EXPLICIT FORMULAE FOR THE WAVE OPERATORS OF
PERTURBED SELF-ADJOINT OPERATORS

MOHAMMED HICHEM MORTAD

ABSTRACT. We give explicit formulae for the wave operators of the position
operator Hp and the operator H obtained from Hg by a rank one perturbation.
Then by the spectral theorem, we deduce a general formula for wave operators
of unbounded self-adjoint operators with absolute continuous spectrum.

1. INTRODUCTION

Let A and B be two unbounded self-adjoint operators. Consider the one-
parameter family of unitary operators

W(t) =e'te B ¢ eR.
The physicists are interested in the asymptotic behavior of W (t) as t — Foo
since W (t) is used to describe the motion of a quantum mechanical system. The
strong limits W of W (t) as t — Foo (see [13] for this apparently odd looking nota-

tion) when they exist, are called proper wave operators. There are the generalized
ones which are defined by Wi = s — . ligl W (t)P,.(B) where P,.(B) denotes the
—Foo

projection onto the absolutely continuous subspace H,. of B.

It is, however, worth mentioning that if B has an absolutely continuous spectrum
then the proper and generalized wave operators coincide since in this case one has
P,.=1.

The beginning of the theory of wave operators dates back to late forties of the last
century and the pioneering papers are [4] and [10]. For further results on scattering
theory, the reader may consult [8, 9, 13]. For some recent advance in this theory
especially for the perturbed Schrédinger operator one may consult, among others,
[1, 2, 15] where it is proved under some conditions on the perturbed operators that
the wave operators are LP-bounded with 1 < p < oo.

So, what we will be doing in this paper is to actually give explicit formulae for the
wave operators of two other operators Hy and H where H is the position operator
(in some references this is more known as the coordinate operator) defined on L?(R)
by Hof(z) = zf(z) and H is defined by H f(z) = zf(z)+ < f,p > ¢ where ¢ is in
L2(R). It is a well known fact that Hy is an unbounded self-adjoint operator with
domain {f € L*>(R) : zf € L*>(R)} and so is H as a perturbed self-adjoint operator
by a bounded symmetric operator (see, e.g., the Kato-Rellich theorem in [12]).

The question asked in this paper is: what is Wy =s — t_l)igloo eitH p=itto

We claim that the wave operators for H and Hy can be written explicitly as
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Wef(a) = [ T Ky (e,y) f)dy + s () f(2)

where K4 and 74 are two functions yet to be found.

And in the very end of this article, we generalize this result to general unbounded
self-adjoint operators A (with absolute continuous spectrum) and Ag also obtained
from A by a rank one perturbation.

Before we finish this introduction, let us just say that there is a known example
in the literature concerning this type of questions. In [8], the wave operator (for
example W) for the self-adjoint operators H; = —i% and Hy = —i% + q(x),
with domain H*(R) (the Sobolev space) and where the function ¢ is real-valued
and bounded, is given by the operator of multiplication by the function

exp <z /:o q(y)dy> ;

provided the integral [ q(y)dy exists.

Finally, we assume the reader is familiar with notions, definitions and results
about unbounded operators. The reader may consult [8, 11] where these subjects
are well treated.

Notations. C§°(R) is the set of smooth functions in R with compact support.
We introduce the following set

M = {p € C§°(R) : p(x) and F(x) — 1 do not vanish simultaneously},

where

2
F(z) := Mdy, zeR.
r—y
The wave operators of two operators A and B will be denoted by W (A, B) or
just Wi when the context is clear.
We loosely use L? to mean L?(R).
Finally, the abbreviation SOT stands for ”strong operator topology”.

2. MAIN RESULTS

T. Kato [5] proved that for any two self-adjoint operators A and B satisfying A =
B+ < -, > ¢ (¢ € L*(R)), the generalized wave operators exist. In fact, if A — B
is trace class then the corresponding generalized wave operators are guaranteed to
exist and this is called the Kato-Rosenblum theorem (see [5, 14]).

Accordingly, since o(Hy) = 04.(Ho) = R, then Wi (H, Hy) exist.

