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Abstract

We present new classes of time operators of a Hamiltonian H (a self-adjoint op-
erator) with discrete eigenvalues which may be degenerate. Moreover we formulate
necessary and sufficient conditions for H to have time operators, determining the
general form of them. As corollaries, non-existence theorems of time operators for
some classes of H are derived.
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1 Introduction

Let H be a complex Hilbert space and H be a self-adjoint operator on H. A symmetric
operator T on H is called a time operator of H if there is a subspace D # {0} such that
D C D(TH) N D(HT) (for a linear operator A on H, D(A) denotes the domain of A)

and the canonical commutation relation (CCR) on D
[T, H]Y =iy, VY eD (1.1)

holds, where [T, H] := TH — HT and i is the imaginary unit. The name “time operator”
comes from the physical context where H is the Hamiltonian of a quantum system (in
that case, a canonical conjugate 17" to H is interpreted as an operator representing “time”
in a suitable sense). But we use this terminology in the general mathematical context
too. We call the subspace D a CCR-~domain for the pair (T, H). We do not assume that
D is dense, since it is more natural and general, leaving possibility to have wider classes
of time operators.



From purely mathematical point of view, the pair (T, H) is a (not necessarily self-
adjoint) representation of the CCR with one degree of freedom. A study from this point
of view has been made by Dorfmeister 7] in the case where H is bounded.

There is a stronger version of time operator using the weak Weyl relation, a stronger
form of the CCR ([1]-[5], [9]-[11]). But, in this paper, we do not discuss this type of time
operators.

In the present paper we consider time operators of a self-adjoint operator H whose
spectrum “essentially” consists of discrete eigenvalues only (see Hypothesis (H) below
and (2.5)), having in mind applications to the case where H is a Hamiltonian in quan-
tum theory. Such a time operator was proposed by Galapon [8] first. Then detailed,
mathematically rigorous analysis on the Galapon time operator has been made by Arai-
Matsuzawa [6]. In the paper [6], however, considered was only the case where all the
discrete eigenvalues of H are simple with some growth condition. In the present paper,
we do not assume the simplicity of the eigenvalues. We are interested in finding necessary
and sufficient conditions for H to have time operators as well as determining the general
form of them. In this paper we solve this problem with respect to two classes of time op-
erators. The first one is discussed in Section 2 and the second in Section 3. As corollaries
of the main results on the problem, some non-existence theorems of time operators are

established.

2 Time Operators of a Hamiltonian with Discrete
Eigenvalues (I)

We denote the inner product and the norm of H by (-,-) (linear in the second variable)
and || - || respectively.

Let N={1,2,3,---} be the set of natural numbers. A basic assumption in the present
paper is as follows:

Hypothesis (H)

The self-adjoint operator H has a complete orthonormal system (CONS) {e,q|n €
Nya=1,---,M,} C H of eigenvectors with discrete eigenvalues {E, },en (En #
Epn,n#m,n,m e N):

Hena:Enenaa nEN,oz:L"-,Mn,
<6naaemﬁ> = (Snm(saﬁa o = 17' "7Mn76 = 17' "7Mm7

—~~
o
N =

where d,;, is the Kronecker delta and M,, € N is the multiplicity of eigenvalue E,,
obeying
M, < M,;1, néeN. (2.3)

We set

Hypothesis (H) implies that the spectrum of H, denoted o(H), is given by
o(H) ={En}7L, (2.5)

2



where the right hand side is the closure of the set {E£,}22, and o(H) \ {E,}5°, contains
no eigenvalues of H.

Remark 2.1 In the previous paper [6], only the case M,, = 1,¥n € N (i.e., the case
where each eigenvalue E,, is simple) is considered. In the present paper we do not impose
this condition on the multiplicities M,,.

The subspace
Dy :=1lih{epn e Na=1,---,M,}

algebraically spanned by the vectors e,, (n € Nya=1,---, M,) is dense in H.

2.1 A general class of time operators of H

Suppose that, for some ny € N,

o0

> % < 0. (2.6)

n=ng

Then, in the same way as in [6], one can define a linear operator Tj as follows:

D(T) := Do, (2.7)
Totp = @;Zl (g %) enas ¥ € D(Tp). (2.8)

It is easy to see that Tj is a symmetric operator.

