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Abstract

We study the spectral properties of a class of many channel Hamiltonians which contains those of sys-
tems of particles interacting through k-body and field type forces which do not preserve the number of
particles. Our results concern the essential spectrum, the Mourre estimate, and the absence of singular
continuous spectrum. The appropriate formalism involves graded C∗-algebras and Hilbert C∗-modules
as basic tools.
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1 Introduction and main results

In this section, after some general comments on the algebraic approach that we shall use, we describe our
main results in a slightly simplified form. For notations and terminology, see Subsections 2.1, 3.1 and 5.1

1.1 An algebraic approach

By many-body system we mean a system of particles interacting between themselves through k-body
forces with arbitrary k ≥ 1 but also subject to interactions which allow the system to make transitions
between states with different numbers of particles. The second type of interactions consists of creation-
annihilation processes as in quantum field theory so we call them field type interactions.

We use the terminology N -body system in a rather loose sense. Strictly speaking this should be a system
of N particles which may interact through k-body forces with 1 ≤ k ≤ N . However we also speak
of N -body system when we consider the following natural abstract version: the configuration space of
the system is a locally compact abelian group X , so the momentum space is the dual group X∗, and the
“elementary Hamiltonians” (cf. below) are of the form h(P ) +

∑
Y vY (Q). Here h is a real function on

X∗, the Y are closed subgroups of X , and vY ∈ Co(X/Y ). One can give a meaning to the number N
even in this abstract setting, but this is irrelevant here.

Similarly, we shall give a more general meaning to the notion of many-body system: these are systems
obtained by coupling a certain number (possibly infinite) of N -body systems. Our framework is abstract
and allows one to treat quite general examples which, even if they do not have an immediate physical
meaning, are interesting because they furnish Hamiltonians with a rich many channel structure. Note that
here and below we do not use the word “channel” in the scattering theory sense, speaking about “phase
structure” could be more appropriate.

The Hamiltonians we want to analyze are rather complicated objects and standard Hilbert space tech-
niques seem to us inefficient in this situation. Instead, we shall adopt a strategy proposed in [GI1, GI2]
based on the observation that often the C∗-algebra generated† by the Hamiltonians we want to study
(we call them admissible) has a quite simple and remarkable structure which allows one to describe its
quotient with respect to the ideal of compact operators in more or less explicit terms. And this suffices to
get the qualitative spectral properties which are of interest to us. We shall refer to this C∗-algebra as the
Hamiltonian algebra (or C∗-algebra of Hamiltonians) of the system.

To clarify this we consider the case of N -body systems [DaG1]. Let X be a finite dimensional real
vector space (the configuration space). Let T be a set of subspaces of X . In the non-relativistic case an
Euclidean structure is given on X and the simplest Hamiltonians are of the form

H = ∆ +
∑

Y ∈T
vY (πY (x)) (1.1)

where ∆ is the Laplace operator, vY is a continuous function with compact support on the quotient space
X/Y , and πY : X → X/Y is the canonical surjection (only a finite number of vY is not zero). Such
Hamiltonians should clearly be admissible. On the other hand, if a Hamiltonian h(P ) + V is considered
as admissible then h(P + k) + V should be admissible too because the zero momentum k = 0 should
not play a special role. In other terms, translations in momentum space should leave invariant the set of
admissible Hamiltonians. We shall now describe the smallest C∗-algebra CX(S) such that the operators

† A self-adjoint operator H on a Hilbert space H is affiliated to a C∗-algebra C of operators on H if (H + i)−1 ∈ C . If E is
a set of self-adjoint operators, the smallest C∗-algebra such that all H ∈ E are affiliated to it is the C∗-algebra generated by E .

2



(1.1) are affiliated to it and which is stable under translations in momentum space. Let S be the set of
finite intersections of subspaces from T and

CX(S) =
∑c
Y ∈S Co(X/Y ) ≡ norm closure of

∑
Y ∈S Co(X/Y ).

Note that one may think of CX(S) as a C∗-algebra of multiplication operators on L2(X). Let C∗(X) be
the group C∗-algebra of X (see §3.1). Then Corollary A.4 gives:

CX(S) = CX(S) ·C∗(X) ≡ closed linear subspace generated by the ST with S ∈ CX(S), T ∈ C∗(X).

It turns out that this algebra is canonically isomorphic with the crossed product CX(S) o X . This ex-
ample illustrates our point: the Hamiltonian algebra of an N -body system is a remarkable mathematical
object. Moreover, CX(S) contains the ideal of compact operators and its quotient with respect to it can
be computed by using general techniques from the theory of crossed products [GI1]. On the other hand,
CX(S) is equipped with an S-graded C∗-algebra structure [BG1, Ma1, Ma2] and this gives a method of
computing the quotient which is more convenient in the framework of the present paper.

The main difficulty in this algebraic approach is to isolate the correct C∗-algebra. Of course, we could
accept an a priori given C as C∗-algebra of energy observables but we stress that a correct choice is
of fundamental importance: if the algebra C we start with is too large, then its quotient with respect
to the compacts will probably be too complicated to be useful. On the other hand, if it is too small then
physically relevant Hamiltonians will not be affiliated to it. We refer to [GI1, GI2, GI4, Geo] for examples
of Hamiltonian algebras of physical interest.

The basic object of this paper is the C∗-algebra C defined in Theorem 1.1. This is the Hamiltonian
algebra of interest here, in fact for us a many-body Hamiltonian is just a self-adjoint operator affiliated
to C . We shall see that this is a very large class. On the other hand, it turns out that C is generated by a
rather small class of “elementary” Hamiltonians involving only quantum field like interactions, analogs
in our context of the Pauli-Fierz Hamiltonians.

As in the N -body case [ABG] the natural framework for the study of many-body Hamiltonians is that
of C∗-algebras graded by semilattices. In fact, we are able to make a systematic spectral analysis of the
self-adjoint operators affiliated to C because C is graded with respect to a certain semilattice S . We shall
see that the channel structure and the formulas for the essential spectrum and the threshold set which
appears in the Mourre estimate are completely determined by S , cf. Remark 1.19.

Hilbert C∗-modules play an important technical role in the construction of C , for example the component
CXY of C is a Hilbert CY -module where CY is anN -body type algebra (i.e. a crossed product as above).
But they also play a more fundamental role in a kind of second quantization formalism, see §1.7.

We mention that the algebra C is not adapted to symmetry considerations, in particular in applications to
physical systems consisting of particles one has to assume them distinguishable. The Hamiltonian algebra
for systems of identical particles interacting through field type forces (both bosonic and fermionic case)
is constructed in [Geo].

1.2 The Hamiltonian C∗-algebra C

Let S be a set of locally compact abelian (lca) groups such that for X,Y ∈ S:

(i) if X ⊃ Y then the topology and the group structure of Y coincide with those induced by X ,
(ii) X ∩ Y ∈ S ,

(iii) there is Z ∈ S such that X ∪ Y ⊂ Z and X + Y is closed in Z,
(iv) X ) Y ⇒ X/Y is not compact.
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If the first three conditions are satisfied we say that S is an inductive semilattice of compatible groups.
Condition (iii) is not completely stated, a compatibility assumption should be added (see Definition 6.1).
However, this supplementary assumption is automatically satisfied if all the groups are σ-compact (count-
able union of compact sets).

The groups X ∈ S should be thought as configuration spaces of physical systems and the purpose of
our formalism is to provide a mathematical framework for the description of the coupled system. If the
systems are of the standard N -body type one may think that the X are finite dimensional real vector
spaces. This, however, will not bring any significative simplification of the proofs.

The following are the main examples one should have in mind.

1. Let X be a σ-compact lca group and let S be a set of closed subgroups of X with X ∈ S and such
that if X,Y ∈ S then X ∩ Y ∈ S , X + Y is closed, and X/Y is not compact if X ) Y .

2. One may take S equal to the set of all finite dimensional vector subspaces of a vector space over an
infinite locally compact field: this is the main example in the context of the many-body problem.

3. The natural framework for the nonrelativistic many-body problem is: X is a real prehilbert space
and S a set of finite dimensional subspaces of X such that ifX,Y ∈ S thenX ∩Y ∈ S andX+Y
is included in a subspace of S (there is a canonical choice, namely the set of all finite dimensional
subspaces of X ). Then each X ∈ S is an Euclidean space hence much more structure is available.

4. One may consider an extension of the usual N -body problem by taking as X in example 1 above a
finite dimensional real vector space. In the standard framework [DeG1] the semilattice S consists
of linear subspaces of X or here we allow them to be closed additive subgroups. We mention that
the closed additive subgroups of X are of the form X = E + L where E is a vector subspace
of X and L is a lattice in a vector subspace F of X such that E ∩ F = {0}. More precisely,
L =

∑
k Zfk where {fk} is a basis in F . Thus F/L is a torus and if G is a third vector subspace

such that X = E ⊕ F ⊕G then the space X/X ' (F/L)⊕G is a cylinder with F/L as basis.

We assume that each X ∈ S is equipped with a Haar measure, so the Hilbert space H(X) ≡ L2(X) is
well defined: this is the state space of the system with X as configuration space. We define the Hilbert
space of the total system as the Hilbertian direct sum

H ≡ HS = ⊕XH(X). (1.2)

If O = {0} is the zero group we takeH(O) = C. There is no particle number observable like in the Fock
space formalism but there is a remarkable S-valued observable [ABG, §8.1.2] defined by associating to
X ∈ S the orthogonal projection ΠX of H onto the subspace H(X).

We shall identify Π∗X with the canonical embedding of H(X) into H. We abbreviate†

LXY = L(H(Y ),H(X)), KXY = K(H(Y ),H(X)), and LX = LXX , KX = KXX .

One may think of an operator T on H as a matrix with components TXY = ΠXTΠ∗Y ∈ LXY and
write T = (TXY )X,Y ∈S . We will be interested in subspaces of L(H) constructed as direct sums in the
following sense. Assume that for each couple X,Y we are given a closed subspace RXY ⊂ LXY . Then
we define

R ≡ (RXY )X,Y ∈S =
∑c
X,Y ∈SΠ∗XRXY ΠY (1.3)

where
∑c means closure of the sum. We say that the RXY are the components of R.

For an arbitrary pair X,Y ∈ S we define a closed subspace TXY ⊂ LXY as follows. Chose Z ∈ S
such that X ∪ Y ⊂ Z and let ϕ be a continuous function with compact support on Z. It is easy to

† L(E,F) and K(E,F) are the spaces of bounded and compact operators respectively between two Banach spaces E,F .
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check that (TXY (ϕ)u)(x) =
∫
Y
ϕ(x − y)u(y)dy defines a continuous operator H(Y ) → H(X). Let

TXY be the norm closure of the set of these operators. This space is independent of the choice of Z and
TXX = C∗(X) is the group C∗-algebra of X . Let T ≡ TS = (TXY )X,Y ∈S be defined as in (1.3). This
is clearly a closed self-adjoint subspace of L(H) but is not an algebra in general.

If X,Y ∈ S and Y ⊂ X let πY : X → X/Y be the natural surjection and let CX(Y ) ∼= Co(X/Y ) be
the C∗-algebra of bounded uniformly continuous functions on X of the form ϕ ◦πY with ϕ ∈ Co(X/Y ).
If X,Y ∈ S and Y 6⊂ X let CX(Y ) = {0}. Then let CX =

∑c
Y CX(Y ), this is also a C∗-algebra of

bounded uniformly continuous functions on X . We embed CX ⊂ LX by identifying a function with the
operator on H(X) of multiplication by that function. Then let

C ≡ CS = ⊕XCX , (1.4)

this is a C∗-algebra of operators on H. Moreover, for each Z ∈ S let

C(Z) ≡ CS(Z) = ⊕XCX(Z) = ⊕X⊃ZCX(Z), (1.5)

this is a C∗-subalgebra of C and we clearly have C =
∑c
Z C(Z).

Theorem 1.1. The space† C = T ·T is a C∗-algebra of operators on H and we have

C = T · C = C ·T (1.6)

For each Z ∈ S let
C (Z) = T · C(Z) = C(Z) ·T . (1.7)

This is a C∗-subalgebra of C and {C (Z)}Z∈S is a linearly independent family of C∗-subalgebras of C
such that

∑c
Z C (Z) = C and C (Z ′)C (Z ′′) ⊂ C (Z ′ ∩ Z ′′) for all Z ′, Z ′′ ∈ S .

This is the main technical result of our paper. Indeed, by using rather simple techniques involving graded
C∗-algebras and the Mourre method one may deduce from Theorem 1.1 important spectral properties of
many-body Hamiltonians. The last assertion of the theorem is an explicit description of the fact that C is
equipped with an S-graded C∗-algebra structure. We set C = CS when needed.

The choice of C may seem arbitrary but in fact is quite natural in our context: not only all the many-
body Hamiltonians of interest for us are self-adjoint operators affiliated to C , but also C is the smallest
C∗-algebra with this property, cf. Theorem 1.7 for a precise statement.
Remark 1.2. Note that CXY =

∑c
Z CXY (Z). In matrix notation we have

C = (CXY )X,Y ∈S where CXY = CX ·TXY = TXY · CY
and C (Z) = (CXY (Z))X,Y ∈S where

CXY (Z) = CX(Z) ·TXY = TXY · CY (Z) if Z ⊂ X ∩ Y and CXY (Z) = {0} if Z 6⊂ X ∩ Y.
We mention that if Z is complemented in X and Y then CXY (Z) ' C∗(Z)⊗KX/Z,Y/Z .
Remark 1.3. If X ⊃ Y then the space TXY is a “concrete” realization of the Hilbert C∗-module
introduced by Rieffel in [Ri] which implements the Morita equivalence between the group C∗-algebra
C∗(Y ) and the crossed product Co(X/Y ) oX . More precisely, TXY is equipped with a natural Hilbert
C∗(Y )-module structure such that its imprimitivity algebra is canonically isomorphic with Co(X/Y )oX .
In Section 4 we shall see that for arbitrary X,Y ∈ S the space TXY has a canonical structure of Hilbert
(Co(X/(X ∩ Y ))oX, Co(Y/(X ∩ Y ))o Y ) imprimitivity bimodule. This fact is technically important
for the proof of our main results but plays no role in this introduction.
† If E,F ,G are Banach spaces and (e, f) 7→ ef is a bilinear map E ×F → G and if E ⊂ E, F ⊂ F are linear subspaces then

EF is the linear subspace of G generated by the elements ef with e ∈ E, f ∈ F and E · F is its closure.
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Remark 1.4. A simple extension of our formalism allows one to treat particles with arbitrary spin.
Indeed, if E is a complex Hilbert then the last part of Theorem 1.1 remains true if C is replaced by
CE = C ⊗K(E) and the C (Z) by C (Z) ⊗K(E). If E is the spin space then it is finite dimensional
and one obtains CE exactly as above by replacing the H(X) by H(X) ⊗ E = L2(X;E). Then in our
later results one may consider instead of scalar kinetic energy functions h self-adjoint operator valued
functions h : X∗ → L(E). For example, we may take as one particle kinetic energy operators the Pauli
or Dirac Hamiltonians.

The preceding definition of C is quite efficient for theoretical purposes but much less for practical ques-
tions: for example, it is not obvious how to decide if a self-adjoint operator is affiliated to it. Our next
result is an “intrinsic” characterization of CXY (Z) which is relatively easy to check. Since C is con-
structed in terms of the CXY (Z), we get simple affiliation criteria.

For x ∈ X and k ∈ X∗ (dual group) we define unitary operators in H(X) by (Uxu)(x′) = u(x′ + x)
and (Vku)(x) = k(x)u(x). These correspond to the momentum and position observables P ≡ PX and
Q ≡ QX of the system. If X,Y ∈ S then one can associate to an element z ∈ X ∩ Y a translation
operator in H(X) and a second one in H(Y ). We shall however denote both of them by Uz since
which of them is really involved in some relation will always be obvious from the context. If X and
Y are subgroups of a lca group G (equipped with the topologies induced by G) then we have canonical
surjections G∗ → X∗ and G∗ → Y ∗ defined by restriction of characters. So a character k ∈ G∗ defines
an operator of multiplication by k|X on H(X) and an operator of multiplication by k|Y on H(Y ). Both
will be denoted Vk. In our context the lca group X + Y is well defined (but generally does not belong to
S) and we may take G = X + Y , cf. Remark 6.3. Below we denote Z⊥ the polar set of Z ⊂ X in X∗.

Theorem 1.5. If Z ⊂ X ∩ Y then CXY (Z) is the set of T ∈ LXY satisfying U∗z TUz = T if z ∈ Z and
such that

(i) ‖(Ux − 1)T‖ → 0 if x→ 0 in X and ‖T (Uy − 1)‖ → 0 if y → 0 in Y ,
(ii) ‖V ∗k TVk − T‖ → 0 if k → 0 in (X + Y )∗ and ‖(Vk − 1)T‖ → 0 if k → 0 in Z⊥.

Theorem 1.5 becomes simpler and can be improved in the context of Example 3 page 4. So let us assume
that S consists of finite dimensional subspaces of a real prehilbert space. Then each X is equipped
with an Euclidean structure and this allows to identify X∗ = X such that Vk becomes the operator of
multiplication by the function x 7→ ei〈x|k〉 where the scalar product 〈x|k〉 is well defined for any x, k in
the ambient prehilbert space. For X ⊃ Y we identify X/Y = X ª Y , the orthogonal of Y in X .

Corollary 1.6. Under the conditions of Example 3 page 4 the space CXY (Z) is the set of T ∈ LXY

satisfying the next two conditions:

(i) U∗z TUz = T for z ∈ Z and ‖V ∗z TVz − T‖ → 0 if z → 0 in Z,
(ii) ‖T (Uy − 1)‖ → 0 if y → 0 in Y and ‖T (Vk − 1)‖ → 0 if k → 0 in Y/Z.

Condition 2 may be replaced with:

(iii) ‖(Ux − 1)T‖ → 0 if x→ 0 in X and ‖(Vk − 1)T‖ → 0 if k → 0 in X/Z.

1.3 Elementary Hamiltonians

Our purpose in this subsection is to show that C is a C∗-algebra of Hamiltonians in a rather precise sense,
according to the terminology used in [GI1, GI2]: we show that C is the C∗-algebra generated by a simple
class of Hamiltonians which have a natural quantum field theoretic interpretation. Since our desire is only
to motivate our construction, in this subsection we shall make two simplifying assumptions: S is finite
and if X,Y ∈ S with X ⊃ Y , then Y is complemented in X .
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For each couple X,Y ∈ S such that X ⊃ Y we chose a closed subgroup X/Y of X such that X =
(X/Y ) ⊕ Y . Moreover, we equip X/Y with the quotient Haar measure which gives us a factorization
H(X) = H(X/Y ) ⊗ H(Y ). Then we define ΦXY ⊂ LXY as the closed linear subspace consisting
of “creation operators” associated to states from H(X/Y ), i.e. operators a∗(θ) : H(Y ) → H(X) with
θ ∈ H(X/Y ) which act as u 7→ θ ⊗ u. We set ΦY X = Φ∗XY ⊂ LY X , this is the space of “annihilation
operators” a(θ) = a∗(θ)∗ defined by H(X/Y ). This defines ΦXY when X,Y are comparable, i.e.
X ⊃ Y or X ⊂ Y , which we abbreviate by X ∼ Y . If X 6∼ Y then we take ΦXY = 0. Note that
ΦXX = C1X , where 1X is the identity operator on H(X), because H(O) = C.

The space ΦXY for X ⊃ Y clearly depends on the choice of the complement X/Y . On the other hand,
according to Definition 4.7 and Proposition 4.19, we have

C∗(X) · ΦXY = ΦXY · C∗(Y ) = TXY if X ∼ Y. (1.8)

This seems to us a rather remarkable feature because not only TXY is independent of X/Y but is also
well defined even if Y is not complemented in X .

Now we define Φ = (ΦXY )X,Y ∈S ⊂ L(H). This is a closed self-adjoint linear space of bounded
operators on H. A symmetric element φ ∈ Φ will be called field operator, this is the analog of a field
operator in the present context. Giving such a φ is equivalent to giving a family θ = (θXY )X⊃Y of
elements θXY ∈ H(X/Y ), the components of the operator φ ≡ φ(θ) being given by: φXY = a∗(θXY )
if X ⊃ Y , then φXY = a(θY X) if X ⊂ Y , and finally φXY = 0 if X 6∼ Y . Note that ΦXX = C1X
because H(O) = C. If u = (uX)X∈S then we have

〈u|φu〉 =
∑
X⊃Y 2<〈θXY ⊗ uY |uX〉.

A standard kinetic energy operator is an operator onH of the formK = ⊕XhX(P ) where hX : X∗ → R
is continuous and limk→∞ |hX(k)| = ∞. The operators of the formK+φ, whereK is a standard kinetic
energy operator and φ ∈ Φ is a field operator, will be called Pauli-Fierz Hamiltonians.

The proof of the next theorem may be found in the Appendix.

Theorem 1.7. Assume that S is finite and that Y is complemented in X if X ⊃ Y . Then C coincides
with the C∗-algebra generated by the Pauli-Fierz Hamiltonians.

Remark 1.8. It is interesting and important to note that C is generated by a class of Hamiltonians
involving only an elementary class of field type interactions. However, as we shall see in §1.5, the class
of Hamiltonians affiliated to C is very large and covers N -body systems interacting between themselves
(i.e. for varying N ) with field type interactions. In particular, the N -body type interactions are generated
by pure field interactions and this thanks to the semilattice structure of S.

1.4 Essential spectrum of operators affiliated to C

The main assertion of Theorem 1.1 is that C is an S-graded C∗-algebra. The class of C∗-algebras graded
by finite semilattices has been introduced and their role in the spectral theory of N -body systems has
been pointed out in [BG1, BG2]. Then the theory has been extended to infinite semilattices in [DaG2].
A much deeper study of this class of C∗-algebras is the subject of the thesis [Ma1] of Athina Mageira
(see also [Ma2, Ma3]) whose results allowed us to consider a semilattice S of arbitrary abelian groups
(and this is important in certain applications that we do not mention in this paper). We mention that her
results cover non-abelian groups and the assumption (iv) (on non-compact quotients) is not necessary in
her construction. This could open the way to interesting extensions of our formalism.

In §5.1 we recall some basic facts concerning graded C∗-algebras. Our main tool for the spectral analysis
of the self-adjoint operators affiliated to C is Theorem 5.2. For example, it is easy to derive from it the
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abstract HVZ type description of the essential spectrum given in Theorem 5.3. Here we give a concrete
application in the present framework, more general results may be found in Sections 5 and 7.

For each X ∈ S we define a closed subspace of H by

H≥X =
⊕

Y⊃XH(Y ). (1.9)

This is associated to the semilattice S≥X = {Y ∈ S | Y ⊃ X} in the same way as H is associated to S.
Let C≥X be the C∗-subalgebra of C given by

C≥X =
∑c
Y⊃X C (Y ) ∼=

(∑c
Y⊃XCEF (Y )

)
E∩F⊃X (1.10)

and note that C≥X lives on the subspace H≥X of H. Moreover, C and C≥X are nondegenerate algebras
of operators on the Hilbert spaces H and H≥X respectively. It can be shown that there is a unique linear
continuous projection P≥X : C → C≥X such that P≥X(T ) = 0 if T ∈ C (Y ) with Y 6⊃ X and that
this projection is a morphism, cf. Theorem 5.2.

Let H be a self-adjoint operator on a Hilbert space H affiliated to a C∗-algebra of operators A on H.
Then ϕ(H) ∈ A for all ϕ ∈ Co(R). If A is the closed linear span of the elements ϕ(H)A with
ϕ ∈ Co(R) and A ∈ A , we say that H is strictly affiliated to A .

Assume that the semilattice S has a smallest element minS . Then X ∈ S is an atom if the only element
of S strictly included in X is minS. Let P(S) be the set of atoms of S . We say that S is atomic if each
of its elements not equal to minS contains an atom. It is clear that if the zero group O belongs to S then
O is the smallest element of S and C (O) = K(H).

Theorem 1.9. If H is a self-adjoint operator on H strictly affiliated to C then for each X ∈ S there is
a unique self-adjoint operator H≥X ≡ P≥X(H) on H≥X such that P≥X(ϕ(H)) = ϕ(H≥X) for all
ϕ ∈ Co(R). The operator H≥X is strictly affiliated to C≥X . If O ∈ S and S is atomic then the essential
spectrum of H is given by

Spess(H) =
⋃
X∈P(S)Sp(H≥X). (1.11)

1.5 Hamiltonians affiliated to C

We shall give now examples of self-adjoint operators strictly affiliated to C . The argument is relatively
straightforward thanks to Theorem 1.5 but the fact that S is allowed to be infinite brings some additional
difficulties. We are interested in Hamiltonians of the form H = K + I where K is the kinetic energy
operator of the system and I is the interaction term. Formally H is a matrix of operators (HXY )X,Y ∈S ,
the operatorHXY is defined on a subspace ofH(Y ) and has values inH(X), and we haveH∗

XY = HY X

(again formally). ThenHXY = KXY +IXY and our assumptions will be thatK is diagonal, soKXY = 0
if X 6= Y and KXX ≡ KX . The interactions will be of the form IXY =

∑
Z⊂X∩Y IXY (Z), this

expresses the N -body structures of the various systems (with various N , of course). Then HXX =
KX + IXX will be a generalized N -body type Hamiltonian (IXX may depend on the momentum). The
non-diagonal operatorsHXY = IXY define the interaction between the systemsX and Y (these operators
too may depend on the momentum of the systems X,Y ). We give now a rigorous construction of such
Hamiltonians.

(a) For each X we choose a kinetic energy operator KX = hX(P ) for the system having X as configu-
ration space. The function hX : X∗ → R must be continuous and such that |hX(x)| → ∞ if k → ∞.
We emphasize the fact that there are no relations between the kinetic energies KX of the systems corre-
sponding to different X . If S is infinite, we require limX infk |hX(k)| = ∞, more explicitly:

for each real E there is a finite set T ⊂ S such that infk |hX(k)| > E if X /∈ T .
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This assumption is of the same nature as the non-zero mass condition in quantum field theory models.

