2 (Birman-Schwingangple), we
hence obtain that
N[e7 V] > ‘CV[CL C > €pax- (108)

O]
The following (stronger) result holds for sparse potestial

Lemma 3.8(Lower bound onV e, V] for sparse potentials)-etd > 3 ande be
an admissible dispersion relation. Let 7(e) < e, be defined by

1 / -1 *
— = [ [e(p du*(p).
g = ) )
Furthermore, letV” € (5°(T", R}) be a potential which is sparse in the sense that

n(e)sup sup N [{dal (04 A(e))71,)] <

>0 xzesupp V
p PPV esupp V\{z}

€
1+¢

<1

for some) < € < co. Then

Nle.V] = Lv[1+en(e)] = {z €T |V(z) = (L +e)m(e)}.  (109)
Proof: Observe thatVie, V] > Nle, V'] with V'(z) := max{V(x), (1 + €)n(e)}.
Letp > 0 andx € I'. Similarly to (62), we have

(] Blo.e. V)0 = Vi) ([ L), (110)

«p+e(p)
Observe that, by the assumptionBrand the Schur bound, for all € ¢*(T) ,
sup (| B(p, e, V')¥) > > [Y.l* (1 +e) —e.
p=0 @€, V(2)=(14+2)n(e)

By Lemma 2.2 (Birman-Schwinger principle) and the min-maxg@ple, we
hence obtain that
N[e, V'] > Ly[(1+e)n(e)]. (111)
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O
Note that Lemma 3.7 together with Corollary 3.2 &g, 0] = 0 implies that,
for finitely supported potentialg, we have
Jlim Nle,\V] = Jim Necle, \V] = suppV, (112)
and thus the semi-classical upper bound\ge, A\V] saturates wheia — oco.
Observe further that, on one hand, theorem 3.10 below imfti&t the lower
bound onNle, V] given in Lemma 3.7 strongly underestimates the size of the
discrete spectrum off (¢, V') in the case wher&” is slowly varying in space.
N;.[e, V] describes —in this precise case — the behavidy¥|ef 1| more correctly.
On the other hand, it seems that there is no other simple datedfor a lower
bound onNe, V] holding in general and based on quantities liR&.[e, V] or
|V|P. See Corollary 4.5 and remark thereafter.
For any continuous functioff : R? — R{ define for allM € N, the step
functionsf™" : R4 — R by:

(@) =" 1w € 27X 40,27 M) min{ f(2') |2’ € 27M X +[0,27M)7}
Xezd

(113)

Lemma 3.9. Letv € Cy(R?, R%) be compactly supported. For all > 0 define
the potentiall;, : T' — R{ by:

Vi(z) = L™ %0(L ). (114)

Let ¢ be any admissible dispersion relation frafff(I'*, R). Assume, moreover,
that for someD < co and somex > 2, forall z € T,

|h(e)o.| < D (x)?*e. (115)

Then there are constantsnst’ > 0, const < oo, depending only such that for
all M € Ny,

L—o0

liminf Ne, V;] > const’ / oM ()72 1[v™(2) > const®™]d%.  (116)
R4

We prove this by standard arguments using coherent staegmpendix A.2.
The following result is an immediate consequence of the larabove.

Theorem 3.10.Let e be any admissible dispersion relation fratfi(I'*, R) and
v € Cy(RY, RE) be compactly supported. Let the potentidis= V; (v) be defined
as above. Then, for some constamist > 0 depending only om,

A—oo L—oo

lim inf lim inf Ne, AV, | > const )\d/Q/ v(z)2dz. (117)
R4
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Observe, moreover, that from Theorem 3.10f, AV7] > const Ni.[e, \V]
for someconst > 0 and sufficiently large\ > 0 andL > 0. Thus, as expected,
like in the continuous caseéV[e, \V| ~ N.[e, \V}] at large\ > 0 andL > 0.

4  Asymptotics of N|e, \V] for large A

In this section we investigate the question whether the sgssical number of
bound statesV,.[e, \V'| describesV[e, A\V] correctly in the limitA — oo or not.
This leads us to the proof of Theorems 1.8 and 1.9.

Equally interesting, however, is the observation made is $kction that an
asymptotic comparison ai[e, \V] to N,.[e, \V] does not always make much
sense. Namely, in Theorem 4.7 below, we prove that Ne, \V'| may approx-
imate any given continuous and monotonically increasingction F'(\) of A.
More precisely, giver', we can always find a potentig}- such thatVie, \Vr] =
F(\) up to a small error.

4.1 Potentials with Semi-classical Asymptotic
Behavior of N[e, \V] at large A

This subsection is devoted to the proof of Theorems 1.8 edTb. this end, we
recall that

2
g+ (V) = ilig liIéILSOljp P ( InLyle”"] —InLy[e™] ), (118)
e g 2 o _
g-(V):= igghénigf—r@nﬁv E ¢ | —InLyle é]). (119)

The following lemmaillustrates that, for potentials with(1") < 1, the main con-
tribution to N,.[e, \V] is given by#{\V > ¢,,.x }, @nd that this actually defines a
borderline in the sense thatgf (/) > 1 then this assertion is reversed.

Lemma 4.1. Assumel > 1 andV € (F(T,Ry).