The following lemmas are standard. Their proofs can be found in either [8] or
[13].

Lemma 1. The two operators H and Hy obey
HW,. = WyH,.
Lemma 2. We have

lim ||[Wye #Hof — e=itHo f)| = 0,
t—Foo
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Before stating the result in a general form, we first prove it in a restricted form.

Proposition 1. Let Hy be the position operator defined on L*(R) by Hof(x) =
xf(x). Let H be defined by H f(x) = af(z)+ < f,¢ > ¢ where ¢ € M. Then the
wave operator Wy f(x) = s — t_l}m et e=itHo (1) has the form

—0o0

o [ o)/ (v) 1 - Fl) z
W, f(x) = o( )/_OO (y—2)(1— F(y) + m|(p(y)|2)dy + 1— F(z) + in|e(x)|? /(@)

where f belongs to C§°(R) and F is defined in the notations.

Proof. As alluded to in the introduction, we want to write the wave operators of
H and Hj as

Wef(a / Ko (2,9)f(@)dy + v+ (@) f(2)

where v1 and K are two functions yet to be determined in terms of the fixed ¢
(although the formula above is for W but the proof is essentially the same for
W_). We also assume for the present that such an expression for W holds, and
justify this later.

Let f € C§°(R) and ¢ € M. By Lemma 1, we already know that

HWy = WiyH,.
This tells us that

HW.y f(x) = WyHof(z), for all f.
Then

HW)f(z) = aWaf(x)+ <Wif,0 >0
and

W (Hof)(a / Ko (o,y)uf (4)dy + 272(2) ().

Hence one gets

/ Ko (2,9)f(4)dy + 274 (2) f(z) + (@) / K () f () p(@) dedy
(@) / i (&) f () p(@)de = / Ko (2,9)9f ()dy + 774 (2) £ (2).
R R
Or equivalently

/Ki(w,y)(y —z)f(y)dy = o(x )/Vi(y)f(y) y)dy + p(x / (/ (fv)dw) f(y)dy.
R

R R
Set

Yi(y) = / Ko (z,9)p(@)dz.

R
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Then one has

[ [Kse) -0 - 6@ ) - 91202 Fw)dy =0.

R
The previous being true for all f, we deduce that

(1) K (z,y)(y — x) = o(@)[0+(y) + 7= @) e )]

By Lemma 2 we know that

lim ||W:|:€ thof —thofH =0

t—Foo

and since Ho f(z) = xf(z) then e~ o f = e~ f (by the spectral theorem) and
hence

Wee i — =it — [ Ky y)e ™ f(g)dy + (12(a) = Ve~ f(a).

Since the modulus of e¥* is one, we get

||WaetHo f—e=itHo f|| = / K (z,y)e"=) f(y)dy + (v+(x) — 1) f(x)| = 0 as t — Foo.
Setting G(y) = [¢+(y) + v+ (¥)p(y)]f(y) and using the previous equation give us

zt(y z)
(2) / Gly L _dy+ (y+(z) — 1)f(z) = 0.

The change of variables y — x = z allows us to write the integral in the previous
equation in the following way

/G Jeitv—) :/G(x+zz—G( z) _deG(x)/ et
R

G(m-i—z) G(z)

Now since both f and ¢ are in C§°(R) then the quantity is easily
seen to be in L'(R). It then follows from the Riemann-Lebesgue lemma (see [3])
that

lim / Gz +2) — Gl) e "2z = 0.
z

t—Foo
The previous equality, when combined with (2), yields

e—itz

3) ()G (2) / dz + (72 () — 1) f(z) = 0.

R
A simple application of the residues theorem gives us
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e e] e—ztz
/ dz = im when t - —oc and — 7 when ¢t — +o00.
o

From now on we will only consider the case t — —oo (the corresponding formula
for the case t — +oo will be given in a remark below). We denote v, (respectively
K, and v) by v (respectively K and ).

Then Equation (3) is equivalent to

D)lirle(@)? +1] = 1 imgp(a)(z).
Or simply
1 imp(@)(@)
M) = @1

In order to find K and « in terms of ¢ we only need find ¢ in terms of ¢. After
elementary calculations using previous equations one obtains

f |s0(90)| dz

Ply) = :
Y —gjy_—zdx-i-mkp(yﬂ?