Remark 2.2 Under condition (2.6), H is unbounded, since (2.6) implies that |E,| — oo
as n — 0o.

Remark 2.3 Galapon [8] proposed a time operator in the case where M,, = M > 2 for
all n € N. In our notation, his time operator, denoted T,;, is defined by

T =i Y (Z 3 %) enar 1 € D(Tar) = Dy, (2.9)

n=1 a=1 \m#n f#a

It is asserted in [8] that Ty, is a time operator of H with a CCR-~-domain for (T, H)
including the vectors €,o — €ma,n,m € Nya = 1,---, M. But, unfortunately, this is false,

because one has
M

[TM; H](ena - ema) = ZZ(enﬁ - emﬁ)a
b7a

cf. the proof of Theorem 2.6 below. Besides this, the definition of T, given by (2.9) is
somewhat unnatural, because it does not cover the case M = 1 as a special case. Our
definition (2.8) is a generalization of the time operator in the case M, = 1,¥n € N [6, §].

Remark 2.4 In [8] and [6], it is assumed that H is bounded below with E,, < E,,;1, n €
N. But, in the present paper, we do not assume the semi-boundedness (boundedness
below or boundedness above).



We introduce a subspace:
Ev =lihd{enn —emaln,meNa=1,--- M}, (2.10)
This subspace is not necessarily dense in H:

Lemma 2.5 The subspace €,y is dense in H if and only if M = M, for alln € N.

Proof. We denote by €7, the orthogonal complement of €,;. By a general theorem,
& is dense in H if and only if €3, = {0}.
(Necessity) Suppose that there is an ng such that M,, > M. Then
<en0(M+1),em — ema> =0 (nnmeNa=1,---,M),

which implies that €, # {0}. Hence &), is not dense.
(Sufficiency) Suppose that M = M,, for all n € N. Let ¢ € €;;. Then (e,,v) =
(emas ), nym € NJa=1,---, M. Hence, for all N € N,

DD Hena ) P=NY | (emar )

n=1 a=1

Since {e,oln € Nyao=1,---, M} is a CONS of H under the present assumption, the left
hand side converges to |[¢]|? as N — co. Hence S°M | (€ma, %) |* = 0. Thus ||¢]| = 0,
implying ¢ = 0. 0J

The next theorem shows that Ty is a time operator of H with £,; being a CCR-domain
for (To, H):

Theorem 2.6 Under assumptions (2.3) and (2.6), Epy C D(ToH) N D(HTy) and
[To, H =iy, Vi € Ey. (2.11)
Proof. 1t is enough to show that, for alln,m € Nand a=1,---, M,
V7= €na — €ma

is in D(ToH) N D(HT}) and (2.11) holds for ¢ = tp,,. We have for all n € N

o0

1
Toera =13 o ra (2.12)
ktn By — En
Hence
T nm:En_Em o ———Cma — = nao
oY i ) Z (Ek_En)<Ek—Em>ek +Em—Ene E,—E,"
k#n,m
Since

2 : ‘ Ek <
(0@



by (2.6) and H is closed, it follows that Tot,, € D(H) (i.e., nm € D(HTp)) and

o0

E, iE,,
HT; nm En_Em «a = & ©ma
01/) Z( )k;ﬁzn:m (Ek - En)(Ek - Em) c * Em - E1n6
1B,
— 7 ©tna
E,—FE,,

On the other hand, we have HY,,, = Ep€n0 — Eméma. Hence ¥y, € D(TyH) and

> 1
ToHY,,, = iFE, Cho — Emi _
0 ¢, ? ;Ek_ Z];nEk_Emek
> E, E,
- En_Em « | ——————— mao
i( )k;m(Ek_En)(Ek—Em)ek —|—ZEm_Ene
E,
ZEn—Emem

Therefore we obtain
TOH¢nm - HTO,QDnm = “/Jnm
as desired. 0

Remark 2.7 Tt is easy to see that Y 7% EP/|E, — E,|* = oo. Hence it follows from
(2.12) that Toe,o & D(H). Therefore Dy is not a CCR-domain for (7o, H).