(i) Then there is a constaudt, ;(d, ¢) > 0 such that

. Nz e, \V
llgg.}f {W} > (1 - g+(V)) Cia(d,e). (120)
(i) Conversely, ifg_(V) > 1then
, NZ[e, \V]
1 Zselm 7 ] — 121
Ao {Nsc[e, AV]} 0 121)

whereN_, (e, V] = Ly [emax] = #{V > emax} is defined in Definition 3.3.
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Proof: We first fixxz € T, setp, := min {1, AV(z)/emax }, and observe that

e pil? < / 1e(p) < AV(@)ld*(p) < C p2, (122)

for somel < ¢; = ¢1(d, ¢) < Cy, = Cy(d, ¢) < o0, Sincee(p) is a Morse function.
Furthermore, we have that

Nofe V] = 3 [ 1) < W) d' ) (123)
zel
= Z/ ) <AV (2) < emax] di*(p) + Ly A ema-
zel
Using that
p¥? = g/ 1[6_7" <px] e~ /2 dr (124)
0

and/, := log(\) — log(emax ), We hence obtain

Nic[e, \V] — Ly [e7]

-y / ) < AV(2) < emaxldp*(p) (125)
zel
< ac,y Z/ Aept Vi(z)] = 1[1 < Xeph V(2)] } e/ gy
zel
dC
-5/ {cv[e—h—q—zv[e—fq}e—dﬂ?dr,
_ AG L[ O] [ v s g
and similarly
Nyo[e,\V] = Ly [e7?] (127)

dey Lyle ™) [ (Lyle ™" _4 _
B AR = |

Defining )
ge(r) = %<ln Ly [e_e_r] —InLy [G_Z]), (128)
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we hence have

Ao, [ d Nsc[e, \V]
T ; exXp (—[1 — ggA(T)] 57’) dr Z m -1+ Cl- (129)

de, [ d Nsc[e, \V]
5 ; exp (‘[1 - 9@(7’)] 57“) dr < m —1+4+¢, (130)

Now, an application of Fatou’s Lemma vyields

) Ngc[e, \V] dC; /°°

lim sup ————= 1-C;+— exp (—|1 — D rdr

msup 7 T S it p(=[1—g4+(V)])
dCy

- 1-C (131)

[1— g+ (V)]
which implies (i). Assertion (ii) is similar, for ify_ (V") > 1 then another applica-
tion of Fatou’s Lemma gives

Ngc[e, \V]

= > 1—cl+% /OOO exp ([g(V) —1] g'r’) dr = o0. (132)

hggf Cule

O

Proof of Theorems 1.8 and 1.9By Theorem 1.4 and Definition 3.3, we have
Ne AV]  Ly[ATema] _ NZle AV]

= = . 133
Ne[e, \V] T Ngfe, \V] Ngc[e, \V] (133)

Now, the left-hand inequality in (33) and the first inequaiiit (34) follow directly
from Lemma 4.1 (i). The right-hand inequality in Eqgs. (33)Jdars from Theo-
rem 1.1, while the second inequality in (34) is a consequehd&eorem 1.2.

O

4.2 Failure of Semi-classical Asymptotic
Behavior of N[e, \V] at large A

For the continuum Schrodinger operater\ — AV (z) on R¢, the number of
negative eigenvalues is asymptotically homogeneous ofedety2 in ), i.e.,
Nt \V] = A2 Neent[/]. For discrete Schrodinger operators, only weaker
statements hold true, as is illustrated by the followingrieem See also [8, Sec-
tion 5.2].

Lemma 4.2(Lemma 1.7) Assumel > 3, (H-1) andV € (¥/%(T,R}). Then
lim {A™2N[e,AV]} = lim {A™? N[e, AV]} = (134)

A—00
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Proof: It suffices to prove the second equality, sidéle, \V| < Cy(d, ¢) N,[e, \V],
by Theorem 1.1. By (95), we have that

A2 N[e, \V] < eae) N2 (N;c[e, AV] + NZJe, )\V]), (135)
and
A2 (NZ[e, \V] + NZle, AV]) (136)
= A2 Z min { emax, N4/ Vd/Q(x)} = Z min {)\*d/z Cmax, Vd/Q(:E)}.
zel zel

Sincelimy_ oo min{A™%? ey0, V¥/2(2)} = 0, for everyz € I' andmin{ A\~ %% oy, VY2}
is dominated by’%/2 € ¢*(T"), the assertion follows from the dominated conver-
gence theorem. O

Lemma 4.3. Letd > 3 ande¢ be an admissible dispersion relation. Then there is
a constant’ 3(d, ¢) < oo such that, forallp € (0,1]and allz,y € T, = # v,
043 d 2)
(02| (o + () '5,)] < 7y‘1/2 (137)

Proof: Let Min(e) := {£ € I'" | ¢(§) = 0} be the set of points if* for whiche is
minimal. We construct a partition of unity localizing on tWeronoi cells

V() = {perl” v(p,é)zéerﬁin(e)v(p,f)}, (138)

where¢ € Min(e) andy : T* x T — R is the natural metric o™ =
(R/2xZ)". Denote byr > 0 the largest radius, such thak (¢, 2r) C V(€),
for all ¢ € Min(e), and choose € Cg° (R4, R;) such thasupp j € B(0,1) and
Jra 7(p) d%p = 1. We then se§,.(p) := r~%j(p/r) for p € I'* (which makes sense
because > 0 is sufficiently small), and

Xe = Jr* Lyge. (139)

We list a few properties of this partition in combination lwithe dispersiore
deriving from the fact thad¢ is a Morse function.