Or by adopting the notation of F

_ 1-F(@)
") = T-F @) + inlo@)P

and in a similar way

_e@)e(y) 1
Koy == o [ToF) eGP
Thus, we get
(1)
B W W) 1- F)
s ‘”‘f)“o(“”]pg/ == FG) + o) TR + it

Now since ¢ belongs to M then Formula (4) is well defined. But this is essentially
motivation rather than proof. To close this gap, we define a bounded operator by
Formula (4), W say, then we must show that W = W,.

To come to this end we have to check that W verifies HW = W Hy and

lim ||[We=iHof _e=itHo f|| = 0,
t——o0

then we must deduce that W = W,..

By going backwards in the proof we see easily that T satisfies the above two
conditions. The only step that needs a bit of justification is Equation (2) which is
just Lemma 2 applied to W (and for t - —o0). The left hand side of (3) is 0 for
t < 0. Since G is smooth with compact support, then the displayed line before (3)
holds with convergence in L2.

Having shown that W satisfies the two conditions we now verify that W = W,..
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For all f € C§°(R) we have
N = W 71 = (W = Wi et et | — [t Ho=ito f _ Yy, ek g=tFs .
Since HW = W Hy, then one has WeitHo = ¢}/ (and the same for W, ). Hence
”WeitHoe—itHof _ W+€itH0€—itH0f|| — HeitH(We—itHof _ W_,.e_itHO)fH
= |[WetHo f —Wyem o f|| < [[Wem o f — e f|| 4 || e f — em O £,

which tends to zero, as t goes to —oo
O

Before giving Formula (4) a sense for f,p € L?(R), we have the following

Lemma 3. The integral in Formula (4) can be singular. In particular, the eigen-
values of H are the points X for which o(A) =0 and F(X) = 1 where ¢ € C§°(R).

Proof. To illustrate this we try to solve H f(x) = Af(x). It follows that
(- af() = | [ 1@@ds | ola) = aplz)
R

where « is nothing but the inner product of f and ¢ . So f(z) = a)\ﬂ_%l. Multiplying

the previous equation by ¢(z) and integrating with respect to ¢ over R give us
F(\) = 1. If we want )\ to be an eigenvalue we need f to be in L?(R) which is
possible if for instance ¢(A) = 0. O

First, let us get round the small problem encountered in the previous lemma.
Lemma 4. The set M is dense in L>.

Proof. Let ¢ is in C§°(R). Then we can approximate ¢ by 1, which has a finite
number of zeros inside suppt, with the corresponding F' (which we denote by F, )
different from one, i.e., ¢, € M.

Let us denote suppy by Q. Let

Qoz{xGR:;Iele2|x—y|§/3},

where (3 is a real number bigger than 1 and yet to be chosen.

Let x a smooth function with compact support g such that x(z) =1 on Q.

By applying the Stone-Weierstrass theorem to ¢ on ¢ there exists a polynomial
P, that approximates ¢ uniformly.

Then we take ¢, (x) = x(x)P,(x) and see easily that this «,, also approximates
¢ uniformly. Then this v, has only a finite number of zeros inside suppt,, = .
We claim that |Fy, ()] < 1 for  outside supp#). For if z € R\ Qg (hence |[z—y| > S
for all y € ) then

Iwn ‘ [¥n(y )|2d [ ¥ (y )|2d Iwn(y)IQd
’/ S/QO e—y[ YT o Te—yl y+/90\9 v —y[ Y

But for z € R\ Qy and y € Qo \ Q the function y — J’;(—f)yﬁ is bounded and since
P,, converges uniformly to ¢ then for given € > 0 one has for n large enough

2
/ @ ) o
Qo\Q |z —yl
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where m is a positive constant.
This yields

Py (2)] < % / o () Py + me.

