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Abstract

We consider a simple discrete-time Markov chain with values in [0,∞)Zd

. The Markov
chain describes various interesting examples such as oriented percolation, directed poly-
mers in random environment, time discretizations of binary contact path process and the
voter model. We study the phase transition for the growth rate of the “total number of
particles” in this framework. The main results are roughly as follows: If d ≥ 3 and the
Markov chain is “not too random”, then, with positive probability, the growth rate of the
total number of particles is of the same order as its expectation. If on the other hand,
d = 1, 2, or the Markov chain is “random enough”, then the growth rate is slower than
its expectation. We also discuss the above phase transition for the dual processes and
its connection to the structure of invariant measures for the Markov chain with proper
normalization.
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1 Introduction

In this paper, we discuss phase transitions for the large time behavior of a Markov chain with
values in [0,∞)Zd

, where Zd is the d dimensional integer lattice. We consider the Markov
chain Nt = (Nt,y)y∈Zd , t = 1, 2, ... obtained by:

Nt = N0A1A2 · · ·At, t = 1, 2, ...,

where N0 ∈ [0,∞)Zd
is the initial state (regarded as a row vector), and At = (At,x,y)x,y∈Zd ,

t = 1, 2, ... are i.i.d. random matrices (cf. (1.1)–(1.7) below for more details). This framework
includes various interesting examples such as (generalized) oriented percolation, directed
polymers in random environment, time discretizations of binary contact path process and
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the voter model. We interpret Nt,y ≥ 0 as the “number of particles” at time-space (t, y),
though we do not assume in general that it is an integer. In the oriented percolation, Nt,y

is the number of open oriented paths from (0, x) for some x ∈ Zd to (t, y), and in the
directed polymers in random environment, Nt,y is the partition function for the polymer
chain S0, S1, .., St−1, St with St = y.

We look at the growth rate of the “total number” of particles:

|Nt| =
∑
y∈Zd

Nt,y t = 1, 2, ...

which will be kept finite for all t by our assumptions. We first show that |Nt| has the expected
value |N0||a|t, where |a| is a positive number (cf. (1.8) and Lemma 1.2.1), so that |a|t can be
considered as the mean growth rate of |Nt|. The main purpose of this paper is to investigate
whether the limit:

|N∞| def= lim
t→∞

|Nt|/|a|t

vanishes almost surely or not. Our results can be summarized as follows:

i) If d ≥ 3 and the matrix At is not “too random”, then, |N∞| > 0 with positive probability
(Lemma 2.1.1).

ii) In any dimension d, if the matrix At is “random enough”, then, |N∞| = 0, almost surely
(Theorem 3.1.1). Moreover, the convergence is exponentially fast.

iii) For d = 1, 2, |N∞| = 0, almost surely, under mild assumptions on At (Theorem 3.2.1.
The assumptions are so mild that, for many examples, they merely amount to saying
that At is “random at all”. Moreover, the convergence is exponentially fast for d = 1.

We will refer i) as regular growth phase, and ii)—iii) as slow growth phase. In the regular
growth phase, |Nt| grows as fast as its mean growth rate with positive probability, whereas in
the slow growth phase, the growth of |Nt| is slower than its mean growth rate almost surely.
We remark that the exponential decay of |Nt|/|a|t, mentioned in ii)–iii) above are interpreted
as the positivity of the Lyapunov exponents.

The phenomena i)–iii) mentioned above have been widely observed for various models; for
continuous-time linear interacting particle systems [8, Chapter IX], for directed polymers in
random environment [1, 2, 3], and for branching random walks in random environment [7, 12].
Here, we capture phenomena i)–iii) above by a simple discrete-time Markov chain, which
however includes various, old and new examples. Here, “old examples” means that some of
our results are known for them, such as directed polymers in random environment, whereas
“new examples” means that our results are new for them, such as (generalized) oriented
percolation. For oriented percolation, it is traditional to discuss the presence/absence of the
open oriented paths to certain time-space location. On the other hand, our results show that
the model exhibits a new type of phase transition, if we look at not only the presence/absence
of the open oriented paths, but also their number.

In section 4, we discuss the phase transition i)–iii) for the dual processes and its connection
to the structure of invariant measures for the Markov chain (|Nt|/|a|t).

1.1 The linear stochastic evolution

Here are remarks on the usage of notation in this paper. We write N = {0, 1, 2, ...}, N∗ =
{1, 2, ...} and Z = {±x ; x ∈ N}. For x = (x1, .., xd) ∈ Rd, |x| stands for the `1-norm:
|x| =

∑d
i=1 |xi|. For ξ = (ξx)x∈Zd ∈ RZd

, |ξ| =
∑

x∈Zd |ξx|. Let (Ω,F , P ) be a probability
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space. We write P [X] =
∫

X dP and P [X : A] =
∫
A X dP for a r.v.(random variable) X

and an event A.

Let At = (At,x,y)x,y∈Zd , t ∈ N∗ be a sequence of i.i.d. random matrices with non-negative
entries. We denote by (Ω,F , P ) the probability space on which these random matrices are
defined. Here are the set of assumptions we assume throughout this article:

For fixed t ∈ N∗, column vectors (At,x,y)x∈Zd , y ∈ Zd are independent, (1.1)
P [A2

1,x,y] < ∞ for all x, y ∈ Zd, (1.2)
At,x,y = 0 a.s. if |x − y| > rA for some non-random rA ∈ N, (1.3)
A1,x,y is not a constant a.s. for some x, y ∈ Zd, (1.4)

(At ◦ θs,z)t∈N∗
law= (At)t∈N∗ for all (s, z) ∈ N × Zd, (1.5)

where At ◦ θs,z = (At+s,x+z,y+z)x,y∈Zd for (s, z) ∈ N×Zd. Depending on the results we prove
in the sequel, some of these conditions can be relaxed. However, we choose not to bother
ourselves with the pursuit of the minimum assumptions for each result.

We define a Markov chain (Nt)t∈N with values in [0,∞)Zd
by∑

x∈Zd

Nt−1,xAt,x,y = Nt,y, t ∈ N∗. (1.6)

Here and in the sequel (with only exception in Theorem 4.1.3 below), we suppose that the
initial state N0 is non-random and finite in the sense that

the set {x ∈ Zd ; N0,x > 0} is finite and non-empty. (1.7)

The Markov chain defined above can be thought of as the time discretization of the particle
system considered in the last Chapter in T. Liggett’s book [8, Chapter IX]. Thanks to the
time discretization, the definition is considerably simpler here. Though we do not assume
in general that (Nt)t∈N takes values in NZd

, we refer Nt,y as the “number of particles” at
time-space (t, y), and |Nt| as “total number of particles” at time t.

We write:
ay = P [At,0,y], |a| =

∑
y∈Zd

|ay|. (1.8)

We now see that various interesting examples are included in this simple framework.

