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Abstract

We formulate an abstract fluctuation theorem which sheds light on
mathematical relations between the fluctuation theorems of Bochkov-
Kuzovlev, [B-K], and Jarzynski, [J], on one hand and those of Evans-
Searles, [E-S], and Gallavotti-Cohen, [G-C], on the other.

1 Algebraic preliminaries

Let Φ : M → M and Ψ : M → M be two dynamical systems in a broad sense.
Later on we will specify them to be measurable maps, measure preserving or
not, or diffeomorphisms. We start with a general framework, assuming only
that Φ and Ψ are one-to-one maps of the phase space M .

Let R : M → M be an involution, i.e., R2 = R ◦ R = Id. We say that Φ
is an R-inverse of Ψ if RΨRΦ = Id, i.e., the following diagram commutes

M
Φ

−→ M

R
y

yR

M
Ψ−1

−→ M

Clearly if Φ is an R-inverse of Ψ, then Ψ is an R-inverse of Φ. If Φ is an
R-inverse of itself then Φ is called R-reversible, or simply reversible.

Proposition 1 Ψ is an R-inverse of Φ if and only for S = R ◦ Φ and the

involution U : M × M → M × M , U(x1, x2) = (Rx2, Rx1), the following

diagram commutes

M
S

−→ M

Φ̃
y

yΨ̃

M × M
U

−→ M × M

where Φ̃(x) = (x, Φx) and Ψ̃(x) = (x, Ψx).
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Proof.

UΦ̃x = U (x, Φx) = (RΦx,Rx) = (Sx, ΨRΦx) = Ψ̃Sx. �

We can immediately extend Proposition 1 to the space of trajectories of
length k + 1, k ≥ 1. Let Mk+1 = M × · · · × M,k ≥ 1 and Φ̃ : M → Mk+1

and Ψ̃ : M → Mk+1 be defined as

(1) Φ̃(x) =
(
x, Φx, . . . , Φkx

)
, Ψ̃(x) =

(
x, Ψx, . . . , Ψkx

)
.

We have then again that the involution U = Uk : Mk+1 → Mk+1,

U(x0, . . . , xk) = (Rxk, Rxk−1, . . . , Rx0)

takes the trajectory of Φ starting at x into the trajectory of Ψ starting at Sx

where S = Sk = R ◦Φk . In other words we have again that Uk ◦ Φ̃ = Ψ̃ ◦Sk.
Let us now consider a set Z and a map m : M → Z, which we think of as

a measurement on the phase space M . In particular Z can be much “smaller”
than M . We assume further that the involution R can be factored onto Z, i.e.,
there is an involution r : Z → Z such that rm = mR. We get then that the
involution T = Tk : Zk+1 → Zk+1, T (z0, z1, . . . , zk) = (rzk, rzk−1, . . . , rz0)
takes the “time series” of Φ starting at x into the “time series” of Ψ starting
at Skx. More precisely we have the following

Proposition 2 Let m = mk : Mk+1 → Zk+1 be the map

mk(x0, x1, . . . , xk) = (mx0,mx1, . . . ,mxk) .

We have the commuting diagram

M
Sk−→ M

Φ̃
y

yΨ̃

Mk+1 Uk−→ Mk+1

mk

y
ymk

Zk+1 Tk−→ Zk+1

Proof. The commutativity of the upper part of the diagram is the general-
ized Proposition 1. We need only to establish the commutativity of the lower
part. i.e., mkUk = Tkmk.

mkUk(x0, x1, . . . , xk) = mk(Rxk, . . . , Rx1, Rx0) = (mRxk, . . . ,mRx1,mRx0)

= (rmxk, rmxk−1, . . . , rmx0) = T (mx0, rmx1, . . . ,mxk)
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In the special case of a reversible dynamical system, that is when Ψ = Φ
we get that S = Sk = R ◦ Φk, k ≥ 1 is an involution and although the
dynamics itself cannot be factored in general to the space of measurements
Z (or Zk), the involution S has a natural factor T on Zk, or more precisely
on the space of time series (the space of measurements on finite trajectories

of Φ, since this is exactly the range of mk ◦ Φ̃). Let us stress that the only
requirement is that the involution R factors to Z.

