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Abstract
The hot neutron star (NS) is investigated for the �rst time in the generalized

thermo-statistics so as to take into account the breaking of the standard Boltzmann-
Gibbs thermo-statistics under the long-ranged gravitational potential. It is found
that at sub-saturation density in hot NS matter the gravitation leads to a sti¤er
equation of state than the standard thermo-statistics. The hot NSs in the gener-
alized thermo-statistics are therefore much more massive and larger than those in
the standard thermo-statistics.

The study of neutron star (NS) is an important subject in nuclear physics and astro-

physics. The equation of state (EOS) of NS matter is developed [1-3] in a microscopic

nuclear model of highly dense and asymmetric nuclear matter. Then, the EOS is applied

to Einstein equation or Tolman-Oppenheimer-Volkov equation [4] for non-magnetized and

non-rotating NS.We distinguish the local microscopic physics from the global macroscopic

physics. There is no correlation between the two physics because the gravitation can be

neglected as compared with nuclear force. The complete separation of the local and

global pictures is really reasonable for cold NS, while it does not necessarily succeed in

hot NS encountered during the evolution [5,6] of proto-neutron star. Although the grav-

itation does not play an explicit role in nuclear EOS, it may have an implicit e¤ect on

the EOS through the breaking of the standard Boltzmann-Gibbs thermo-statistics under

the long-ranged potential.

In fact, it is recently shown in the analysis [7] of the temperature �uctuations of cosmic

microwave background that the generalized thermo-statistics [8-10] is really satisfactory

under gravitational potential. The present paper therefore calculates for the �rst time the

EOS of hot NS in the generalized thermo-statistics in contrast to the preceding papers

[11-16] that assumed a priori the validity of the standard thermo-statistics under grav-

itational potential. Here, we easily expect that the e¤ect of gravitation on the EOS is

taken into account implicitly through the phenomenological power-law index although

the theoretical derivation of the index is a subject of future investigations.

In this work we make use of the relativistic mean-�eld (RMF) model of nuclear matter

developed in Ref. [16]. The RMF model is reasonable for NS matter because the general
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relativity is based on the validity of special relativity at local space-time, where the

microscopic nuclear model is developed. We extend the thermodynamic potential in Ref.

[16] using the q-deformed exponential and logarithm:

expq(x) � [ 1 + (1� q)x ]
1=(1�q) ; (1)

lnq(x) �
x1�q � 1
1� q : (2)

Consequently, the thermodynamic potential 
q in the generalized thermo-statistics is
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where kB is the Boltzmann constant and �B is given by the chemical potential �B and

the vector potential VB of baryon as

�B = �B � VB: (4)
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2 +M�
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2)
1=2 are the e¤ective mass and the energy of baryon

while �l and ekl = (k
2 +m2

l )
1=2 are the chemical potential and the energy of lepton.

The scalar mean-�elds h�i, h�3i and h��i in Eq. (3) are expressed [16] in terms of
three independent e¤ective masses of p, n and � while the vector mean-�elds h!0i, h�03i
and h�0i are expressed [16] in terms of three independent vector potentials of p, n and �.
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I3Y is the isospin of hyperon. The e¤ective coupling constants g�BB� etc. are de�ned in

Ref. [16]. For the free meson-baryon coupling constants gBB� etc. we make use of the

EZM-P model of Table 1 in Ref. [17]. The calculations of the derivatives in Eqs. (5)-(10)

are tedious but straightforward tasks and so their explicit expressions are not shown.
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The upper and lower signs are for baryon and anti-baryon, respectively. Similarly, the

lepton density is de�ned by
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The entropy is calculated [18] as
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Eq. (16) is just the thermodynamic relation:
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the power-law index has to satisfy the condition [18]:

1 < q < 4=3: (20)

The deformed Fermi integrals in Eqs. (11), (13), (15), (17) and (19) are transformed to

the integrals in �nite ranges by converting the variable k into 1=E�kB and 1=ekl. They are

calculated using the adaptive automatic integration with 20-points Gaussian quadrature.

The condition (20) also guarantees �nite values of the integrals.

In our model the leptons are treated as the free Fermi gases. They however couple to

baryons through the chemical equilibrium condition

�i = b i �n � q i �e� ; (21)

and the charge neutral condition X
i=p;n;�;�+;�0;
��;�0;��;e�;��

q i �i = 0; (22)

where b i and q i are baryon number and charge of each particle. Then, we solve 8-rank

non-linear simultaneous equations of (5)-(10), (22) and the baryon number conservation
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so that M�
p , M

�
n, M

�
�, Vp, Vn, V�, �n and �e� are determined. Using them the energy

density (17) and the pressure density (19) are calculated. The results are the inputs to
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Tolman-Oppenheimer-Volkov equation [4]:

dMG (r)
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r2 E (r) ; (24)
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i
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�
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P (r), E (r) and MG (r) are the radial distributions of pressure, energy and gravitational

mass in NS.

Figures 1, 2, 3 and 4 show particle fractions in the cores of hot NSs at T = 20MeV

for q = 1:0, 1.1, 1.2 and 1.3, respectively. Figure 1 is just the result in the standard

Boltzmann-Gibbs thermo-statistics. Here, � appears �rst among all the hyperons because

it is the lightest one and because its potential in the saturated nuclear matter is assumed

to be most attractive. (See Eq. (54) in Ref. [17].) Next, �� appears because it is

negatively charged and because the potential of � is also assumed to be attractive. �0

appears later than �� because �0 has no charge and is heavier than ��. �� is however

much poorer than �0 and �� at high densities because the potential of � in the saturated

nuclear matter is assumed to be repulsive. �0 and �+ do not appear because they are

neutral and positively charged. As the power-law index increases to q = 1:1, � appears

in the whole range of total baryon density, while �� appears above �T = 0:2fm�3 and

below �T = 0:1fm�3. As the power-law index increases further to q = 1:2, �0 and ��

appear in the whole range of density, while �+ appears below �T = 0:1fm�3. As the

power-law index increases extremely to q = 1:3, all the hyperons appear in the whole

range of density.