• Oriented percolation (OP): Let ηt,y, (t, y) ∈ N∗ × Zd be {0, 1}-valued i.i.d.r.v.’s with
P (ηt,y = 1) = p ∈ (0, 1) and N0 = (N0,x)x∈Zd ∈ {0, 1}Zd

. An open oriented path with the
end-point (t, y) ∈ N∗ × Zd is a sequence {(s, xs)}t

s=0 in N∗ × Zd such that N0,x0 = 1, xt = y,
|xs − xs−1| = 1, ηs,xs = 1 for all s = 1, .., t. Then, the number of open oriented paths with
the end-point (t, y) is given by (1.6) with

At,x,y = 1|x−y|=1ηt,y.

• Generalized oriented percolation (GOP): We generalize OP as follows. Let ηt,y,
(t, y) ∈ N∗ × Zd be {0, 1}-valued i.i.d.r.v.’s with P (ηt,y = 1) = p ∈ (0, 1] and let ζt,y,
(t, y) ∈ N∗ × Zd be another {0, 1}-valued i.i.d.r.v.’s with P (ζt,y = 1) = q ∈ [0, 1], which are
independent of ηt,y’s. We refer to the process (Nt)t∈N defined by (1.6) with

At,x,y = 1|x−y|=1ηt,y + δx,yζt,y
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as the generalized oriented percolation (GOP). Thus, the OP is the special case (q = 0) of
GOP. The covariances of (At,x,y)x,y∈Zd can be seen from:

ay = p1|y|=1 + qδy,0, P [At,x,yAt,ex,ey] =


q if y = ỹ = x = x̃,
p if y = ỹ, |x − y| = |x̃ − y| = 1,
ay−xa

ey−ex if otherwise.
(1.9)

In particular, we have |a| = 2dp + q.

• Directed polymers in random environment (DPRE): Let {ηt,y ; (t, y) ∈ N∗ × Zd}
be i.i.d. with exp(λ(β)) def.= P [exp(βηt,y)] < ∞ for any β ∈ (0,∞). The following expectation
is called the partition function of the directed polymers in random environment:

Nt,y = P 0
S

[
exp

(
β

t∑
u=1

ηu,Su

)
: St = y

]
, (t, y) ∈ N∗ × Zd,

where ((St)t∈N, P x
S ) is the simple random walk on Zd. We refer the reader to a review paper

[3] and the references therein for more information. Starting from N0 = (δ0,x)x∈Zd , the above
expectation can be obtained inductively by (1.6) with

At,x,y =
1|x−y|=1

2d
exp(βηt,y).

The covariances of (At,x,y)x,y∈Zd can be seen from:

ay =
eλ(β)1|y|=1

2d
, P [At,x,yAt,ex,ey] =

{
ay−xa

ey−ex if y 6= ỹ,
eλ(2β)−2λ(β)ay−xay−ex if y = ỹ.

(1.10)

In particular, we have |a| = eλ(β).

• The binary contact path process (BCPP): The binary contact path process is a
continuous-time Markov process with values in NZd

, originally introduced by D. Griffeath
[6]. In this article, we consider a discrete-time variant as follows. Let

{ηt,y = 0, 1 ; (t, y) ∈ N∗ × Zd}, {ζt,y = 0, 1 ; (t, y) ∈ N∗ × Zd},
{et,y ; (t, y) ∈ N∗ × Zd}

be families of i.i.d.r.v.’s with P (ηt,y = 1) = p ∈ (0, 1], P (ζt,y = 1) = q ∈ [0, 1], and P (et,y =
e) = 1

2d for each e ∈ Zd with |e| = 1. We suppose that these three families are independent
of each other. Starting from an N0 ∈ NZd

, we define a Markov chain (Nt)t∈N with values in
NZd

by
Nt+1,y = ηt+1,yNt,y−et+1,y + ζt+1,yNt,y, t ∈ N.

We interpret the process as the spread of an infection, with Nt,y infected individuals at time
t at the site y. The ζt+1,yNt,y term above means that these individuals remain infected at
time t+1 with probability q, and they recover with probability 1−q. On the other hand, the
ηt+1,yNt,y−et+1,y term means that, with probability p, a neighboring site y − et+1,y is picked
at random (say, the wind blows from that direction), and Nt,y−et+1,y individuals at site y are
infected anew at time t + 1. This Markov chain is obtained by (1.6) with

At,x,y = ηt,y1et,y=y−x + ζt,yδx,y.
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The covariances of (At,x,y)x,y∈Zd can be seen from:

ay =
p1|y|=1

2d
+ qδ0,y, (1.11)

P [At,x,yAt,ex,ey] =


ay−xa

ey−ex if y 6= ỹ,
ay−x if x = x̃ and y = ỹ,
qδx,yay−ex + qδ

ex,yay−x if x 6= x̃ and y = ỹ.
(1.12)

In particular, we have |a| = p + q.

• Voter model (VM): Let et,y, (t, y) ∈ N∗ ×Zd be Zd-valued i.i.d.r.v.’s with P (et,y = 0) =
1 − p (p ∈ (0, 1]) and P (et,y = e) = p

2d for each e ∈ Zd with |e| = 1. We then refer to the
process (Nt)t∈N defined by (1.6) with

At,x,y = δx,y+et,y

as the voter model (VM). Let us suppose that N0 ∈ NZd
for simplicity. This process describes

the behavior of voters in a certain election. At time 0, a voter at y ∈ Zd supports the candidate
N0,y. Then, at time t = 1, the voter makes a decision in a random way. With probability
1 − p, the voter still supports the same candidate, and with probability p/(2d), he/she finds
the candidate supported by his/her neighbor at y + e1,y (|e1,y| = 1) more attractive, and
starts to support N0,y+e1,y , instead of N0,y. The covariances of (At,x,y)x,y∈Zd can be seen
from:

ay = p
1|y|=1

2d
+ (1 − p)δy,0, P [At,x,yAt,ex,ey] =

{
ay−xa

ey−ex if y 6= ỹ,
δx,exay−x if y = ỹ.

(1.13)

In particular, we have |a| = 1.

Remark: The branching random walk in random environment considered in [7, 12] can also
be considered as a “close relative” to the models considered here, although it does not exactly
fall into our framework.

1.2 Some basic properties

In this subsection, we lay basis to study the growth of |Nt| as t ↗ ∞. We denote by Ft,
t ∈ N∗ the σ-field generated by A1, ..., At.

First of all, we identify the mean growth rate of |Nt| with |a|t.

Lemma 1.2.1
P [Nt,y] = |a|t

∑
x∈Zd

N0,xP x
S (St = y),

where ((St)t∈N, P x
S ) is the random walk on Zd such that

P x
S (S0 = x) = 1 and P x

S (S1 = y) = ay−x
def.= ay−x/|a|.