Voer- 1 Y xelp) = 1, (140)
£eMin(e)
vper*vf,éeMin(e),f;éé tXe(p) >0 v(p,§) >r
EIcl>0 vpeF*vﬁeMin(e) : Vng p) > 0 e(p> > C1,

e(p) > ea(p — )7,
|Ve(p)| < cslp— &

A

(p)

(p)
Fey>0 Vpers Veentinge) * Xe(p) > 0

(p)

EI03<oo vaF*vgeMin(e) : X§
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By translation invariance, it suffices to prove (137) fo= 0 andz # 0. We

observe that
x -V, (e®*) du*
of? (52| (o4 ) 80} = | [ p+))“@w (141)

¢eMin(e) /T p+e(p
= Gk 7 Vpxe(p)  xep)z-Vpe)\
E 56;(2 / { p+e(p) [p+ e(p))? } dp (P)‘-

Now we use (140),e’®=9= — 1| < 2, and|e’?~9* — 1] < 2|z|V2 [p — €]/ to
obtain

22 (6, | (p+ h(e))” 5O>‘ 12
2|V

for some constanﬂl < o0, sincelp — £|7°/? is locally integrable forl > 3. We
remark that we may have improved this estimat®tar|°—1), for any3 > 0, by
usingle’ P8 — 1| < 2x|% |p — €[°. O
Lemma 4.4. Letd > 3 ande be an admissible dispersion. Let= (1), be an

increasing sequence of positive integers With < r;,; for all £ > 0, and define
w(r) :={xo,x1,29,...} CT by

x = (rg,0,...,0). (143)
If Ve ¢>(T") withsupp V' C w(r) and

Vie < n(e) — § Casld, (e ry /2 (144)
thenN[e, V] = 0.
Proof: For any normalized = (v, ).cr € ¢*(T') and allp > 0, we have that
(W | VY2 (p+ h(e)) ™ VI/2) (145)
< Z V(@) [¢,[? (146)
mew r)

+ > U, V@V (0] (p+h(e) 5y)

z,y€w(r), x4y

< W (o + o {16l prre) a1}

zew(r) yew(r)\{z}
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by the Schur bound. From Lemma 4.3 it follows that

sup { > (6. (p+ hoe) y>y}) < Cys(d,e) sup{XkJrYk}

zEW(r)

yew(r)\{z}
(147)
where
k—1 o)
X = Z |7 — ré|—1/2 and Y, = Z Ire — 7”4|_1/2' (148)
/=0 l=k+1
For/ < k, we have thatry, — r,| > 8r, > 8- 9%ry and hence
3k
X, . 149
RINCIT (149)
Similarly, we have thatr, — r,| > 8r, > 8 - 9°r, for £ > k, and thus
3k 3k
Y, < = . (150)

3(1-3)vBrg  24/8n

We hence conclude that
C4.3(d7 e)
sup { Z ‘<5 ‘ (,0+h ) y>‘}) < : (151)
vew(®) \yeomnfa) 2870

Thus, the operator norm of the Birman-Schwinger operatsiristly smaller than
one,

_ 1 Cys(d,e)
V2 (p+ k() V2] < voo( 4 A ) < 1, 152
V2o +ne) Ve < Ve (05 + 5 5 (152)
for all p > 0, which implies thatV[e, V] = 0. O

The last lemma has the following immediate consequences.
Corollary 4.5 (Thm. 1.6) Letd > 3 ande¢ be an admissible dispersion. Then
there exists a potentidl ¢ J ¢#(T") with N[e, V] = 0.
p>1
Proof: Fix ry € N, chooser, := 9% rg, 2, := (13,0, ...,0), and set

fj Loy () ) (153)

— ln4—|—j)
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Note thatV" € ¢;°(I") but that, for allp > 1, thep-norm of V' diverges,|V|, =
n(e)? 352 [In(4 + j)] " = oco. Moreover, |V]w = ggn(e) < n(e), and
Lemma 4.4 implies thal[e, V] = 0 providedr, € N is chosen sufficiently large
such thaCy ;(d, ¢) n(e)ry /2 < 4 (1 - ﬁ) O
We remark thatV.[e, V] = oo in Corollary 4.5, sincd” ¢ |J ¢*(T"). Thus, a

p>1
lower bound onNTe, V] in terms of¢?-norms or in multiples ofV,.[e, V] cannot
possibly hold true. See also [8].