(b) We take K = ⊕XKX as total kinetic energy of the system. We denote G = D(|K|1/2) its form
domain equipped with the norm ‖u‖G = ‖〈K〉1/2u‖ and observe that G = ⊕XG(X) Hilbert direct sum,
where G(X) = D(|KX |1/2) is the form domain of KX .

(c) The simplest type of interaction terms are given by symmetric elements I of the multiplier algebra of
C . Then it is easy to see thatH = K+I is strictly affiliated to C and that P≥X(H) = K≥X+P≥X(I)
where K≥X = ⊕Y≥XKY and P≥X is extended to the multiplier algebras in a natural way [La, p. 18].

(d) In order to cover singular interactions (relatively bounded in form sense with respect to K but not in
operator sense) we assume from now on that the functions hX are equivalent to regular weights. This is
a quite weak assumption, see page 46. For example, if the X are vector spaces with norms | · | then it
suffices that a|k|α ≤ |hX(k)| ≤ b|k|α for some numbers a, b, α > 0 (depending onX)and all large k. As
a consequence of this fact the Ux, Vk induce continuous operators in the spaces G(X) and their adjoints.
These are the operators involved in the next conditions.

(e) For each X,Y, Z ∈ S such that X ∩ Y ⊃ Z let IXY (Z) : G(Y ) → G∗(X) be a continuous map such
that, with limits in norm in L(G(Y ),G∗(X)):

(i) UzIXY (Z) = IXY (Z)Uz if z ∈ Z and V ∗k IXY (Z)Vk → IXY (Z) if k → 0 in (X + Y )∗,
(ii) IXY (Z)(Uy − 1) → 0 if y → 0 in Y and IXY (Z)(Vk − 1) → 0 if k → 0 in (Y/Z)∗.

The conditions of Proposition 7.4 are significantly more general but require more formalism. We require
IXY (Z)∗ = IY X(Z) and set IXY (Z) = 0 if Z 6⊂ X ∩ Y .

(f) Let Go be the algebraic direct sum of the spaces G(X) and G∗o the direct product of the adjoint spaces
G∗(X). Note that Go is a dense subspace of G. The matrix I(Z) = (IXY (Z))X,Y ∈S can be realized as a
linear operator Go → G∗o . We shall require that this be the restriction of a continuous map I(Z) : G → G∗.
Equivalently, the sesquilinear form associated to I(Z) should be continuous for the G topology. We also
require that I(Z) be norm limit in L(G,G∗) of its finite sub-matrices ΠT I(Z)ΠT = (IXY (Z))X,Y ∈T .

(g) Finally, we assume that there are real positive numbers µZ and a with
∑
Z µZ < 1 and such that

either ±I(Z) ≤ µZ |K + ia| for all Z or K is bounded from below and I(Z) ≥ −µZ |K + ia| for all Z.
Furthermore, the series

∑
Z I(Z) ≡ I should be norm summable in L(G,G∗).

Then the Hamiltonian defined as a form sum H = K + I is a self-adjoint operator strictly affiliated to
C , we have H≥X = K≥X +

∑
Z≥XI(Z), and the essential spectrum of H is given by (1.11).

We consider the case when S is a set of finite dimensional subspaces of a real prehilbert space X such
that if X,Y ∈ S then X ∩ Y ∈ S and X + Y is included in a subspace of S . The Euclidean structure
induced on each X allows us to identify X∗ = X and for any two X,Y ∈ S to realize the quotient space
X/Y ∼= X/(X ∩ Y ) as a subspace of X by taking

X/Y = X/(X ∩ Y ) = X ª (X ∩ Y ).

Then for Z ⊂ X ∩ Y we have X = Z ⊕ (X/Z) and Y = Y ⊕ (Y/Z) and we identify

H(X) = H(Z)⊗H(X/Z) and H(Y ) = H(Z)⊗H(Y/Z) (1.12)

which gives us canonical tensor decompositions:

CXY (Z) = C∗(Z)⊗KX/Z,Y/Z and CXY = CX∩Y ⊗KX/Y,Y/X . (1.13)

When convenient we shall identify H(Z) ⊗ H(X/Z) = L2(Z;H(X/Z)). Let FZ denote the Fourier
transformation in the Z variable. By using (1.13) and C∗(Z) = F−1

Z Co(Z)FZ we get

CXY (Z) = F−1
Z Co(Z;KX/Z,Y/Z)FZ .
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Example 1.10. We may use this representation to better understand the structure of the allowed interac-
tions IXY (Z). What follows is a particular case of Proposition 8.4 (cf. the last part of Section 8). We
denote Hs(X) the usual Sobolev spaces for s ∈ R. Assume that the form domains of KX and KY are
the spaces Hs(X) and Ht(Y ). Define IXY (Z) by the relation

FZIXY (Z)F−1
Z ≡

∫ ⊕

Z

IZXY (k)dk (1.14)

where IZXY : Z → L(Ht(Y/Z),H−s(X/Z)) is a continuous operator valued function satisfying

supk ‖(1 + |k|+ |PX/Z |)−sIZXY (k)(1 + |k|+ |PY/Z |)−t‖ <∞. (1.15)

The operators IZXY (k) must also decay in a weak sense at infinity, more precisely one of the equivalent
conditions must be satisfied for each k ∈ Z and some ε > 0:

(i) IZXY (k) : Ht(Y/Z) → H−s−ε(X/Z) is compact,
(ii) (Vx − 1)IZXY (k) → 0 in norm in L(Ht(Y/Z),H−s−ε(X/Z)) if x→ 0 in X/Z.

For ε = 0 the condition (ii) is significantly more general than (i), for example it allows the operator IZXY
to be of order s+ t. The IXY (Z) with IZXY (k) independent of k are especially simple to define:

Let IZXY : Ht(Y/Z) → H−s(X/Z) be continuous and such that, for some ε > 0, when considered
as a map Ht(Y/Z) → H−s−ε(X/Z), it becomes compact. Then we take IXY (Z) = 1Z ⊗ IZXY
relatively to the tensor factorizations (1.12).

1.6 Non-relativistic many-body Hamiltonians and Mourre estimate

Now we shall present our results on the Mourre estimate. We shall consider only the non-relativistic
many-body problem because in this case the results are quite explicit. There are serious difficulties when
the kinetic energy is not a quadratic form even in the much simpler case of N -body Hamiltonians, but see
[De1, Ger1, DaG2] for some partial results which could be extended to our setting. Note that the quantum
field case is much easier from this point of view because of the special nature of the interactions: this is
especially clear from the treatments in [Ger2, Geo], but see also [DeG2].

For simplicity we shall restrict ourselves to the case when S is a finite semilattice. In fact, the case when
S is infinite has already been treated in [DaG2] and the extension of the techniques used there to the case
when X is infinite dimensional is rather straightforward. But the condition limX infk |hX(k)| = ∞ is
quite artificial in the non-relativistic case since it forces us to replace the Laplacian ∆X by ∆X + EX
where EX is a number which tends to infinity with X .

We denote by S/X the set of subspaces E/X = E ∩X⊥, this is clearly an inductive semilattice of finite
dimensional subspaces of X which containsO = {0}. Hence the C∗-algebra CS/X and the Hilbert space
HS/X are well defined by our general rules. If X ⊂ Z ⊂ E ∩ F then (1.13) implies

CEF (Z) = C∗(Z)⊗KE/Z,F/Z = C∗(X)⊗ C∗(Z/X)⊗KE/Z,F/Z .

Moreover, we have H(Y ) = H(X)⊗H(Y/X) for all Y ⊃ X hence

H≥X = H(X)⊗ (⊕Y⊃X H(Y/X)
)
.

Thus we have
C≥X = C∗(X)⊗ CS/X and H≥X = H(X)⊗HS/X . (1.16)

Let ∆X be the (positive) Laplacian associated to the Euclidean space X with the convention ∆O = 0.
We have ∆X = hX(P ) with hX(k) = ‖k‖2. We also set ∆S = ⊕X∆X and define ∆≥X similarly. Then
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for Y ⊃ X we have ∆Y = ∆X⊗1+1⊗∆Y/X hence we get ∆≥X = ∆X⊗1+1⊗∆S/X . The domain
and form domain of the operator ∆S are given by H2

S and H1
S where the Sobolev spaces Hs

S ≡ Hs are
defined for any real s by Hs = ⊕XHs(X).

We define the dilation group on H(X) by (Wτu)(x) = enτ/4u(eτ/2x) where n is the dimension of
X . We denote by the same symbol the unitary operator

⊕
XWτ on the direct sum H =

⊕
X H(X).

Let D be the infinitesimal generator of {Wτ}, so D is a self-adjoint operator on H such that Wτ =
eiτD. As usual we do not indicate explicitly the dependence on X or S of Wτ or D unless this is
really needed. The operator D has factorization properties similar to that of the Laplacian, in particular
D≥X = DX ⊗ 1 + 1⊗DS/X .

We shall formalize the notion of non-relativistic many-body Hamiltonian by extending to the present
setting Definition 9.1 from [ABG]. We restrict ourselves to strictly affiliated operators although the more
general case of operators which are only affiliated covers some interesting physical situations (hard-core
interactions).

Note that since S is finite it has a minimal element minS and a maximal element maxS (which are in
fact the least and the largest elements) and is atomic.

Definition 1.11. A non-relativistic many-body Hamiltonian of type S is a bounded from below self-
adjoint operator H = HS on H = HS which is strictly affiliated to C = CS and has the following
property: for each X ∈ S there is a bounded from below self-adjoint operator HS/X on H≥X such that

P≥X(H) ≡ H≥X = ∆X ⊗ 1 + 1⊗HS/X (1.17)

relatively to the tensor factorization from (1.16). Moreover, when X = maxS is the maximal element of
S , hence HS/maxS = H(O) = C, we require HS/maxS = 0.

From Theorem 1.9 it follows that each HS/X is a non-relativistic many-body Hamiltonian of type S/X .

Example 1.12. We give here the main example of non-relativistic many-body Hamiltonians. As before
we take H = K + I but this time the kinetic energy is K = ∆S =

∑
X ∆X . With the notations of point

(b) from §1.5 we now have G = H1 = ⊕XH1(X) and the adjoint space is G∗ = H−1 = ⊕XH−1(X).
The interaction term is a continuous operator I : H1 → H−1 of the form

I = (IXY )X,Y ∈S =
∑
Z∈SI(Z) =

∑
Z∈S(IXY (Z))X,Y ∈S

with IXY : H1(Y ) → H−1(X) of the form IXY =
∑
Z∈S IXY (Z). If Z ⊂ X ∩ Y we take

IXY (Z) = 1Z ⊗ IZXY relatively to the tensor factorization (1.12), where IZXY : H1(Y/Z) → H−1(X/Z)
is continuous and such that when considered as a map H1(Y/Z) → H−1−ε(X/Z) with ε > 0 it is com-
pact. We set IXY (Z) = 0 if Z 6⊂ X ∩ Y and we require IXY (Z)∗ = IY X(Z) for all X,Y, Z. Finally,
we assume that there are positive numbers µZ , a with

∑
µZ < 1 such that I(Z) ≥ −µZ∆S − a for all

Z. Then H = K + I defined in the quadratic form sense is a non-relativistic many-body Hamiltonian of
type S and we have H≥X = ∆≥X +

∑
Z⊃X I(Z).

Let us denote τX = minHS/X the bottom of the spectrum of HS/X . From (1.17) we get

Sp(H≥X) = [0,∞) + Sp(HS/X) = [τX ,∞) if X 6= O. (1.18)

Then Theorem 1.9 implies (observe that the assertion of the proposition is obvious if O /∈ S):

Proposition 1.13. If H is a non-relativistic many-body Hamiltonian of type S then its essential spectrum
is Spess(H) = [τ,∞) with τ = minX∈P(S) τX where τX = minHS/X .
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We refer to Subsection 9.3 for terminology related to the Mourre estimate. We take D as conjugate
operator and only mention that we denote by ρ̂H(λ) the best constant (which could be infinite) in the
Mourre estimate at point λ. The threshold set τ(H) of H with respect to D is the set where ρ̂H(λ) ≤ 0.
Note that τ(H) is always closed, the nontrivial fact proved below is that it is countable.

If A is a closed real set then NA : R → [−∞,∞[ is defined by NA(λ) = sup{x ∈ A | x ≤ λ} with the
convention sup ∅ = −∞. Denote ev(T ) the set of eigenvalues of an operator T .

Theorem 1.14. Assume O ∈ S and let H = HS be a non-relativistic many-body Hamiltonian of type S
and of class C1

u(D). Then ρ̂H(λ) = λ−Nτ(H)(λ) for all real λ and

τ(H) =
⋃
X 6=Oev(HS/X). (1.19)

In particular τ(H) is a closed countable real set. The eigenvalues of H which do not belong to τ(H) are
of finite multiplicity and may accumulate only to points from τ(H).

Example 1.15. We give examples of Hamiltonians of class C1
u(D). We keep the notations of Example

1.12 but to simplify the statement we consider only interactions which are relatively bounded in operator
sense with respect to the kinetic energy. Recall that the domain of K = ∆S is H2 = ⊕XH2(X).
The interaction operator I is constructed as in Example 1.12 but we impose stronger conditions on the
operators IZXY . More precisely, we assume:

(i) If Z ⊂ X ∩ Y then IZXY : H2(Y/Z) → H(X/Z) is a compact operator satisfying (IZXY )∗ ⊃ IZYX
and we set IZXY = 0 if Z 6⊂ X ∩ Y . Then all the conditions of Example 1.12 are satisfied and
I : H2 → H is relatively bounded with respect to K in operator sense with relative bound zero.

(ii) Under the assumption (i) the operator

[D, IZXY ] ≡ DX/ZI
Z
XY − IZXYDY/Z : H2

loc(Y/Z) → H−1
loc(X/Z) (1.20)

is well defined. We require it to be a compact operator H2(Y/Z) → H−2(X/Z).

Then the operator H is self-adjoint on H2 and of class C1
u(D). We indicated by a subindex the space

where the operator D acts and, for example, we used

DX = DZ ⊗ 1 + 1⊗DX/Z relatively to H(X) = H(Z)⊗H(X/Z).

Note also that

2iDX = x · ∇x + n/2 = ∇x · x− n/2 if n is the dimension of X. (1.21)

Remark 1.16. If we set E = (X ∩ Y )/Z then Y/Z = E ⊕ (Y/X) and X/Z = E ⊕ (X/Y ) hence

H(X/Z) = H(E)⊗H(X/Y ), H2(Y/Z) =
(H2(E)⊗H(Y/X)

) ∩ (H(E)⊗H2(Y/X)
)
.

Let K 2
MN = K(H2(N),H(M)) for arbitrary Euclidean spaces M,N . Then condition (i) of Example

1.15 can be written IZXY ∈ K 2
X/Z,Y/Z . On the other hand we have

K 2
X/Z,Y/Z = K 2

E ⊗KX/Y,Y/X + KE ⊗K 2
X/Y,Y/X .

See §2.5 for details concerning these tensor products.To simplify notations we setX¢Y = X/Y ×Y/X .
Then if we identify a Hilbert-Schmidt operator with its kernel we get

K 2
E ⊗KX/Y,Y/X ⊃ K 2

E ⊗ L2(X ¢ Y ) ⊃ L2(X ¢ Y ; K 2
E )

Thus IZXY ∈ L2(X¢Y ;K 2
E ) is an explicit example of operator IZXY satisfying condition (i) of Example

1.15 (see Section 9.5 for improvements and a complete discussion). Such an IZXY acts as follows. Let
u ∈ H2(Y/Z) ≡ L2(Y/X;H2(E)). Then IZXY u ∈ H(X/Z) ≡ L2(X/Y ;H(E)) is given by

(IZXY u)(x
′) =

∫
Y/X

IZXY (x′, y′)u(y′)dy′.
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Remark 1.17. It is convenient to decompose the expression of [D, IZXY ] given in (1.20) as follows:

[D, IZXY ] = (DE +DX/Y )IZXY − IZXY (DE +DY/X)

= [DE , I
Z
XY ] +DX/Y I

Z
XY − IZXYDY/X . (1.22)

The first term above is a commutator and so is of a rather different nature than the next two. On the other
hand IZXYDY/X = (DY/XI

Z
YX)∗. Thus condition (ii) of Example 1.15 follows from:

[DE , I
Z
XY ] and DX/Y I

Z
XY are compact operators H2(Y/Z) → H−2(X/Z) for all X,Y, Z. (1.23)

It is convenient to use the representation of H2(Y/Z) given in Remark 1.16 and also

H−2(X/Z) = H−2(E)⊗H(X/Y ) +H(E)⊗H−2(X/Y ).

For example, if IZXY ∈ L2(X ¢ Y ;K 2
E ) as in Remark 1.16 then the kernel of the operator [DE , I

Z
XY ] is

the map (x′, y′) 7→ [DE , I
Z
XY (x′, y′)] so it suffices to ask

[DE , I
Z
XY ] ∈ L2(X ¢ Y ;K(H2(E),H−2(E))

in order to ensure that [DE , I
Z
XY ] is a compact operatorH2(Y/Z) → H−2(X/Z). For the termDX/Y I

Z
XY

it suffices to require the compactness of the operator

DX/Y I
Z
XY ≡ 1E ⊗DX/Y I

Z
XY : H2(Y/Z) → H(E)⊗H−2(X/Y ).

By taking into account (1.21) we see that this is a condition on the formal kernel x′ ·∇x′IZXY (x′, y′). For
example, it suffices that the operator 〈QX/Y 〉IZXY : H2(Y/Z) → H(X/Z) be compact, which is a short
range assumption. The condition on IZXYDY/X is a requirement on the formal kernel y′ ·∇y′IZXY (x′, y′).

Theorem 1.14 has important applications in the spectral analysis of H: absence of singularly continuous
spectrum and an optimal version of the limiting absorption principle. Optimality refers both to the Besov
spaces in which we establish the existence of the boundary values of the resolvent and to the degree of
regularity of the Hamiltonian with respect to the conjugate operator D: it suffices that H be of Besov
class C1,1(D). We refer to §9.4 for these results and present here a less refined statement.

Let Hs = ⊕XHs(X) where the Hs(X) are the Sobolev spaces associated to the position observable on
X (these are obtained from the usual Sobolev spaces associated to L2(X) by a Fourier transformation).
Let C+ be the open upper half plane and CH+ = C+ ∪ (R \ τ(H)). If we replace the upper half plane by
the lower one we similarly get the sets C− and CH− .

Theorem 1.18. IfH is of classC1,1(D) then its singular continuous spectrum is empty. The holomorphic
maps C± 3 z 7→ (H − z)−1 ∈ L(Hs,H−s) extend to norm continuous functions on CH± if s > 1/2.

If H satisfies the conditions of Example 1.15 then J ≡ [D, I] ∈ L(H2,H−1). Then a very rough
sufficient condition for H to be of class C1,1(D) is that [D,J ] ∈ L(H2,H−2). A much weaker sufficient
assumption is the Dini type condition

∫ 1

0

‖W ∗
ε JWε − J‖H2→H−2

dε
ε
<∞. (1.24)

Note that [D,J ] ∈ L(H2,H−2) is equivalent to

‖W ∗
τ JWτ − J‖H2→H−2 ≤ C|τ | for some constant C and all real τ

hence (1.24) is indeed a much weaker condition. See §9.5 for a discussion of the Dini and C1,1 classes in
the present context.
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Remark 1.19. We stress that there is no qualitative difference between an N -body Hamiltonian (fixed
N ) and a many-body Hamiltonian involving interactions which do not preserve N if these notions are
defined in terms of the same semilattice S . More precisely the channel structure and the formulas for the
essential spectrum and the threshold set which appears in the Mourre estimate are identical, cf. Theorems
1.9 and 1.14. Only the S-grading of the Hamiltonian algebra matters.

1.7 Comments and examples

C has an interesting class of S-graded C∗-subalgebras (see the end of Section 6). If T ⊂ S we set

CT ≡
∑c
X,Y ∈T CXY and HT ≡ ⊕X∈TH(X).

Then CT is a C∗-algebra supported by the subspace HT of H, in fact CT = ΠT C ΠT where ΠT is the
orthogonal projection of H onto HT , and is graded by the ideal

⋃
X∈T S(X) generated by T in S.

If S is a finite semilattice of subspaces of an Euclidean space and T is a totally ordered subset, then the
Hamiltonians considered in [SSZ] are affiliated to CT (S). Thus the results from [SSZ] are consequences
of the Theorems 1.14 and 1.18.

We mention that in the preceding context, due to the fact that T is totally ordered, the construction of CT
and the proof of the fact that it is an S-graded C∗-algebra do not require the machinery from Sections
3–6. In fact, an alternative abstract framework is much simpler in this case. The main point is that
we can write T as a strictly increasing family of subspaces X0 ⊂ · · · ⊂ Xn hence we have tensorial
factorizationsH(Xk) = H(Xk−1)⊗H(Xk/Xk−1) for all k ≥ 1. If we set Gk = H(Xk/Xk−1) then we
get a factorization Hn = ⊗nk=1Gk, where Hn = H(Xn). Now let G1, . . . ,Gn be arbitrary Hilbert spaces
and define

Hm = ⊗mk=1Gk and H = ⊕nm=1Hm.

Observe that for each couple i < j right tensor multiplication by elements of ⊗i<k≤jGk defines a closed
linear subspace Uji ⊂ L(Hi,Hj) isometrically isomorphic to ⊗i<k≤jGk. Then we set Uij = U∗ji and
Uii = C. Assume that S is an arbitrary semilattice and Cn is an S-graded C∗-algebra on Hn and define
the closed self-adjoint space Cm of operators on Hm by Cm = Umn · Cn · Unm. Finally, we define a
space of operators C on H by the rule Cij = Ci · Uij . The interested reader will easily find the natural
conditions which ensure that C is a C∗-algebra and then the compatibility conditions which allow one to
equip it with a rather obvious S-graded structure (see page 41). In fact the toy model corresponding to
n = 2 explains everything and has a nice interpretation in terms of Hilbert C∗-modules, cf. (5.9).

There are extensions of this abstract formalism which are of some interest and that one can handle. Let
S be a semilattice such that for each couple σ′, σ′′ ∈ S there is σ ∈ S which is larger than both σ′

and σ′′. Assume that we are given a family of Hilbert space {Hσ}σ∈S . Moreover, assume that for each
couple σ ≤ τ we have Hτ = Hσ ⊗Hσ

τ for a given Hilbert space Hσ
τ . The Uτσ are defined as before for

σ ≤ τ and then one may extend the definition to any couple σ, τ in a natural way. Finally, if a family of
S-graded C∗-algebras Cσ is given and a certain compatibility condition is satisfied, one may construct an
algebra C and an S-grading on it.

A nice but easy example corresponds to the case when S is the set of subsets of a finite set I . More
generally, it is very easy to treat the case when S is a distributive relatively ortho-complemented lattice.
Such a situation is specific to quantum field models without symmetry considerations.

We must, however, emphasize the following important point. If X,Y ∈ S and Y ⊂ X , and if we are in
the framework of Theorem 1.1, then we do not have a tensor factorization H(X) = H(Y ) ⊗ E in any
natural way (Y is not complemented in X). Moreover, even if a decomposition X = Y ⊕ Y ′ is possible,
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our algebra C is independent of the choice of Y ′. This seems to us a quite remarkable property which is
lost in the preceding abstract situations.

We shall make some comments now on the many-body system associated to a standard N -body system
by our construction. We shall see that we get a self-interacting system in which although the number of
particles is not conserved, the total mass is conserved.

We refer to [DeG1] or to [ABG, Chapter 10] for details on the following formalism. Let m1, . . . ,mN be
the masses of the N “elementary particles”. We assume that there are no external fields and always take
as origin of the reference system the center of mass of the system. Then the configuration space X of the
system of N particles is the set of x = (x1, . . . , xN ) ∈ (Rd)N such that

∑
kmkxk = 0, where Rd is

the physical space. We equip X with the scalar product 〈x|y〉 =
∑N
k=1 2mkxkyk. Then the Laplacian

associated to it has the usual physical meaning.

A cluster decomposition is just a partition σ of the set {1, . . . , N} and the sets of the partition are called
clusters. We think about a cluster a ∈ σ as a “composite particle” of mass ma =

∑
k∈amk. Let |σ| be

the number of clusters of σ. Then we interpret σ as a system of |σ| particles with masses ma hence its
configuration space should be the set of x = (xa)a∈σ ∈ (Rd)|σ| such that

∑
amaxa = 0 equipped with

the scalar product defined as above.

Let us define Xσ as the set of x ∈ X such that xi = xj if i, j belong to the same cluster and let us equip
Xσ with the scalar product induced by X . Then there is an obvious isometric identification of Xσ with
the configuration space of the system σ as defined before. The advantage now is that all the spacesXσ are
isometrically embedded in the same X . The set S of partitions is ordered as usual in the mathematical
literature (so not as in [ABG], for example), namely σ ≤ τ means that τ is finer than σ. Then clearly
σ ≤ τ is equivalent to Xσ ⊂ Xτ . Moreover, Xσ ∩ Xτ = Xσ∧τ . Thus we see that S is isomorphic as
semilattice with the set S = {Xσ | σ ∈ S} of subspaces of X .

Now we may apply our construction to S . We get a system whose state space is H = ⊕σH(Xσ). If the
system is in a state u ∈ H(Xσ) then it consists of |σ| particles of masses ma. Note that min S is the
partition consisting of only one cluster {1, . . . , N} with mass M = m1 + · · · + mN . Since there are
no external fields and we decided to eliminate the motion of the center of mass, this system must be the
vacuum. And its state space is indeed H(Xmin S) = C. The algebra C in this case predicts usual inter-
cluster interactions associated, for examples, to potentials defined on Xσ = X/Xσ, but also interactions
which force the system to make a transition from a “phase” σ to a “phase” τ . In other terms, the system
of |σ| particles with masses (ma)a∈σ is tranformed into a system of |τ | particles with masses (mb)b∈τ .
Thus the number of particles varies from 1 to N but the total mass existing in the “universe” is constant
and equal to M .