Moreover, (|N t|,Ft)t∈N is a martingale, where we have defined N t =
(
N t,x

)
x∈Zd by

N t,x = |a|−tNt,x. (1.14)
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Proof: The first equality is obtained by averaging the identity:

Nt,y =
∑

x0,,..,xt−1

N0,x0A1,x0,x1A2,x1,x2 · · ·At,xt−1,y. (1.15)

It is also easy to see from the above identity that (|N t|,Ft)t∈N is a martingale. 2

We next compare |Nt| and its mean growth rate |a|t.

Lemma 1.2.2 Referring to Lemma 1.2.1, the limit

|N∞| = lim
t→∞

|N t| (1.16)

exists a.s. and
P [|N∞|] = |N0| or 0. (1.17)

Moreover, P [|N∞|] = |N0| if and only if the limit (1.16) is convergent in L1(P ).

Before we prove Lemma 1.2.2, we introduce some notation and definitions. For (s, z) ∈ N×Zd,
we define N s,z

t = (N s,z
t,y )y∈Zd and N

s,z
t = (N s,z

t,y )y∈Zd , t ∈ N respectively by

N s,z
0,y = δz,y, N s,z

t+1,y =
∑
x∈Zd

N s,z
t,x As+t+1,x,y,

and N
s,z
t,y = |a|−tN s,z

t,y .

(1.18)

In particular, (N0,z
t )t∈N is the Markov chain (1.6) with the initial state N0,z

0 = (δz,y)y∈Zd .
Moreover, we have

Nt,y =
∑
z∈Zd

N0,zN
0,z
t,y for any initial state N0. (1.19)

Now, it follows from Lemma 1.2.2 that

P [|N0,0
∞ |] = 1, or = 0.

We will refer to the former case as regular growth phase and the latter as slow growth phase.
By (1.19) and the shift invariance, P [|N∞|] = |N0| for all N0 in the regular growth phase
and P [|N∞|] = 0 for all N0 in the slow growth phase. The regular growth means that, at
least with positive probability, the growth of the “total number” |Nt| of the particles is of
the same order as its expectation |a|t|N0|. On the other hand, the slow growth means that,
almost surely, the growth of |Nt| is slower than its expectation.

Proof of Lemma 1.2.2: By multiplying Nt by |N0|−1, we may assume that |N0| = 1. The
limit (1.16) exists by the martingale convergence theorem, and `

def.= P [|N∞|] ≤ 1 by Fatou’s
lemma. To show (1.17), we will prove that ` = `2, using the argument in [8, page 433,
Theorem 2.4(a)]. Using the notation (1.18), we write

(1) |N s+t| =
∑

y

N s,y|N
s,y
t |.

Since |N s,y
t | law= |N t|, the limit

|N s,y
∞ | = lim

t→∞
|N s,y

t |
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exists a.s. and is equally distributed as |N∞|. Moreover, by letting t ↗ ∞ in (1), we have
that

|N∞| =
∑

y

N s,y|N
s,y
∞ |.

and hence by Jensen’s inequality that

P [exp(−|N∞|)|Fs] ≥ exp
(
−P [|N∞||Fs]

)
= exp

(
−|N s|`

)
≥ exp

(
−|N s|

)
.

By letting s ↗ ∞ in the above inequality, we obtain

exp(−|N∞|)
a.s.
≥ exp

(
−|N∞|`

)
≥ exp

(
−|N∞|

)
,

and thus, |N∞| a.s.= |N∞|`. By taking expectation, we get ` = `2. Once we know (1.17), the
final statement of the lemma is standard([5, page 257–258, (5.2)], for example). 2

Let us now take a brief look at the condition for the extinction: limt→∞ |Nt| = 0 a.s.,
although our main objective in this article is to study |N∞| = limt→∞ |N t|.

If |a| < 1, we have
lim
t→∞

|Nt| = lim
t→∞

|a|t|N t| = 0.

For |a| = 1, we will present an argument below (Lemma 1.2.3), which applies when (Nt)t∈N is
NZd

-valued. Consequently, we will see that limt→∞ |Nt| = 0 for GOP with (1− p)(1− q) 6= 0
and for VM with p ∈ (0, 1]. For GOP, we apply Lemma 1.2.3 directly. For VM, we slightly
modify the argument (See the remark after the lemma).

It follows from the observations above that

lim
t→∞

|Nt| = 0, a.s. if


2dp + q ≤ 1 and (1 − p)(1 − q) 6= 0 for GOP,
λ(β) < 0 for DPRE,
p + q ≤ 1 and (1 − p)(1 − q) 6= 0 for BCPP,
p ∈ (0, 1] for VM.

(1.20)

Lemma 1.2.3 Let Ot be the set of occupied sites at time t,

Ot = {x ∈ Zd ; Nt,x > 0}

and |Ot| be its cardinality. Suppose that

δ
def.= P

 ∩
x∈Zd

{A1,x,0 = 0}

 > 0. (1.21)

Then,
P ( lim

t→∞
|Ot| ∈ {0,∞}) = 1.

Proof: We will see that

(1) {|Ot| ≤ m i.o.} a.s.= {|Ot| = 0 i.o.} for any m ∈ N,

which immediately implies the lemma:

{|Ot| 6−→ ∞} =
∪

m∈N
{|Ot| ≤ m i.o.} a.s.= {|Ot| = 0 i.o.}.
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For (1), we have only to show the
a.s.
⊂ part. We write Õt−1 =

∪
x∈Ot−1

{y ∈ Zd ; |x− y| ≤ rA}
(cf. (1.3)). Since

|Ot| = 0 ⇐⇒ |Nt| =
∑

x,y∈Zd

Nt−1,xAt,x,y = 0,

we have

P (|Ot| = 0|Ft−1) = P

 ∩
y∈ eOt−1

{
∑
x∈Zd

Nt−1,xAt,x,y = 0}

∣∣∣∣∣∣Ft−1


≥ P

 ∩
y∈ eOt−1

∩
x∈Zd

{A1,x,y = 0}

∣∣∣∣∣∣Ft−1


=

∏
y∈ eOt−1

P

 ∩
x∈Zd

{A1,x,y = 0}

 = δ|
eOt−1|.

This, together with the generalized second Borel-Cantelli lemma ([5, page 237]) implies that

{|Ot| ≤ m i.o.} ⊂

{ ∞∑
t=1

P (|Ot| = 0|Ft−1) = ∞

}
a.s.= {|Ot| = 0 i.o.}.

2

Remark: For VM, we argue as follows. Since |a| = 1, |Nt| is a martingale and hence
converges a.s. Since |Nt| is N-valued, we have |Nt−1| = |Nt| for large t, a.s. On the other
hand, for some c = c(p, d) > 0, we have

{1 ≤ |Ot−1| ≤ m} ⊂ {P (|Nt−1| > |Nt||Ft−1) ≥ cm} for all m ∈ N∗.