We next consider a perturbation of Tj by a symmetric operator 77 such that Ty + T
is a time operator of H.
Let a := {a,(a,B)|n € Ny, 5 =1,---, M,} be a set of complex numbers such that

an(a7ﬁ)* = an(ﬁa Oé), nc Naaaﬁ = ]-7 o '7Mna (213>

where a,(a, #)* is the complex conjugate of a,(a, ). Then we define a linear operator
Ti(a) on H as follows:

oo My My,
D(Ti(a)) == ¥ € H| D Y 1) an(a,B) (s, )| < o0y, (2.14)
n=1 a=1 | B=1
oo My
=y (Zan a, B) {ens, >> enas U € D(Ty(a)).  (2.15)
n=1 a=1
It follows that
Do C D(Ty(a))
with
Mn
Ti(a)ena = »_ an(B,a)ens, Vne€N,a=1,--- M, (2.16)
=1



It is easy to see that Tj(a) is a symmetric operator.
Using (2.16), we see that Dy C D(HTi(a)) N D(Ti(a)H) and

Ti(a)HyY = HTy(a)y, Vi € Dy.
By this fact and Theorem 2.6 we obtain the next theorem:
Theorem 2.8 Assume (2.3) and (2.6). Let a be as above and
T(a) :=To+ Ti(a). (2.17)
Then T'(a) is a time operator of H with €y being a CCR-domain for (T'(a), H).

Thus (2.6) gives a sufficient condition for H with Hypothesis (H) and (2.3) to have
time operators of the form (2.17).

Remark 2.9 Boundedness or unboundedness of T'(a) can be investigated in the same
way as in [6]. But, here, we do not go into the details.

2.2 Necessary condition for H to have time operators and the
general form of them

We are now ready to derive a necessary condition for H to have time operators and their
general form.

Theorem 2.10 Let H be a self-adjoint operator satisfying Hypothesis (H) and (2.3), and

T be a time operator of H such that € is a CCR-domain for (T, H) and e, € D(T),Vn €

Nya=1,---,M. Then H is unbounded and there is an ng € N such that (2.6) holds.
Moreover, the following (i) and (ii) hold:

(i) Let M = M, ¥Yn € N. Then, for all p € D(T),

>y

n=1 a=1

2
< o0 (2.18)

e}

i3 el S e Tens) (e
E E no ns nB;

m#n n m B=1

and
oo M 9] 6 w M
T¢ _ ZZ ( Z mao ‘I’ Z ena,Tenﬁ 6,15,77/}>> Ena- (219)
n=1 a=1 m#n B=1
In particular, one has
T=TT))="Ty+Ti(a(T)) on Dy, (2.20)

where

a(T)n(a, B) :== (€na, Teng), neNa,F=1--- M.



(i) Let k be a natural number such that M = My,n =1,--- k, and M, > M,n >
k+ 1. Then, for all v € D(T),

>3

n=1 a=1

2
< 00, (2.21)

[e.e]

Eemm ;5/}> + ; (€na, Teng) (ens, V)

m;én

Z Z (ena, TV |? < 0 (2.22)

n=k+1a=M+1

and
- ema,w
T¢ Z Z ( Z + Z enaaTenﬂ> <en,8 ¢>> €na T Sjﬁ(ﬁ, (223)
n=1 a=1
where y
Stip = Z Z (€nas TV €na
n=k+1 a=M+1
with

D(S7) = {weﬁlz Z (nas TW) | <oo}.

n=k+1a=M+1

Proof. By (1.1) with D = &£,; and (2.1), we have

E.Ten, — EnTema — HTena — Tema) = i(€na — €ma), nymeN,a=1--- M.

Let n # m and take the inner product of the both sides with e,,3,8 =1,---, M,,. Then,
by the symmetry of H and (2.1), we have

)
m;Tnoz :—5(1
(€mp; T'ena) E .

Since {eglm e N, =1,---, M,,} is a CONS of H, it follows from the Parseval equality
that || Tenal® = Y00 ) Y57 | (ems, Tena) |2, implying that

with

and

> 1
—_— < 2.24
mzsén |Em - En|2 > ( )

00 1 M,
ITenal® =) T + D [ {enss Tena) |
S B EF

] . My,
Tepn = m%; ﬁema + ; (€np> Tena) €ns. (2.25)



Property (2.24) is equivalent to (2.6) and hence |E,,| — oo as m — oo. Hence H is
unbounded. Thus the first half of the theorem is proved.

Next we prove the latter half of the theorem.