1.8 On the role of Hilbert C∗-modules and imprimitivity C∗-algebras

At a technical level, HilbertC∗-modules are involved in a very natural way in our formalism. For example
the space Cij = Ci ·Uij introduced on page 14 is in fact the tensor product in the category of such modules
of the C∗-algebra Ci and of the Hilbert space Uij and one needs this to prove that C is graded.

However, the Hilbert C∗-modules play an important role at a fundamental level because they allow us to
“unfold” a Hamiltonian algebra A such as to construct new Hamiltonian algebras. Indeed, our results
show that if M is a full Hilbert A -module then the imprimitivity C∗-algebra K(M ) could also be inter-
preted as Hamiltonian algebra of a system related in some natural way to the initial one. For example,
this is a natural method of second quantizing N -body systems, i.e. introducing interactions which couple
subsystems corresponding to different cluster decompositions.

We understood the role in our work of the imprimitivity algebra of a Hilbert C∗-module thanks to a
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discussion with Georges Skandalis: he recognized (a particular case of) the main C∗-algebra C we have
constructed as the imprimitivity algebra of a certain Hilbert C∗-module. Theorem 6.21 is a reformulation
of his observation in the present framework (at the time of the discussion our definition of C was rather
different because we were working in a tensor product formalism, as on page 14).

In the physical N -body situation discussed in §1.7 it is clear that going from A to the imprimitivity alge-
bra of M may be thought as a “second quantization” of the N -body system: this explains our definition
6.20. The full Hilbert CX -module NX constructed à la Skandalis in Theorem 6.21 is such that its im-
primitivity algebra is C #

X = CS(X). So, more generally, given a full Hilbert A -module M it is natural
to call its imprimitivity algebra the second quantization of A determined by M .

We mention that the notion of graded HilbertC∗-module that we use, cf. §5.3, is also due to G. Skandalis.
He has also shown us a nice abstract construction of such modules starting from a given graded C∗-
algebra and using tensor product techniques, but this method is not used in the present paper.

If A is graded and M is a graded Hilbert A -module then K(M ) is equipped with a canonical structure
of graded C∗-algebra (Theorem 5.5). If M is an arbitrary full Hilbert A -module it is not clear to us if
there are general and natural conditions on M which ensure that a grading of A can be transported to
K(M ). However, even if the grading is lost, something can be done thanks to the Rieffel correspondence:
the isomorphism between the lattice of all ideals of A and that of K(M ) defined by I 7→ K(MI ).

For example, let {Ai}i∈I be a family of ideals of A which generates A . Then K(M ) is equipped with
the family of ideals K(MAi) such that

⋃
iK(MAi) generates K(M ) and

⋂
iK(MAi) = K(M

⋂
iAi). (1.25)

Assume that A is the C∗-algebra of Hamiltonians of a system whose state space is the Hilbert space H
and that

⋂
i Ai = K(H). The interest of these assumptions is that it allows one to compute the essential

spectrum of observables affiliated to A in rather complicated situations by using the following argument.
Let Pi be the canonical surjection of A onto the quotient C∗-algebra A /Ai. If H is an observable
affiliated to A then Hi = Pi(H) is an observable affiliated to A /Ai and one has [GI1, (2.2)]

σess(H) =
⋃
iσ(Hi). (1.26)

where
⋃

means closure of the union. Now assume that M is realized as a closed linear subspace of
L(H,G) for some Hilbert space G such that M ∗ ·M = A and MM ∗M ⊂ M . Then K(M ) ∼= B ≡
M ·M ∗. If we set Mi = MAi then Mi is a full Hilbert Ai-module and we have

M ∗
i ·Mi = Ai ·M ∗ ·M ·Ai = Ai ·A ·Ai = Ai

and MiM ∗
i Mi ⊂ Mi. So we get K(Mi) ∼= Mi ·M ∗

i ≡ Bi, hence {Bi} is the family of ideals of B
associated to {Ai}. From (1.25) we get

⋂
iBi = K(M

⋂
iAi) = K(MK(H)) = (MK(H)) · (MK(H))∗.

It is clear that MK(H) is the closed linear span in L(H,G) of the set of operators of the from |Mh〉〈h′|
with h, h′ ∈ H. Thus, if MH is dense in G then MK(H) = K(H,G) and from this we clearly get⋂
iBi = K(G). So we may compute the essential spectrum of an observable affiliated to the unfolding

B of A with the help its quotients with respect to the ideals Bi by using an analog of (1.26).

Acknowledgments: We are indebted to Georges Skandalis for very helpful suggestions and remarks.
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2 Preliminaries on Hilbert C∗-modules

Hilbert C∗-modules are the natural framework for the constructions of this paper. Some basic knowledge
of the theory of Hilbert C∗-modules would be useful for understanding what follows but is not really
necessary. In this section we shall translate the necessary facts in a purely Hilbert space setting to make
them easily accessible to people working in the spectral theory of quantum Hamiltonians. Our basic
reference for the general theory of Hilbert C∗-modules is [La] but see also [Bl, JT, RW].

2.1 If E,F are Banach spaces then L(E,F ) is the Banach space of linear continuous maps E → F and
K(E,F ) the subspace of compact maps. We set L(E) = L(E,E) and K(E) = K(E,E). We denote
1E or just 1 the identity map on a Banach space E. Sometimes we set 1L2(X) = 1X if X is a lca group.
Two unusual abbreviations are convenient: by lspan and clspan we mean “linear span” and “closed linear
span” respectively. If Ai are subspaces of a Banach space then

∑c
i Ai is the clspan of ∪iAi.

Let E,F,G,H be Banach spaces. If A ⊂ L(E,F ) and B ⊂ L(F,G) are linear subspaces then BA is
the lspan of the products BA with A ∈ A, B ∈ B and B · A is their clspan. If C ⊂ L(G,H) is a linear
subspace then C · (B · A) = (C · B) · A ≡ C · B · A is the clspan of the products CBA.

If E,F,G are Hilbert spaces then A∗ is the set of operators of the form T ∗ ∈ L(F,E) with T ∈ A.
Clearly (B · A)∗ = A∗ · B∗ and A1 ⊂ A2 ⇒ A∗1 ⊂ A∗2. In particular, if E = F = G and A = A∗ and
B = B∗ then A · B ⊂ B · A is equivalent to A · B = B · A.

2.2 By ideal in a C∗-algebra we mean closed self-adjoint ideal. A ∗-homomorphism between two
C∗-algebras will be called morphism. We write A ' B if the C∗-algebras A ,B are isomorphic and
A ∼= B if they are canonically isomorphic (the isomorphism should be clear from the context).

If A is a C∗-algebra then a Banach A -module is a Banach space M equipped with a continuous bilinear
map A ×M 3 (A,M) 7→ MA ∈ M such that (MA)B = M(AB). We denote M ·A the clspan of
the elements MA with A ∈ A and M ∈ M . By the Cohen-Hewitt theorem [FD] for each N ∈ M ·A
there are A ∈ A and M ∈ M such that N = MA, in particular M ·A = MA . Note that by module
we mean “right module” but the Cohen-Hewitt theorem is also valid for left Banach modules.

A (right) Hilbert A -module is a Banach A -module M equipped with an A -valued sesquilinear map
〈·|·〉 ≡ 〈·|·〉A which is positive (i.e. 〈M |M〉 ≥ 0) A -sesquilinear (i.e. 〈M |NA〉 = 〈M |N〉A) and such
that ‖M‖ ≡ ‖〈M |M〉‖1/2. Then M = MA . The clspan of the elements 〈M |M〉 is an ideal of A
denoted 〈M |M 〉. One says that M is full if 〈M |M 〉 = A . If A is an ideal of a C∗-algebra C then M
is equipped with an obvious structure of Hilbert C -module.

The examples of interest in this paper are the “concrete” Hilbert C∗-modules described in §2.4 as Hilbert
C∗-submodules of L(E ,F). A Hilbert C-module is a usual Hilbert space. Any C∗-algebra A has a
canonical structure of Hilbert A -module: the A -module structure of A is defined by the action of A on
itself by right multiplication and the inner product is 〈A|B〉A = A∗B.

Let M ,N be Hilbert A -modules. Then T ∈ L(M ,N ) is called adjointable if there is T ∗ ∈ L(N ,M )
such that 〈TM |N〉 = 〈M |T ∗N〉 forM ∈ M andN ∈ N . The map T ∗ is uniquely defined and is called
adjoint of T . It is clear that T and T ∗ are A -linear, e.g. T (MA) = T (M)A for all M ∈ M and A ∈ A .
The set of adjointable maps is a closed subspace of L(M ,N ) denoted L(M ,N ).

An important class of adjointable operators is defined as follows. If M ∈ M and N ∈ N then the map
M ′ 7→ N〈M |M ′〉 is an element of L(M ,N ) denoted |N〉〈M | or NM∗. Then K(M ,N ) is the closed
linear subspace generated by these elements. The space K(M ) ≡ K(M ,M ) is a C∗-algebra called
imprimitivity algebra of the Hilbert A -module M . Clearly K(A ) = A .
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If B is a C∗-algebra and M is a left Banach B-module then a left Hilbert B-module structure on M is
defined as above with the help of a B-valued inner product B〈·|·〉 linear and A -linear in the first variable.
For example, if M is a Hilbert A -module then clearly M is a left Banach K(M )-module and if we set
K(M )〈M |N〉 = MN∗ we get a canonical full left Hilbert K(M )-module structure on M .

If M is a full right Hilbert A -module, a full left Hilbert B-module, and B〈M |N〉P = M〈N |P 〉A for
all M,N,P ∈ M , then one says that M is a (B,A )-imprimitivity bimodule and that A and B are
Morita equivalent. M is a (K(M ),A )-imprimitivity bimodule and one can show that there is a unique
isomorphism of B onto K(M ) such that B〈M |N〉 is sent into MN∗.

2.3 Assume that N is a closed subspace of a Hilbert A -module M and let 〈N |N 〉 be the clspan of
the elements 〈N |N〉 in A . If N is an A -submodule of M then it inherits an obvious Hilbert A -module
structure from M . If N is not an A -submodule of M it may happen that there is a C∗-subalgebra
B ⊂ A such that N B ⊂ N and 〈N |N 〉 ⊂ B. Then clearly we get a Hilbert B-module structure
on N . On the other hand, it is clear that such a B exists if and only if N 〈N |N 〉 ⊂ N and then
〈N |N 〉 is a C∗-subalgebra of A . Under these conditions we say that N is a Hilbert C∗-submodule
of the Hilbert A -module M . Then N inherits a Hilbert 〈N |N 〉-module structure and this defines the
C∗-algebra K(N ). Moreover, if B is as above then K(N ) = KB(N ).

If N is a closed subspace of a Hilbert A -module M then letK(N |M ) be the closed subspace ofK(M )
generated by the elementsNN∗ withN ∈ N . It is easy to prove that if N is a Hilbert C∗-submodule of
M then K(N |M ) is a C∗-subalgebra of K(M ) and the map T 7→ T |N sends K(N |M ) onto K(N )
and is an isomorphism of C∗-algebras. Then we identify K(N |M ) with K(N ).

2.4 If E ,F are Hilbert spaces then we equip L(E ,F) with the Hilbert L(E)-module structure defined
as follows: the C∗-algebra L(E) acts to the right by composition and we take 〈M |N〉 = M∗N as inner
product, where M∗ is the usual adjoint of the operator M . Note that L(E ,F) is also equipped with a
natural left Hilbert L(F)-module structure: this time the inner product is MN∗.

Now let M ⊂ L(E ,F) be a closed linear subspace and let M ∗ ⊂ L(F , E) be the set of adjoint operators
M∗ with M ∈ M . Then M is a Hilbert C∗-submodule of L(E ,F) if and only if MM ∗M ⊂ M .

These are the “concrete” Hilbert C∗-modules we are interested in. We summarize below some immediate
consequence of the discussion in §2.3.

Proposition 2.1. Let E ,F be Hilbert spaces and let M be a Hilbert C∗-submodule of L(E ,F). Then
A ≡ M ∗ · M and B ≡ M · M ∗ are C∗-algebras of operators on E and F respectively and M is
equipped with a canonical structure of (B,A )-imprimitivity bimodule.

It is clear that M ∗ will be a Hilbert C∗-submodule of L(F , E). We mention that M ∗ is canonically
identified with the left Hilbert A -module K(M ,A ) dual to M .

Proposition 2.2. Let N be a C∗-submodule of L(E ,F) such that N ⊂ M and N ∗ ·N = M ∗ ·M ,
N ·N ∗ = M ·M ∗. Then N = M .

Proof: If M ∈ M and N ∈ N then MN∗ ∈ B = N ·N ∗ and N N ∗N ⊂ N hence MN∗N ∈
N . Since N ∗ · N = A we get MA ∈ N for all A ∈ A . Let Ai be an approximate identity for
the C∗-algebra A . Since one can factorize M = M ′A′ with M ′ ∈ M and A′ ∈ A the sequence
MAi = M ′A′Ai converges to M ′A′ = M in norm. Thus M ∈ N .

It is clear that A · E = E ⇒ M ∗ · F = E and B · F = F ⇒ M · E = F . Moreover:

A · E = E and B · F = F ⇔ M · E = F and M ∗ · F = E . (2.1)
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If the relations (2.1) are satisfied we say that M is a nondegenerate Hilbert C∗-submodule of L(E ,F).
For such modules we have the following concrete representation of L(M ), cf. Proposition 2.3 in [La]. If
a symbol like S(∗) appears in a relation this means that the relation holds for both S and S∗.

Proposition 2.3. If BF = F then

L(M ) ∼= {S ∈ L(F) | S(∗)M ⊂ M } = {S ∈ L(F) | S(∗)B ⊂ B} (2.2)

where the canonical isomorphism associates to S the map M 7→ SM .

The proof of the next proposition is left as an exercise.

Proposition 2.4. Let E ,F ,H be Hilbert spaces and let M ⊂ L(H, E) and N ⊂ L(H,F) be Hilbert
C∗-submodules. Let A be a C∗-algebra of operators on H such that M ∗ ·M and N ∗ ·N are ideals
of A and let us view M and N as Hilbert A -modules. Then K(M ,N ) ∼= N · M ∗ the isometric
isomorphism being determined by the condition |N〉〈M | = NM∗.

2.5 We recall the definition of the tensor product of a Hilbert space E and aC∗-algebra A in the category
of Hilbert C∗-modules. We equip the algebraic tensor product E ¯A with the obvious right A -module
structure and with the A -valued sesquilinear map given by

〈∑u∈Eu⊗Au|
∑
v∈Ev ⊗Bv〉 =

∑
u,v〈u|v〉A∗uBv (2.3)

where Au = Bu = 0 outside a finite set. Then the completion of E ¯ A for the norm ‖M‖ ≡
‖〈M |M〉‖1/2 is a full Hilbert A -module denoted E ⊗A . Clearly its imprimitivity algebra is

K(E ⊗A ) = K(E)⊗A . (2.4)

The reader may easily check that if Y is a locally compact space then E ⊗ Co(Y ) ∼= Co(Y ; E). And if
X is a locally compact space equipped with a Radon measure then L2(X) ⊗ A is the completion of
Cc(X;A ) for the norm ‖ ∫

X
F (x)∗F (x)dx‖1/2. Hence L2(X)⊗Co(Y ) is the completion of Cc(X ×Y )

for the norm supy∈Y (
∫
Y
|F (x, y)|2dx)1/2. Note that L2(X; A ) ⊂ L2(X) ⊗ A strictly in general. If

A ⊂ L(F) then the norm on L2(X)⊗A we can also be written as follows:

‖∫
X
F (x)∗F (x)dx‖ = supf∈F ,‖f‖=1

∫
X
‖F (x)f‖2dx. (2.5)

Now assume that A is realized on a Hilbert space F . Then we have a natural embedding

E ⊗A ⊂ L(F , E ⊗ F) (2.6)

which we describe below. For each u ∈ E andA ∈ A let |u〉⊗A : F → E⊗F be the map f 7→ u⊗(Af).
Note that if |u〉 is the map C → E given by λ 7→ λu then |u〉 ⊗ A is really a tensor product of operators
because F ≡ C ⊗ F . Let 〈u| = |u〉∗ : E → C be the adjoint map v 7→ 〈u|v〉. Then (|u〉 ⊗ A)∗ =
〈u| ⊗A∗ : E ⊗F → F acts on decomposable tensors as follows: (〈u| ⊗A∗)(v⊗ f) = 〈u|v〉A∗f . From
(2.3) we easily deduce now that there is a unique continuous linear map E ⊗ A → L(E , E ⊗ F) such
that the image of u ⊗ A be |u〉 ⊗ A and this map is an isometry of E ⊗ A onto the clspan of the set of
operators of the form |u〉 ⊗ A. This defines the canonical identification (2.6) of E ⊗ A with a closed
linear subspace of L(F , E ⊗ F).

Thus if A ⊂ L(F) the Hilbert A -module E ⊗A is realized as a Hilbert C∗-submodule of L(F , E ⊗F),
the dual module is realized (E ⊗A )∗ ⊂ L(E ⊗ F , E) as the set of adjoint operators, and the relations

(E ⊗A )∗ · (E ⊗A ) = A , (E ⊗A ) · (E ⊗A )∗ = K(E)⊗A (2.7)
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are immediate.

We consider now more general tensor products. If E ,F ,G,H are Hilbert spaces and M ⊂ L(E ,F) and
N ⊂ L(G,H) are closed linear subspaces then we denote M ⊗N the closure in L(E⊗G,F⊗H) of the
algebraic tensor product of M and N . Now suppose that M is a C∗-submodule of L(E ,F) and that N
is a C∗-submodule of L(G,H) and let A = M ∗ ·M and B = N ∗ ·N . Then M is a Hilbert A -module
and N is a Hilbert B-module hence the exterior tensor product, denoted temporarily M ⊗ext N , is well
defined in the category of Hilbert C∗-modules [La] and is a Hilbert A ⊗B-module. On the other hand,
it is easy to check that (M ⊗N )∗ = M ∗ ⊗N ∗ and then that M ⊗N is a Hilbert C∗-submodule of
L(E ⊗G,F ⊗H) such that (M ⊗N )∗ · (M ⊗N ) = A ⊗B. Finally, it is clear that L(E ⊗G,F ⊗H)
and M ⊗ext N induce the same A ⊗B-valued inner product on the algebraic tensor product of M and
N . Thus we we get a canonical isometric isomorphism M ⊗ext N = M ⊗N .

In the preceding framework, it is easy to see that we have a canonical identification

K(E ,F)⊗K(G,H) ∼= K(E ⊗ G,F ⊗H). (2.8)

In particular K(E ,F ⊗H) ∼= K(E ,F)⊗H.

It will be convenient for our later needs to introduce a more intuitive notation for certain tensor products.

Definition 2.5. If X is a locally compact space equipped with a Radon measure, E and F are Hilbert
spaces, and M ⊂ L(E ,F) is a closed subspace, then L2

w(X; M ) is the completion of the space of
functions F : X → M of the form F (x) =

∑
fk(x)Mi with fk ∈ Cc(X) and Mk ∈ M for the norm

‖F‖L2
w

= ‖∫
X
F (x)∗F (x)dx‖1/2 = sup

e∈E,‖e‖=1

(∫
X
‖F (x)e‖2dx

)1/2
. (2.9)

The elements of L2
w(X; M ) are (equivalence classes of) strongly measurable L(E ,F) valued functions

on X and we have L2(X; M ) ⊂ L2
w(X; M ) strictly. For the needs of our examples L2(X; M ) is

largely sufficient but L2
w(X;M ) ∼= L2(X) ⊗M , viewed as a space of operators E → L2(X) ⊗ F , is

more natural in our context.

3 Preliminaries on groups and crossed products

In this section we review notations and describe some preliminary results concerning the locally compact
abelian (lca) groups and their crossed products with C∗-algebras.

3.1 Let us consider a lca group X (with operation denoted additively) and a closed subgroup Y ⊂ X
equipped with Haar measures dx and dy. We shall write X = Y ⊕ Z if X is the direct sum of the two
closed subgroups Y, Z equipped with compatible Haar measures, in the sense that dx = dy ⊗ dz. We
set LX ≡ L(L2(X)) and KX ≡ K(L2(X)) and note that these are C∗-algebras independent of the
choice of the measure on X . If X = Y ⊕ Z then L2(X) = L2(Y ) ⊗ L2(Z) as Hilbert spaces and
KX = KY ⊗KZ as C∗-algebras. It will also be convenient to use the abbreviations

LXY = L(L2(Y ), L2(X)) and KXY = K(L2(Y ), L2(X)).

The bounded uniformly continuous functions on X form a C∗-algebra Cu
b(X) which contains the al-

gebras Cc(X), Co(X) of functions which have compact support or tend to zero at infinity. We embed
Cu
b(X/Y ) ⊂ Cu

b(X) with the help of the injective morphism ϕ 7→ ϕ ◦ πY where πY : X → X/Y
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is the canonical surjection. So Cu
b(X/Y ) is identified with the set of functions ϕ ∈ Cu

b(X) such that
ϕ(x+ y) = ϕ(x) for all x ∈ X and y ∈ Y .

In particular, Co(X/Y ) is identified with the set of continuous functions ϕ on X such that ϕ(x + y) =
ϕ(x) for all x ∈ X and y ∈ Y and such that for each ε > 0 there is a compact K ⊂ X such that
|ϕ(x)| < ε if x /∈ K + Y . By x/Y → ∞ we mean πY (x) → ∞, so the last condition is equivalent to
ϕ(x) → 0 if x/Y →∞. To avoid cumbersome expressions like Co(X/(Y ∩ Z)) and also for coherence
in later notations we set

CX(Y ) = Co(X/Y ) (3.1)

If X = Y ⊕Z then CX(Y ) = 1⊗Co(Z) relatively to the tensor factorization L2(X) = L2(Y )⊗L2(Z).

We denote by ϕ(Q) the operator in L2(X) of multiplication by a function ϕ and if X has to be explicitly
specified we set Q = QX . The map ϕ 7→ ϕ(Q) is an embedding Cu

b(X) ⊂ LX .

The translation operator Ux on L2(X) associated to x ∈ X is defined by (Uxu)(y) = u(y + x). We
set τxS ≡ τx(S) = UxSU

∗
x for S ∈ LX and also (τxϕ)(y) = ϕ(y + x) for an arbitrary function ϕ on

X , so that τx(ϕ(Q)) = (τxϕ)(Q). To an element y ∈ Y we may associate a translation operator Uy in
L2(X) and another translation operator in L2(Y ). However, in order not to overcharge the writing we
shall denote the second operator also by Uy .

LetX∗ be the group dual toX with operation denoted additively†. If k ∈ X∗ we define a unitary operator
Vk on L2(X) by (Vku)(x) = k(x)u(x). The restriction map k 7→ k|Y is a continuous surjective group
morphism X∗ → Y ∗ with kernel equal to Y ⊥ = {k ∈ X∗ | k(y) = 1 ∀y ∈ Y } which defines the
canonical identification Y ∗ ∼= X∗/Y ⊥. We denote by the same symbol Vk the operator of multiplication
by the character k ∈ X∗ in L2(X) and by the character k|Y ∈ Y ∗ in L2(Y ).

Let C∗(X) be the group C∗-algebra of X: this is the closed linear subspace of LX generated by the
convolution operators of the form (ϕ ∗ u)(x) =

∫
X
ϕ(x − y)u(y)dy with ϕ ∈ Cc(X). We recall the

notation ϕ∗(x) = ϕ̄(−x). Note that if we set C(ϕ)u ≡ ϕ ∗ u, then C(ϕ) =
∫
X
ϕ(−x)Uxdx.

The Fourier transform of an integrable measure µ on X is defined by (Fµ)(k) =
∫
k̄(x)µ(dx). Then F

induces a bijective map L2(X) → L2(X∗) hence a canonical isomorphism S 7→ F−1SF of LX∗ onto
LX . If ψ is a function on X∗ we set ψ(P ) = F−1MψF , where Mψ is the operator of multiplication
by ψ on L2(X∗). The map ψ 7→ ψ(P ) gives an isomorphism Co(X∗) ∼= C∗(X). If the group has to be
specified, we set P = PX .

3.2 A C∗-subalgebra stable under translations of Cu
b(X) will be called X-algebra. The operation of

restriction of functions allows us to associate to each X-algebra A a Y -algebra A|Y = {ϕ|Y | ϕ ∈ A}.
The map A 7→ A|Y from the set of X-algebras to the set of Y -algebras is surjective.

IfA is an X-algebra then the crossed product ofA by the action of X is an abstractly defined C∗-algebra
AoX but we shall always identify it with the C∗-algebra of operators on L2(X) given by

AoX ≡ A · C∗(X) = C∗(X) · A ⊂ LX , (3.2)

see, for example, Theorem 4.1 in [GI1]. The next result, due to Landstad [Ld], gives an “intrinsic”
characterization of crossed products. We follow the presentation from [GI4, Theorem 3.7] which takes
advantage of the fact that X is abelian.

Theorem 3.1. A C∗-algebra A ⊂ LX is a crossed product if and only for each A ∈ A we have:
† Then (k + p)(x) = k(x)p(x), 0(x) = 1, and the element−k of X∗ represents the function k̄. In order to avoid such strange

looking expressions one might use the notation k(x) = [x, k].
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• if k ∈ X∗ then V ∗k AVk ∈ A and limk→0 ‖V ∗k AVk −A‖ = 0,

• if x ∈ X then UxA ∈ A and limx→0 ‖(Ux − 1)A‖ = 0.