(Replace Nt−1,y on all y on the interior boundaries of Ot−1 with 0, while keeping all the other
Nt−1,y unchanged.) This implies that limt→∞ |Nt| = 0, via a similar argument as in Lemma
1.2.3.

2 Regular growth phase

2.1 Regular growth via second moments

The purpose of this subsection is to give a sufficient condition for the regular growth phase.
This can be done by expressing the two-point function

P [Nt,yNt,ey]

in terms of a Feynman-Kac type expectation with respect to the independent product of the
random walks in Lemma 1.2.1. It is convenient to introduce the following notation:

w(x, x̃, y, ỹ) =


P [A1,x,yA1,ex,ey]

ay−xa
ey−ex

=
(

P [A1,x−y,0A1,ex−y,0]
ay−xay−ex

)δy,ey

, if ay−xa
ey−ex 6= 0,

0, if ay−xa
ey−ex = 0.

(2.1)

Remark: For OP and DPRE, we see from (1.9) and (1.10) that

P [At,x,yAt,ex,ey] = γδy,eyay−xa
ey−ex, (2.2)
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where
γ = 1/p and exp(λ(2β) − 2λ(β))

respectively for OP and DPRE. If (2.2) is satisfied, then,

w(x, x̃, y, ỹ) =
{

γδy,ey if ay−xa
ey−ex 6= 0,

0, if ay−xa
ey−ex = 0.

(2.3)

For GOP, we have

w(x, x̃, y, ỹ) =


1/q if y = ỹ = x = x̃,
1/p if y = ỹ, |x − y| = |x̃ − y| = 1,
1 if neither of the above and ay−xa

ey−ex 6= 0,
0 if ay−xa

ey−ex = 0,

(2.4)

where 1/q on the first line is replaced by 0 if q = 0. For BCPP, we have

w(x, x̃, y, ỹ) =



1/q if x = x̃ = y = ỹ,
1/p if x = x̃, y = ỹ, |x − y| = 1,
1 if y = ỹ = x,|x̃ − y| = 1,
1 if y = ỹ = x̃,|x − y| = 1,
1 if y 6= ỹ and ay−xa

ey−ex 6= 0,
0 if otherwise,

(2.5)

where 1/q on the first line is replaced by 0 if q = 0.

We let (S, S̃) = ((St, S̃t)t∈N, P x,ex

S,eS
) denote the independent product of the random walks

in Lemma 1.2.1. We have the following Feynman-Kac formula.

Lemma 2.1.1

P [Nt,yNt,ey] = |a|2t
∑

x,ex∈Zd

N0,xN0,exP x,ex

S,eS
[et : (St, S̃t) = (y, ỹ)] (2.6)

for all t ∈ N, y, ỹ ∈ Zd, where

et =
t∏

u=1

w(Su−1, S̃u−1, Su, S̃u). (2.7)

Consequently,
P [|N t|2] =

∑
x,ex∈Zd

N0,xN0,exP x,ex

S,eS
[et] , (2.8)

and

sup
t∈N

P [|N t|2] < ∞ ⇐⇒ sup
t∈N

P 0,0

S,eS
[et] < ∞ (2.9)

=⇒ P [|N∞|] = |N0|. (2.10)

Proof: By (1.15) and the independence, we have

(1) P [Nt,yNt,ey] =
∑

x0,,..,xt−1

∑
ex0,,..,ext−1

N0,x0N0,ex0

t∏
s=1

P [A1,xs−1,xsA1,exs−1,exs
],
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with the convention that xt = y, x̃t = ỹ. We have on the other hand that

P [A1,xs−1,xsA1,exs−1,exs
] = |a|2w(xs−1, x̃s−1, xs, x̃s)axs−xs−1aexs−exs−1

.

Plugging this into (1), we get (2.6). (2.8) is an immediate consequence of (2.6). We now
recall (1.19) and that |N0,z

t | law= |N0,0
t | for all t ∈ N and z ∈ Zd. Therefore, it is enough to

prove (2.9) for Nt = N0,0
t . But this follows immediately from (2.8). (2.10) is a consequence

of Lemma 1.2.2. 2

Remarks: 1) When (2.3) holds, we have

et = γ
Pt

u=1 δ
Su, eSu . (2.11)

Let us assume (2.11) and set

πx = P x,0

S,eS
(St = S̃t for some t ∈ N∗).

We then have for all x ∈ Zd that

P x,0

S,eS

( ∞∑
u=1

δ
Su,eSu

= k

)
=

{
1 − πx for k = 0,

πxπk−1
0 (1 − π0) for k = 1, 2, ..,

and hence that

sup
t∈N

P 0,0

S,eS
[et] < ∞ ⇐⇒ π0γ < 1 (2.12)

=⇒ lim
t→∞

P x,0

S,eS
[et] =


1 + πx

π0(γ − 1)
1 − π0γ

if x 6= 0,

1 +
π0(γ − 1)
1 − π0γ

if x = 0.
(2.13)

On the other hand, it can be seen from (2.6) that

P [|N0,x
∞ ||N0,ex

∞ |] = lim
t→∞

P x,ex

S,eS
[et] ,

using the notation (1.18). Thus, (2.13) provides us with the formula for covariances of
(|Nx

∞|)x∈Zd . This observation was made by D. Griffeath for the binary contact path process
in continuous time [6, 9] and by F. Comets for DPRE (private communications). Also, it
follows from (2.9) and (2.12) that

sup
t∈N

P [|N t|2] < ∞ ⇐⇒ d ≥ 3 and
{

p > π0 for OP,
λ(2β) − 2λ(β) < ln(1/π0) for DPRE.

(2.14)

Similar arguments using (2.4) and (2.5) show that

sup
t∈N

P [|N t|2] < ∞ ⇐= d ≥ 3 and


p ∧ q > π0 for GOP with q 6= 0,
p > π0 for BCPP with q = 0,
p ∧ q > π0 for BCPP with q 6= 0.

(2.15)

For OP, DPRE and BCPP with q = 0, (St)t∈N is the simple random walks. In this case,
π0 is the same as the return probability of the simple random walk itself, for which we have
1/(2d) < π0 ≤ 0.3405... for d ≥ 3 [11, page 103]. (2.14) for DPRE case can be found in [10].
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2) By the second moment method discussed here, it is possible to get the central limit
theorem for the spacial distribution of the particles. In fact, (2.9) implies that

lim
t→∞

∑
x∈Zd

f
(
(x − mt)/

√
t
)

N t,x = |N∞|
∫

Rd

fdν in L2(P ) for all f ∈ Cb(Rd),

where m =
∑

x∈Zd xax and ν is the Gaussian measure with∫
Rd

xidν(x) = 0,

∫
Rd

xixjdν(x) =
∑
x∈Zd

(xi − mi)(xj − mj)ax, i, j = 1, .., d.