Hence by choosing § big enough we obtain |Fy, (z)| < 1.
To conclude the proof we multiply +,, by a number a < 1 (and very close to 1),
so that if 1, xs,..., ¢, are the zeros of ¥, (inside its support) then one has

Fop, (x;) = ®Fy, (z;) #1, Vi € {1,2, ..., p}.
Thus at),, € M and one deduces easily that M is then dense in L2. O

We said above that the formula for W, is well-defined for f € C§°(R) and
@ € M. First we extend it to functions f belonging to L?(R). The term vf in
the formula is easily extended to f in L?(R) since v € L*>(R) and since C°(R)
is dense in L?(R). The ”integral” part is not any harder since one just uses the
L2-boundedness of the Hilbert transform (see e.g. [3]). So as L2-limits, we can set
for f € L?(R) and ¢ € M

s ) f(y)
I(£:0) = ¢l )R/ (y — 2)(1 = F(y) + irlo(y)?)

dy

and
_ 1-F()

In fact, the formula for NI(f, ) holds for ¢ € L? as well.
In order to finish off this discussion we need the following lemma (which is an
immediate consequence of the Corollary to Theorem XI.8 in [13])

Lemma 5. Set H, f(z) = zf(x)+ < f,on > ¢n. Then Wy (H,, Hy) = Wi (H, Hyp)
in SOT as ¢, — ¢ in L.

Since M is dense in L?, then there exist ¢, € M such that ¢,, — ¢ in L?, then
NI(f,n) = NI(f, ) (also in L?) and since W, (H,,, Hy) = W, (H, Hp) in SOT
then I(f, ;) converges to a limit. If we denote that limit by I(f, p) we extend the
definition of I(f,¢) by continuity to all ¢ in L?.

Thus, we have just proved

Theorem 1. The wave operator W, of H and Hy is given by
W, f(z) = I(f,9) + NI(f,¢) for f,p € L*(R).

Remark. The same arguments apply to show that for the case t — 400 one obtains

W f) = pla) [ )7 U+ 1 e @)

oo (Y= 2)(1 = F(y) —imlp(y)[*) 1 — F(z) —ir|p(z)
where f,p € L*(R).

Finally, we have the following theorem:

Theorem 2. Let Ag be an unbounded self-adjoint operator with absolute continuous
spectrum defined on a Hilbert space H and let A be a rank one perturbation of Ay
defined by Af = Aof+ < f,p > ¢ where ¢ € H. Then there exists a unitary
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operator U : H — L?(E,dz) (E is some measurable subset of R and dx denotes
the induced Lebesgue measure on E) such that UWx (A, Ag)U L f(x) is

W) 1 - Fa)
‘0("”)/ -0 F@) o) ” T T-F@) % irle@)

E

Proof. For the existence of W (A, Ag) one has just to refer to [8]. As for the explicit
formula, we just derive it from Theorem 1 as follows.

Let ¢ € H. Then let K be the smallest closed subspace containing ¢ and which
reduces Ag (see [8]). Then one can express H as K @ £ where £ = K.

Then Ap|K is unitarily equivalent to multiplication by z on L2(u) for some
measure p on R (see again [8]).

Now, since Ag has absolute continuous spectrum, then p must be absolutely
continuous with respect to Lebesgue measure and whence it can be taken to be
Lebesgue measure on some measurable subset E of R.

Since Af = Aof+ < f,¢ > ¢, then the wave operators are trivial on £ (since for
f € £ one has Af = Agf and whence e?*4e~%40 f = f) and the problem reduces
to the case of multiplication by = on L?(E), which in turn is immediately reducible
to the L?(R) case.

O

3. A QUESTION

It is well known (see [12]) that the Laplacian By = —A, when considered as a self-
adjoint operator on L?(R?) with domain H?(R?®) (the Sobolev space), is unitarily
equivalent to the multiplication operator by some nonnegative function. Hence it
has a positive absolute continuous spectrum. So Theorem 2 may well be applied to
the couple (By, B) where B is a rank one perturbation of By.

The question one can ask is can we still prescribe an explicit formula for the
wave operators if, for instance, we change the perturbation term in B by some
multiplication by a real ¢(z), = € R3, satisfying

lg(a)]| < B> 12

(1 + [z)

Since in this particular case the wave operators do exist (see, e.g., [7]).
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