Corollary 4.6 (Thm. 1.5) Letd > 3, ¢ be an admissible dispersion. Given
e € (0,1) and a potentiall’ € ¢ (I',R}), there exists a rearrangemeht €
(T, R¢) of V such that

Nle,V] < Le[(1—e)m(e)] = #{x €| V() > (1 -e)ne)}.  (154)
Proof: We writeV = V() 4 V(<) with
V) = V1V > (1-e)n(e)] and V) = V.1[V < (1—e)n(e)]. (155)

Note thatV’>) has bounded support. Thus, choosifig’ to be a rearrangement
of V(<) with

suppv(<) C {(Tk,O,...,O) }Tk = 0% ry, k:ENO} (156)
andr, € N chosen sufficiently large, we find that

P9 = @=2m(e) < o)~ { Cusld ey @5)

and Lemma 4.4 implies tha¥[e, V(<)] = 0. Hence, defining’ := V) + V(),
we have for sufficiently large, € N thatsupp V&) nsupp V€ = @, Vis a
rearrangement df’, and

N[e,V] < #suppV®) + N[, V9] (158)
= #suppV®) = Ly[(1—e)n(e)], (159)
by Corollary 3.2. O

The next theorem illustrates fdr> 3 that — opposed to the continuum case — the
asymptotics ofV[e, \V] asA — oo can be prescribed arbitrarily.

Theorem 4.7(Thm. 1.11) Letd > 3 ande be any admissible dispersion. Let
further F/ : [1,00) — N be an arbitrary monotonically increasing, positively
integer-valued, right-continuous function. Then, for any (0, 1/2), there exists
a potentialVy. € (°(T',Ry) such that

Visa:  F((1—2)A) < N[e,AVe] < F((1+2))).  (160)
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Proof: For the proof, we abbreviatg:= 7(¢). SinceF : [1,00) — N is mono-
tonically increasing and right-continuous, there is a monally increasing se-
quencel < )\ < Ay < A3 < --- such that

F(A) = > 1\ <AL (161)

J=1

Note that the monotonicity of' is not necessarily strict, and possibly = \; ;.
For a sequence = (1), of positive integers, witfr, < r,,, to be further
specified later, and;, = (r,0,...,0) € I', we set

Vie( Z y 1oy (@ (162)

Lete’ > 0 be such thatl + ¢')~! > 1 — . Choosing, > 0 large enough such
that

/

T acoupn Vi yesuppzv;%\{x} (6] (p + h(e)~18,)| < ﬁ

we observe that 7
Ly (1+ENm) = Ly, (L+&)m/N) (163)
- #{:c €| Vio(a) > (14 5)%} (164)

_ Z { 1+s)Z] = F((1+&)7).

7j=1
Thanks to Lemma 3.8, we have thus established the lower boadde, AV
in (160),
F((1—2)A) <F(1+&)"'A) < Nle,A\Vr.] (165)
for all A\ > 2. Choose now’ > 0 such that1 — ¢/)~! < 1 + ¢. For the proof of
the upper bound in (160) we writd/.. = V}j) + V}j’, where

Vi (z) = AVF,€1[VF,€(:C)2(1—5')§} (166)
= Y@y -,
ViP(@) = AVl [VFE (1—5’)2]

= Y ty@ iy > -
i=1 7
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Observe that, due to (166)

o) = #fo € o) Vielo) 2 (1)1} = F(1-2)13). @67

Hence, Corollary 3.2 yields
N[e.\WVre] < F(1+)N) +N[e, VY], (168)
and it remains to fix the sequenceo that
N[e. V)] = o, (169)
for all A > 1. To this end, we first note that
Vil < m-<). (170)

From Lemma 4.4, (169) holds by choosing> 0 large enough and the right-hand
inequality in (160) follows. OJ

A similar result in proven in [8, Section 6]. Observe, howeteat we do not
assume here that /\;;; — 1 asj — oo for the asymptotics of eigenvalues.

Assume that for a given potentitll € £5°(T, R), Nle, \V] ~ Ny.[e, \V] <
oo at largeX > 0, i.e., thatN[e, \V] is finite and obeys the Weyl asymptotics at
large \. Then it would follow thatN [e, \V] = O(A\%?). By the last theorem, for
anya > 0, there are potentialg, € (°(I',R}) such thatV[e, \V] behaves like
A* as\ — oo. In particular, the semi-classical asymptotics cannodl liok V/,
with o« > d/2. See also [8]. Observe, however, that in such a case, by thie se
classical upper bound oN{[e, \V,,| (Theorem 1.1),N,.[e, \V,] = oo (whereas
Nle,\V,] < o0) for all A > 0 and speaking about semi-classical behavior does
not really make sense. We discuss below another kind of ebeafopwhich the
semi-classical asymptotics — in the sense of two-side l®urmslviolated, even if
Niele, \V] < oo forall A > 0.

Theorem 4.8(Thm. 1.10) Letd > 3 ande be any admissible dispersion relation
fulfilling (H-1). There is a potentiaV’ > 0, V € (%/?(I", R} ), such that

N[ \V] Ny AV
lim inf ~el© AV 1 Deel®o AV _ 171
S Neav] S0 PNV T (171)

Proof: Define the potential®?, V, € (7/2(I",R}) by
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Clearly,g_ (V1) = 1 andg (V) = 0. By Lemma 4.1,
lim Neel® VAL Necle AVa)
A—00 Nsc[ea A‘/Yl] R Nsc[ea )‘VYQ]
For any monotonically increasing sequence: (o, ),cn Of positive real numbers
defines, : I' — {0,1} by B, (2) := 1if a149, < |2| < @y, for somen € N,
andg,(z) := 0 else. Consider potentials of the folh= V,, := 5,(V; — V5) +
Vy > 0. By (172), there exists a sequenesuch that:

Naole, \V] Nic[e, \V]
]

> 0. (172)

liminf ———— < oo, limsup —————

— o0, (173)
A—oo NZ[e, \V] A—oo NZ[e, AV

By (173) and Lemma 3.7, for any rearrangemenaf V/,
.. . Ng[e, \V]
N e vy =
Observe that, by Corollary 3.2 and Lemma 4.4, there is aargement/ of V
such that N2 e A2ewn/(e)V]
. sc e) emax 77 ¢
1 > 1. 174
TP N 2 o
To conclude the proof use that for some: C' < oo,
C™ Ny [e, \V] < Nycle, A(2emax/1(€))V] < C Nyfe, \V] (175)
for all A > 0. This together with (173) and (174) imply
Ngc[e, \V]

limsup ———= = o0

A—00 N[e, )\V]

Note that we have used above the invariance of the semiicihgsiantitiesV,; [e, V]
andN,.[e, V] w.r.t. rearrangements 6f. O

5 One and two dimensions

We start this section by showing (Corollary 5.3) that the iselassical upper
bound, as stated in Theorem 1.1 for instance, cannot be ivalats than three
dimensions.

Lemmas.1. Letd = 1,2, e be an admissible dispersion relation, aid> 0 be a
potential with finite support. For alp > 0 and all rearrangement¥” of | define
the compact self-adjoint operator

K(p,V) = P o V2 (p+h(e) ' V2P — Prani (176)

Then there exist > 0 and a rearrangemerit of I such thatk (p, V) > 0.
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Proof: If supp V' = & there is nothing to prove, so we assume thiag 0. Let
V' > 0 be arearrangement &f. Thenforallp > 0and ally) = (¢,,),er € Ran'V/,

WK = =+ S V@), / pdfff;>

(177)

TESUpp \7

+ Y V@V + h(e) '8, )00,

a,y€supp V, z#y

and thus
—|V]w  sup > G| (p+ h(e) N6, |-

veRan V. [W12=1  equpp V7, 2oy

Choosep > 0 such that

du*
min V(z) / wp) oy (179)
xrEsupp V r= P + e(p)

This is always possible sinee< 2. For any fixedp > 0, we have that
(dz](p+ h(e))~'0,) — 0

as|z —y| — oo. This follows from the Riemann-Lebesgue Lemma sitice(p +
h(e))~'d,) is the Fourier transform of the integrable functignt¢)~' € L*(T™).

In particular, there is a rearrangem&hbf V' such that

V]  sup ST G| (o+ h(e) N80, < 1. (180)

veRanV, [¥12=1 ;. s esupp V7, a7y

For suchy > 0 andV we hence have thdt (p, V) > 0. O

Theorem 5.2.Letd = 1,2 ande be an admissible dispersion relation. Then, for
any finitely supported potenti#l, there is a rearrangement of V' such that

Nle,V] = #suppV = #suppV. (181)

Proof: Clearly, for any rearrangemeﬁ‘t of V, we haveN e, \7] < #suppV, as
follows, e.g., from Corollary 3.2 and the fact thdfe, 0] = 0. Letp > 0 and the
rearrangemenit’ of V be as in the lemma above. Then, by the min-max principle
and the bound<(p, V) > 0, the compact operatd¥’)'/2(p + h(e))~* (V)2 has
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at leastdim RanV = | supp 17| discrete eigenvalues aboveBy Lemma 2.2, it
follows from this thatV[e, \7] > 4 supp V. O

Observing that the semi-classical number of bound sfsigs, 1] is invariant
w.r.t. rearrangements of the potentié) the following corollary follows immedi-
ately:

Corollary 5.3 (Breakdown of the semi-classical upper boundlis= 1,2). Let
d = 1,2 ande be any admissible dispersion. Then, forait 0,

Nle, V] _
sup {m ‘ V, Ngle,V] < e} = 00. (182)

The last corollary implies in one or two dimensions that pléss of N.[e, V]
cannot be, in general, an upper bound/M®f, V]. The discussion above shows,
more precisely, thatonst N,.[e, V] fails to be such an upper bound in the case
of sparse potentials, i.e. in the situation where the degdoetween points in the
support of the potentidl” is large. Hence, any quantity(1") which is supposed
to be an upper bound aN|e, V] should keep track of the behavior Bfin space.
This motivates the use of the weighted semi-classical @iV, [e, V (V)] —
as stated in Theorem 1.2 — as upper bound¥ @nV’] in one and two dimensions.