This will be carried out in a work in preparation by M.Nakashima, together with the inves-
tigations of related topics.

3 Slow growth phase

3.1 Slow growth in any dimension

We give the following sufficient condition for the slow growth phase in any dimension. The
condition is typically applies to the limited regions of parameters, which makes particles
“hard to survive” (Remark 1 after Theorem 3.1.1).

Theorem 3.1.1 Suppose that∑
y∈Zd

P [A1,0,y lnA1,0,y] > |a| ln |a|. (3.1)

Then, there exists a non-random c > 0 such that

|N t| = O(e−ct), as t → ∞, a.s.

Remarks: 1) It is easy to see that

(3.1) ⇐⇒


2dp + q < 1 for GOP,
βλ′(β) − λ(β) > ln(2d) for DPRE,
p + q < 1 for BCPP.

2) Theorem 3.1.1 generalizes [2, Theorem 1.3(a)], which is obtained in the setting of DPRE.
Theorem 3.1.1 can also be thought of as the discrete-time analogue of [8, page 455, Theorem
5.1].

Proof of Theorem 3.1.1: By (1.19) and the shift invariance, it is enough to prove the
result for Nt = N0,0

t . We write

|Nt| =
∑

y

A1,0,y|N2,y
t−1|.

Thus, for h ∈ (0, 1],
|Nt|h ≤

∑
y

Ah
1,0,y|N

2,y
t−1|

h.

Since |N2,y
t−1|

law= |Nt−1|, we have

P [|Nt|h] ≤
∑

y

P [Ah
1,0,y]P [|Nt−1|h],
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and hence

P [|N t|h] ≤ ϕ(h)P [|N t−1|h], with ϕ(h) =
∑

y P

[(
A1,0,y

|a|

)h
]
.

Note that ϕ(1) = 1 and that

ϕ′(1−) =
∑
y∈Zd

P

[
A1,0,y

|a|
ln

(
A1,0,y

|a|

)]
> 0.

(For the differentiability, note that xh| lnx| ≤ (he)−1 for x ∈ [0, 1], and xh| lnx| ≤ x lnx
for x ≥ 1.) These imply that there exists h0 ∈ (0, 1) such that ϕ(h0) < 1, and hence that
P [|N t|h0 ] ≤ ϕ(h0)t, t ∈ N. Finally the theorem follows from the Borel-Cantelli lemma. 2

3.2 Slow growth in dimensions one and two

We now state a result (Theorem 3.2.1) for slow growth phase in dimensions one and two.
Unlike Theorem 3.1.1, Theorem 3.2.1 is typically applies to the entire region of the parameters
in various models (cf. Remarks after Theorem 3.2.1).

For f, g ∈ [0,∞)Zd
with |f |, |g| < ∞, we define their convolution f ∗ g ∈ [0,∞)Zd

by

(f ∗ g)x =
∑
y∈Zd

fx−ygy.

The identity : |(f ∗ g)| = |f ||g| will often be used in the sequel.

Theorem 3.2.1 Let d = 1, 2. Suppose that P [A3
1,0,y] < ∞ for all y ∈ Zd and that there is a

constant c ∈ (0,∞) such that∑
x,ex,y∈Zd

ξxξ
exP [A1,x,yA1,ex,y] ≥ (1 + c)|(a ∗ ξ)2| (3.2)

for all ξ ∈ [0,∞)Zd
such that |ξ| < ∞. Then, almost surely,

|N t| =
{

O(exp(−ct)) if d = 1,
−→ 0 if d = 2

as t −→ ∞, (3.3)

where c is a non-random constant.

Remarks: 1) By (2.2), (3.2) holds for DPRE for all β ∈ (0,∞). For (3.2), it is sufficient
that there exists c > 0 such that

bA
x ≥ bx + cδ0,x for all x ∈ Zd, (3.4)

where b and bA are defined by

bx =
∑
y∈Zd

ayay−x and bA
x =

∑
y∈Zd

P [A1,0,yA1,x,y] (3.5)

For GOP, we have by (1.9) that

bx


= 2dp2 + q2, if x = 0,
= 2pq if |x| = 1,
> 0 if |x| = 2,

bA
x =


2dp + q, if x = 0,
2pq if |x| = 1,
p−1bx if |x| = 2,

bx = bA
x = 0 if |x| ≥ 3.
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Thus, (3.2) holds for GOP whenever p or q is in (0, 1).

2) For ξ ∈ RZd
with |ξ| < ∞, we denote its Fourier transform by ξ̂(θ) =

∑
x∈Zd ξx exp(ix · θ),

θ ∈ [−π, π]d. Then, (3.2) follows from that

c1
def.= min

θ∈[−π,π]d

(
b̂A(θ) − |â(θ)|2

)
> 0. (3.6)

This can be seen as follows. Note that (3.2) can be written as:∑
x,ex∈Zd

ξxξ
exbA

x−ex ≥ (1 + c)|(a ∗ ξ)2|.

Then, by Plancherel’s identity and the fact that |(a ∗ ξ)2| ≤ |a|2|ξ2|, we have that∑
x,ex∈Zd

ξxξ
exbA

x−ex = (2π)−d

∫
[−π,π]d

b̂A(θ)|ξ̂(θ)|2dθ ≥ (2π)−d

∫
[−π,π]d

(|â(θ)|2 + c1)|ξ̂(θ)|2dθ

= |(a ∗ ξ)2| + c1|ξ2| ≥ (1 + c1/|a|2)|(a ∗ ξ)2|.

The criterion (3.6) can effectively be used to check (3.2) for BCPP if d ≥ 2 or 1−p+q(1−q) 6=
0. In fact, we have by (1.11) and (1.12) that

bx


= p2

2d + q2, if x = 0,
= pq

d if |x| = 1,
> 0 if |x| = 2,
= 0 if |x| ≥ 3

bA
x =


p + q, if x = 0,
pq
d if |x| = 1,
0 if |x| ≥ 2,

Hence, (3.4) fails in this case. On the other hand,

â(θ) =
p

d

d∑
j=1

cos θj + q, b̂A(θ) = p + q +
2pq

d

d∑
j=1

cos θj .

Thus, (3.6) can be verified as follows:

b̂A(θ) − |â(θ)|2 = p + q − q2 −

p

d

d∑
j=1

cos θj

2

≥ p
(
1 − p

d2

)
+ q(1 − q) > 0.