In this case one has A = AoX for a unique X-algebra A ⊂ Cu
b(X) and this algebra is given by

A = {ϕ ∈ Cu
b(X) | ϕ(Q)S ∈ A and ϕ̄(Q)S ∈ A for all S ∈ C∗(X)}. (3.3)

Note that the second condition of Landstad’s theorem is equivalent to C∗(X) ·A = A , cf. Lemma 3.3.

We discuss now crossed products of the form CX(Y ) o X which play an important role in the N -body
problem. To simplify notations we set

CX(Y ) ≡ CX(Y )oX = CX(Y ) · C∗(X) = C∗(X) · CX(Y ). (3.4)

If X = Y ⊕ Z and if we identify L2(X) = L2(Y )⊗ L2(Z) then C∗(X) = C∗(Y )⊗ C∗(Z) hence

CX(Y ) = C∗(Y )⊗KZ . (3.5)

A useful “symmetric” description of CX(Y ) is contained in the next lemma. Let Y (2) be the closed
subgroup of X2 ≡ X ⊕X consisting of elements of the form (y, y) with y ∈ Y .

Lemma 3.2. CX(Y ) is the closure of the set of integral operators with kernels θ ∈ Cc(X2/Y (2)).

Proof: Let C be the norm closure of the set of integral operators with kernels θ ∈ Cu
b(X2) having the

properties: (1) θ(x+ y, x′ + y) = θ(x, x′) for all x, x′ ∈ X and y ∈ Y ; (2) suppθ ⊂ Kθ + Y for some
compactKθ ⊂ X2. We show C = CX(Y ). Observe that the map inX2 defined by (x, x′) 7→ (x−x′, x′)
is a topological group isomorphism with inverse (x1, x2) 7→ (x1 + x2, x2) and sends the subgroup Y (2)

onto the subgroup {0} ⊕ Y . This map induces an isomorphism X2/Y (2) ' X ⊕ (X/Y ). Thus any
θ ∈ Cc(X2/Y (2)) is of the form θ(x, x′) = θ̃(x− x′, x′) for some θ̃ ∈ Cc(X ⊕ (X/Y )). Thus C is the
closure in LX of the set of operators of the form (Tu)(x) =

∫
X
θ̃(x − x′, x′)u(x′)dx′. Since we may

approximate θ̃ with linear combinations of functions of the form a⊗ b with a ∈ Cc(X), b ∈ Cc(X/Y ) we
see that C is the clspan of the set of operators of the form (Tu)(x) =

∫
X
a(x − x′)b(x′)u(x′)dx′. But

this clspan is C∗(X) · CX(Y ) = CX(Y ).

Our purpose now is to give an intrinsic description of CX(Y ). We need the following result, which will
be useful in other contexts too. Let {Tg} be a strongly continuous unitary representation of a lca group G
on a Hilbert space H and let ψ 7→ T (ψ) be the morphism Co(G∗) → L(H) associated to it.

Lemma 3.3. IfA ∈ L(H) then limg→0 ‖(Tg−1)A‖ = 0 if and only ifA = T (ψ)B for some ψ ∈ Co(G∗)
and B ∈ L(H).

This is an easy consequence of the Cohen-Hewitt factorization theorem, see Lemma 3.8 from [GI4].

Theorem 3.4. CX(Y ) is the set of A ∈ LX such that U∗yAUy = A for all y ∈ Y and:

1. ‖U∗xAUx −A‖ → 0 if x→ 0 in X and ‖V ∗k AVk −A‖ → 0 if k → 0 in X∗,

2. ‖(Ux − 1)A‖ → 0 if x→ 0 in X and ‖(Vk − 1)A‖ → 0 if k → 0 in Y ⊥.

22



By “k → 0 in Y ⊥” we mean: k ∈ Y ⊥ and k → 0. Note that the second condition above is equivalent to:

there are θ ∈ C∗(X), ψ ∈ CX(Y ) and B,C ∈ LX such that A = θ(P )B = ψ(Q)C. (3.6)

For the proof, use Y ⊥ ∼= (X/Y )∗ and apply Lemma 3.3. In particular, the last factorization shows that
for each ε > there is a compact set M ⊂ X such that ‖χV (Q)A‖ < ε, where V = X \ (M + Y ).

Proof of Theorem 3.4: This has been proved by direct means for X a finite dimensional real vector
space in [DaG2]. Here we use Theorem 3.1 which allows us to treat arbitrary groups. Let A ⊂ LX be
the set of operators A satisfying the conditions from the statement of the theorem. We first prove that
A satisfies the two conditions of Theorem 3.1. Let A ∈ A . We have to show that Ap ≡ V ∗p AVp ∈
A and ‖V ∗p AVp − A‖ → 0 as p → 0. From the commutation relations UxVp = p(x)VpUx we get
‖(Ux − 1)Ap‖ = ‖(Ux − p(x))A‖ → 0 if x → 0 and the second part of condition 1 of the theorem is
obviously satisfied by Ap. Then for y ∈ Y

U∗yApUy = U∗yV
∗
p AVpUy = V ∗p U

∗
yAUyVp = V ∗p AVp = Ap.

Condition 2 is clear so we have Ap ∈ A and the fact that ‖V ∗p AVp − A‖ → 0 as p → 0 is obvious.
That A satisfies the second Landstad condition, namely that for each a ∈ X we have UaA ∈ A and
‖(Ua − 1)A‖ → 0 as a→ 0, is also clear because ‖[Ua, Vk]‖ → 0 as k → 0.

Now we have to find the algebra A defined by (3.3). Assume that ϕ ∈ Cu
b(X) satisfies ϕ(Q)S ∈ A for

all S ∈ C∗(X). Since U∗yϕ(Q)Uy = ϕ(Q − y) we get (ϕ(Q) − ϕ(Q − y))S = 0 for all such S and all
y ∈ Y , hence ϕ(Q) − ϕ(Q − y) = 0 which means ϕ ∈ Cu

b(X/Y ). We shall prove that ϕ ∈ CX(Y ) by
reductio ad absurdum.

If ϕ /∈ CX(Y ) then there is µ > 0 and there is a sequence of points xn ∈ X such that xn/Y → ∞
and |ϕ(xn)| > 2µ. From the uniform continuity of ϕ we see that there is a compact neighborhood K
of zero in X such that |ϕ| > µ on

⋃
n(xn + K). Let K ′ be a compact neighborhood of zero such that

K ′+K ′ ⊂ K and let us choose two positive not zero functions ψ, f ∈ Cc(K ′). We define S ∈ C∗(X) by
Su = ψ ∗ u and recall that suppSu ⊂ suppψ + suppu. Thus suppSU∗xn

f ⊂ K ′ + xn +K ′ ⊂ xn +K.
Now let V be as in the remarks after (3.6). Since πY (xn) →∞ we have xn+K ⊂ V for n large enough,
hence

‖χV (Q)ϕ(Q)SU∗xn
f‖ ≥ µ‖SU∗xn

f‖ = µ‖Sf‖ > 0.

On the other hand, for each ε > 0 one can choose V such that ‖χV (Q)ϕ(Q)S‖ < ε. Then we shall have
‖χV (Q)ϕ(Q)SU∗xn

f‖ ≤ ε‖f‖ so µ‖Sf‖ ≤ ε‖f‖ for all ε > 0 which is absurd.

4 Compatible groups and associated Hilbert C∗-modules

4.1 If X,Y is an arbitrary pair of lca groups then X ⊕ Y is the set X × Y equipped with the product
topology and group structure, so that X ⊕ Y is a lca group. Assume that X,Y are closed subgroups
(equipped with the induced lca group structure) of a lca group G. Let us identify X ∩ Y with the closed
subgroup ofX⊕Y consisting of the elements of the form (z, z) with z ∈ X ∩Y . Then we may construct
the lca quotient group

X ] Y ≡ (X ⊕ Y )/(X ∩ Y ). (4.1)

On the other hand, we may also consider the subgroup X + Y of G generated by X ∪ Y equipped with
the topology induced by G. Note that if H is a closed subgroup of G such that X ∪ Y ⊂ H and if we
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construct X +Y by using H instead of G then we get the same topological group: thus the group G does
not play a fundamental role in what follows. We have a natural map

φ : X ⊕ Y → X + Y defined by φ(x, y) = x− y (4.2)

which is a continuous surjective group morphismX⊕Y → X+Y withX∩Y as kernel hence it induces
a continuous bijective group morphism φ◦ : X ] Y → X + Y . Clearly φ is an open map if and only if
φ◦ is a homeomorphism and then X + Y is a locally compact group hence† a closed subgroup of X .

Definition 4.1. Two closed subgroups X,Y of a lca group are compatible if the map (4.2) is open.

Remark 4.2. If G is σ-compact then X,Y are compatible if and only if X + Y is closed. Indeed, a
continuous surjective morphism between two locally compact σ-compact groups is open (see Theorem
5.29 in [HR]; we thank Loı̈c Dubois and Benoit Pausader for enlightening discussions on this matter).

Other useful descriptions of the compatibility condition may be found in Lemma 6.1.1 from [Ma1] (or
Lemma 3.1 from [Ma3]), we quote now two of them. Let X/Y be the image of X in G/Y considered
as a subgroup of G/Y equipped with the induced topology. On the other hand, the group X/(X ∩ Y ) is
equipped with the locally compact quotient topology and we have a natural map X/(X ∩ Y ) → X/Y
which is a bijective continuous group morphism. Then X,Y are compatible if and only if the following
equivalent conditions are satisfied:

the natural map X/(X ∩ Y ) → X/Y is a homeomorphism, (4.3)
the natural map G/(X ∩ Y ) → G/X ×G/Y is closed. (4.4)

The next three lemmas will be needed later on.

Lemma 4.3. If X,Y are compatible then

CG(X) · CG(Y ) = CG(X ∩ Y ) (4.5)
CG(Y )|X = CX(X ∩ Y ). (4.6)

The second relation remains valid for the subalgebras Cc.

Proof: The fact that the inclusion ⊂ in (4.5) is equivalent to the compatibility of X and Y is shown in
Lemma 6.1.1 from [Ma1], so we only have to prove that the equality holds. Let E = (G/X) × (G/Y ).
If ϕ ∈ Co(G/X) and ψ ∈ Co(G/Y ) then ϕ⊗ψ denotes the function (s, t) 7−→ ϕ(s)ψ(t), which belongs
to Co(E). The subspace generated by the functions of the form ϕ ⊗ ψ is dense in Co(E) by the Stone-
Weierstrass theorem. If F is a closed subset of E then, by the Tietze extension theorem, each function in
Cc(F ) extends to a function in Cc(E), so the restrictions (ϕ ⊗ ψ)|F generate a dense linear subspace of
Co(F ). Let us denote by π the map x 7→ (πX(x), πY (x)), so π is a group morphism from G to E with
kernel V = X ∩ Y . Then by (4.4) the range F of π is closed and the quotient map π̃ : G/V → F is a
continuous and closed bijection, hence is a homeomorphism. So θ 7→ θ ◦ π̃ is an isometric isomorphism
of Co(F ) onto Co(G/V ). Hence for ϕ ∈ Co(G/X) and ψ ∈ Co(G/Y ) the function θ = (ϕ ⊗ ψ) ◦ π̃
belongs to Co(G/V ), it has the property θ ◦πV = ϕ◦πX ·ψ ◦πY , and the functions of this form generate
a dense linear subspace of Co(G/V ).

Now we prove (4.6). Recall that we identify CG(Y ) with a subset of Cu
b(G) by using ϕ 7→ ϕ ◦ πY so in

terms of ϕ the restriction map which defines CG(Y )|X is just ϕ 7→ ϕ|X/Y . Thus we have a canonical

† We recall that a subgroup H of a locally compact group G is closed if and only if H is locally compact for the induced
topology; see Theorem 5.11 in [HR].
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embedding CG(Y )|X ⊂ Cu
b(X/Y ) for an arbitrary pair X,Y . Then the continuous bijective group

morphism θ : X/(X ∩ Y ) → X/Y allows us to embed CG(Y )|X ⊂ Cu
b(X/(X ∩ Y )). That the range of

this map is not CX(X ∩ Y ) in general is clear from the example G = R, X = πZ, Y = Z. But if X,Y
are compatible then X/Y is closed in G/Y , so CG(Y )|X = Co(X/Y ) by the Tietze extension theorem,
and θ is a homeomorphism, hence we get (4.6).

Lemma 4.4. If X,Y are compatible then X2 = X ⊕X and Y (2) = {(y, y) | y ∈ Y } is a compatible
pair of closed subgroups of G2 = G⊕G.

Proof: Let D = X2 ∩ Y (2) = {(x, x) | x ∈ X ∩ Y }. Due to to (4.3) it suffices to show that the
natural map Y (2)/D → Y (2)/X2 is a homeomorphism. Here Y (2)/X2 is the image of Y (2) inG2/X2 ∼=
(G/X)⊕(G/X), more precisely it is the subset of pairs (a, a) with a = πX(z) and z ∈ Y , equipped with
the topology induced by (G/X)⊕(G/X). Thus the natural map Y/X → Y (2)/X2 is a homeomorphism.
On the other hand, the natural map Y/(X ∩ Y ) → Y (2)/D is clearly a homeomorphism. To finish the
proof note that Y/(X ∩ Y ) → Y/X is a homeomorphism because X,Y is a regular pair.

Lemma 4.5. If the closed subgroups X,Y of G are compatible then (X ∩ Y )⊥ = X⊥ + Y ⊥ and the
closed subgroups X⊥, Y ⊥ of G∗ are compatible.

Proof: X+Y is closed and, since (x, y) 7→ (x,−y) is a homeomorphism, the map S : X⊕Y → X+Y
defined by S(x, y) = x + y is an open surjective morphism. Then from the Theorem 9.5, Chapter 2
of [Gu] it follows that the adjoint map S∗ is a homeomorphism between (X + Y )∗ and its range. In
particular its range is a locally compact subgroup for the topology induced by X∗⊕Y ∗ hence is a closed
subgroup of X∗ ⊕ Y ∗, see the footnote on page 24. We have (X + Y )⊥ = X⊥ ∩ Y ⊥, cf. 23.29 in [HR].
Thus from X∗ ∼= G∗/X⊥ and similar representations for Y ∗ and (X + Y )∗ we see that

S∗ : G∗/(X⊥ ∩ Y ⊥) → G∗/X⊥ ⊕G∗/Y ⊥

is a closed map. But S∗ is clearly the natural map involved in (4.4), hence the pair X⊥, Y ⊥ is regular.
Finally, note that (X ∩Y )⊥ is always equal to the closure of the subgroupX⊥+Y ⊥, cf. 23.29 and 24.10
in [HR], and in our case X⊥ + Y ⊥ is closed.

4.2 The lca group X ] Y as defined in (4.1) is a quotient of X ⊕ Y hence, according to our general
conventions, we have an embedding Cc(X ] Y ) ⊂ Cu

b(X ⊕ Y ). Then the elements θ ∈ Cc(X ] Y ) are
functions θ : X × Y → C and we may think of them as kernels of integral operators.

Lemma 4.6. If θ ∈ Cc(X ]Y ) then (Tθ)(y) =
∫
Y
θ(y, z)u(z)dz defines an operator in LXY with norm

‖Tθ‖ ≤ C sup |θ| where C depends only on a compact which contains the support of θ.

Proof: By the Schur test

‖Tθ‖2 ≤ supy∈X

∫

Y

|θ(y, z)dz · supz∈Y

∫

X

|θ(y, z)dy.

LetK ⊂ X andL ⊂ Y be compact sets such thatK×L+D contains the support of θ. Thus if θ(y, z) 6= 0
then y ∈ x +K and z ∈ x + L for some k ∈ K and x ∈ X ∩ Y hence

∫
Y
|θ(y, z)dz ≤ sup |θ|λY (L).

Similarly
∫
X
|θ(y, z)dy ≤ sup |θ|λX(K).

Definition 4.7. TXY is the norm closure in LXY of the set of operators Tθ as in Lemma 4.6.
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We give now an alternative definition of TXY . If ϕ ∈ Cc(G) we define TXY (ϕ) : Cc(Y ) → Cc(X) by

(TXY (ϕ)u)(x) =
∫

Y

ϕ(x− y)u(y)dy. (4.7)

This operator depends only the restriction ϕ|X+Y hence, by the Tietze extension theorem, we could take
ϕ ∈ Cc(Z) instead of ϕ ∈ Cc(G), where Z is any closed subgroup of G containing X ∪ Y .

Proposition 4.8. TXY (ϕ) extends to a bounded operator L2(Y ) → L2(X), also denoted TXY (ϕ), and
for each compact K ⊂ G there is a constant C such that if suppϕ ⊂ K

‖TXY (ϕ)‖ ≤ C supx∈G |ϕ(x)|. (4.8)

The adjoint operator is given by TXY (ϕ)∗ = TY X(ϕ∗) where ϕ∗(x) = ϕ̄(−x). The space TXY coin-
cides with the closure in LXY of the set of operators of the from TXY (ϕ).

Proof: The set X + Y is closed in G hence the restriction map Cc(G) → Cc(X + Y ) is surjective. On
the other hand, the map φ◦ : X ] Y → X + Y , defined after (4.2), is a homeomorphism so it induces an
isomorphism ϕ → ϕ ◦ φ◦ of Cc(X + Y ) onto Cc(X ] Y ). Clearly TXY (ϕ) = Tθ if θ = ϕ ◦ φ, so the
proposition follows from Lemma 4.6.

We discuss now some properties of the spaces TXY . We set T ∗
XY ≡ (TXY )∗ ⊂ LY X .

Proposition 4.9. We have TXX = C∗(X) and:

T ∗
XY = TY X (4.9)

TXY = TXY · C∗(Y ) = C∗(X) ·TXY (4.10)
A|X ·TXY = TXY · A|Y (4.11)

where A is an arbitrary G-algebra.

Proof: The relations TXX = C∗(X) and (4.9) are obvious. Now we prove the first equality in (4.10)
(then the second one follows by taking adjoints). If C(η) is the operator of convolution in L2(Y ) with
η ∈ Cc(Y ) then a short computation gives

TXY (ϕ)C(η) = TXY (TGY (ϕ)η) (4.12)

for ϕ ∈ Cc(G). Since TGY (ϕ)η ∈ Cc(G) we get TXY (ϕ)C(η) ∈ TGX , so TXY · C∗(Y ) ⊂ TXY . The
converse follows by a standard approximation argument.

Let ϕ ∈ Cc(G) and θ ∈ A. We shall denote by θ(QX) the operator of multiplication by θ|X in L2(X)
and by θ(QY ) that of multiplication by θ|Y in L2(Y ). Choose some ε > 0 and let V be a compact
neighborhood of the origin in G such that |θ(z) − θ(z′)| < ε if z − z′ ∈ V . There are functions
αk ∈ Cc(G) with 0 ≤ αk ≤ 1 such that

∑
k αk = 1 on the support of ϕ and suppαk ⊂ zk + V for some

points zk. Below we shall prove:

‖TXY (ϕ)θ(QY )−∑
kθ(QX − zk)TXY (ϕαk)‖ ≤ ε‖TXY (|ϕ|)‖. (4.13)

This implies TXY · A|Y ⊂ A|X · TXY . If we take adjoints, use (4.9) and interchange X and Y in the
final relation, we obtain A|X · TXY = TXY · A|Y hence the proposition is proved. For u ∈ Cc(X) we
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have:

(TXY (ϕ)θ(QY )u)(x) =
∫

Y

ϕ(x− y)θ(y)u(y)dy =
∑

k

∫

Y

ϕ(x− y)αk(x− y)θ(y)u(y)dy

=
∑

k

∫

Y

ϕ(x− y)αk(x− y)θ(x− zk)u(y)dy + (Ru)(x)

=
∑

k

(θ(QX − zk)TXY (ϕαk)u) (x) + (Ru)(x).

We can estimate the remainder as follows

|(Ru)(x)| =
∣∣∣∣∣
∑

k

∫

Y

ϕ(x− y)αk(x− y)[θ(y)− θ(x− zk)]u(y)dy

∣∣∣∣∣ ≤ ε

∫

Y

|ϕ(x− y)u(y)|dy.

because x− zk − y ∈ V . This proves (4.13).

Proposition 4.10. TXY is a Hilbert C∗-submodule of LXY and

T ∗
XY ·TXY = CY (X ∩ Y ), TXY ·T ∗

XY = CX(X ∩ Y ). (4.14)

Thus TXY is a (CX(X ∩ Y ),CY (X ∩ Y ))-imprimitivity bimodule.

Proof: Due to (4.9), to prove the first relation in (4.14) we have to compute the clspan C of the operators
TXY (ϕ)TY X(ψ) with ϕ,ψ in Cc(G). We recall the notation G2 = G ⊕ G, this is a locally compact
abelian group and X2 = X ⊕X is a closed subgroup. Let us choose functions ϕk, ψk ∈ Cc(G) and let
Φ =

∑
k ϕk ⊗ ψk ∈ Cc(G2). If ψ†k(x) = ψk(−x), then

∑
k TXY (ϕk)TY X(ψ†k) is an integral operator

on L2(X) with kernel θX = θ|X2 where θ : G2 → C is given by

θ(x, x′) =
∫

Y

Φ(x+ y, x′ + y)dy.

Since the set of decomposable functions is dense in Cc(G2) in the inductive limit topology, an easy
approximation argument shows that C contains all integral operators with kernels of the same form as
θX but with arbitrary Φ ∈ Cc(G2). Let Y (2) be the closed subgroup of G2 ≡ G ⊕ G consisting of
the elements (y, y) with y ∈ Y . Then K = suppΦ ⊂ G2 is a compact, θ is zero outside K + Y (2),
and θ(a + b) = θ(a) for all a ∈ G2, b ∈ Y (2). Thus θ ∈ Cc(G2/Y (2)), with the usual identification
Cc(G2/Y (2)) ⊂ Cu

b(G2). From Proposition 2.48 in [Fo] it follows that reciprocally, any function θ in
Cc(G2/Y (2)) can be represented in terms of some Φ in Cc(G2) as above. Thus C is the closure of the set
of integral operators on L2(X) with kernels of the form θX with θ ∈ Cc(G2/Y (2)). According to Lemma
4.4, the pair of subgroups X2, Y (2) is regular, so we may apply Lemma 4.3 to get Cc(G2/Y (2))|X2 =
Cc(X2/D) where D = X2 ∩ Y (2) = {(x, x) | x ∈ X ∩ Y }. But by Lemma 3.2 the norm closure in LX

of the set of integral operators with kernel in Cc(X2/D) is CX/(X ∩ Y ). This proves (4.14).

It remains to prove that TXY is a Hilbert C∗-submodule of LXY , i.e. that we have

TXY ·T ∗
XY ·TXY = TXY . (4.15)

The first identity in (4.14) and (4.10) imply

TXY ·T ∗
XY ·TXY = TXY · C∗(Y ) · CY (X ∩ Y ) = TXY · CY (X ∩ Y ).
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From Lemma 4.3 we get

CY (X ∩ Y ) = CG(X ∩ Y )|Y = CG(X)|Y · CG(Y )|Y = CG(X)|Y
because CG(Y )|Y = C. Then by using Proposition 4.9 we obtain

TXY · CY (X ∩ Y ) = TXY · CG(X)|Y = CG(X)|X ·TXY = TXY

because CG(X)|X = C.

Corollary 4.11. We have

TXY = TXY C∗(Y ) = TXY CY (X ∩ Y ) (4.16)
= C∗(X)TXY = CX(X ∩ Y )TXY . (4.17)

Proof: If M is a Hilbert A -module then M = MA by Proposition 2.31 in [RW] for example, hence
Proposition 4.10 implies TXY = TXY CY (X ∩ Y ). The space CY (X ∩ Y ) is a C∗(Y )-bimodule and
CY (X ∩ Y ) = CY (X ∩ Y ) · C∗(Y ) by (3.4) hence we get CY (X ∩ Y ) = CY (X ∩ Y )C∗(Y ) by the
Cohen-Hewitt theorem. This proves the first equality in (4.16) and the other ones are proved similarly.

If G is a set of closed subgroups of G then the semilattice generated by G is the set of finite intersections
of elements of G.

Proposition 4.12. LetX,Y, Z be closed subgroups ofG such that any two subgroups from the semilattice
generated by the family {X,Y, Z} are compatible. Then:

TXZ ·TZY = TXY · CY (Y ∩ Z) = CX(X ∩ Z) ·TXY (4.18)
= TXY · CY (X ∩ Y ∩ Z) = CX(X ∩ Y ∩ Z) ·TXY . (4.19)

In particular, if Z ⊃ X ∩ Y then
TXZ ·TZY = TXY . (4.20)

Proof: We first prove (4.20) in the particular case Z = G. As in the proof of Proposition 4.10 we see that
TXG ·TGY is the the closure in LXY of the set of integral operators with kernels θXY = θ|X×Y where
θ : G2 → C is given by

θ(x, y) =
∫

G

∑

k

ϕk(x− z)ψk(z − y)dz =
∫

G

∑

k

ϕk(x− y − z)ψk(z)dz ≡ ξ(x− y)

where ϕk, ψk ∈ Cc(G) and ξ =
∑
k ϕk ∗ ψk convolution product on G. Since Cc(G) ∗ Cc(G) is dense

in Cc(G) in the inductive limit topology, the space TXG · TGY is the the closure of the set of integral
operators with kernels θ(x, y) = ξ(x− y) with ξ ∈ Cc(G). By Proposition 4.8 this is TXY .

Now we prove (4.18). From (4.20) with Z = G and (4.14) we get:

TXZ ·TZY = TXG ·TGZ ·TZG ·TGY

= TXG ·TGZ ·TZG ·TGY

= TXG · CG(Z) · C∗(G) ·TGY .

Then from Proposition (4.9) and Lemma 4.3 we get:

CG(Z) · C∗(G) ·TGY = CG(Z) ·TGY = TGY · CG(Z)|Y = TGY · CY (Y ∩ Z).
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We obtain (4.18) by using once again (4.20) with Z = G and taking adjoints. On the other hand, the
relation TXY = TXY · CY (X ∩ Y ) holds because of (4.16), so we have

TXY · CY (Y ∩ Z) = TXY · CY (X ∩ Y ) · CY (Y ∩ Z) = TXY · CY (X ∩ Y ∩ Z)

where we also used (4.5) and the fact that X ∩ Y , Z ∩ Y are compatible. Finally, to get (4.20) for
Z ⊃ X ∩ Y we use once again (4.14).