The a priori upper bound oW [e, V] given in Lemma 2.4 — used to derive
(weighted) semi-classical bounds on the number of bourtdssige, V] in three
or more dimensions — is useless tbe= 1, 2 since in this casg(e) = 0. Indeed,
observe that, by Theorem 3.6, fdr= 1, the inequalityN[e, V] < const |V,
can be violated for anyonst < oo. It is also expected to be the case for 2.
However, Lemma 5.4 — a similar result to Lemma 2.4 — holdsdfet 1,2 by
replacing the/; norm with a stronger homogeneous (of degree one) functional

For anyp > 0, m > 0, and any functiod : T' — R define

Vi o= (V70 (0" ) (183)

zel

Observe that - |, is not a norm, fop € (0, 1), but only a homogeneous func-
tional of degree one. For any functienc C™(I'*,C) andm € Ny, define the
C™-(semi)norms by

le|lcm == max  max lﬁge(p)}. (184)

neNg, [n|=m peL”

Let ¢ be an admissible dispersion relation. We denote the set ofiatal points
of e by
Crit(e) := {peI™*

Ve(p) = 0}. (185)
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Recall that, ag™* is compact, dispersion relations have at most finitely maity c
ical points.Min(e) C Crit(e) denotes the set of points on which the minimum of
¢ is taken.

Lete”(p) be the Hessian matrix efatp € Crit(e). Define theminimal curva-
ture ofe atp € Crit(e) by

K(e,p) := min {|\'? | X € o[¢"(p)]} > 0. (186)
Define also theninimal (critical) curvature ot by
K(e) := min{K(e,p) | p € Crit(e)} > 0. (187)

Lemma 5.4(A priori upper bound onV(e, V'), d = 1, 2). Lete be any dispersion
relation fromC3(T'*,R). LetC < oo and K > 0 be such thatje||cs < C and
K(e) > K. Defined := min{e(p) | p € Crit(e)\Min(e)} > 0.

(i) Thereis a constant’; 4;) < oo depending only om, C, K, #Min(e), andé
such thatVe, V] < #Min(e) whenevetV |21 < Cs 4.

(i) There is a constant’; 4;) < oo depending only oi, C, K, #Min(e), and
0 such that
Nle,V] < Csai) |V]1j22 + #Min(e). (188)

Proof:

Let C'(T"*) be the Banach space of all continuously differentiable fionsT* —
C with norm||- ||, . Observe thatifV|; 2 ; is finite 7* o 1V/2 defines a continuous
linear map/?(T") — Cy(T'*) with

17 0 V2| gy ooy < V13- (189)

Let Min(e) = {pW, ..., p™}, m = #Min(e), and define the linear functionals
(i =1,2,...,m, on3(T') by ¢;(p) := F* o VV2(¢)(p®W). By (189), the
functionals(; are continuous. LeXK = (*, ker ¢,. Assume thatd(e,V’) has
more thann eigenvalues (counting multiplicities) belaw Then, by Lemma 2.2
and the min-max principle, there is some> 0 and som&m + 1)—-dimensional
subspaces C ¢*(T') with

min  {(@| VY2(p+ h(e))TVY20) > 1. (190)

©€ES, |pl2=1
Observe that for alp € ¢(T"),

|F* o V() (p)]?
s p+e(p)

(0| V2(p + h(e) 'V2p) = dp (p). (191)
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As the dimension of is larger thann, there is a vectop € SN X, |pls = 1.
Notice that in this case there is a constanist < oo depending only o' and
m such that for alp € I'*,

m

7o V(@) (p)[* < const |[V]ijan [J(1 = cos(p—p)),  (192)

i=1

where for eacly = (¢1,...,qq) € ',

cos(q) :=d *(cos(q1) + ...+ cos(qq)).
It means that
[T, (1 — cos(p — p1))
- p+e(p)

Observing that the integral on the right-hand side of (198punded by a constant
depending only o', K andm this concludes the proof of (i).
Now we prove (ii). For any € T'* define the linear mapg, : (*(I') — CxC?

by

1 < const [V|1/2,1 du*(p). (193)

Glo) = ((F oV (@)@), (TF o VIR () ). (194)

BY [V]1/21 < [V]122 < oo it follows that(, is continuous.

There is a constanbnst < oo such that, for any fixeg > 0 small enough,
there is a set of pointy,, . . . , g, } fromI'™* containingMin(e) with the property
thatn(u) < p~' and, for allg € I'*, min;—; 5 n(p) |¢ — ¢| < const p/?. 1f the
subspaces C ¢*(T") has dimension larger thad + 1)u~! then there is a vector
@ € S with |p|; = 1 and

n(p)

pe () Ker,. (195)
7j=1

By Taylor expansions, for such a vectomwe have, similarly as in the proof
of (i), that for some constarbnst < oo and allp € T'*:

m

[F o V2p(p)| < const [VIy)5, [[(1—cos(p — i), (196)
i=1
|F* o VY2p(p)] < constp \VH;SQ (197)

Using the last two inequalities we get
(2| V2h(e) ' V120)]

F* o V25(p)|
< * V1/2~ oo/ ‘ d *
< |FoVrg . ) 1" (p)
< const pu|V]i 9,0 (198)
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Thus, by (i), Lemma 2.2 and the min-max principle, for somast < oo,
H (e, V) has at mostconst |V, 22 + m) eigenvalues below. O

Corollary 5.5 (Semi-classical upper bound dvie, V], Thm. 1.2 ford = 1, 2).
Letd = 1,2 ande be any admissible dispersion relation fr@ii(T'*). Then there
is a constant(¢) < oo such that for all potential$” > 0,