3) Suppose that supx,y∈Zd A1,x,y is a bounded r.v. Then, instead of (3.2), it is enough to
assume that there is a γ ∈ [0,∞)Zd

, γx 6≡ 0 such that∑
x,ex,y∈Zd

ξxξyP [A1,x,yA1,ex,y] ≥ |(a ∗ ξ)2| + |(γ ∗ ξ)2| (3.7)

for all ξ ∈ [0,∞)Zd
such that |ξ| < ∞. (In this case we check (3.10) in the proof of Lemma

3.2.3 by the fact that Xt,y is bounded. Then, we replace a by γ in Lemma 3.2.4). However,
we do not know examples to which this observation can effectively be applied.

4) Theorem 3.2.1 is a generalization of [1, Theorem 1.1], [2, Theorem 1.3(b)] and [4, Theorem
1.1], which are obtained in the setting of DPRE. The proof of Theorem 3.2.1 will be built on
ideas and techniques developed there. Theorem 3.2.1 can also be thought of as a discrete-time
analogue of [8, page 451, Theorem 4.5].

We first prepare a general lemma.
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Lemma 3.2.2 Suppose that (Xn)n∈N be non-negative independent r.v.’s such that∑
n≥0

mn = 1,
∑
n≥0

P [X3
n] < ∞,

∑
n≥0

P [(Xn − mn)3] ≤ c0

∑
n≥0

var(Xn),

where mn = P [Xn] and c0 is a constant. Then, for h ∈ (0, 1), there is a constant c1 ∈ (0,∞)
such that

1
2 + c0

∑
n≥0

var(Xn) ≤ P

[
(U − 1)2

U + 1

]
≤ c1P

[
1 − Uh

]
where U =

∑
n≥0

Xn.

Proof: We have ∑
n≥0

var(Xn) = P [(U − 1)2] = P

[
U − 1√
U + 1

√
U + 1

]

≤ P

[
(U − 1)2

U + 1

]1/2

P
[
(U − 1)2(U + 1)

]1/2
.

On the other hand,

P [(U − 1)3] =
∑
n≥0

P [(Xn − mn)3] ≤ c0

∑
n≥0

var(Xn).

Therefore,

P
[
(U − 1)2(U + 1)

]
= P

[
(U − 1)3 + 2(U − 1)2

]
≤ (c0 + 2)

∑
n≥0

var(Xn).

Combining these, we get the first inequality. To get the second, we define a function:

f(u) = 1 + h(u − 1) − uh, u ∈ [0,∞).

Note that P [U ] = 1 and that there is a constant c2 ∈ (0,∞) such that

f(u) ≥ c2
(u − 1)2

u + 1
for all u ∈ [0,∞).

We then see that

P
[
1 − Uh

]
= P [f(U)] ≥ c2P

[
(U − 1)2

U + 1

]
.

2

We denote the density of the particles by:

ρt,x = 1{|Nt|>0}
Nt,x

|Nt|
, t ∈ N, x ∈ Zd. (3.8)

Lemma 3.2.3 For h ∈ (0, 1), there is a constant c ∈ (0,∞) such that

P
[
1 − Uh

t |Ft−1

]
≥ c|(a ∗ ρt−1)2| for all t ∈ N∗,

where Ut = 1
|a|

∑
x,y∈Zd ρt−1,xAt,x,y.
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Proof: We may focus on the event {|Nt−1| > 0}, since the inequality to prove is trivially true
on {|Nt−1| = 0}. We write

Ut =
∑
y∈Zd

Xt,y with Xt,y =
1
|a|

∑
x∈Zd

ρt−1,xAt,x,y.

For fixed t ∈ N∗, {Xt,y}y∈Zd are non-negative r.v.’s, which are conditionally independent
given Ft−1. We will prove the lemma by applying Lemma 3.2.2 to these r.v.’s under the
conditional probability. The (conditional) expectations and the variances of {Xt,y}y∈Zd are
computed as follows:

mt,y
def.= P [Xt,y|Ft−1] = (ρt−1 ∗ a)y,

vt,y
def.= P [(Xt,y − mt,y)2|Ft−1]

=
1

|a|2
∑

x1,x2∈Zd

ρt−1,x1ρt−1,x2cov(At,x1,y, At,x2,y).

Hence, ∑
y∈Zd

mt,y = |ρt−1 ∗ a| = 1,

∑
y∈Zd

vt,y =
1

|a|2
∑

x1,x2,y∈Zd

ρt−1,x1ρt−1,x2

∑
y∈Zd

cov(At,x1,y, At,x2,y)

(3.2)

≥ c0

∑
y∈Zd

(ρt−1 ∗ a)2y = c0|(ρt−1 ∗ a)2|. (3.9)

We will check that there exists c1 ∈ (0,∞) such that∑
y∈Zd

P [(Xt,y − mt,y)3|Ft−1] ≤ c1

∑
y∈Zd

vt,y for all t ∈ N∗. (3.10)

Then, the lemma follows from Lemma 3.2.2 and (3.9). There exists c2 ∈ (0,∞) such that

(1) P [A3
1,0,y] ≤ c2a

3
y for all y ∈ Zd.

This can be seen as follows: Note that ay = 0 ⇔ A1,0,y = 0, a.s. This implies that, for
each y ∈ Rd, there is cy ∈ [0,∞) such that P [A3

1,0,y] = cya
3
y. Therefore, we have (1) with

c2 = sup|y|≤rA
cy (cf. (1.3)). By (1), we get

P [X3
t,y|Ft−1] =

1
|a|3

∑
x1,x2,x3∈Zd

 3∏
j=1

ρt−1,xj

 P

 3∏
j=1

At,xj ,y


Hölder
≤ c2

∑
x1,x2,x3∈Zd

 3∏
j=1

ρt−1,xjay−xj

 = c2(ρt−1 ∗ a)3y. (3.11)

Consequently, (3.10) can be verified as follows:∑
y∈Zd

P [(Xt,y − mt,y)3|Ft−1] ≤ 3
∑
y∈Zd

(P [X3
t,y|Ft−1] + m3

t,y)

(3.11)

≤ c3

∑
y∈Zd

(ρt−1 ∗ a)3y
(3.9)

≤ c3

c0

∑
y∈Zd

vt,y.

2
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Lemma 3.2.4 For h ∈ (0, 1) and Λ ⊂ Zd,

P
[
|N t−1|h|(a ∗ ρt−1)2|

]
≥ 1

|Λ|
P

[
|N t−1|h

]
− 2

|Λ|
P 0

S(St 6∈ Λ)h, (3.12)

for all t ∈ N∗, where ((St)t∈N, P 0
S) is the random walk in Lemma 1.2.1.