Let us finally examine how this formalism works in the case of time depen-
dent systems, i.e., let us consider two sequences of maps of M , Φ1, . . . , Φk and
Ψ1, . . . , Ψk, k ≥ 1. We assume that each Ψi is an R-inverse of Φi, i = 1, . . . , k.
Let us consider the time dependent dynamical systems Φj = Φj ◦ · · · ◦Φ2 ◦Φ1

and Ψj = Ψk−j+1 ◦ Ψk−j+2 ◦ . . . Ψk, j = 1, . . . , k.
Note the reversal of order in the definition of Ψi; it gives the impression

of lacking physical meaning. However in some examples it can be interpreted
as the arranged “time reversal of controls”.

We can formulate an obvious time dependent generalization of Proposi-
tion 2. Namely if Φ̃ and Ψ̃ is defined again by (1), with the modified meaning
of Φj, Ψj, j = 1, . . . , k, then the commuting diagram of Proposition 2 holds.

2 Factors of measures

We keep all the assumptions of Section 1 with the addition that M =
(M,B, µ) is a measurable space, i.e., B is a σ-algebra of subsets of M and
µ is a σ-finite measure. We assume that Φ, Ψ and R are measurable maps,
that the involution R preserves the measure µ, and that Φ∗µ = fµ, for some
positive function f on M .

Proposition 3 We have Ψ∗µ = gµ, where g = (f ◦ Φ ◦ R)−1
. It follows that

g ◦ Ψ = (f ◦ R)−1
.

Proof. We have Φ−1
∗

µ = (f ◦ Φ)−1
µ and Ψ = R ◦ Φ−1 ◦ R. It follows that

Ψ∗µ = (f ◦ Φ ◦ R)−1
µ. �

Clearly if Φk
∗
µ = fkµ then Ψk

∗
µ = gkµ, where gk =

(
fk ◦ Φk ◦ R

)
−1

,
for a fixed value of k ≥ 1. (Note that k in fk and gk, is a superscript in
these formulas and not a power.) Moreover this formula applies also to the
case of time dependent systems described in Section 1. More precisely if
(Φi)∗ µ = fiµ, i = 1, . . . , k, then Φk

∗
µ = fkµ with

fk =
k∏

i=1

fi ◦ Φ−1
i+1 ◦ · · · ◦ Φ−1

k
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Let us consider the augmented maps

Φ̂ : M → Zk+1 × R, Ψ̂ : M → Zk+1 × R,

defined by

Φ̂x =
(
mkΦ̃x, ln fk ◦ Φk

)
=

(
mx,mΦx, . . . ,mΦkx, ln

k∏

i=1

fi(Φ
ix)

)

and the respective formula for Ψ̂. We also introduce the involution
T̂ : Zk+1 × R → Zk+1 × R,

T̂ (z0, z1, . . . , zk, a) = (rzk, . . . , rz1, rz0,−a).

We have the measure counterpart of Proposition 2.

Theorem 1 The following diagram commutes

M
Sk−→ M

Φ̂
y

yΨ̂

Zk+1 × R
bT

−→ Zk+1 × R

and

T̂∗Φ̂∗µ = e−aΨ̂∗µ.

In the case of a probability measure µ, the measure Φ̂∗µ represents the statis-
tics of the time series of Φ augmented by the value of ln fk ◦Φk. The measure
Ψ̂∗µ has a similar meaning and the two probability distributions are related
by the involutive symmetry T̂ , namely the image of former under T̂ has the
density e−a with respect to the latter.

The last claim in Theorem 1 can be also formulated as

T̂∗

(
e−

a

2 Φ̂∗µ
)

= e−
a

2 Ψ̂∗µ.

Hence in the case of R-reversible Φ, i.e., Ψ = Φ we get that the measure
e−

a

2 Φ̂∗µ is invariant under the involution T̂ .