Nle, V] < e(e)(1 + Nyfe, V), (199)
where the effective potenti&l is given byl (z) := V (z)|z|¢t7.
Proof: From Lemma 5.4 and Corollary 3.2:
Nle,V] < Hz el | (@)™ V(x) > emax}| + #Min(e)
2
+Cs.4(ii) ( Z <$>d§1[<x>d+l<x>4v(x)]l/z) .
€T, (2) 45V (2) <emax

Thus, by the Cauchy-Schwarz inequality:

Nle,V] < [z eI |[(2)™V(x) > emax | + #Min(e)

+Cs.43:i) (Z@?)(dﬂ)) ( Z <x>d+5v($)) :
z€l, (x)

zel d+5v($)<emax

As ¢ is a Morse function this implies (199) in the cage= 2. Observing that
(2)HPV () < [emax(z)°V (2)]Y2, wheneverz) TV (x) <epay, the casel = 1
follows from the last inequality as well. O

A Appendix

A.1 Proof of Lemma 1.12

Lemma A.1. Lete be any admissible dispersion relation wiike), , < 0 for all
x #y. Then, forallx € T,

> h(e)ay = —h(e)aw = —h(e)no.

yel\{z}

In particular,
max |h(€)zy| = h(€)o,o-

zel’
yel\{z}
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Proof: By translation invariance af(e) it suffices to show_, .\ o, 2(€)oy =
—h(e)o,0. Sinceh(e)y, < 0forally # 0,

Z h(e)og = —h(e)0,0+ lim Z h(e)o,y

yel'\{0} y€el, |y|<L

= —h(e)o,o + nggo /F* e(—p) Z Py d,u*(p)

yer, [y|<L

As ¢ is twice continuously differentiable:

im [ e(=p) D ePVdu(p) = e(0).

L—oo *
r yer, ly|<L

Finally, by the assumptionis admissibleg(0) = 0. O

Proof of Lemma 1.12:The first part of Lemma 1.12, i.e.,

Z |h(e)w,y| < 00,

yel’

follows immediately from the lemma above.
By the Yosida approximation for semi-groups, foralE ¢*(T") and allt > 0,
e MOy = lim e~ exp (s’t(s + h(e)) ™) u.
Thus it suffices to prove that, for adl > 0 and allu € /*(T"), u > 0 implies
(s+h(e))tu>0.
Consider any positive real number> 0 and any vector, € ¢*(T"), u > 0.
Letw := (s + h(e))"tu. Then, for anw € /*(T), v > 0,

(v (s + h(e))(w + v))
= (w| (s+h(e))w)+ (v | (s+ h(e))v) + 2 (u|v) (200)
> (w ] (s+h(e))w) + (v (s+h(e))v)

Observing that the functiom is real valued (sincé(e),,, as only real entries and
w is real valued) and choosing= |w| — w, it follows from the inequality above
that

(lwl [ (s + h(e))w]) = (w | (s + h(e))w) = (v | (s + h(e))v) .

Notice that the assumptidrie), , < Oforall z # y andthe factthal | . [h(e). | <
oo imply
(lwl | (s + he))[wl) < {w [ (s + h(e))w).
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These two last inequalities together imply that
(v ] (s + h(e))v) < 0.

As the operators + h(e)) is (per assumption) strictly positive, it follows that
v=|wl—w=0,ie.,(s+ h(e))'u>0.

By the Trotter formula, for all: € ¢2(T),
“th()y, = et Moo Tim (1 — (h(e) — h(e)oo)/n) " u. (201)

n—oo

Again byh(e),, < 0forallz #yand)_ . |h(e).,| < oo

e

e MOu] < &M Tim (1 — (he) — h(e)oo) fn)"[u] = e "OJul,  (202)

n—oo

I.e.,e dominates itself and is positivity preserving. O

A.2 Proof of Theorem 3.6 and Lemma 3.9
For anyy € C>=(R4, R), define its Gevrey norms by:

Rzl
Ix|ls.r == Z sup |Ox(p)|, s>1, R>0. (203)

nend (1)” pewe

The functiony is calleds-Gevreyis for someR > 0,

XHS,R < Q.

Lemma A.2. Lety € Cg°(R4, R). Then, for allp € R¢,

~ — 1
X(0)] < Ixllrs lsupp x] exp (1= (7 RIp)*).

Here,|p| := max{|p1|, |p2l,- - -, |pal}, X IS the Fourier transform of, and|supp x|
is the volume of the support of the functign

Proof: The bound above holds clearlyf! R|p| < 1. We consider thus only the
casee ' R|p| > 1. By assumption, for alh € N:

A ()’
p) <
IX(p)] (Rmax{|p1|, |p2], -
nS'I’L

< ———|Ixllr,s [supp X/ (204)

x| ,s |supp x|
s |pal )™

Now use that for all with e~ 17 > 1

o < max ef(slog(f)—log(r))'

te[=1,0]+(e~1r)

min
neN rn
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Lemma A.3 (Poisson summation formula)et y : R — R be smooth and
assume thatupp x is compact. Defing : I';; — C by

X)) = ) x(z)e™.

xcZ4

Forall p € [—m, m)4,

X)) = @0 > xp+aq).

qe(2nZ)®

Corollary A.4. Forall p € [-m,7)% all R > 1,and alls, 1 < s < o0,

d 1
d 1-R5

IX([p]) — @m)2x(@)| < lxllrs[supp x|e

i
(27r)% Z e Pl
p/EZd
_Rt
< const [|x||rs [supp x| €™,
whereconst < oo is a constant depending only erandd.