(i) Let M,, = M,¥n € N. Then {e,n|n € Nya=1,---, M} is a CONS of H. Hence,
each vector v € D(T), we have by the Parseval equality

ITy))* = ZD €noy T) | ZZ| (Tena, 1)) |

n=1 a=1 n=1 a=1

with the expansion

co M
Ty = ZZ enos TV ena =D > (Tena, ) na.

n=1 a=1 n=1 a=1
Then, by (2.25), we have (2.18) and (2.19).
(ii) Under the present condition, {e,njn € Nya = 1,--- M} U{egln > k+ 1,08 =
M+ 1,---,M,} is a CONS of H. Hence, for all v € D(T), we have by the Parseval

equality
ITy))* = ZZyem,Tw )P+ Z Z (na TH) |

n=1 a=1 n=k+1 a=M+1
Hence (2.21) and (2.22) follow. Also we have for all v € D(T)

oo M fe’e) My,
Tqu) = Z Z <ena7 T¢> €na T Z Z <eno¢7 T¢> Cna-

n=1 a=1 n=k+1a=M+1

The first term on the right hand side is of the same form as that in part (i). The second
term is equal to Sti). 0J

Remark 2.11 Consider the case where at least one of E,’s is degenerate. Let D be a
subspace including {e,o—engln € Nya, 8 =1,---, M,}. Then there exist no time operators
T of H such that Dy C D(T') and D is a CCR-domain for (T, H).

Indeed, suppose that there existed such a time operator 7" of H. Let E,,, be a degener-
ate eigenvalue of H: M,, > 2. Then, putting ¥ = epy0 — €nep (@ # B, a,6=1,---, M,,)
n (1.1), we have E, (Tenya — Tenys) — H(Tenga — Tenys) = i(€nga — €ngp). Taking the
inner product of the both sides with e, , we have 0 = 4, which is a contradiction.

2.3 Non-existence theorems of time operators

Theorem 2.10 can be read as non-existence theorems of time operators for a class of H
as shown below.

Theorem 2.12 Let H be a self-adjoint operator with Hypothesis (H) and (2.3) such that

Z E2 = (2.26)

n=ng

for some ng € N. Then there exist no time operators T of H such that Dy C D(T) and
En s a CCR-domain for (T, H).



Proof. This follows from the contraposition of Theorem 2.10. OJ

A simple consequence of this theorem is given as follows:

Theorem 2.13 Let H be a self-adjoint operator with Hypothesis (H) and (2.3). Suppose
that there exist a constant o € [0,1/2] and a real bounded sequence {b,}° | satisfying

E,=bn"4+0o(n%) (n— o). (2.27)

Then there exist no time operators T of H such that Do C D(T') and €y is a CCR-domain
for (T, H).

Proof. Let b := sup,cy |bn| < o0o. Then, by (2.27) and Hypothesis (H), there are
constants ng € N and & > 0 such that

0<|E, <(b+b)n n>n.

Hence
— 1 1 1
2 m Gy 2
Therefore (2.26) holds. Thus the desired result follows. O

Theorem 2.14 Let H be a bounded self-adjoint operator with Hypothesis (H) and (2.3).
Then there exist no time operators T of H such that Do C D(T') and €y is a CCR-domain
for (T, H).

Proof. If H is bounded, then the sequence {E,,}>° ; is bounded. Hence this is the case
where a = 0 in (2.27). Thus Theorem 2.13 implies the desired result. O

3 Time Operators of a Hamiltonian with Discrete
Eigenvalues (II)

In this section we present another type of time operators of H. Here we do not assume

(2.3).
We define
1 U
€En 1= \/m QZ:I Cna
Then
He, = FE,é,, neN (3.1)

and {é,}>°, is an orthonormal system of H: (€,,€,) = dpm, n,m € N.
We introduce a subspace:



It is easy to see that Fy is dense if and only if M, =1 for all n € N.
Assume (2.6). Then, as in the case of the operator Ty in Section 2, one can define a
linear operator Ty on H as follows:

D(T\O) = {¢ = ¢y + ol € Fo, 0 € Fy'} (3.2)
Top =i (Z %) én, € D(Ty), (3.3)
n=1 m¢n n m

It is easy to see that fo is densely defined and symmetric.
We remark that, if M,, =1, Vn € N, then

Ty =Tp.
Let
F_:=1ih{e, —énln,m € N}. (3.4)
It is obvious that
F_CF.