Definition 4.13. If X,Y are compatible subgroups and Z is a closed subgroup of X ∩ Y then we set

CXY (Z) ≡ TXY · CY (Z) = CX(Z) ·TXY . (4.21)

The equality above follows from (4.11) with A = CG(Z). We clearly have CXY (X ∩ Y ) = TXY and
CXX(Y ) = CX(Y ) if X ⊃ Y . Moreover

C ∗
XY (Z) ≡ CXY (Z)∗ = CY X(Z) (4.22)

because of (4.9).

Theorem 4.14. CXY (Z) is a Hilbert C∗-submodule of LXY such that

C ∗
XY (Z) · CXY (Z) = CY (Z) and CXY (Z) · C ∗

XY (Z) = CX(Z). (4.23)

In particular, CXY (Z) is a (CX(Z),CY (Z))-imprimitivity bimodule.

Proof: By using (4.22), the definition (4.21), and (4.5) we get

CXY (Z) · CY X(Z) = CX(Z) ·TXY ·TY X · CX(Z)
= CX(Z) · CX(X ∩ Y ) · C∗(X) · CX(Z)
= CX(Z) · C∗(X) · CX(Z) = CX(Z) · C∗(X)

which proves the second equality in (4.23). The first one follows by interchanging X and Y .

Below we give an intrinsic characterization of CXY (Z). We recall that for k ∈ G∗ the operator Vk acts
in L2(X) as multiplication by k|X and in L2(Y ) as multiplication by k|Y . Moreover, by Lemma 4.5 and
sinceX,Y are compatible, we have (X∩Y )⊥ = X⊥+Y ⊥ and the natural mapX⊥⊕Y ⊥ → X⊥+Y ⊥

is an open surjection. The orthogonals are taken relatively to G unless otherwise specified.

The following fact should be noted. LetH,K,L be topological spaces and let θ : H → K be a continuous
open surjection. If f : K → L and θ(h0) = k0 then limk→k0 f(k) exists if and only if limh→h0 f(θ(h))
exists and then the limits are equal. For example, in condition 2 of Theorem 4.15 one may replace G∗ by
(X + Y )∗ because the later is a quotient of the first.

Theorem 4.15. CXY (Z) is the set of T ∈ LXY satisfying U∗z TUz = T if z ∈ Z and such that

1. ‖(Ux − 1)T‖ → 0 if x→ 0 in X and ‖T (Uy − 1)‖ → 0 if y → 0 in Y ,

2. ‖V ∗k TVk − T‖ → 0 if k → 0 in G∗ and ‖(Vk − 1)T‖ → 0 if k → 0 in Z⊥.

Remark 4.16. Observe that from condition 2 we also get ‖T (Vk − 1)‖ → 0 so we may replace the
second part of this condition by the apparently stronger “‖(Vk − 1)T (∗)‖ → 0 if k → 0 in Z⊥”. Most of
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the assumptions of Theorem 4.15 are decay conditions in certain directions in P or Q space. Indeed, by
Lemma 3.3 condition 1 is equivalent to:

there are S1 ∈ C∗(X), S2 ∈ C∗(Y ) and R1, R2 ∈ LXY such that T = S1R1 = R2S2. (4.24)

Recall that C∗(X) ∼= Co(X∗) for example. Then the full version ‖(Vk − 1)T (∗)‖ → 0 of the second part
of condition 2 is equivalent to:

there are S1 ∈ CX(Z), S2 ∈ CY (Z) and R1, R2 ∈ LXY such that T = S1R1 = R2S2. (4.25)

Proof of Theorem 4.15: The set C of all the operators satisfying the conditions of the theorem is clearly
a closed subspace of LXY . We have CX,Y (Z) ⊂ C because (4.24), (4.25) are satisfied by any T ∈
CXY (Z) as a consequence of Theorem 4.14. Then we get:

CY (Z) = C ∗
XY (Z) · CXY (Z) ⊂ C ∗ · C , CX(Z) = CXY (Z) · C ∗

XY (Z) ⊂ C · C ∗.

We prove that equality holds in both these relations. We show, for example, that A ≡ TT ∗ belongs to
CX(Z) if T ∈ C and for this we shall use Theorem 3.4 with Y replaced by Z. That U∗zAUz = A for
z ∈ Z is clear. From (4.24) we get A = S1R1R

∗
1S

∗
1 with S1 ∈ C∗(X) hence ‖(Ux − 1)A‖ → 0 and

‖A(Ux − 1)‖ → 0 as x → 0 in X are obvious and imply ‖U∗xAUx − A‖ → 0. Then (4.25) implies
A = ψ(Q)C with ψ ∈ CX(Z) and bounded C hence (3.6) is satisfied.

That C CY (Z) ⊂ C is easily proven because T = SA has the properties (4.24) and (4.25) if S belongs to
C and A to CY (Z), cf. Theorem 3.4. From what we have shown above we get C C ∗C ⊂ C CY (Z) ⊂ C
so C is a Hilbert C∗-submodule of LXY . On the other hand, CXY (Z) is a Hilbert C∗-submodule of
LXY such that C ∗

XY (Z) · CXY (Z) = C ∗ · C and CXY (Z) · C ∗
XY (Z) = C · C ∗. Since CXY (Z) ⊂ C

we get C = CXY (Z) from Proposition 2.2.

Remark 4.17. We shall make several more comments on the conditions of Theorem 4.15. All the con-
vergences below are norm convergences. First, it is clear that the condition 1 is equivalent to

UxTUy → T if (x, y) → (0, 0) in X ⊕ Y. (4.26)

Let Z⊥X be the orthogonal of Z relatively to X , so that (X/Z)∗ ∼= Z⊥X ⊂ X∗. We similarly have
(Y/Z)∗ ∼= Z⊥Y ⊂ Y ∗. Then the condition (Vk − 1)T (∗) → 0 if k → 0 in Z⊥ means

‖(Vk − 1)T‖ → 0 if k → 0 in (X/Z)∗ and ‖T (Vk − 1)‖ → 0 if k → 0 in (Y/Z)∗ (4.27)

which may also be written as

VkTVp → T if (k, p) → (0, 0) in (X/Z)∗ ⊕ (Y/Z)∗. (4.28)

Now we shall prove that condition 2 of Theorem 4.15 can be re-expressed as follows:

VkT − TVp → 0 if k ∈ X∗, p ∈ Y ∗, k|X∩Y = p|X∩Y , k|Z = p|Z = 1, and (k, p) → (0, 0). (4.29)

For this we note that the map φ defined in (4.2) induces an embedding φ∗(k) = (k|X , k̄|Y ) of (X + Y )∗

into X∗ ⊕ Y ∗ whose range is the set of (k, p) ∈ X∗ ⊕ Y ∗ such that k|X∩Y = p|X∩Y .

If Z = X ∩ Y then Theorem 4.15 gives an intrinsic description of the space TXY . The case X ⊃ Y is
particularly simple.

Corollary 4.18. If X ⊃ Y then TXY is the set of T ∈ LXY satisfying U∗yTUy = T if y ∈ Y and such
that: UxT → T if x→ 0 in X , V ∗k TVk → T if k → 0 in X∗ and VkT → T if k → 0 in Y ⊥.
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We say that Z is complemented in X if X = Z ⊕ E for some closed subgroup E of X . If X,Z
are equipped with Haar measures then X/Z is equipped with the quotient Haar measure and we have
E ' X/Z. If Z is complemented in X and Y then CXY (Z) can be expressed as a tensor product.

Proposition 4.19. If Z is complemented in X and Y then

CXY (Z) ' C∗(Z)⊗KX/Z,Y/Z . (4.30)

If Y ⊂ X then TXY ' C∗(Y )⊗ L2(X/Y ) tensor product of Hilbert C∗-modules.

Proof: Note first that the tensor product in (4.30) is interpreted as the exterior tensor product of the
Hilbert C∗-modules C∗(Z) and KX/Z,Y/Z . Let X = Z ⊕E and Y = Z ⊕F for some closed subgroups
E,F . Then, as explained in §2.5, we may also view the tensor product as the norm closure in the space
of continuous operators from L2(Y ) ' L2(Z)⊗L2(F ) to L2(X) ' L2(Z)⊗L2(E) of the linear space
generated by the operators of the form T ⊗K with T ∈ C∗(Z) and K ∈ KEF .

We now show that under the conditions of the proposition X + Y ' Z ⊕ E ⊕ F algebraically and
topologically. The natural map θ : Z⊕E⊕F → Z+E+F = X+Y is a continuous bijective morphism,
we have to prove that it is open. SinceX,Y are compatible, the map (4.2) is a continuous open surjection.
If we represent X ⊕ Y ' Z ⊕ Z ⊕ E ⊕ F then this map becomes φ(a, b, c, d) = (a − b) + c + d. Let
ψ = ξ ⊕ idE ⊕ idF where ξ : Z ⊕ Z → Z is given by ξ(a, b) = a − b. Then ξ is continuous surjective
and open because if U is an open neighborhood of zero in Z then U − U is also an open neighborhood
of zero. Thus ψ : (Z ⊕ Z) ⊕ E ⊕ F → Z ⊕ E ⊕ F is a continuous open surjection and φ = θ ◦ ψ. So
if V is open in Z ⊕ E ⊕ F then there is an open U ⊂ Z ⊕ Z ⊕ E ⊕ F such that V = ψ(U) and then
θ(V ) = θ ◦ ψ(U) = φ(U) is open in Z + E + F .

Thus we may identify L2(Y ) ' L2(Z) ⊗ L2(F ) and L2(X) ' L2(Z) ⊗ L2(E) and we must describe
the norm closure of the set of operators TXY (ϕ)ψ(Q) with ϕ ∈ Cc(X + Y ) (cf. the remark after (4.7)
and the fact that X + Y is closed) and ψ ∈ Co(Y/Z). Since X + Y ' Z ⊕ E ⊕ F and Y = Z ⊕ F it
suffices to describe the clspan of the operators TXY (ϕ)ψ(Q) with ϕ = ϕZ ⊗ ϕE ⊗ ϕF and ϕZ , ϕE , ϕF
continuous functions with compact support on Z,E, F respectively and ψ = 1⊗η where 1 is the function
identically equal to 1 on Z and η ∈ Co(F ). Then, if x = (a, c) ∈ Z×E and y = (b, d) ∈ Z×F , we get:

(TXY (ϕ)ψ(Q)u)(a, c) =
∫

Z×F
ϕZ(a− b)ϕE(c)ϕF (d)η(d)u(b, d)dbdd.

But this is just C(ϕZ) ⊗ |ϕE〉〈η̄ϕ̄F | where |ϕE〉〈η̄ϕ̄F | is a rank one operator L2(F ) → L2(E) and
C(ϕZ) is the operator of convolution by ϕZ on L2(Z).

5 Graded Hilbert C∗-modules

5.1 The natural framework for the systems considered in this paper is that of C∗-algebras graded by
semilattices. We recall below their definition and a result which plays an important role in our arguments.
Let S be a semilattice, i.e. S is a set equipped with an order relation≤ such that the lower bound σ∧ τ of
each couple of elements σ, τ exists. We say that S is atomic if S has a smallest element o ≡ minS and
if each σ 6= o is minorated by an atom, i.e. by some α ∈ S with α 6= o and such that o ≤ τ ≤ α⇒ τ =
o or τ = α. In this case we denote by P(S) the set of atoms of S .
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Definition 5.1. A C∗-algebra A is called S-graded if a linearly independent family of C∗-subalgebras
{A (σ)}σ∈S of A has been given such that

∑c
σ∈S A (σ) = A and A (σ)A (τ) ⊂ A (σ ∧ τ) for all σ, τ .

The algebras A (σ) are the components of A .

This notion has been introduced in [BG1, DaG1] but with the supplementary assumption that the sum
of a finite number of A (σ) be closed. That this condition is automatically satisfied has been shown in
[Ma1] where one may also find a detailed study of this class of algebras. The following has been proved
in [DaG1] (see also [DaG3, Sec. 3]). Let A≥σ ≡

∑c
τ≥σ A (τ), this is clearly a C∗-subalgebra of A .

Theorem 5.2. For each σ ∈ S there is a unique linear continuous map P≥σ : A → A such that
P≥σA = A if A ∈ A (τ) for some τ ≥ σ and P≥σA = 0 otherwise. The map P≥σ is an idempotent
morphism of the algebra A onto the subalgebra A≥σ. If S is atomic then PA = (P≥αA)α∈P(S) defines
a morphism P : A → ∏

α∈P(S) A≥α with A (o) as kernel. This gives us a canonical embedding

A /A (o) ⊂ ∏
α∈P(S) A≥α. (5.1)

This result has important consequences in the spectral theory of the operators of interest to us: it allows
one to compute their essential spectrum and to prove the Mourre estimate. For the case of finite S this
has been pointed out in [BG1, BG2] (see Theorems 3.1 and 4.4 in [BG2] for example) and then extended
to the general case in [DaG1, DaG2]. We shall recall here an abstract version of the HVZ theorem which
follows from (5.1).

We assume that S is atomic so that A comes equipped with a remarkable ideal A (o). Then for A ∈ A
we define its essential spectrum (relatively to A (o)) by the formula

Spess(A) ≡ Sp(PA). (5.2)

In our concrete examples A is represented on a Hilbert space H and A (o) = K(H), so we get the usual
Hilbertian notion of essential spectrum.

In order to extend this to unbounded operators it is convenient to define an observable affiliated to A as
a morphism H : Co(R) → A . We set ϕ(H) ≡ H(ϕ). If A is realized on H then a self-adjoint operator
on H such that (H + i)−1 ∈ A is said to be affiliated to A ; then H(ϕ) = ϕ(H) defines an observable
affiliated to A (see Appendix A in [DaG3] for a precise description of the relation between observables
and self-adjoint operators affiliated to A ). The spectrum of an observable is by definition the support of
the morphism H:

Sp(H) = {λ ∈ R | ϕ ∈ Co(R), ϕ(λ) 6= 0 ⇒ ϕ(H) 6= 0}. (5.3)

Now note that PH ≡ P ◦ H is an observable affiliated to the quotient algebra A /A (o) so we may
define the essential spectrum of H as the spectrum of PH . Explicitly, we get:

Spess(H) = {λ ∈ R | ϕ ∈ Co(R), ϕ(λ) 6= 0 ⇒ ϕ(H) /∈ A (o)}. (5.4)

Now the first assertion of the next theorem follows immediately from 5.2. For the second assertion, see
the proof of Theorem 2.10 in [DaG2]. By

⋃
we denote the closure of the union.

Theorem 5.3. Let S be atomic. If H is an observable affiliated to A then H≥α = P≥αH is an
observable affiliated to A≥α and we have:

Spess(H) =
⋃
α∈P(S)Sp(H≥α). (5.5)

If for each A ∈ A the set of P≥αA with α ∈ P(S) is compact in A then the union in (5.5) is closed.
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5.2 A subset T of a semilattice S is called a sub-semilattice if σ, τ ∈ T ⇒ σ ∧ τ ∈ T . We say that T is
an ideal of S if σ ≤ τ ∈ T ⇒ σ ∈ T . If σ ∈ S then we denote

S≥σ = {τ ∈ S | τ ≥ σ}, S≤σ = {τ ∈ S | τ ≤ σ}, S6≥σ = {τ ∈ S | τ 6≥ σ}. (5.6)

Then S≥σ is a sub-semilattice while the sets S≤σ and S6≥σ are ideals. If T is an ideal of S and S is atomic
then T is atomic, we have min T = minS and P(T ) = P(S) ∩ T .

An S-graded C∗-algebra A is supported by a sub-semilattice T if A (σ) = {0} for σ /∈ T . Then clearly
A is also T -graded. The smallest sub-semilattice with this property will be called support of A . On the
other hand, if T is a sub-semilattice of S and A is a T -graded algebra then A is canonically S-graded:
we set A (σ) = {0} for σ ∈ S \ T .

For each T ⊂ S let A (T ) =
∑c
σ∈T A (σ) (if T is finite the sum is already closed). If T is a sub-

semilattice then A (T ) is a C∗-subalgebra of A and if T is an ideal then A (T ) is an ideal of A .

Following [Ma1, Ma2] we say that B ⊂ A is a graded C∗-subalgebra if B is a C∗-subalgebra of
A and it is equal to the closure of

∑
σ B ∩ A (σ). Then B has a natural structure of graded C∗-

algebra: B(σ) = B ∩ A (σ). If B is also an ideal of A we shall say graded ideal. For example,
A≥σ = A (S≥σ) is a graded C∗-subalgebra of A supported by S≥σ while A (S≤σ) and A (S6≥σ) are
graded ideals supported by S≤σ and S6≥σ respectively.

5.3 The notion of graded Hilbert C∗-module that we use is due to George Skandalis [Sk].

Definition 5.4. Let S be a semilattice and A an S-graded C∗-algebra. A Hilbert A -module M is an
S-graded Hilbert A -module if a linearly independent family {M (σ)}σ∈S of closed subspaces of M is
given such that

∑
σ M (σ) is dense in M and:

M (σ)A (τ) ⊂ M (σ ∧ τ) and 〈M (σ)|M (τ)〉 ⊂ A (σ ∧ τ) for all σ, τ ∈ S. (5.7)

Observe that A equipped with its canonical Hilbert A -module structure is an S-graded Hilbert A -
module. Note that from (5.7) it follows that each M (σ) is a Hilbert A (σ)-module and if σ ≤ τ then
M (σ) is an A (τ)-module.

From (5.7) and the discussion in §2.1 we see that the imprimitivity algebra K(M (σ)) of the Hilbert
A (σ)-module M (σ) is naturally identified with the clspan in K(M ) of the elements MM∗ with M ∈
M (σ). Thus K(M (σ)) is identified with a C∗-subalgebra of K(M ). We use this identification below.

Theorem 5.5. If M is a graded Hilbert A -module then K(M ) becomes a graded C∗-algebra if we
define K(M )(σ) = K(M (σ)). If M ∈ M (σ) and N ∈ M (τ) then there are elements M ′ and N ′ in
M (σ ∧ τ) such that MN∗ = M ′N ′∗; in particular MN∗ ∈ K(M )(σ ∧ τ).

Proof: As explained before, K(M )(σ) are C∗-subalgebras of K(M ). To show that they are linearly
independent, let T (σ) ∈ K(M )(σ) such that T (σ) = 0 but for a finite number of σ and assume∑
σ T (σ) = 0. Then for each M ∈ M we have

∑
σ T (σ)M = 0. Note that the range of T (σ) is

included in M (σ). Since the linear spaces M (σ) are linearly independent we get T (σ)M = 0 for all σ
and M hence T (σ) = 0 for all σ.

We now prove the second assertion of the proposition. Since M (σ) is a Hilbert A (σ)-module there are
M1 ∈ M (σ) and S ∈ A (σ) such that M = M1S, cf. the Cohen-Hewitt theorem or Lemma 4.4 in
[La]. Similarly, N = N1T with N1 ∈ M (τ) and T ∈ A (τ). Then MN∗ = M1(ST ∗)N∗

1 and ST ∗ ∈
A (σ∧τ) so we may factorize it as ST ∗ = UV ∗ with U, V ∈ A (σ∧τ), henceMN∗ = (M1U)(N1V )∗.
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By using (5.7) we see that M ′ = M1U and N ′ = N1V belong to M (σ ∧ τ). In particular, we have
MN∗ ∈ K(M )(σ ∧ τ) if M ∈ M (σ) and N ∈ M (τ).

Observe that the assertion we just proved implies that
∑
σ K(M )(σ) is dense in K(M ). It remains to

see that K(M )(σ)K(M )(τ) ⊂ K(M )(σ∧ τ). For this it suffices that M〈M |N〉N∗ be in K(M )(σ∧ τ)
if M ∈ M (σ) and N ∈ M (τ). Since 〈M |N〉 ∈ A (σ ∧ τ) we may write 〈M |N〉 = ST ∗ with
S, T ∈ A (σ ∧ τ) so M〈M |N〉N∗ = (MS)(NT )∗ ∈ K(M )(σ ∧ τ) by (5.7).

We recall that the direct sum of a family {Mi} of Hilbert A -modules is defined as follows: ⊕iMi is the
space of elements (Mi)i ∈

∏
i Mi such that the series

∑
i〈Mi|Mi〉 converges in A equipped with the

natural A -module structure and with the A -valued inner product defined by

〈(Mi)i|(Ni)i〉 =
∑
i〈Mi|Ni〉. (5.8)

The algebraic direct sum of the A -modules Mi is dense in ⊕iMi.

It is easy to check that if each Mi is graded and if we set M (σ) = ⊕iMi(σ) then M becomes a graded
Hilbert A -module. For example, if N is a graded Hilbert A -module then N ⊕ A is a graded Hilbert
A -module and so the linking algebraK(N ⊕A ) is equipped with a graded algebra structure. We recall
[RW, p. 50-52] that we have a natural identification

K(N ⊕A ) =
(K(N ) N

N ∗ A

)
(5.9)

and by Theorem 5.5 this is a graded algebra whose σ-component is equal to

K(N (σ)⊕A (σ)) =
(K(N (σ)) N (σ)

N (σ)∗ A (σ)

)
. (5.10)

If N is a C∗-submodule of L(E ,F) and if we set N ∗ ·N = A ,N ·N ∗ = B then the linking algebra(
B M

M ∗ A

)
of M is a C∗-algebra of operators on F ⊕ E .

Some of the graded Hilbert C∗-modules which we shall use later on will be constructed as follows.

Proposition 5.6. Let E ,F be Hilbert spaces and let M ⊂ L(E ,F) be a Hilbert C∗-submodule, so that
A ≡ M ∗ ·M ⊂ L(E) is a C∗-algebra and M is a full Hilbert A -module. Let C be a C∗-algebra of
operators on E graded by the family of C∗-subalgebras {C(σ)}σ∈S . Assume that we have

A · C(σ) = C(σ) ·A ≡ C (σ) for all σ ∈ S (5.11)

and that the family {C (σ)} of subspaces ofL(F) is linearly independent. Then the C (σ) areC∗-algebras
of operators on E and C =

∑c
σ C (σ) is aC∗-algebra graded by the family {C (σ)}. If N (σ) ≡ M ·C(σ)

then N =
∑c
σ N (σ) is a full Hilbert C -module graded by {N (σ)}.

Proof: We have

C (σ) · C (τ) = A · C(σ) ·A · C(τ) = A ·A · C(σ) · C(τ) ⊂ A · C(σ ∧ τ) = C (σ ∧ τ).

This proves that the C (σ) are C∗-algebras and that C is S-graded. Then:

N (σ) ·C (τ) = M ·C(σ) ·C(τ) ·A ⊂ M ·C(σ∧τ) ·A = M ·A ·C(σ∧τ) = M ·C(σ∧τ) = N (σ∧τ)
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and

N (σ)∗ ·N (τ) = C(σ) ·M ∗ ·M ·C(τ) = C(σ) ·A ·C(τ) = A ·C(σ) ·C(τ) ⊂ A ·C(σ∧τ) = C (σ∧τ).

Observe that this computation also gives N (σ)∗ ·N (σ) = C (σ). Then
(∑

σ
N (σ)∗

)(∑
σ

N (σ)
)

=
∑

σ,τ
N (σ)∗N (τ) ⊂

∑
σ,τ

C (σ ∧ τ) ⊂
∑

σ
C (σ)

and by the preceding remark we get N ∗ ·N = C so N is a full Hilbert C -module. To show the grading
property it suffices to prove that the family of subspaces N (σ) is linearly independent. Assume that∑
N(σ) = 0 with N(σ) ∈ N (σ) and N(σ) = 0 for all but a finite number of σ. Assuming that there

are non-zero elements in this sum, let τ be a maximal element of the set of σ such that N(σ) 6= 0. From∑
σ1,σ2

N(σ1)∗N(σ2) = 0 and sinceN(σ1)∗N(σ2) ∈ C (σ1∧σ2) we get
∑
σ1∧σ2=σ

N(σ1)∗N(σ2) = 0
for each σ. Take here σ = τ and observe that if σ1∧σ2 = τ and σ1 > τ or σ2 > τ thenN(σ1)∗N(σ2) =
0. Thus N(τ)∗N(τ) = 0 so N(τ) = 0. But this contradicts the choice of τ , so N(σ) = 0 for all σ.

6 Graded C∗-algebras associated to semilattices of groups

In this section we construct C∗-algebras graded by semilattices of the following type.

Definition 6.1. An inductive semilattice S of compatible lca groups is a set S of lca groups (equipped
with Haar measures) such that for all X,Y ∈ S the following three conditions are satisfied:

(i) if X ⊃ Y then the topology and the group structure of Y coincide with those induced by X ,
(ii) X ∩ Y ∈ S ,

(iii) there is Z ∈ S such that X,Y are compatible subgroups of Z.

According to the Remark 4.2, if all X ∈ S are σ-compact then the condition (iii) is equivalent to:

(iii′) there is Z ∈ S with X ∪ Y ⊂ Z such that the subgroup of Z generated by X ∪ Y in Z be closed.

One may realize S as a set of subgroups of the inductive limit group X = limX∈S X equipped with the
final topology defined by the embeddings X ↪→ X but note that this is not a group topology in general.

In our main result we shall have to assume that S satisfies one more condition:

Definition 6.2. We say that S has non-compact quotients if: X ) Y ⇒ X/Y is not compact.

The following notations are convenient. Since eachX ∈ S comes with a Haar measure the Hilbert spaces

H(X) ≡ L2(X) (6.1)

are well defined. If Y ⊂ X are groups in S then their quotient X/Y is equipped with the quotient
measure so H(X/Y ) = L2(X/Y ) is also well defined.