Proof: We have on the event {|Nt| > 0} that

|Λ||(ρt−1 ∗ a)2| ≥ |Λ|
∑
z∈Λ

(ρt−1 ∗ a)2y ≥

∑
y∈Λ

(ρt−1 ∗ a)y

2

=

1 −
∑
y 6∈Λ

(ρt−1 ∗ a)y

2

≥ 1 − 2
∑
y 6∈Λ

(ρt−1 ∗ a)y

≥ 1 − 2

∑
y 6∈Λ

(ρt−1 ∗ a)y

h

. (3.13)

Note also that

P


|N t−1|

∑
y 6∈Λ

(ρt−1 ∗ a)y

h
 ≤ P

|N t−1|
∑
y 6∈Λ

(ρt−1 ∗ a)y

h

= P

∑
y 6∈Λ

(N t−1 ∗ a)y

h

= P (St 6∈ Λ)h, (3.14)

where the last equality comes from Lemma 1.2.1. We therefore see that

|Λ|P
[
|N t−1|h|(ρt−1 ∗ a)2|

] (3.13)

≥ P
[
|N t−1|h

]
− 2P


|N t−1|

∑
y 6∈Λ

(ρt−1 ∗ a)y

h


(3.14)

≥ P
[
|N t−1|h

]
− 2P 0

S(St 6∈ Λ)h.

2

Proof of (3.3) for d = 2: We will prove that for h ∈ (0, 1),

P [|N t|h] =
{

O(exp(−ct1/3)) if d = 1,

O(exp(−c
√

ln t)) if d = 2
as t −→ ∞, (3.15)

where c ∈ (0,∞) is a constant. We have

|N t| =
1
|a|

∑
x,y∈Zd

N t−1,xAt,x,y = |N t−1|Ut, (3.16)

where Ut is from Lemma 3.2.3. We then see from Lemma 3.2.3 that for h ∈ (0, 1)

P [|N t|h|Ft−1] − |N t−1|h = |N t−1|hP
[
Uh

t − 1|Ft−1

]
≤ −c|N t−1|h|(ρt−1 ∗ a)2|.

We therefore have by Lemma 3.2.4 that
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(1) P [|N t|h] ≤
(

1 − c

|Λ|

)
P [|N t−1|h] +

2c

|Λ|
P 0

S(St 6∈ Λ)h.

We set Λ = (−
√

t`t/2,
√

t`t/2]d ∩ Zd, where for `t = t1/3 for d = 1, and `t =
√

ln t for d = 2.
Then,

P 0
S(St 6∈ Λ) = P 0

S

(∣∣∣St/
√

t
∣∣∣ ≥ √

`t/2
)
≤ c1 exp(−c2`t),

so that (1) reads,

P [|N t|h] ≤
(

1 − c

(t`t)d/2

)
P [|N t−1|h] + c3 exp(−c2`t).

By iteration, we conclude (3.15). 2

Proof of (3.3) for d = 1: Suppose that d = 1. We will prove that for h ∈ (0, 1),

P [|N t|h] = O(exp(−ct)), t −→ ∞,

where c ∈ (0,∞) is a constant. Then, (3.3) for d = 1 follows from the Borel-Cantelli lemma.
Since the left-hand-side is non-increasing in t, it is enough to show that for some s ∈ N∗,

(1) P [|Nns|h] = O(exp(−cn)), n −→ ∞.

We write

|Ns+t| =
∑

y

Ns,y|N s,y
t | with |N s,y

t | =
∑

x1,..,xt

As+1,y,x1As+2,x1,x2 · · ·As+t,xt−1,xt .

Thus, for h ∈ (0, 1),
|Ns+t|h ≤

∑
y

Nh
s,y|N

s,y
t |h.

Since |N s,y
t | law= |Nt|, we have by (3.15) that

(2) P [|Ns+t|h] ≤
∑

y

P [Nh
s,y]P [|Nt|h] ≤ c1s exp(−c2s

1/3)P [|Nt|h] for all t ∈ N∗.

We now take s ∈ N∗ such that c1s exp(−c2s
1/3) < 1. Then, (1) follows from (2). 2

4 Dual processes

In this section, we associate a dual object to the process (Nt)t∈N and thereby investigate
invariant measures for (N t)t∈N. This can be considered as a discrete analogue of the duality
theory for the continuous-time linear systems in the book by T. Liggett [8, Chapter IX].

4.1 Dual processes and invariant measures

We define a Markov chain (Mt)t∈N with values in [0,∞)Zd
by∑

x∈Zd

At,y,xMt−1,x = Mt,y, t ∈ N, (4.1)

where the initial state M0 ∈ [0,∞)Zd
is a non-random and finite (cf. (1.7)). We refer (Mt)t∈N

as the dual process of (Nt)t∈N defined by (1.6). Regarding (Mt) as column vectors, we can
interpret (4.1) as:

Mt = AtAt−1 · · ·A1M0.
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The dual process can also be understood as being defined in the same way as (1.6), except
that the matrix At is replaced by its transpose: A∗

t = (At,y,x)(x,y)∈Zd×Zd .

By the same proof as Lemma 1.2.1, we have:

Lemma 4.1.1
P [Mt,y] = |a|t

∑
x∈Zd

M0,xP x
S (−St = y),

where ((St)t∈N, P x
S ) is the random walk in Lemma 1.2.1. Moreover, (|M t|,Ft)t∈N is a mar-

tingale, where we have defined M t =
(
M t,x

)
x∈Zd by

M t,x = |a|−tMt,x. (4.2)

Also, Lemma 1.2.2 holds true with N t replaced by M t. Accordingly, we have the definition
of regular/slow growth phase for the dual process in the same way as for the (Nt)-process.
For (s, z) ∈ N × Zd, we define M s,z

t = (M s,z
t,y )y∈Zd and M

s,z
t = (M s,z

t,y )y∈Zd , t ∈ N respectively
by

M s,z
0,y = δz,y, N s,z

t+1,y =
∑
x∈Zd

M s,z
t,x As+t+1,y,x,

and M
s,z
t,y = |a|−tM s,z

t,y .

(4.3)

(Nt)t∈N and (Mt)t∈N are dual to each other in the following sense:

Lemma 4.1.2 For each fixed t ∈ N∗,(
N0,x

t,y

)
(x,y)∈Zd×Zd

law=
(
M0,y

t,x

)
(x,y)∈Zd×Zd

. (4.4)

Proof: We have

M0,y
t,x =

∑
x1,...,xt−1∈Zd

At,y,x1At−1,x1,x2 · · ·A2,xt−2,xt−1A1,xt−1,x

law=
∑

x1,...,xt−1∈Zd

A1,y,x1A2,x1,x2 · · ·At−1,xt−2,xt−1At,xt−1,x = N0,x
t,y .