Proof. In view of Proposition 2 to establish the commutativity of the dia-
gram we need only to check that

gk ◦ Ψk ◦ Sk =
(
fk ◦ Φk

)
−1

,

which follows immediately from Proposition 3.
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Once the commutativity is established we get

T̂∗Φ̂∗µ = Ψ̂∗

(
R∗Φ

k
∗
µ
)

= Ψ̂∗

(
fk ◦ Rµ

)
.

We conclude the proof by observing that by Proposition 3 the function fk ◦

R equals to
(
gk ◦ Ψk

)
−1

, and hence it factors under Ψ̂ to the function on
Zk+1 × R equal to e−a, where a is the last coordinate in Zk+1 × R. �

Let us assume further that Z comes with a reference measure ν invariant
under the involution r. We introduce the measure λ on Zk+1 × R equal to
the product of νk+1 on Zk+1 and the Lebesgue measure on R. Clearly the
measure λ is invariant under the action of the involution T̂ . Under these
assumptions we get immediately the following corollary of Theorem 1.

Theorem 2 If the measures Φ̂∗µ and Ψ̂∗µ are absolutely continuous with re-

spect to the measure λ on Zk+1×R with densities equal to p+(z0, z1, . . . , zk, a)
and p−(z0, z1, . . . , zk, a). then

p+(z0, z1, . . . , zk, a) = eap−(rzk, . . . , rz1, rz0,−a).

3 Bochkov-Kuzovlev and Jarzynski scenarios

Theorem 1 provides a general scheme, special cases of which appeared earlier
in different setups. For simplicity we will consider in this section only the
case k = 1. We assume that the phase space M is a symplectic manifold
with the symplectic form ω, and that the involution R is anti-symplectic,
i.e., R∗ω = −ω. We consider a time dependent Hamiltonian H(x, t) on
M . We further assume that the Hamiltonian H is at every moment of time
invariant under the involution R, i.e., H(Rx, t) = H(x, t). Let us fix a
time interval [0, τ ] and let Φ be the “after time τ” symplectic map of M

defined by the Hamiltonian dynamics of H. Let us consider the Hamiltonian
G(x, t) = H(x, τ − t) and let Ψ be the “after time τ” symplectic map of M

defined by the Hamiltonian dynamics of G. In the scenario of Jarzynski [J]
the Hamiltonian G governs the process with the “ time reversed protocols”.

Proposition 4 Ψ is an R-inverse of Φ.

Proof. By the definition of Ψ we get that Ψ−1 is the “after time τ” map of
the Hamiltonian −H(x, t). At the same time since the involution R is anti-
symplectic the map RΦR is also the “after time τ” map of the Hamiltonian
−H(x, t). �

In the the Bochkov-Kuzovlev scenario, [B-K], the Hamiltonian H(x, t) =
H0(x) + H1(x, t) with H1(x, t) representing a time dependent action on the
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system. Let χ be the Liouville measure on M and µ = 1
z
e−βH0χ be the

Gibbs probability measure, where z is the normalizing factor. We consider
Z = M with m the identity map, i.e., all variables are observed. We get that
Φ̂x = (x, Φx, βH0(Φx) − βH0(x)) and Ψ̂x = (x, Ψx, βH0(Ψx) − βH0(x)).
Let us denote by P the probability defined by the Gibbs measure µ. Theorem
1 can be now reformulated as the following

Corollary 1 For any subsets A0, A1 ⊂ M , and any real a and ǫ > 0

eβ(a−ǫ) ≤
P (x ∈ A0, Φx ∈ A1, |H0(Φx) − H0(x) − a| ≤ ǫ)

P (x ∈ RA1, Ψx ∈ RA0, |H0(Ψx) − H0(x) + a| ≤ ǫ)
≤ eβ(a+ǫ).

In particular taking A0 = A1 = M we obtain from Corollary 1 that

Corollary 2 For any real a and ǫ > 0

eβ(a−ǫ) ≤
P (|H0(Φx) − H0(x) − a| ≤ ǫ)

P (|H0(Ψx) − H0(x) + a| ≤ ǫ)
≤ eβ(a+ǫ).

Corollary 3 If p+ = p+(a) and p− = p−(a) are the densities with respect to

the Lebesgue measure on R of the distributions of values of H0(Φx) − H0(x)
and H0(Ψx) − H0(x), respectively, then we have

p+(a) = eβap−(−a).