In the inner core of hot NS, even for q = 1:3 the fractions of hyperons are essentially

controlled by their potentials in the saturated nuclear matter de�ned in terms of Eq.

(54) in Ref. [17]. On the other hand, the nucleon fractions at �T = 1:0fm
�3 are almost

constant in Figs. 1, 2, 3 and 4. The results indicate that the total strangeness fraction in

an inner core of hot NS is almost independent on the power-law index. Therefore, even in

Fig. 4 we do not �nd the softening of nuclear EOS owing to an abundance of strangeness.

Consequently, the sti¤ness of EOS in the inner core does not depend strongly on the

power-law index. The result is reasonable because at high baryon densities the implicit

e¤ect of gravitation on the EOS through the power-law index would be much weaker than

the e¤ect of nuclear interaction.

We can see in Figs. 2, 3 and 4 that at sub-saturation densities below �T = 0:16fm
�3

the thermal e¤ect becomes more and more dominant over the e¤ect of nuclear interac-

tions with the power-law index increasing. Here, the baryon mass plays a major role

to determine baryon fraction while the baryon charge plays a supplementary role. The

lightest � is most abundant among all the hyperons. Then, the negatively charged �� is

more abundant than neutral �0. The heavier but negatively charged �� is more abun-
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dant than the lighter but positively charged �+. �0 is the poorest because of its charge

neutrality and heavier mass than �+.

Next, we assume that the NS has a hot core in the region �T � 0:1fm�3 but a cold

crust in the region �T < 10
�3fm�3. For the former the EOS of our model is applied while

for the latter we make use of the EOSs by Feynman-Metropolis-Teller, Baym-Pethick-

Sutherland and Negele-Vautherin in Ref. [19]. The EOS between the two regions is

obtained from simple linear interpolation. Figure 5 shows for q = 1:0, 1.1, 1.2, 1.25

and 1.3 the gravitational masses of NSs at T = 20MeV as functions of radius. The most

massive NSs lie almost on the dotted line. Their gravitational masses areMG = 1:606M�,

1:614M�, 1:638M�, 1:674M� and 1:814M�, respectively. Their radii are R = 14:68km,

14.92km, 15.44km, 16.12km and 18.33km, respectively. It is seen that a higher value of

the power-law index predicts a more massive and larger NS.

As seen above, the power-law index does not have a strong e¤ect on the EOS in an

inner core of NS, while a larger value of the index produces the stronger thermal pressure

below the saturation density �T = 0:16fm�3. The result in Fig. 5 is therefore due to

the sti¤er EOS just above �T = 0:1fm
�3 with the power-law index increasing. At lower

baryon density, because the e¤ect of nuclear interaction on nuclear EOS is weaker, we can

expect that the implicit e¤ect of gravitation through the power-law index is oppositely

stronger. The sti¤er EOS just above �T = 0:1fm
�3 is therefore due to the stronger e¤ect

of gravitation from a larger value of the power-law index. Consequently, we can see that

the result in Fig. 5 shows the e¤ect of gravitation on nuclear EOS.

The e¤ect of the generalized thermo-statistics is more remarkable in Fig. 6, which

shows the gravitational masses of NSs at a higher temperature T = 30MeV than Fig. 5.

The masses of the most massive NSs are MG = 1:658M�, 1:698M�, 1:834M�, 2:218M�

and 3:106M�, respectively. Their radii are R = 15:83km, 16.60km, 18.83km, 27.05km and

27.51km, respectively. Below q = 1:25 the most massive NSs also lie on the dotted line,

while above q = 1:25 their radii are almost constant. At a higher temperature, because

the e¤ect of nuclear interaction on nuclear EOS is weaker, we can expect that the e¤ect of

gravitation through the power-law index is oppositely stronger. Consequently, the much

larger e¤ect of power-law index in Fig. 6 than Fig. 5 shows that the gravitation really

has an e¤ect on nuclear EOS in the generalized thermo-statistics, although Fig. 6 only

shows numerical experiments that are not physically realized.

We have calculated for the �rst time the hot NS in the generalized thermo-statistics. It

has been found that as compared with the standard Boltzmann-Gibbs thermo-statistics,

the generalized one increases the thermal pressure and so leads to a sti¤er EOS at sub-

saturation density in NS matter. Consequently, a power-law index q = 1:3 predicts much

more massive and larger NSs than q = 1:0 of the standard thermo-statistics. If the

power-law index decreases during the cooling of hot NS, the black hole would be born.

Although we have introduced the generalized thermo-statistics so as to take into account

the breaking of the standard thermo-statistics under the long-ranged gravitational po-
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tential, the physical mechanism of q > 1 due to gravitation is not known at present. The

study of the mechanism is a challenging subject of future works.
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Figure 1: The particle fractions in the core of hot NS at T = 20MeV in the standard
Boltzmann-Gibbs thermo-statistics.
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Figure 2: The particle fractions in the core of hot NS at T = 20MeV in the generalized
thermo-statistics of the power-law index q = 1:1
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Figure 3: The same as Fig. 2 but for q = 1:2
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Figure 4: The same as Fig. 2 but for q = 1:3
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Figure 5: The gravitational masses of NSs as functions of their radii at T = 20MeV from
q = 1:0 to 1:3.
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Figure 6: The same as Fig. 5 but at T = 30MeV.
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