This shows that the left-hand-side of (4.4) is obtained from the right-hand-side by the
measure-preserving transform (A1, A2, .., At) 7→ (At, At−1, .., A1). 2

The following result show that the structure of invariant measures of (N t) depends on
whether the dual process (Mt) is in the regular or slow growth phase. To state the theorem,
it is convenient to introduce the following notation: Let P([0,∞)Zd

) be the set of Borel
probability meaures on [0,∞)Zd

, and

I = {µ ∈ P([0,∞)Zd
) ; µ is invariant for the Markov chain (N t)},

S = {µ ∈ P([0,∞)Zd
) ; µ is invariant with respect to the shift of Zd}.

Theorem 4.1.3 a) Suppose that P [|M0,0
∞ |] = 1. Then, for each α ∈ [0,∞), there is a

να ∈ I ∩ S such that ∫
[0,∞)Zd

η0dνα(η) = α. (4.5)

Moreover, να is extremal in I ∩ S.
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b) Suppose on the contrary that P [|M0,0
∞ |] = 0. Then,{

µ ∈ I ∩ S, ;
∫

[0,∞)Zd
η0dµ(η) < ∞

}
= {δ0},

where δ0 is the unit point mass on 0 = (0)x∈Zd.

Proof: a): Let (N1
t )t∈N be the (Nt)-process such that N1

0,x ≡ 1 for all x ∈ Zd. We have by
Lemma 4.1.2 that

αN
1
t

law= (α|M0,y
t |)y∈Zd ,

where αN
1
t =

(
αN

1
t,y

)
y∈Zd

. Since the right-hand-side converges a.s. to (α|M0,y
∞ |)y∈Zd as

t → ∞, we see that the weak limit

να
def.= lim

t→∞
P

(
αN

1
t ∈ ·

)
,

exists and that

(1) να = P
(
(α|M0,y

∞ |)y∈Zd ∈ ·
)
.

We see να ∈ I from the way να is defined. Also, να ∈ S, since P
(
αN

1
t ∈ ·

)
∈ S for any

t ∈ N∗ by (1.5). Moreover, (1) implies (4.5). The extremality of να follows from the same
argument as in [8, page 437, Corollary 2.1.5 ].
b): This follows from the same argument as in [8, page 435, Theorem 2.7 ]. 2

4.2 Regular/slow growth for the dual process

In this subsection, we adapt arguments from sections 2 and 3 to obtain sufficient conditions
for regular/slow growth phases the dual process. A motivation to investigate these sufficient
conditions is explained by Theorem 4.1.3.

We let (S, S̃) = ((St, S̃t)t∈N, P x,ex

S,eS
) denote the independent product of the random walks

in Lemma 1.2.1. We have the following Feynman-Kac formula for the two-point functions of
the dual process. The proof is the same as that of Lemma 2.1.1.

Lemma 4.2.1

P [Mt,yMt,ey] = |a|2t
∑

x,ex∈Zd

M0,xM0,exP x,ex

S,eS
[e∗t : (−St,−S̃t) = (y, ỹ)] for all y, ỹ ∈ Zd, (4.6)

where

e∗t =
t∏

u=1

w(−Su,−S̃u,−Su−1,−S̃u−1), (cf. (2.1)). (4.7)

Consequently,
P [|N t|2] =

∑
x,ex∈Zd

M0,xM0,exP x,ex

S,eS
[e∗t ] , (4.8)

and

sup
t∈N

P [|M t|2] < ∞ ⇐⇒ sup
t∈N

P 0,0

S,eS
[e∗t ] < ∞ (4.9)

=⇒ P [|M∞|] = |M0|. (4.10)
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We see from Lemma 4.2.1, as in (2.14) and (2.15) that

sup
t∈N

P [|M t|2] < ∞ ⇐⇒ d ≥ 3 and
{

p > π0 for OP,
λ(2β) − 2λ(β) < ln(1/π0) for DPRE.

(4.11)

sup
t∈N

P [|M t|2] < ∞ ⇐= d ≥ 3 and


p ∧ q > π0 for GOP with q 6= 0,
p > π0 for BCPP with q = 0,
p ∧ q > π0 for BCPP with q 6= 0.

(4.12)

Let us now turn to sufficient conditions for the dual process to be in the slow growth phase.
We first note that exactly the same statement as Theorem 3.1.1 holds true with N t replaced
by M t, since the proof works for the dual process without change. In particular,

|M t| = o(e−ct), as t → ∞, a.s. if


2dp + q < 1 for GOP,
βλ′(β) − λ(β) > ln(2d) for DPRE,
p + q < 1 for BCPP.

In analogy with Theorem 3.2.1, we have:

Theorem 4.2.2 Let d = 1, 2. Suppose that P [A3
1,0,y] < ∞ for all y ∈ Zd and that

the r.v.
∑
x∈Zd

A1,x,0 is not a constant a.s. (4.13)

Then, almost surely,

|M t| =
{

O(exp(−ct)) if d = 1,
−→ 0 if d = 2

as t −→ ∞, (4.14)

where c > 0 is a non-random constant.

To explain the proof of Theorem 4.2.2, we introduce

Vt =
1
|a|

∑
x,y∈Zd

ρ∗t−1,yAt,x,y, t ∈ N∗,

where ρ∗t−1,x = 1{|Mt−1|>0}Mt−1,x/|Mt−1|.
(4.15)

We then have |M t| = Vt|M t−1|, t ∈ N∗. Using this relation instead of (3.16), we can show
Theorem 4.2.2 in the same way as Theorem 3.2.1, except that we replace Lemma 3.2.3 by
Lemma 4.2.3 below.

Lemma 4.2.3 For h ∈ (0, 1), there is a constant c ∈ (0,∞) such that

P
[
1 − V h

t |Ft−1

]
≥ c|(ρ∗t−1)

2| for all t ∈ N∗.

Proof: We may focus on the event {|Mt−1| > 0}, since the inequality to prove is trivially
true on {|Mt−1| = 0}. By the last part of the proof of Lemma 3.2.2, we see that there exists
a constant c1 ∈ (0,∞) such that

(1) P
[
1 − V h

t |Ft−1

]
≥ c1P

[
(Vt − 1)2

Vt + 1
|Ft−1

]
for all t ∈ N∗.
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We write
Vt =

∑
x∈Zd

ρ∗t−1,yXt,y with Xt,y =
1
|a|

∑
x∈Zd

At,x,y.

For fixed t ∈ N∗, {Xt,y}y∈Zd are non-negative r.v.’s, which are i.i.d. with mean one, given
Ft−1. Furthermore, Xt,y is not a constant a.s., because of (4.13). We therefore see from [2,
Lemma 2.1] that there exists a constant c2 ∈ (0,∞) such that

P

[
(Vt − 1)2

Vt + 1
|Ft−1

]
≥ c2|(ρ∗t−1)

2| for all t ∈ N∗,

which, together with (1), proves the lemma. 2

Acknowledgements: The author thanks Francis Comets and Hideki Tanemura for useful conversa-
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