In the Jarzynski scenario there is a Hamiltonian system on a symplectic
manifold Z interacting with “heat baths”, represented by another Hamil-
tonian system on a symplectic manifold Y . The joint Hamiltonian system
lives on M = Y × Z and we take m : M → Z to be the projection on the
second component. The Liouville measure χ on M is invariant under Φ, Ψ
and R. However it is in general infinite. We introduce a probabilistic density
ρ = ρ(y) on Y , a “prepared state of the heat baths”. We apply Theorems 1
and 2 to the measure µ = ρχ. We have

Φ∗µ = fµ =
ρ ◦ Φ−1

ρ
µ.

In the Jarzynski scenario ln f ◦ Φ = ln ρ − ln ρ ◦ Φ quantifies the entropy
production. The measure µ = ρχ on M is not probabilistic but it disinte-
grates into a family of probabilistic measures after fixing the Z component.
Consequently the measure Φ̂∗µ on Z × Z × R disintegrates into a family
of probabilistic measures after fixing the first coordinate z0. That gives us
the “conditional” probabilities P+(·|z0). Similarly we obtain the family of
“conditional” probabilities P−(·|z0) by considering the disintegration of the

measure Ψ̂∗µ. We obtain now Jarzynski detailed fluctuation theorem as a
consequence of Theorem 2.
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Corollary 4 Denoting by p+(z1, a|z0) and p−(z1, a|z0) the densities of the

probability measures P+(·|z0) and P−(·|z0), respectively, we have

p+(z1, a|z0) = eap−(rz0,−a|rz1).

4 Evans-Searles and Gallavotti-Cohen scenar-

ios

Let Φ be an R-reversible diffeomorphism of a Riemannian manifold M and
µ a probabilistic volume element invariant under the involution R. Let
J(x) = |detDxΦ| be the Jacobian of the diffeomorphism Φ, and more gen-
erally Jk(x) =

∣∣detDxΦ
k
∣∣ be the Jacobian of Φk. We have Φ∗µ = fµ with

f(x) = (J(Φ−1x))
−1

.
Hence the quantity ln

∏k

i=1 f(Φix) = − ln Jk(x).

Taking Ψ = Φ, Z = M and m = Id, we get Φ̂ =
(
x, Φx, . . . , Φkx,− ln Jk(x)

)

and Theorem 1 gives us the Evans-Searles fluctuation theorem,[E-S].

Corollary 5 For any subsets A0, A1, . . . , Ak ⊂ M , any real a, and any pos-

itive ǫ

e−a−ǫ ≤
P{x ∈ A0, . . . , Φ

k(x) ∈ Ak, | ln Jk(x) − a| ≤ ǫ}

P{x ∈ RAk, . . . , Φk(x) ∈ RA0, | ln Jk(x) + a| ≤ ǫ}
≤ e−a+ǫ,

where P denotes the probability defined by the probabilistic volume element

µ.

In particular taking A0 = A1 = · · · = Ak = M in Corollary 5 we get

Corollary 6

e−a−ǫ ≤
P{| ln Jk(x) − a| ≤ ǫ}

P{| ln Jk(x) + a| ≤ ǫ}
≤ e−a+ǫ.

Corollary 7 Let pk = pk(a) denote the density with respect to the Lebesgue

measure on R of the distribution of values of ln Jk. We have

(2) pk(a) = e−apk(−a).

The property in Corollary 7 is stronger than the one in the Gallavotti-Cohen
fluctuation theorem, [G-C], however it holds for the probability P defined by
the reference Lebesgue measure µ on M , and not for the asymptotic state of
the system.
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We can get a little closer to the Gallavotti-Cohen formulation by observing
that the distribution of values of

k∑

i=−k

ln J(Φix) = ln J2k+1(Φ
−kx)

with respect to the probability measure Φk
∗
µ coincides with the distribution

of values of ln J2k+1(x) with respect to the measure µ, and the density of this
distribution being equal to p2k+1(a) has the symmetry (2). However it is not
clear in general how to take the limit k → ∞.
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