We make now some comments in connection with the preceding conditions and then give examples.

Remarks 6.3. Since a subgroup of a locally compact group is closed if and only if it is locally compact
for the induced topology, condition (i) can be restated as: if X ⊃ Y then Y is a closed subgroup of
X equipped with the induced lca group structure. In particular, X/Y will then be a lca group hence
Definition 6.2 makes sense. By condition (ii) the set X ∩ Y is equipped with a lca group structure. But
X ∩ Y ⊂ X hence by using (i) we see that X ∩ Y is a closed subgroup of X and its lca group structure
coincides with that induced by X . Of course, we may replace here X by Y . If Z is a lca group which
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contains X,Y as closed subgroups then the subgroup X + Y of Z generated by X ∪ Y is closed and the
map (4.2) is open. If the condition (iii) is fulfilled by some Z then it will hold for an arbitrary Z ∈ S
containing X ∪Y . Indeed, if Z ′ ∈ S is such that X ∪Y ⊂ Z ′ then Z ∩Z ′ is a closed subgroup of Z and
of Z ′ equipped with the induced lca group structure and so we get the same topological group X + Y if
we use Z, Z ∩ Z ′, or Z ′ for its definition.

Remark 6.4. If T is a finite part of S then there is X ∈ S such that Y ⊂ X for all Y ∈ T . This follows
by induction from condition (iii). Moreover, if S has a maximal element X , then X is the largest element
of S . Thus, if S is finite then there is a largest element X in S and S is a set of closed subgroups of X .

Remark 6.5. The C∗-algebras that we construct depend on the choice of Haar measures λX (or simply
dx when there is no ambiguity) on the groups X ∈ S but different choices lead to isomorphic algebras.
Note that if an open relatively compact neighborhood Ω of zero is given on some X then one can fix the
Haar measure of the subgroups Y ⊂ X by requiring λY (Ω ∩ Y ) = 1.

Example 6.6. The simplest and most important example one should have in mind is the following: X is
a σ-compact lca group and S is a set of closed subgroups of X with X ∈ S and such that: if X,Y ∈ S
then X ∩ Y ∈ S , X + Y is closed, and X/Y is not compact if X ) Y .

Example 6.7. One may take S equal to the set of all finite dimensional vector subspaces of a vector space
over an infinite locally compact field (such a field is not compact): this is the main example in the context
of the many-body problem. Of course, subgroups which are not vector subspaces may be considered. We
recall (see Theorem 9.11 in [HR]) that the closed additive subgroups of a finite dimensional real vector
space X are of the form Y = E + L where E is a vector subspace of X and L is a lattice in a vector
subspace F of X such that E ∩ F = {0}. More precisely, L =

∑
k Zfk where {fk} is a basis in F .

Thus F/L is a torus and if G is a third vector subspace such that X = E ⊕ F ⊕ G then the space
X/Y ' (F/L)⊕G is a cylinder with F/L as basis.

Example 6.8. This is a version of the preceding example and is the natural framework for the nonrel-
ativistic many-body problem. Let X be a real prehilbert space and let S be a set of finite dimensional
subspaces of X such that if X,Y ∈ S then X ∩ Y ∈ S and X + Y is included in some subspace of S
(there is a canonical choice, namely the set of all finite dimensional subspaces of X ). Then eachX ∈ S is
an Euclidean space and so is equipped with a canonical Haar measure and there is a canonical self-adjoint
operator in H(X), the (positive) Laplacian ∆X associated to the Euclidean structure.

In what follows we fix S as in Definition 6.1. For each X ∈ S let S(X) be the set of Y ∈ S such that
Y ⊂ X . Then by Lemma 4.3 the space

CX ≡ ∑c
Y ∈S(X)CX(Y ) (6.2)

is an X-algebra so CX oX is well defined and we clearly have

CX ≡ CX oX =
∑c
Y ∈S(X)CX(Y ). (6.3)

For each pair X,Y ∈ S with X ⊃ Y we set

CYX ≡ ∑c
Z∈S(Y )CX(Z). (6.4)

This is also an X-algebra so we may define C Y
X = CYX oX and we have

C Y
X ≡ CYX oX =

∑c
Z∈S(Y )CX(Z). (6.5)

If X = Y ⊕ Z then CYX ' CY ⊗ 1 and C Y
X ' CY ⊗ C∗(Z).
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Lemma 6.9. Let X ∈ S and Y ∈ S(X). Then

CYX = CX(Y ) · CX and C Y
X = CX(Y ) · CX = CX · CX(Y ). (6.6)

Moreover, if Z ∈ S(X) then

CYX · CZX = CY ∩ZX and C Y
X · C Z

X = C Y ∩Z
X . (6.7)

Proof: The abelian case is a consequence of (4.5) and a straightforward computation. For the crossed
product algebras we use CX(Y ) ·CX = CX(Y ) · CX · C∗(X) and the first relation in (6.6) for example.

Lemma 6.10. For arbitrary X,Y ∈ S we have

CX ·TXY = TXY · CY = TXY · CX∩YY = CX∩YX ·TXY . (6.8)

Proof: If G ∈ S contains X ∪ Y then clearly

CX ·TXY =
∑c
Z∈S(X)CX(Z) ·TXY =

∑c
Z∈S(X)CG(Z)|X ·TXY .

From (4.11) and (4.6) we get

CG(Z)|X ·TXY = TXY · CY (Y ∩ Z).

Since Y ∩Z runs over S(X∩Y ) when Z runs over S(X) we obtain CX ·TXY = TXY ·CX∩YY . Similarly
TXY · CY = CX∩YX ·TXY . On the other hand CX∩YX = CX∩YG |X and similarly with X,Y interchanged,
hence CX∩YX ·TXY = TXY · CX∩YY because of (4.11).

Definition 6.11. If X,Y ∈ S then CXY ≡ TXY · CY = CX ·TXY . In particular CXX = CX .

The C∗-algebra CX is realized on the Hilbert space H(X) and we think of it as the algebra of energy
observables of a system with X as configuration space. For X 6= Y the space CXY is a closed linear
space of operators H(Y ) → H(X) canonically associated to the semilattice of groups S(X ∩ Y ). We
call these CXY coupling spaces because they will determine the way the systems corresponding toX and
Y are allowed to interact.

Proposition 6.12. Let X,Y, Z ∈ S . Then C ∗
XY = CY X and

CXZ · CZY = CXY · CX∩Y ∩ZY = CX∩Y ∩ZX · CXY ⊂ CXY . (6.9)

In particular CXZ · CZY = CXY if Z ⊃ X ∩ Y .

Proof: The first assertion follows from (4.9). From the Definition 6.11 and Proposition 4.12 we then get

CXZ · CZY = CX ·TXZ ·TZY · CY = CX ·TXY · CY (X ∩ Y ∩ Z) · CY
= TXY · CY · CY (X ∩ Y ∩ Z) · CY = TXY · CY (X ∩ Y ∩ Z) · CY .

But CY (X ∩ Y ∩ Z) · CY = CX∩Y ∩ZY by Lemma 6.9. For the last inclusion in (6.9) we use the obvious
relation CX∩Y ∩ZY · CY ⊂ CY . The last assertion of the proposition follows from (6.8).

The following theorem is a consequence of the results obtained so far.
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Theorem 6.13. CXY is a Hilbert C∗-submodule of LXY such that

C ∗
XY · CXY = CX∩Y

Y and CXY · C ∗
XY = CX∩Y

X . (6.10)

In particular, CXY is a (CX∩Y
X ,CX∩Y

Y )-imprimitivity bimodule.

If X ∩Y is complemented in X and Y then CXY can be expressed (non canonically) as a tensor product.

Proposition 6.14. If X ∩ Y is complemented in X and Y then

CXY ' CX∩Y ⊗KX/(X∩Y ),Y/(X∩Y ).

In particular, if X ⊃ Y then CXY ' CY ⊗H(X/Y ).

Proof: If X = (X ∩ Y )⊕ E and Y = (X ∩ Y )⊕ F then we have to show that CXY ' CX∩Y ⊗KEF

where the tensor product may be interpreted either as the exterior tensor product of the Hilbert C∗-
modules CX∩Y and KEF or as the norm closure in the space of continuous operators from L2(Y ) '
L2(X ∩ Y ) ⊗ L2(F ) to L2(X) ' L2(X ∩ Y ) ⊗ L2(E) of the algebraic tensor product of CX∩Y and
KEF . From Proposition 4.19 with Z = X ∩ Y we get TXY ' C∗(X ∩ Y )⊗KEF . The relations (6.8)
and the Definition 6.11 imply CXY = TXY · CX∩YY and we clearly have

CX∩YY =
∑c
Z∈S(X∩Y )CY (Z) ' ∑c

Z∈S(X∩Y )CX∩Y (Z)⊗ Co(F ) ' CX∩Y ⊗ Co(F ).

Then we get

CXY ' C∗(X ∩ Y )⊗KEF · CX∩Y ⊗ Co(F ) =
(C∗(X ∩ Y ) · CX∩Y

)⊗ (
KEF · Co(F )

)

and this is CX∩Y ⊗KEF .

From now on we suppose that S has non-compact quotients.

Theorem 6.15. The C∗-algebras CX and CX are S(X)-graded by the decompositions (6.2) and (6.3).

This is a particular case of results due to A. Mageira [Ma1, Ma3, Propositions 6.1.2, 6.1.3 and 4.2.1] and
is rather difficult to prove in this generality. We mention that in [Ma1, Ma3] the groups are allowed to
be not commutative and the treatment is so that condition (iv) is not needed. The case when S consists
of linear subspaces of a finite dimensional real vector space (this is of interest in physical applications)
has been considered in [BG1, DaG1] and the corresponding version of Theorem 6.15 is proved there by
elementary means.

The following conventions are natural for what follows:

X,Y ∈ S and Y /∈ S(X) ⇒ CX(Y ) = CX(Y ) = {0}, (6.11)
X,Y, Z ∈ S and Z 6⊂ X ∩ Y ⇒ CXY (Z) = {0}. (6.12)

From now by “graded” we mean S-graded. Then CX =
∑c
Y ∈S CX(Y ) is a graded C∗-algebras sup-

ported by the ideal S(X) of S, in particular it is a graded ideal in CX . With the notations of Subsection
5.2 the algebra C Y

X = CX(S(Y )) is a graded ideal of CX supported by S(Y ). Similarly for CX and CYX .

Since CX∩Y
X and CX∩Y

Y are ideals in CX and CY respectively, Theorem 6.13 allows us to equip CXY
with (right) Hilbert CY -module and left Hilbert CX -module structures (which are not full in general).

Theorem 6.16. The Hilbert CY -module CXY is graded by the family of C∗-submodules {CXY (Z)}Z∈S .
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Proof: We use Proposition 5.6 with M = TXY and CY (Z) as algebras C(σ). Then A = CY (X ∩ Y )
by (4.14) hence A · CY (Z) = CY (Z) and the conditions of the proposition are satisfied.

Remark 6.17. The following more precise statement is a consequence of the Theorem 6.16: the Hilbert
CX∩Y
Y -module CXY is S(X ∩ Y )-graded by the family of C∗-submodules {CXY (Z)}Z∈S(X∩Y ).

Finally, we may construct the C∗-algebra C which is of main interest for us. We shall describe it as an
algebra of operators on the Hilbert space

H ≡ HS =
⊕

X∈S
H(X) (6.13)

which is a kind of total Fock space (without symmetrization or anti-symmetrization) determined by the
semilattice S . Note that if the zero group O = {0} belongs to S then H contains H(O) = C as a
subspace, this is the vacuum sector. Let ΠX be the orthogonal projection of H onto H(X) and let us
think of its adjoint Π∗X as the natural embedding H(X) ⊂ H. Then for any pair X,Y ∈ S we identify

CXY ≡ Π∗XCXY ΠY ⊂ L(H). (6.14)

Thus we realize {CXY }X,Y ∈S as a linearly independent family of closed subspaces of L(H) such that
C ∗
XY = CY X and CXZCZ′Y ⊂ CXY for allX,Y, Z, Z ′ ∈ S . Then by what we proved before, especially

Proposition 6.12, the space
∑
X,Y ∈S CXY is a ∗-subalgebra of L(H) hence its closure

C ≡ CS =
∑c
X,Y ∈SCXY . (6.15)

is a C∗-algebra of operators on H. Note that one may view C as a matrix (CXY )X,Y ∈S .

In a similar way one may associate to the algebras TXY a closed self-adjoint subspace T ⊂ L(H). It is
also useful to define a new subspace T ◦ ⊂ L(H) by T ◦

XY = TXY if X ∼ Y and T ◦ = {0} if X 6∼ Y .
Recall that X ∼ Y means X ⊂ Y or Y ⊂ X . Clearly T ◦ is a closed self-adjoint linear subspace of T .
Finally, let C be the diagonal C∗-algebra C ≡ ⊕XCX of operators on H.

Proposition 6.18. We have C = T · C = C ·T = T ·T = T ◦ ·T ◦.

Proof: The first two equalities are an immediate consequence of the Definition 6.11. To prove the third
equality we use Proposition 4.12, more precisely the relation

TXZ ·TZY = TXY · CY (X ∩ Y ∩ Z) = CXY (X ∩ Y ∩ Z)

which holds for any X,Y, Z. Then
∑c
ZTXZ ·TZY =

∑c
ZCXY (X ∩ Y ∩ Z) =

∑c
ZCXY (Z) = CXY

which is equivalent to T ·T = C . Now we prove the last equality in the proposition. We have
∑c
ZT ◦

XZ ·T ◦
ZY = closure of the sum

∑
Z∼X
Z∼Y

TXZ ·TZY .

In the last sum we have four possibilities: Z ⊃ X ∪ Y , X ⊃ Z ⊃ Y , Y ⊃ Z ⊃ X , and Z ⊂ X ∩ Y . In
the first three cases we have Z ⊃ X ∩ Y hence TXZ · TZY = TXY by (4.20). In the last case we have
TXZ ·TZY = TXY · CY (Z) by (4.18). This proves T ◦ ·T ◦ = C .

Finally, we are able to equip C with an S-graded C∗-algebra structure.
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Theorem 6.19. For each Z ∈ S the space C (Z) ≡ ∑c
X,Y ∈S CXY (Z) is a C∗-subalgebra of C . The

family {C (Z)}Z∈S defines a graded C∗-algebra structure on C .

Proof: We first prove the following relation:

CXZ(E) · CZY (F ) = CXY (E ∩ F ) if X,Y, Z ∈ S and E ∈ S(X ∩ Z), F ∈ S(Y ∩ Z). (6.16)

From Definition 4.13, Proposition 4.12, relations (4.5) and (4.11), and F ⊂ Y ∩ Z, we get

CXZ(E) · CZY (F ) = CX(E) ·TXZ ·TZY · CY (F )
= CX(E) ·TXY · CY (Y ∩ Z) · CY (F )
= CX(E) ·TXY · CY (F )
= TXY · CY (Y ∩ E) · CY (F )
= TXY · CY (Y ∩ E ∩ F ).

At the next to last step we used CX(E) = CG(E)|X for some G ∈ S containing both X and Y and then
(4.11), (4.6). Finally, we use CY (Y ∩E ∩ F ) = CY (E ∩ F ) and the Definition 4.13. This proves (6.16).
Due to the conventions (6.11), (6.12) we now get from (6.16) for E,F ∈ S

∑
Z∈SCXZ(E) · CZY (F ) = CXY (E ∩ F ).

Thus C (E)C (F ) ⊂ C (E∩F ), in particular C (E) is aC∗-algebra. It remains to be shown that the family
of C∗-algebras {C (E)}E∈S is linearly independent. Let A(E) ∈ C (E) such that A(E) = 0 but for a
finite number of E and assume that

∑
E A(E) = 0. Then for all X,Y ∈ S we have

∑
E ΠXA(E)Π∗Y =

0. Clearly ΠXA(E)Π∗Y ∈ CXY (E) hence from Theorem 6.16 we get ΠXA(E)Π∗Y = 0 for all X,Y so
A(E) = 0 for all E.

We now point out some interesting subalgebras of C . If T ⊂ S is any subset let

CT ≡
∑c
X,Y ∈T CXY and HT ≡ ⊕X∈TH(X). (6.17)

Note that the sum defining CT is already closed if T is finite and that CT is a C∗-algebra which lives on
the subspace HT of H. In fact, if ΠT is the orthogonal projection of H onto HT then

CT = ΠT C ΠT (6.18)

and this is a C∗-algebra because C ΠT C ⊂ C by Proposition 6.12. It is easy to check that CT is a graded
C∗-subalgebra of C supported by the ideal

⋃
X∈T S(X) generated by T in S . Indeed, we have

CT
⋂

C (E) =
(∑c

X,Y ∈T CXY
) ⋂ (∑c

X,Y ∈SCXY (E)
)

=
∑c
X,Y ∈T CXY (E).

It is clear that C is the inductive limit of the increasing family of C∗-algebras CT with finite T .

If T = {X} then the definitions (6.17) give CX and H(X). If T = {X,Y } with distinct X,Y we get a
simple but nontrivial situation. Indeed, we shall have HT = H(X)⊕H(Y ) and CT may be thought as a
matrix

CT =
(

CX CXY
CY X CY

)
.

The grading is now explicitly defined as follows:
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1. If E ⊂ X ∩ Y then

CT (E) =
(

CX(E) CXY (E)
CY X(E) CY (E)

)
.

2. If E ⊂ X and E 6⊂ Y then

CT (E) =
(

CX(E) 0
0 0

)
.

3. If E 6⊂ X and E ⊂ Y then

CT (E) =
(

0 0
0 CY (E)

)
.

The case when T is of the form S(X) for some X ∈ S is especially interesting.

Definition 6.20. If X ∈ S then we say that the S(X)-graded C∗-algebra C #
X ≡ CS(X) is the second

quantization, or unfolding, of the algebra CX . More explicitly

C #
X ≡ ∑c

Y,Z∈S(X)CY Z . (6.19)

To justify the terminology, observe that the self-adjoint operators affiliated to CX live on the Hilbert
space H(X) and are (an abstract version of) Hamiltonians of an N -particle system S with a fixed N
(the configuration space is X and N is the number of levels of the semilattice S(X)). One obtains C #

X

by adding interactions which couple the subsystems of S which have the Y ∈ S(X) as configuration
spaces and have CY as algebras of energy observables.

Observe that C #
X lives in the subspace HX = HS(X) of H. We have C #

X ⊂ C #
Y if X ⊂ Y and C is the

inductive limit of the algebras C #
X . Below we give an interesting alternative description of C #

X .

Theorem 6.21. Let NX = ⊕Y ∈S(X)CY X be the direct sum of the Hilbert CX -modules CY X equipped
with the direct sum graded structure. Then K(NX) ∼= C #

X the isomorphism being such that the graded
structure on K(NX) defined in Theorem 5.5 is transported into that of C #

X . In other terms, C #
X is the

imprimitivity algebra of the full Hilbert CX -module NX and CX and C #
X are Morita equivalent.

Proof: If Y ⊂ X then C ∗
Y X · CY X = C Y

X and CY X is a full Hilbert C Y
X -module. Since the C Y

X are
ideals in CX and their sum over Y ∈ S(X) is equal to CX we see that NX becomes a full Hilbert graded
CX -module supported by S(X), cf. Section 5. By Theorem 5.5 the imprimitivity C∗-algebra K(NX) is
equipped with a canonical S(X)-graded structure.

We shall make a comment on K(M ) in the more general the case when M = ⊕iMi is a direct sum of
Hilbert A -modules Mi, cf. §5.3. First, it is clear that we have

K(M ) =
∑c
ijK(Mj ,Mi) ∼= (K(Mj ,Mi))ij .

Now assume that E , Ei are Hilbert spaces such that A is a C∗-algebra of operators on E and Mi is a
Hilbert C∗-submodule of L(E , Ei) such that Ai ≡ M ∗

i ·Mi is an ideal of A . Then by Proposition 2.4
we have K(Mj ,Mi) ∼= Mi ·M ∗

j ⊂ L(Ej , Ei).
In our case we take

i = Y ∈ S(X), Mi = CY X , A = CX , E = H(X), Ei = H(Y ), Ai = C Y
X .

Then we get
K(Mj ,Mi) ≡ K(CZX ,CY X) ∼= CY X · C ∗

ZX = CY X · CXZ = CY Z

by Proposition 6.12.
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7 Operators affiliated to C and their essential spectrum

In this section we give examples of self-adjoint operators affiliated to the algebra C constructed in Section
6 and then we give a formula for their essential spectrum. We refer to §5.1 for terminology and basic
results related to the notion of affiliation that we use and to [ABG, GI1, DaG3] for details.

We recall that a self-adjoint operator H on a Hilbert space H is strictly affiliated to a C∗-algebra of
operators A on H if (H + i)−1 ∈ A (then ϕ(H) ∈ A for all ϕ ∈ Co(R)) and if A is the clspan of the
elements ϕ(H)A with ϕ ∈ Co(R) and A ∈ A . This class of operators has the advantage that each time
A is non-degenerately represented on a Hilbert spaceH′ with the help of a morphism P : A → L(H′),
the observable PH is represented by a usual densely defined self-adjoint operator on H′.
The diagonal algebra

C∗(S) ≡ ⊕X∈SC∗(X) (7.1)

has a simple physical interpretation: this is the C∗-algebra generated by the kinetic energy operators.
Since CXX = CX ⊃ CX(X) = C∗(X) we see that C∗(S) is a C∗-subalgebra of C . From (4.21), (4.16),
(4.17) and the Cohen-Hewitt theorem we get

C (Z)C∗(S) = C∗(S)C (Z) = C (Z) ∀Z ∈ S and C C∗(S) = C∗(S)C = C . (7.2)

In other terms, C∗(S) acts non-degenerately† on each C (Z) and on C . It follows that a self-adjoint
operator strictly affiliated to C∗(S) is also strictly affiliated to C .

For each X ∈ S let hX : X∗ → R be a continuous function such that |hX(k)| → ∞ if k → ∞ in X∗.
Then the self-adjoint operator KX ≡ hX(P ) on H(X) is strictly affiliated to C∗(X) and the norm of
(KX + i)−1 is equal to supk(h2

X(k) + 1)−1/2. Let K ≡ ⊕
X∈S KX , this is a self-adjoint operator H.

Clearly K is affiliated to C∗(S) if and only if

lim
X→∞

supk(h
2
X(k) + 1)−1/2 = 0 (7.3)

and thenK is strictly affiliated to C∗(S) (the set S is equipped with the discrete topology). If the functions
hX are positive this means that minhX tends to infinity whenX →∞. One could avoid such a condition
by considering an algebra larger then C such as to contain

∏
X∈S C∗(X), but we shall not develop this

idea here.

Now let H = K + I with I ∈ C (or in the multiplier algebra) a symmetric element. Then

(λ−H)−1 = (λ−K)−1
(
1− I(λ−K)−1

)−1
(7.4)

if λ is sufficiently far from the spectrum of K such as to have ‖I(λ − K)−1‖ < 1. Thus H is strictly
affiliated to C . We interpret H as the Hamiltonian of our system of particles when the kinetic energy
is K and the interactions between particles are described by I . Even in the simple case I ∈ C these
interactions are of a very general nature being a mixture of N -body and quantum field type interactions
(which involve creation and annihilation operators so the number of particles is not preserved).

We shall now use Theorem 5.3 in order to compute the essential spectrum of an operator like H . The
case of unbounded interactions will be treated later on. Let C≥E be the C∗-subalgebra of C determined
by E ∈ S according to the rules of §5.1. More explicitly, we set

C≥E =
∑c
F⊃E C (F ) ∼=

(∑c
F⊃ECXY (F )

)
X∩Y⊃E (7.5)

† Note that if S has a largest element X then the algebra C (X ) acts on each C (Z) but this action is degenerate.
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and note that C≥E lives on the subspace H≥E =
⊕

X⊃E H(X) of H. Since in the second sum from
(7.5) the group F is such that E ⊂ F ⊂ X ∩ Y the algebra C≥E is strictly included in the algebra CT
obtained by taking T = {F ∈ S | F ⊃ E} in (6.17).

Let P≥E be the canonical idempotent morphism of C onto C≥E introduced in Theorem 5.2. We consider
the self-adjoint operator on the Hilbert space H≥E defined as follows:

H≥E = K≥E + I≥E where K≥E = ⊕X≥EKX and I≥E = P≥EI. (7.6)

Then H≥E is strictly affiliated to C≥E and it follows easily from (7.4) that

P≥Eϕ(H) = ϕ(H≥E) ∀ϕ ∈ Co(R). (7.7)

Now let us assume that the group O = {0} belongs to S . Then we have

C (O) = K(H). (7.8)

Indeed, from (4.21) we get CXY (O) = TXY · Co(Y ) = KXY which implies the preceding relation. If
we also assume that S is atomic and we denote P(S) its set of atoms, then from Theorem 5.2 we get a
canonical embedding

C /K(H) ⊂ ∏
E∈P(S) C≥E (7.9)

defined by the morphism P ≡ (P≥E)E∈P(S). Then from (5.5) we obtain:

Spess(H) =
⋃
E∈P(S)Sp(H≥E). (7.10)

Our next purpose is to prove a similar formula for a certain class of unbounded interactions I .

Let G ≡ GS = D(|K|1/2) be the form domain of K equipped with the graph topology. Then G ⊂ H
continuously and densely so after the Riesz identification ofH with its adjoint spaceH∗ we get the usual
scale G ⊂ H ⊂ G∗ with continuous and dense embeddings. Let us denote

〈K〉 = |K + i| =
√
K2 + 1. (7.11)

Then 〈K〉1/2 is a self-adjoint operator on H with domain G and 〈K〉 induces an isomorphism G → G∗.
The following result is a straightforward consequence of Theorem 2.8 and Lemma 2.9 from [DaG3].

Theorem 7.1. Let I : G → G∗ be a continuous symmetric operator and let us assume that there are real
numbers µ, a with 0 < µ < 1 such that one of the following conditions is satisfied:

(i) ±I ≤ µ|K + ia|,
(ii) K is bounded from below and I ≥ −µ|K + ia|.