It is shown that, if every E, is simple, then F_ is dense in H [6, 8]. But F_ is not dense
if at least one of F, (n € N) is degenerate.

Theorem 3.1 The operator T\O 1s a time operator of H with F_ being a CCR-domain for
(To, H). Namely
F_ C D(TyH) N D(HTy)

and

[Ty, HlYp = iy, Y € F_. (3.5)

Proof. Let tpm := €, — €m. Then, in quite the same way as in the proof of Theorem
2.6, one can show that v, € D(ToH) N D(HT,) and

fOH&nm - Hfo&nm = ,“Enm

Thus the desired result follows. O

For a real sequence ¢ = {¢,}°°,, we define a linear operaotr S(c) on H as follows:
D(5(c)) = {¢ € HI Y lenl’l Ens ) P < OO} : (3.6)

S =Y cn(En )€, ¥ € D(S(c)). (3.7)

Obviously we have
Fo C D(S(c))

with
S(c)én = cpén, VYneN. (3.8)
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Hence ¢, is an eigenvalue of S(c). It follows that S(c) is a symmetric operator. Using
(3.8), we see that Fy C D(HS(c)) N D(S(c)H) and

S(c)Hy = HS(c)yp, Vi € F.

Thus the operator R R
T(c):=1Ty+ S(c) (3.9)

A~

is a time operator of H with F_ being a CCR~domain for (7'(c), H).
Let
F =7, (3.10)

We denote the range of T' by Ran(T").
Theorem 3.2 Let H be a self-adjoint operator satisfying Hypothesis (H) and T be a time
operator of H such that ¥y C D(T),Ran(T) C F and F_ is a CCR-domain for (T, H).

Then H is unbounded and there is an ng € N such that (2.6) holds.
Moreover, for all ¢» € D(T),

< 00 (3.11)

and
T¢ = Z (Z Z % + <én>Tén> <éna ¢>> €n- (3'12)
In particular, one has
T =T(c(T)) =Ty + S(c(T))  on Fo, (3.13)

where
oT) = {(&n, Ten) I’y

Proof. By (1.1) with D = F_ and (3.1), we have
E,Te, — E,Te,, — H(Te, —Te,,) = i(é, — €n), n,m € N.
Let n # m and take the inner product of the both sides with é,,. Then we obtain

?

m, 1n) = ———.
(e €n) 5 L.

Since {én,}r°_, is an orthonormal system of H and Ran(7) C &, it follows from the
Parseval equality that ||Te,||*> = > oo, | (€m, T€,) |, implying (2.24) with

= 1
ITenl® = o5 + | (@, Ten) |?
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and

Ten = Z ﬁem + <én,Tén> €n- (314)

m#n

Hence (2.6) holds. In particular, |E,,| — oo as m — oo. Hence H is unbounded.
By condition Ran(7") C F and the Parseval equality again, we have for all ¢p € D(T),

|IT]1? = >0 | (€n, T) |* and

Ty = Z én, TH) € i (Ten, v)e
n=1

Then, by (3.14), we have (3.11) and (3.12). O

As in Theorem 2.10, Theorem 3.2 can be read as non-existence theorems of time
operators for a class of H.

Theorem 3.3 Let H be a self-adjoint operator with Hypothesis (H) such that (2.26)
holds for some ng > 1. Then there exist no time operators T of H such that Fy C D(T),
Ran(T) € F and F_ is a CCR-domain for (T, H).

Proof. This follows from the contraposition of Theorem 3.2. 0J

Theorem 3.4 Let H be a self-adjoint operator with Hypothesis (H). Suppose that there
exist a constant o € [0,1/2] and a real bounded sequence {b,}>> | such that (2.27) holds.
Then there ezist no time operators T of H such that Fo C D(T), Ran(T) C F and F_ is
a CCR-domain for (T, H).

Proof. Similar to the proof of Theorem 2.13. OJ

Theorem 3.5 Let H be a bounded self-adjoint operator with Hypothesis (H). Then there
exist no time operators T of H such that ¥y C D(T), Ran(T) C F and F_ is a CCR-
domain for (T, H).

Proof. Similar to the proof of Theorem 2.14 0
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