Proof of Theorem 3.6: For simplicity, we temporarily assume that the hopping
matrix h(e) has finite range. Lef € C*(R,R) be any Gevrey function with:

0 < x(zx) <1forallz € R; x(z) =1forall z, || < 1; andy(z) = 0 for all

z, |x| > 2. Such as-Gevrey function exists for any > 1. For eachL, AL > 0
define the Gevrey functiot; A7, : R? — R,

by ar(r) = x((w1+ L)/AL) x(wa/AL) - - x(xa/AL). (205)

If x is as-Gevrey function, by definition of the Gevrey norms, for somest <
00, SomeALy > 0,and allL, AL > 0:

”&)L,AL |s,an/aL, < const. (206)

Let p© € Min(e), i.e. ¢(p'”) = 0. Define for each,, AL > 0, the vector
O AL € (1), o
(I)L,AL(x) = 62p0'mq)L7AL(l‘), zel. (207)

By (206), Lemma A.2 and Corollary A.4, for some constanist < oo de-
pending only ore and allL, AL > 1:

|<©L,AL | h(e)(IDL,ALH S const (AL)iz |©L,AL|§- (208)
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Observe that, by the assumption (103), for some constant > 0 and all
L,AL > 1.

<(I)L,AL|V(I)L,AL> Z const (L‘|‘AL)_&|®L7AL|%. (209)

Let R < oo be the range of the hopping matfixe). Notice that, for allL., AL > 0
andalll/, AL’ > 0with L +2AL+ R < L' —2AL' — R,

(Prar|H(e,V)Prar) =0. (210)
For any fixedV € NandL > 0, defineL;, ALy, k=1,2,..., N, by:
Ly=kL, AL,=L/S. (211)

Then, for L sufficiently large, (210) is satisfied for allL, AL) = (L, Ag),
(L',AL") = (L, A;), k # (. Furthermore, by (208) and (209), as< 2, for
L large enough:

<q>Lk7ALk |H(e> V)CI)Lk7ALk> <0, k= 1,2,...,N. (212)

It follows by the min-max principle that for alv € N, N[e, V] > N.

Now assume thak(e) is not necessarily finite range, but still satisfies the
bound in (103). Then, for somenst < oo not depending o and allk, [ =
1,2...,N,k #1,

(Pr,an | H(e,V)®rar,)| < const L™ |®p, ar,l2|®r,ar,l2
= const L™|®, Az, |2 (213)

It follows from this bound, (208), and (209) that

max (¢| H(e,V)p) < const’ L™ — const L™

wespan{®r ALy PLy, ALy} [Pl2=1

for someconst > 0, const’ < oo depending onV but not onL. As, by assump-
tion, a < o/, the right-hand side of the equation above is strictly negdor L
sufficiently large. Thus, by the min-max principle, for alle N, N[e,V] > N. O

Proof of Lemma 3.9: Let x : R — R} be a smooth function witly(z) = 1 if
|l —1/2| < 1/2,andx(z) = 0if |[x — 1/2| > 3/4. We will assume thaf is
a s—Gevrey function for some > 1. For all M,m € Ny, all X € Z¢, and all
ke {0,1,...,2m — 1}* define the functio® (M, m | X, k) : R — R{ by

d
O(M,m| X, k)(y) =[] x (24" (g — 279X, — 27k (214)

i=1
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Clearly, it (X, ) # (X', &),
dist (supp ®(M,m | X, k) ,supp (M, m | X', k')) > 2~ M+m+2), (215)

Let p© € Min(e) and letc, < co be some constant such that for soane 0
and allp € B(py, €), e(p) < colp — p@|2. Let furthere, be a constant with

[ wriewranse [ oo, (216)
R4 Rd

whered is the Fourier transform ab(0, 010, 0).
LetX := {X},..., Xy} be the set of points frori’ on which

2cqcy [2MT)? < v(_M)(Q*MXn) for some m,, > 0. (217)

Foralln € {1,..., N} letm, € Ny be the largest integer satisfying (217).
For all L > 0 define the function@% e *T),n={1,2,..., N}, k €
{0,1,...,2™ — 1} by

O () 1= P T (M, m,, | X, k) (L7 ). (218)
Using Lemma A.3 we see that, by construction, fora# {1,2,..., N} and

allk € {0,1,...,2m — 1}4,

(@%) | H(e, Vi)l

v

1
< _§L—2v£M>(2—MXn)+O(L—3) o2, (219)

Furthermore, for alln, k), (n/, k'), n,n’ € {1,2,...,N}, k € {0,1,...,2™ —
1}, kK € {0,1,...,2™ — 1} with (n, k) # (n', k'), we have, for someonst <
oo hot depending ot the following estimate:

(@) H (e, Vi)Y )| < const L™ @) ][ @) |o. (220)

n/ 7&’

Finally, (116) follows by using the min-max principle andseloving that, by the
choice of the numbers.,,, for someconst’ > 0,

2dMgdmn > const'[v(_M)(Q_MXn)]d/Z.
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