LetH = K+I be the form sum ofK and I , soH has as domain the set of u ∈ G such thatKu+Iu ∈ H
and acts as Hu = Ku + Iu. Then H is a self-adjoint operator on H. If there is α > 1/2 such that
〈K〉−αI〈K〉−1/2 ∈ C then H is strictly affiliated to C . If O ∈ S and the semilattice S is atomic then

Spess(H) =
⋃
E∈P(S)Sp(H≥E). (7.12)

The last assertion of the theorem follows immediately from Theorem 5.3 and is a general version of
the HVZ theorem. In order to have a more explicit description of the observables H≥E ≡ P≥EH we
now prove an analog of Theorem 3.5 from [DaG3]. We cannot use that theorem in our context for three
reasons: first we did not suppose that S has a maximal element, then even if S has a maximal element X
the action of the corresponding algebra C (X ) on the algebras C (E) is degenerate, and finally our “free”
operator K is not affiliated to C (X ).
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Theorem 7.2. For each E ∈ S let I(E) ∈ L(G,G∗) be a symmetric operator such that:

(i) 〈K〉−αI(E)〈K〉−1/2 ∈ C (E) for some α ≥ 1/2 independent of E,
(ii) there are real positive numbers µE , a such that either ±I(E) ≤ µE |K + ia| for all E or K is

bounded from below and I(E) ≥ −µE |K + ia| for all E,
(iii) we have

∑
E µE ≡ µ < 1 and the series

∑
E I(E) ≡ I is norm summable in L(G,G∗).

Let us set I≥E =
∑
F≥E I(F ). Define the self-adjoint operator H = K+ I onH as in Theorem 7.1 and

define similarly the self-adjoint operator H≥E = K≥E + I≥E on H≥E . Then the operator H is strictly
affiliated to C , the operator H≥E is strictly affiliated to C≥E , and we have P≥EH = H≥E .

Proof: We shall consider only the case when ±I(E) ≤ µE |K + ia| for all E. The more singular
situation when K is bounded from below but there is no restriction on the positive part of the operators
I(E) (besides summability) is more difficult but the main idea has been explained in [DaG3].

We first make some comments to clarify the definition of the operators H and H≥E . Observe that our
assumptions imply ±I ≤ µ|K + ia| hence if we set

Λ ≡ |K + ia|−1/2 = (K2 + a2)−1/4 ∈ C∗(S)

then we obtain
±〈u|Iu〉 ≤ µ〈u||K + ia|u〉 = µ‖|K + ia|1/2u‖ = µ‖Λ−1u‖

which is equivalent to ±ΛIΛ ≤ µ or ‖ΛIΛ‖ ≤ µ. In particular we may use Theorem 7.1 in order to
define the self-adjoint operator H . Moreover, we have

〈K〉−αI〈K〉−1/2 =
∑
E〈K〉−αI(E)〈K〉−1/2 ∈ C

because the series is norm summable in L(H). Thus H is strictly affiliated to C .

In order to define H≥E we first make a remark on I≥E . If we set G(X) = D(|KX |−1/2) and if we equip
G and G(X) with the norms

‖u‖G = ‖〈K〉1/2u‖H and ‖u‖G(X) = ‖〈KX〉1/2u‖H(X)

respectively then clearly
G = ⊕XG(X) and G∗ = ⊕XG∗(X)

where the sums are Hilbertian direct sums and G∗ and G∗(X) ≡ G(X)∗ are equipped with the dual
norms. Then each I(F ) may be represented as a matrix I(F ) = (IXY (F ))X,Y ∈S of continuous operators
IXY (E) : G(Y ) → G∗(X). Clearly

〈K〉−αI(F )〈K〉−1/2 =
(
〈KX〉−αIXY (F )〈KY 〉−1/2

)
X,Y ∈S

and since by assumption (i) this belongs to C (F ) we see that IXY (F ) = 0 if X 6⊃ F or Y 6⊃ F . Now
fix E and let F ⊃ E. Then, when viewed as a sesquilinear form, I(F ) is supported by the subspace
H≥E and has domain G≥E = D(|K≥E |1/2. It follows that I≥E is a sesquilinear form with domain
G≥E supported by the subspace H≥E and may be thought as an element of L(G≥E ,G∗≥E) such that
±I≥E ≤ µ|K≥E + ia| because

∑
F⊃E µF ≤ µ. To conclude, we may now define H≥E = K≥E + I≥E

exactly as in the case of H and get a self-adjoint operator on H≥E strictly affiliated to C≥E . Note that
this argument also gives

〈K〉−1/2I(F )〈K〉−1/2 = 〈K≥E〉−1/2I(F )〈K≥E〉−1/2. (7.13)
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It remains to be shown that P≥EH = H≥E . If we set R ≡ (ia−H)−1 and R≥E ≡ (ia−H≥E)−1 then
this is equivalent to P≥ER = R≥E . Let us set

U = |ia−K|(ia−K)−1 = Λ−2(ia−K)−1, J = ΛIΛU.

Then U is a unitary operator and ‖J‖ < 1, so we get a norm convergent series expansion

R = (ia−K − I)−1 = ΛU(1− ΛIΛU)−1Λ =
∑
n≥0ΛUJ

nΛ

which implies
P≥E(R) =

∑
n≥0P≥E

(
ΛUJnΛ

)

the series being norm convergent. Thus it suffices to prove that for each n ≥ 0

P≥E
(
ΛUJnΛ

)
= Λ≥E(J≥E)nΛ≥E (7.14)

where J≥E = Λ≥EI≥EΛ≥EU≥E . Here Λ≥E and U≥E are associated to K≥E in the same way Λ and K
are associated to K. For n = 0 this is obvious because P≥EK = K≥E . If n = 1 this is easy because

ΛUJΛ = ΛUΛIΛUΛ = (ia−K)−1I(ia−K)−1 (7.15)

= [(ia−K)−1〈K〉α] · [〈K〉−αI〈K〉−1/2] · [〈K〉1/2(ia−K)−1]

and it suffices to note that P≥E(〈K〉−αI(F )〈K〉−1/2) = 0 if F 6⊃ E and to use (7.13) for F ⊃ E.

To treat the general case we make some preliminary remarks. If J(F ) = ΛI(F )ΛU then J =
∑
F J(F )

where the convergence holds in norm onH because of the condition (iii). Then we have a norm convergent
expansion

ΛUJnΛ =
∑
F1,...,Fn∈SΛUJ(F1) . . . J(Fn)Λ.

Assume that we have shown ΛUJ(F1) . . . J(Fn)Λ ∈ C (F1 ∩ · · · ∩ Fn). Then we get

P≥E(ΛUJnΛ) =
∑
F1≥E,...,Fn≥EΛUJ(F1) . . . J(Fn)Λ (7.16)

because if one Fk does not contain E then the intersection F1 ∩ · · · ∩Fn does not contain E hence P≥E
applied to the corresponding term gives 0. Because of (7.13) we have J(F ) = Λ≥EI(F )Λ≥EU≥E if
F ⊃ E and we may replace everywhere in the right hand side of (7.16) Λ and U by Λ≥E and U≥E . This
clearly proves (7.14).

Now we prove the stronger fact ΛUJ(F1) . . . J(Fn) ∈ C (F1 ∩ · · · ∩ Fn). If n = 1 this follows from a
slight modification of (7.15): the last factor on the right hand side of (7.15) is missing but is not needed.
Assume that the assertion holds for some n. Since K is strictly affiliated to C∗(S) and C∗(S) acts non-
degenerately on each C (F ) we may use the Cohen-Hewitt theorem to deduce that there is ϕ ∈ Co(R)
such that ΛUJ(F1) . . . J(Fn) = Tϕ(K) for some T ∈ C (F1 ∩ · · · ∩ Fn). Then

ΛUJ(F1) . . . J(Fn)J(Fn+1) = Tϕ(K)J(Fn+1)

hence it suffices to prove that ϕ(K)J(F ) ∈ C (F ) for any F ∈ S and any ϕ ∈ Co(R). But the set of
ϕ which have this property is a closed subspace of Co(R) which clearly contains the functions ϕ(λ) =
(λ− z)−1 if z is not real hence is equal to Co(R).

Remark 7.3. Choosing α > 1/2 allows one to consider perturbations of K which are of the same order
as K, e.g. in the N -body situations one may add to the Laplacian ∆ on operator like ∇∗M∇ where the
function M is bounded measurable and has the structure of an N -body type potential, cf. [DaG3, DerI].
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The only assumption of Theorem 7.2 which is really relevant is 〈K〉−αI(E)〈K〉−1/2 ∈ C (E). We shall
give below more explicit conditions which imply it. If we change notation E → Z and use the formalism
introduced in the proof of Theorem 7.2 we have

I(Z) = (IXY (Z))X,Y ∈S with IXY (Z) : G(Y ) → G∗(X) continuous. (7.17)

We are interested in conditions on IXY (Z) which imply

〈KX〉−αIXY (Z)〈KX〉−1/2 ∈ CXY (Z). (7.18)

For this we shall use Theorem 4.15 which gives a simple intrinsic characterization of CXY (Z).

The construction which follows is interesting only if X is not a discrete group, otherwise X∗ is compact
and many conditions are trivially satisfied. We shall use weights only in order to avoid imposing on the
functions hX regularity conditions stronger than continuity.

A positive function onX∗ is a weight if limk→∞ w(k) = ∞ andw(k+p) ≤ ω(k)w(p) for some function
ω on X∗ and all k, p. We say that w is regular if one may choose ω such that limk→0 ω(k) = 1. The
example one should have in mind when X is an Euclidean space is w(k) = 〈k〉s for some s > 0. Note
that we have ω(−k)−1 ≤ w(k + p)w(p)−1 ≤ ω(k) hence if w is a regular weight then

θ(k) ≡ sup
p∈X∗

|w(k + p)− w(p)|
w(p)

=⇒ lim
k→0

θ(k) = 0. (7.19)

It is clear that if w is a regular weight and σ ≥ 0 is a real number then wσ is also a regular weight.

We say that two functions f, g defined on a neighborhood of infinity of X∗ are equivalent and we write
f ∼ g if there are numbers a, b such that a|f(k)| ≤ |g(k)| ≤ b|f(k)|. Then |f |σ ∼ |g|σ for all σ > 0.

In the next theorem we shall use the spaces

Gσ(X) = D(|KX |σ/2) and G−σ(X) ≡ Gσ(X)∗

with σ ≥ 1. In particular G1(X) = G(X) and G−1(X) = G∗(X).

Proposition 7.4. Assume that hX , hY are equivalent to regular weights. For Z ⊂ X ∩ Y let IXY (Z) :
G(Y ) → G∗(X) be a continuous map such that

1. UzIXY (Z) = IXY (Z)Uz if z ∈ Z and V ∗k IXY (Z)Vk → IXY (Z) if k → 0 in (X + Y )∗,

2. IXY (Z)(Uy − 1) → 0 if y → 0 in Y and IXY (Z)(Vk − 1) → 0 if k → 0 in (Y/Z)∗,

where the limits hold in norm in L(G1(Y ),G−σ(X)) for some σ ≥ 1. Then (7.18) holds with α = σ/2.

Proof: We begin with some general comments on weights. Let w be a regular weight and let G(X) be
the domain of the operator w(P ) in H(X) equipped with the norm ‖w(P )u‖. Then G(X) is a Hilbert
space and if G∗(X) is its adjoint space then we get a scale of Hilbert spaces G(X) ⊂ H(X) ⊂ G∗(X)
with continuous and dense embeddings. Since Ux commutes with w(P ) it is clear that {Ux}x∈X induces
strongly continuous unitary representation of X on G(X) and G∗(X). Then

‖Vku‖G(X) = ‖w(k + P )u‖ ≤ ω(k)‖u‖G(X)
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from which it follows that {Vk}k∈X∗ induces by restriction and extension strongly continuous represen-
tations of X∗ in G(X) and G∗(X). Moreover, as operators on H(X) we have

|V ∗k w(P )−1Vk − w(P )−1| = |w(k + P )−1 − w(P )−1| = |w(k + P )−1(w(P )− w(k + P ))w(P )−1|
≤ ω(−k)|(w(P )− w(k + P ))w(P )−2| ≤ ω(−k)θ(k)w(P )−1. (7.20)

Now let wX , wY be regular weights equivalent to |hX |1/2, |hY |1/2 and let us set S = IXY (Z). Then

〈KX〉−αS〈KX〉−1/2 = 〈KX〉−αwX(P )2α · wX(P )−2αSwY (P )−1 · wY (P )〈KX〉−1/2

and 〈hX〉−αw2α
X , 〈hY 〉−1/2wY and their inverses are bounded continuous functions on X,Y . Since

CXY (Z) is a non-degenerate left C∗(X)-module and right C∗(Y )-module we may use the Cohen-Hewitt
theorem to deduce that (7.18) is equivalent to

wX(P )−σIXY (Z)wY (P )−1 ∈ CXY (Z) (7.21)

where σ = 2α. To simplify notations we set WX = wσX(P ),WY = wY (P ). We also omit the index
X or Y for the operators WX ,WY since their value is obvious from the context. In order to show
W−1SW−1 ∈ CXY (Z) we check the conditions of Theorem 4.15 with T = W−1SW−1. We may
assume σ > 1 and then we clearly have

‖(Ux − 1)T‖ ≤ ‖(Ux − 1)w1−σ
X (P )‖‖w−1

X (P )IXY (Z)W−1‖ → 0 if x→ 0.

so the first part of condition 1 from Theorem 4.15 is satisfied. The second part of that condition is trivially
verified. Condition 2 there is not so obvious, but if we set Wk = V ∗kWVk and V ∗k SVk we have:

V ∗k TVk − T = W−1
k SkW

−1
k −W−1SW−1

= (W−1
k −W−1)SkW−1

k +W−1SkW
−1
k −W−1SW−1

= (W−1
k −W−1)SkW−1

k +W−1(Sk − S)W−1
k +W−1S(W−1

k −W−1).

Now if we use (7.20) and set ξ(k) = ω(−k)θ(k) we get:

‖V ∗k TVk − T‖ ≤ ξ(k)‖W−1SkW
−1
k ‖+ ‖W−1(Sk − S)W−1‖‖WW−1

k ‖+ ξ(k)‖W−1SW−1‖
which clearly tends to zero if k → 0. The second part of condition 2 of Theorem 4.15 follows by a similar
argument.

Th following algorithm summarizes the preceding construction of Hamiltonians affiliated to C .

(a) For each X we choose a kinetic energy operator KX = hX(P ) for the system having X as con-
figuration space. The function hX : X∗ → R must be continuous and equivalent to a regular
weight, in particular |hX(x)| → ∞ if k → ∞. The equivalence to a weight is not an important
assumption, it just allows us to consider below quite singular interactions I . If S is infinite, we
also require limX infk |hX(k)| = ∞. This assumption is similar to the non-zero mass condition in
quantum field theory models.

(b) The total kinetic energy of the system will be K = ⊕XKX . We denote G = D(|K|1/2) its form
domain equipped with the norm ‖u‖G = ‖〈K〉1/2u‖ and observe that G = ⊕XG(X) Hilbert direct
sum, where G(X) = D(|KX |1/2) is similarly related to KX . It is convenient to introduce the
following topological vector spaces:

Go =
⊕alg

X G(X), G∗o =
∏
X G∗(X).

Go is an algebraic direct sum equipped with the inductive limit topology and G∗o is its adjoint space,
direct product of the adjoint spaces. Go is a dense subspace of G and it has the advantage that its
topology does not change if we replace the norms on G(X) by equivalent norms.
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(c) For each Z ∈ S and for each couple X,Y ∈ S such that X ∩ Y ⊃ Z let IXY (Z) be a contin-
uous map G(Y ) → G∗(X) such that the conditions of Proposition 7.4 are fulfilled. We require
IXY (Z)∗ = IY X(Z) and set IXY (Z) = 0 if Z 6⊂ X ∩ Y .

(d) The matrix I(Z) = (IXY (Z))X,Y ∈S can be realized as a continuous linear operator Go → G∗o .
We shall require that this be the restriction of a continuous map I(Z) : G → G∗. Equivalently, the
sesquilinear form associated to I(Z) should be continuous for the G topology. We also require that
I(Z) be norm limit in L(G,G∗) of its finite sub-matrices ΠT I(Z)ΠT = (IXY (Z))X,Y ∈T , with
notations as in (6.18).

(e) Finally, we assume that there are real positive numbers µZ and a with
∑
Z µZ < 1 and such that

either ±I(Z) ≤ µZ |K + ia| for all Z or K is bounded from below and I(Z) ≥ −µZ |K + ia| for
all Z. Furthermore, the series

∑
E I(E) ≡ I should be norm summable in L(G,G∗).

We note that condition (i) of Theorem 7.2 will be satisfied for all α > 1/2. Indeed, from Proposition 7.4
it follows that 〈K〉−αΠT I(Z)ΠT 〈K〉−1/2 ∈ C (Z) for any finite T and this operator converges in norm
to 〈K〉−αI(Z)〈K〉−1/2.

Thus all conditions of Theorem 7.2 are fulfilled by the Hamiltonian H = K + I and so H is strictly
affiliated to C and its essential spectrum is given by

Spess(H) =
⋃
E∈P(S)Sp(H≥E), where H≥E = K≥E +

∑
F≥EI(F ). (7.22)

8 The Euclidean case

In this section S will be a set of finite dimensional vector subspaces of a real prehilbert space which is
stable under finite intersections and such that for each pair X,Y ∈ S there is Z ∈ S which contains both
X and Y . The “ambient space”, i.e. the prehilbert space in which the elements of S are embedded, does
not really play a role in what follows so we shall not need a notation for it.

It is interesting however to note that if X is a real prehilbert space then by taking in our construction from
§6 the semilattice S equal to the set of all finite dimensional subspaces of X we canonically associate to
X a C∗-algebra C . But if X is finite dimensional then we may naturally associate to it two C∗-algebras,
namely CX and its second quantization C = C #

X , cf. Definition 6.20.

Since each X ∈ S is an Euclidean space we have a canonical identification X∗ = X . Note that if
Y ⊂ X the notation Y ⊥ is slightly ambiguous because we did not indicate if the orthogonal is taken in
the ambient prehilbert space or relatively to X . To be precise we shall denote X/Y the orthogonal of Y
in X , and this is coherent with our previous notations. Thus

X/Y = X ª Y = X ∩ Y ⊥ for Y ⊂ X, hence X = Y ⊕ (X/Y ). (8.1)

We choose the Euclidean measures as Haar measures, so that

H(X) = H(Y )⊗H(X/Y ) if Y ⊂ X. (8.2)

For arbitrary X,Y the relation (4.3) holds and so we set

X/Y = X/(X ∩ Y ) = X ª (X ∩ Y ). (8.3)

Now let X,Y, Z ∈ S with Z ⊂ X ∩ Y . Then we have X = Z ⊕ (X/Z) and Y = Y ⊕ (Y/Z) so

H(X) = H(Z)⊗H(X/Z) and H(Y ) = H(Z)⊗H(Y/Z). (8.4)
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Proposition 4.19 gives now relatively to these tensor decompositions:

CXY (Z) = C∗(Z)⊗KX/Z,Y/Z
∼= Co(Z∗;KX/Z,Y/Z). (8.5)

We have written Z∗ above in spite of the canonical isomorphism Z∗ ∼= Z in order to stress that we have
functions of momentum not of position. Since

X/Z = X/(X ∩ Y )⊕ (X ∩ Y )/Z = X/Y ⊕ (X ∩ Y )/Z

and similarly for Y/Z we get by using (2.8) the finer factorization:

CXY (Z) = C∗(Z)⊗K(X∩Y )/Z ⊗KX/Y,Y/X . (8.6)

Then from Proposition 6.14 we obtain

CXY = CX∩Y ⊗KX/Y,Y/X (8.7)

tensor product of Hilbert modules or relatively to the tensor factorizations

H(X) = H(X ∩ Y )⊗H(X/Y ) and H(Y ) = H(X ∩ Y )⊗H(Y/X). (8.8)

In the special cases Y ⊂ X we have

CXY = CY ⊗KX/Y,O = CY ⊗H(X/Y ) (8.9)

and if Z ⊂ Y ⊂ X then
CXY (Z) = C∗(Z)⊗KY/Z ⊗H(X/Y ) (8.10)

where all the tensor products are in the category of Hilbert modules.

Theorem 4.15 can be improved in the present context. Note that Vk is the operator of multiplication by
the function x 7→ ei〈x|k〉 where the scalar product 〈x|k〉 is well defined for any x, k in the ambient space.

Theorem 8.1. CXY (Z) is the set of T ∈ LXY satisfying:

1. U∗z TUz = T for z ∈ Z and ‖V ∗z TVz − T‖ → 0 if z → 0 in Z,

2. ‖T (Uy − 1)‖ → 0 if y → 0 in Y and ‖T (Vk − 1)‖ → 0 if k → 0 in Y/Z.

Remark 8.2. Condition 2 may be replaced by

3. ‖(Ux − 1)T‖ → 0 if x→ 0 in X and ‖(Vk − 1)T‖ → 0 if k → 0 in X/Z.

This will be clear from the next proof.

Proof: Let F ≡ FZ be the Fourier transformation in the space Z, this is a unitary operator in the space
L2(Z) which interchanges the position and momentum observables QZ , PZ . We denote also by F the
operators F ⊗ 1H(X/Z) and F ⊗ 1H(Y/Z) which are unitary operators in the spacesH(X) andH(Y ) due
to (8.4). If S = FTF−1 then S satisfies the following conditions:

(i) V ∗z SVz = S for z ∈ Z, ‖S(Vz − 1)‖ → 0 if z → 0 in Z, and ‖UzSU∗z − S‖ → 0 if z → 0 in Z;

(ii) ‖S(Uy − 1)‖ → 0 and ‖S(Vy − 1)‖ → 0 if y → 0 in Y/Z.
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For the proof, observe that the first part of condition 2 may be written as the conjunction of the two
relations ‖T (Uz − 1)‖ → 0 if z → 0 in Z and ‖T (Uy − 1)‖ → 0 if y → 0 in Y/Z. We shall work in the
representations

H(X) = L2(Z;H(X/Z)) and H(Y ) = L2(Z;H(Y/Z)) (8.11)

which are versions of (8.4). Then from V ∗z SVz = S for z ∈ Z it follows that there is a bounded weakly
measurable function S(·) : Z → LX/Z,Y/Z such that in the representations (8.11) S is the operator of
multiplication by S(·). Then ‖UzSU∗z −S‖ → 0 if z → 0 in Z means that the function S(·) is uniformly
continuous. And ‖S(Vz − 1)‖ → 0 if z → 0 in Z is equivalent to the fact that S(·) tends to zero at
infinity. Thus we see that S(·) ∈ Co(Z;LX/Z,Y/Z).

The condition (ii) is clearly equivalent to

sup
z∈Z

(‖S(z)(Uy − 1)‖+ ‖S(z)(Vy − 1)‖) → 0 if y → 0 in Y/Z.

From the Riesz-Kolmogorov theorem (cf. the presentation on [GI3]) it follows that each S(z) is a compact
operator. This clearly implies

‖(Ux − 1)S(z)‖+ ‖(Vx − 1)S(z)‖ → 0 if x→ 0 in X/Z

for each z ∈ Z. Since S(·) is continuous and tends to zero at infinity, for each ε > 0 there are points
z1, . . . , zn ∈ Z and complex functions ϕ1, . . . , ϕn ∈ Cc(Z) such that

‖S(z)−∑
kϕk(z)S(zk)‖ ≤ ε ∀z ∈ Z.

This proves (8.5) from which one may deduce our initial description of CXY (Z). However, we prefer to
get it as a consequence of Theorem 4.15. First, from the preceding relation we obtain

sup
z∈Z

(‖(Ux − 1)S(z)‖+ ‖(Vx − 1)S(z)‖) → 0 if x→ 0 in X/Z.

Now going back through this argument we see that if T satisfies the conditions of the theorem then it
satisfies the stronger conditions

(a) U∗z TUz = T for z ∈ Z and ‖V ∗k TVk − T‖ → 0 if k → 0 in Z,

(b) ‖(Ux − 1)T‖ → 0 if x→ 0 in X and ‖T (Uy − 1)‖ → 0 if y → 0 in Y ,

(c) ‖(Vk − 1)T‖ → 0 if k → 0 in X/Z and ‖T (Vk − 1)‖ → 0 if k → 0 in Y/Z.

Finally, we show that the conditions of Theorem 4.15 are fulfilled. Due to (4.27) we have only to discuss
the condition ‖V ∗k TVk − T‖ → 0 as k → 0 in G∗. We write this as VkT ∼ TVk and use similar
abbreviations below. We may take G = X + Y and since X + Y is a quotient of X ⊕ Y this condition is
equivalent to Vp+qT ∼ TVp+q as p→ 0 in X and q → 0 in Y . Since X = Z ⊕X/Z and Y = Z ⊕ Y/Z
we may take p = z + x and q = z′ + y with z, z′ ∈ Z and x ∈ X/Z, y ∈ Y/Z and make x, y, z, z′ tend
to zero. Then Vp = VzVx and Vq = Vz′Vy and since conditions (a) and (c) are satisfied we have

Vp+qT = VxVyVz+z′T ∼ VyVxTVz+z′ ∼ VyTVz+z′ .

Let π, π′, π′′ be the orthogonal projections of X + Y onto X,Z,X/Z respectively, so that π = π′ + π′′.
Then for y ∈ Y/Z we have π′y = 0 hence for x ∈ X we have 〈x|y〉 = 〈πx|y〉 = 〈x|πy〉 = 〈x|π′′y〉.
Since for y → 0 in Y/Z we have π′′y → 0 in X/Z by using again the first part of condition (c) we get

VyTVz+z′ = Vπ′′yTVz+z′ ∼ TVz+z′ .
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A similar argument gives TVz+z′ ∼ TVxVyVz+z′ = TVpVq which finishes the proof.

We shall present below a Sobolev space version of Proposition 7.4 which uses the class of weights 〈·〉s
and is convenient in applications. For each real s let Hs(X) be the Sobolev space defined by the norm

‖u‖Hs = ‖〈P 〉su‖ = ‖(1 + ∆X)s/2u‖
where ∆X is the (positive) Laplacian associated to the Euclidean spaceX . The spaceHs(X) is equipped
with two continuous representations of X , a unitary one induced by {Ux}x∈X and a non-unitary one
induced by {Vx}x∈X . This gives us a weighted Sobolev-Besov scale Hs

t,p, cf. Chapter 4 in [ABG]. Let

L s,t
XY = L(Ht(Y ),H−s(X)) with norm ‖ · ‖s,t. (8.12)

We mention a compactness criterion which follows from the Riesz-Kolmogorov theorem and the argu-
ment page 47 involving the regularity of the weight.

Proposition 8.3. If s, t ∈ R and T ∈ L s,t
XY then T is compact if and only if one of the next two equivalent

conditions is satisfied:

(i) ‖(Ux − 1)T‖s,t + ‖(Vx − 1)T‖s,t → 0 if x→ 0 in X ,
(ii) ‖T (Uy − 1)‖s,t + ‖T (Vy − 1)‖s,t → 0 if y → 0 in Y .

The next result follows from Proposition 7.4 or directly from Theorem 8.1.

Proposition 8.4. Let s, t > 0 and Z ⊂ X ∩ Y . Let IXY (Z) ∈ L s,t
XY such that the following relations

hold in norm in L s,t+ε
XY for some ε ≥ 0:

1. UzIXY (Z) = IXY (Z)Uz if z ∈ Z and V ∗z IXY (Z)Vz → IXY (Z) if z → 0 in Z,

2. IXY (Z)(Uy − 1) → 0 if y → 0 in Y and IXY (Z)(Vk − 1) → 0 if k → 0 in Y/Z.

If hX , hY are continuous real functions on X,Y such that hX(x) ∼ 〈x〉2s and hY (y) ∼ 〈y〉2t and if we
set KX = hX(P ),KY = hY (P ) then 〈KX〉−αIXY (Z)〈KY 〉−1/2 ∈ CXY (Z) if α > 1/2.

To give a more detailed description of IXY (Z) we make a Fourier transformation FZ in the Z variable
as in the proof of Theorem 8.1. We have X = Z ⊕ (X/Z) so H(X) = H(Z) ⊗ H(X/Z) and ∆X =
∆Z ⊗ 1 + 1⊗∆X/Z . Thus if t ≥ 0

Ht(X) = H(Z;Ht(X/Z)) ∩Ht(Z;H(X/Z)) =
(H(Z)⊗Ht(X/Z)

) ∩ (Ht(Z)⊗H(X/Z)
)

(8.13)

where our notations are extended to vector-valued Sobolev spaces. Clearly

FZ〈PZ〉tF−1
Z =

∫ ⊕

Z

(1 + |k|2 + |PX/Z |2)t/2dk. (8.14)

We introduce now a class of operators which tend weakly to zero as x→∞:

L̂ s,t
XY = {T ∈ L(Ht(Y ),H−s(X)) | T : Ht(Y ) → H−s−ε(X) is compact if ε > 0}. (8.15)

If s = t we set L̂ s,t
XY = L̂ s

XY . Note that if the compactness condition holds for one ε > 0 then it holds
for all ε > 0. Thus the first part of condition (i) of Proposition 8.3 is automatically satisfied, hence

L̂ s,t
XY = {T ∈ L s,t

XY | ‖(Vx − 1)T‖s+ε,t → 0 if x→ 0 in X}. (8.16)
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Now we proceed as in the proof of Theorem 8.1 and work in the representations (8.11). We define

FZIXY (Z)F−1
Z ≡

∫ ⊕

Z

IZXY (k)dk (8.17)

where IZXY : Z → L̂ s,t
X/Z,Y/Z is a continuous operator valued function satisfying

supk ‖(1 + |k|+ |PX/Z |)−sIZXY (k)(1 + |k|+ |PY/Z |)−t‖ <∞. (8.18)

In N -body type situations such conditions have been introduced in [DaG2] and in Section 4 of [DaG3]
and we refer to these papers for some examples of physical interest. We mention that if we take ε = 0 in
(8.15) then we obtain interactions which have relatively compact fibers J(k). But in (8.16) we may take
ε = 0 and still get a very large class of singular interactions. For example, if ajk are bounded measurable
functions on X such that

∫
|x−y|<1

|ajk(x)|dx → 0 when y → ∞ then
∑
∂jajk∂k ∈ L̂ 1

XX will be an
admissible perturbation of ∆.

In order to take advantage of the Euclidean setting the algorithm for the construction of Hamiltonians
affiliated to C described on page 47 should be modified by adding to the first three steps the following:

(a) The hX are functions on X and we assume that aX〈x〉2sX ≤ |hX(x)| ≤ bX〈x〉2sX for some
strictly positive real numbers sX and all large x.

(b) We take G(X) = HsX (X).
(c) The IXY (Z) are continuous maps HsY (Y ) → H−sX (X) such that the conditions of Proposition

8.4 are fulfilled with s = sY and t = sX .

9 Non relativistic Hamiltonians and the Mourre estimate

9.1 Assume that S is an inductive semilattice of finite dimensional vector subspaces of a real vector space
(then S has non-compact quotients). This means that S is a set of finite dimensional vector subspaces of
a real vector space which is stable under finite intersections and such that for each pair X,Y ∈ S there
is Z ∈ S which contains both X and Y . Then dilations implement a group of automorphisms of the
C∗-algebra C which is compatible with the grading, i.e. it leaves invariant each component C (E) of C .
To be precise, for each real τ let Wτ be the unitary operator in H(X) defined by

(Wτu)(x) = enτ/4u
(
eτ/2x

)
(9.1)

where n is the dimension ofX . The unusual normalization is convenient for non-relativistic operators. As
in the case of the operators Ux and Vk we shall not specify the space X in the notation of Wτ . Moreover,
we denote by the same symbol the unitary operator

⊕
XWτ on the direct sum H =

⊕
X H(X). Then it

is clear that W ∗
τ CXY (Z)Wτ = CXY (Z) for all X,Y, Z, cf. (4.7). Let D be the infinitesimal generator

of {Wτ}, so D is a self-adjoint operator such that Wτ = eiτD. Formally

2iDX = x · ∇x + n/2 = ∇x · x− n/2 if n is the dimension of X. (9.2)

This structure allows one to prove the Mourre estimate for operators affiliated to C in a systematic way
as shown in [ABG, BG2] in an abstract setting under the assumption that S is finite. This procedure has
been extended in [DaG2] to the case when S is infinite and applied there to a class of dispersive N -body
type systems: more precisely, S is allowed to be infinite but the ambient space is finite dimensional.
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For simplicity and since here we are mainly interested in non-relativistic many-body systems we shall
restrict ourselves to the case when S is a finite semilattice of subspaces of a finite dimensional real
prehilbert space. In fact, the extension of the techniques of [DaG2] to the case when both S and the
ambient space are infinite is rather straightforward but the condition (7.3) is quite annoying in the non-
relativistic case: we should replace ∆X by ∆X +EX where EX is a number which tends to infinity with
X , which is a rather artificial procedure. On the other hand, we do not have satisfactory results in the
general case due to the well-known problem of dispersive N -body Hamiltonians [De1, Ger1, DaG2]. We
note that the quantum field case is much easier from this point of view because of the special nature of
the interactions. This is especially clear from the treatments in [Ger2, Geo], but see also [DeG2].

9.2 Thus from now on in this section S is a finite set of subspaces of an Euclidean space such that if
X,Y ∈ S then X ∩ Y ∈ S and there is Z ∈ S such that X ∪ Y ⊂ Z. As we noticed in the Remark 6.4,
S will have a largest element, but this space will not play a special role in our arguments so it does not
deserve to be named. On the other hand, S has a least element and is atomic.

We first point out a particular case of our preceding results which is of interest in this section. Let us fix
s > 0 and for each X ∈ S let hX : X → R be a positive continuous function such that hX(k) ∼ 〈k〉2s.
Recall that we denote KX = hX(P ) and that the kinetic energy operator is K = ⊕XKX with form
domain G = ⊕XHs(X). In the next proposition we use the the embeddings

Hs(X) ⊂ H(Z)⊗Hs(X/Z) ⊂ H(X) ⊂ H(Z)⊗H−s(X/Z) ⊂ H−s(X) (9.3)

which follow from (8.13). Then if IZXY : Hs(Y/Z) → H−s(X/Z) is a continuous operator we may
define IXY (Z) = 1⊗ IZXY which induces a continuous operator Hs(Y ) → H−s(X).

Proposition 9.1. For eachX,Y, Z ∈ S such that Z ⊂ X ∩Y let IZXY ∈ L̂ s
X/Z,Y/Z with (IZXY )∗ = IZYX

and let IXY (Z) = 1 ⊗ IZXY . Let IXY (Z) = 0 if Z 6⊂ X ∩ Y . We set I(Z) = (IXY (Z))X,Y ∈S and
assume that there are positive numbers µZ and a with

∑
Z µZ < 1 and such that I(Z) ≥ −µZ |K + ia|

for all Z. Let I =
∑
I(Z) and I≥E =

∑
Z⊃E I(Z). Then the form sum H = K + I is a self-adjoint

operator strictly affiliated to C , we have P≥XH = K + I≥X ≡ H≥X , and

Spess(H) =
⋃
X∈P(S)Sp(H≥X). (9.4)

This follows immediately from Proposition 8.4, the discussion after it, and Theorem 7.2 (see page 47).

We shall now restrict ourselves to the non-relativistic case, cf. Definition 1.11. In particular, in Propo-
sition 9.1 we must take hX = ‖k‖2 and s = 1. Then ∆X is the (positive) Laplacian associated to the
Euclidean space X with the convention ∆O = 0. In order to point out a special structure that have the
Hamiltonians H≥E we need to revert to the more precise notations C = CS and H = HS . We also set
∆S ≡ K = ⊕X∆X , denote IS(Z) and IS the interaction terms I(Z) and I constructed as in Proposition
9.1, and set HS = H .

Let us assume that S has a smallest element E. Then (8.5) implies for all Z ⊂ X ∩ Y
CXY (Z) = C∗(Z)⊗KX/Z,Y/Z = C∗(E)⊗ C∗(Z/E)⊗KX/Z,Y/Z . (9.5)

Moreover, we have H(X) = H(E)⊗H(X/E) for all X ∈ S hence

HS = ⊕XH(X) = H(E)⊗ (⊕X H(X/E)
)
. (9.6)

We denote by S/E the set of subspaces X/E = X ∩E⊥, this is clearly an inductive semilattice of finite
dimensional subspaces of the ambient space which contains O = {0}. Thus we can associate to S/E an
algebra CS/E which acts on the Hilbert space HS/E = ⊕XH(X/E). From (9.5) and (9.6) we get

CS = C∗(E)⊗ CS/E and HS = H(E)⊗HS/E . (9.7)
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Then we have

∆X = ∆E ⊗ 1 + 1⊗∆X/E hence we get ∆S = ∆E ⊗ 1 + 1⊗∆S/E . (9.8)

Since Z ⊃ E for all Z ∈ S we may write† IXY (Z) = 1E ⊗ 1Z/E ⊗ IZXY where 1E for example is the
identity operator on H(E). Hence we get IS(Z) = 1⊗ IS/E(Z) and IS = 1⊗ IS/E the tensor products
being relative to the factorization (9.7). Finally we get

HS = ∆E ⊗ 1 + 1⊗HS/E if E is the smallest element of S. (9.9)

We shall apply these remarks to the sub-semilattice S≥E of S for some E ∈ S . Then:

CS≥E
= C≥E , HS≥E

= H≥E , HS≥E
= H≥E

with our old notations. We extend the preceding definition of S/E and for an arbitrary E ∈ S we denote
by S/E the set of subspaces X/E where X runs over S with the condition X ⊃ E. Thus we get

H≥E = H(E)⊗HS/E , C≥E = C∗(E)⊗ CS/E , H≥E = ∆E ⊗ 1 + 1⊗HS/E . (9.10)

Let us denote τE = minHS/E the bottom of the spectrum of HS/E . From the last relation we get

Sp(H≥E) = [0,∞) + Sp(HS/E) = [τE ,∞) if E 6= O (9.11)

and then (9.4) implies:

Corollary 9.2. Under the conditions of Proposition 9.1 and if we are in the non-relativistic case then we
have Spess(H) = [τ,∞) with τ = minE∈P(S) τE where τE = minHS/E .

9.3 We shall now define the threshold set and prove the Mourre estimate outside it for H = HS . The
strategy of our proof is that introduced in [BG2] and further developed in [ABG, DaG2]. The case of
graded C∗-algebras over infinite semilattices and of dispersive Hamiltonians is treated in Section 5 from
[DaG2]. We choose the generator D of the dilation group Wτ in H as conjugate operator. For special
type of interactions, e.g. of quantum field type, which are allowed by our formalism and are physically
interesting, much better choices can be made, but technically speaking there is nothing new in that with
respect to [Geo].

Form (9.9) we see that we can restrict ourselves to the case when O ∈ S so we suppose this from now
on. The properties of the dilation group, cf. the beginning of §9.1, which are important for us are: (i)
W ∗
τ C (Z)Wτ ⊂ C (Z) for each τ and Z, and (ii) for each T ∈ C the map τ 7→ W ∗

τ TWτ is norm
continuous. The relation

W ∗
τ ∆XWτ = eτ∆ or [∆X , iD] = ∆X (9.12)

is not really important but it will allow us to make a very explicit computation.

We say that a self-adjoint operator H is of class C1(D) or of class C1
u(D) if W ∗

τ RWτ as a function of τ
is of class C1 strongly or in norm respectively. Here R = (H − z)−1 for some z outside the spectrum of
H . The formal relation

[D,R] = R[H,D]R (9.13)

can be given a rigorous meaning as follows. IfH is of classC1(D) then the intersection D of the domains
of the operators H and D is dense in D(H) and the sesquilinear form with domain D associated to the
formal expressionHD−DH is continuous for the topology ofD(H) so extends uniquely to a continuous

† We shall not use the natural but excessive notation I
Z/E
X/E,Y/E

.
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sesquilinear form on the domain ofH which is denoted [H,D]. This defines the right hand side of (9.13).
The left hand side can be defined for example as i ddτW

∗
τ RWτ |τ=0.

For Hamiltonians as those considered here it is easy to decide that H is of class C1(D) in terms of
properties of the commutator [H,D]. Moreover, the following is easy to prove: if H is affiliated to C
then H is of class C1

u(D) if and only if H is of class C1(D) and [R,D] ∈ C .

Let H be of class C1(D) and λ ∈ R. Then for each θ ∈ Cc(R) with θ(λ) 6= 0 one may find a real number
a and a compact operator K such that

θ(H)∗[H, iD]θ(H) ≥ a|θ(H)|2 +K. (9.14)

Definition 9.3. The upper bound ρ̂H(λ) of the numbers a for which such an estimate holds is the best
constant in the Mourre estimate for H at λ. The threshold set of H (relative to D) is the closed real set

τ(H) = {λ | ρ̂H(λ) ≤ 0} (9.15)

One says that D is conjugate to H at λ if ρ̂H(λ) > 0.

The set τ(H) is closed because the function ρ̂H : R→]−∞,∞] is lower semicontinuous.

The following notion will play an important role in our arguments: to each closed real set A we associate
the function NA : R→ [−∞,∞[ defined by

NA(λ) = sup{x ∈ A | x ≤ λ}. (9.16)

We make the convention sup ∅ = −∞. Thus NA may take the value −∞ if and only if A is bounded
from below and then NA(λ) = −∞ if and only if λ < minA. The function NA is further discussed
during the proof of Lemma 9.5.

The notion of non-relativistic many-body Hamiltonian has been introduced in Definition 1.11. Recall that
we assume O ∈ S and that we denote ev(T ) the set of eigenvalues of an operator T .

Theorem 9.4. Let H = HS be a non-relativistic many-body Hamiltonian of class C1
u(D). Then

τ(H) =
⋃
X 6=Oev(HS/X). (9.17)

In particular τ(H) is a closed countable real set. We have ρ̂H(λ) = λ−Nτ(H)(λ) for all real λ.

Proof: We need a series of facts which are discussed in detail in Sections 7.2, 8.3 and 8.4 from [ABG]
(see pages 51–61 in [BG2] for a shorter presentation).

(i) For each real λ let ρH(λ) be the upper bound of the numbers a for which an estimate like (9.14)
but with K = 0 holds. This defines a lower semicontinuous function ρH : R →] −∞,∞] hence
the set κ(H) = {λ | ρH(λ) ≤ 0} is a closed real set called critical set of H (relative to D). We
clearly have ρH ≤ ρ̂H and so τ(H) ⊂ κ(H).

(ii) Let µ(H) be the set of eigenvalues of H such that ρ̂H(λ) > 0. Then µ(H) is a discrete subset of
ev(H) consisting of eigenvalues of finite multiplicity. This is essentially the virial theorem.

(iii) There is a simple and rather unexpected relation between the functions ρH and ρ̂H : they are
“almost” equal. In fact, ρH(λ) = 0 if λ ∈ µ(H) and ρH(λ) = ρ̂H(λ) otherwise. In particular

κ(H) = τ(H) ∪ ev(H) = τ(H) t µ(H) (9.18)

where t denotes disjoint union.
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(iv) This step is easy but rather abstract and the C∗-algebra setting really comes into play. We assume
thatH is affiliated to our algebra C . The preceding arguments did not require more than theC1(D)
class. Now we require H to be of class C1

u(D). Then the operators H≥X are also of class C1
u(D)

and we have the important relation (Theorem 8.4.3 in [ABG] or Theorem 4.4 in [BG2])

ρ̂H = min
X∈P(S)

ρH≥X
.

To simplify notations we adopt the abbreviations ρH≥X
= ρ≥X and instead of X ∈ P(S) we

write X m O, which should be read “X covers O”. For coherence with later notations we also set
ρ̂H = ρ̂ S . So (9.19) may be written

ρ̂ S = min
XmO

ρ≥X . (9.19)

(v) From (9.12) and (9.10) we get

H≥X = ∆X ⊗ 1 + 1⊗HS/X , [H≥X , iD] = ∆X ⊗ 1 + 1⊗ [D, iHS/X ].

Recall that we denote D the generator of the dilation group independently of the space in which it
acts. We note that the formal argument which gives the second relation above can easily be made
rigorous but this does not matter here. Indeed, since H≥X is of class C1

u(D) and by using the first
relation above, one can easily show that HS/X is also of class C1

u(D) (see the proof of Lemma
9.4.3 in [ABG]). We do not enter into details on this question because any reasonable conditions
on the interaction I in Proposition 9.1 which ensure that H is of class C1

u(D) will also imply that
the HS/X are of the same class. Anyway, we may use Theorem 8.3.6 from [ABG] to get

ρ≥X(λ) = inf
λ1+λ2=λ

(
ρ∆X

(λ1) + ρS/X(λ2)
)

where ρS/X = ρHS/X
. But clearly if X 6= O we have ρ∆X (λ) = ∞ if λ < 0 and ρ∆X (λ) = λ if

λ ≥ 0. Thus we get

ρ≥X(λ) = inf
µ≤λ

(
λ− µ+ ρS/X(µ)

)
= λ− sup

µ≤λ

(
µ− ρS/X(µ)

)
. (9.20)

(vi) Now from (9.19) and (9.20) we get

λ− ρ̂ S(λ) = max
XmO

sup
µ≤λ

(
µ− ρS/X(µ)

)
. (9.21)

Finally, we prove the formula ρ̂H(λ) = λ−Nτ(H)(λ) from Theorem 9.4 by induction over the semilattice
S . In other terms, we assume that the formula is correct if H is replaced by HS/X for all X 6= O and we
prove it for H = HS/O. So we have to show that the right hand side of (9.21) is equal to Nτ(H)(λ).

According to step (iii) above we have ρS/X(µ) = 0 if µ ∈ µ(HS/X) and ρS/X(µ) = ρ̂ S/X(µ) other-
wise. Since by the explicit expression of ρ̂ S/X this is a positive function and since ρH(λ) ≤ 0 is always
true if λ is an eigenvalue, we get µ− ρS/X(µ) = µ if µ ∈ ev(HS/X) and

µ− ρS/X(µ) = µ− ρ̂ S/X(µ) = Nτ(HS/X)(µ)

otherwise. From the first part of Lemma 9.5 below we get

sup
µ≤λ

(
µ− ρS/X(µ)

)
= Nev(HS/X)∪τ(HS/X).
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If we use the second part of Lemma 9.5 then we see that

max
XmO

sup
µ≤λ

(
µ− ρS/X(µ)

)
= max
XmO

Nev(HS/X)∪τ(HS/X)

is the N function of the set

⋃

XmO

(
ev(HS/X) ∪ τ(HS/X)

)
=

⋃

XmO

(
ev(HS/X)

⋃ ⋃

Y >X

ev(HS/Y )

)
=

⋃

X>O

ev(HS/X)

which finishes the proof of ρ̂H(λ) = λ−Nτ(H)(λ) hence the proof of the Theorem 9.4.

It remains, however, to show the following fact which was used above.

Lemma 9.5. If A and A∪B are closed and ifM is the function given by M(µ) = NA(µ) for µ /∈ B and
M(µ) = µ for µ ∈ B then supµ≤λM(µ) = NA∪B(λ). If A,B are closed then sup(NA, NB) = NA∪B .

Proof: The last assertion of the lemma is easy to check, we prove the first one. Observe first that the
function NA has the following properties:

(i) NA is increasing and right-continuous,
(ii) NA(λ) = λ if λ ∈ A,

(iii) NA is locally constant and NA(λ) < λ on Ac ≡ R \A.

Indeed, the first assertion in (i) and assertion (ii) are obvious. The second part of (i) follows from the
more precise and easy to prove fact

NA(λ+ ε) ≤ NA(λ) + ε for all real λ and ε > 0. (9.22)

A connected component of the open set Ac is necessarily an open interval of one of the forms ] −∞, y[
or ]x, y[ or ]x,∞[ with x, y ∈ A. On the first interval (if such an interval appears) NA is equal to −∞
and on the second one or the third one it is clearly constant and equal to NA(x). We also note that the
function NA is characterized by the properties (i)–(iii).

Thus, if we denote N(λ) = supµ≤λM(µ), then it will suffices to show that the function N satisfies the
conditions (i)–(iii) with A replace by A ∪ B. Observe that M(µ) ≤ µ and the equality holds if and only
if µ ∈ A ∪B. Thus N is increasing, N(λ) ≤ λ, and N(λ) = λ if λ ∈ A ∪B.

Now assume that λ belongs to a bounded connected component ]x, y[ of A ∪ B (the unbounded case is
easier to treat). If x < µ < y then µ /∈ B so M(µ) = NA(µ) and ]x, y[ is included in a connected com-
ponent of Ac hence M(µ) = NA(x). Then N(λ) = max(supν≤xM(ν), NA(x)) hence N is constant
on ]x, y[. Here we have M(ν) ≤ ν ≤ x so if x ∈ A then NA(x) = x and we get N(λ) = x. If x ∈ B \A
then M(x) = x so supν≤xM(ν) = x and NA(x) < x hence N(λ) = x. Since x ∈ A ∪ B one of these
two cases is certainly realized and the same argument gives N(x) = x. Thus the value of N on ]x, y[ is
N(x) so N is right continuous on [x, y[. Thus we proved that N is locally constant and right continuous
on the complement of A ∪B and also that N(λ) < λ there.

It remains to be shown that N is right continuous at each point of λ ∈ A ∪ B. We show that (9.22) hold
with NA replaced by N . If µ ≤ λ then M(µ) ≤ µ ≤ λ = M(λ) hence we have

N(λ+ ε) = sup
λ≤µ≤λ+ε

M(µ).

But M(µ) above is either NA(µ) either µ. In the second case µ ≤ λ+ ε and in the first case

NA(µ) ≤ NA(λ+ ε) ≤ NA(λ) + ε ≤ λ+ ε.
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Thus we certainly have N(λ+ ε) ≤ λ+ ε and λ = N(λ) because λ ∈ A ∪B.

9.4 From Theorem 9.4 we shall deduce now an optimal version of the limiting absorption principle.
Optimality refers both to the Besov spaces in which we establish the existence of the boundary values of
the resolvent and to the degree of regularity of the Hamiltonian with respect to the conjugate operator D.
This regularity condition involves the following Besov type class of operators. An operator T ∈ L(H) is
of class C1,1(D) if

∫ 1

0

‖W ∗
2εTW2ε − 2W ∗

ε TWε + T‖dε
ε2
≡

∫ 1

0

‖(Wε − 1)2T‖dε
ε2

<∞ (9.23)

where Wε is the automorphism of L(H) defined by WεT = W ∗
ε TWε. The condition (9.23) implies T is

of classC1
u(D) and is just slightly more than this. For example, if T is of classC1(D), so the commutator

[D,T ] is a bounded operator, and if

∫ 1

0

‖W ∗
ε [D,T ]Wε − T‖dε

ε
<∞, (9.24)

then T is of class C1,1(D). A self-adjoint operator H is called of class C1,1(D) if its resolvent is of class
C1,1(D). We refer to [ABG] for a more thorough discussion of these matters.

The next result is a consequence of Theorem 9.4 and of Theorem 7.4.1 from [ABG]. We set Hs,p =
⊕XHs,p(X) where the Hs,p(X) are the Besov spaces associated to the position observable on X (these
are obtained from the usual Besov spaces associated to L2(X) by a Fourier transformation). Let C+ be
the open upper half plane and CH+ = C+ ∪ (R \ τ(H)). If we replace the upper half plane by the lower
one we similarly get the sets C− and CH− .

Theorem 9.6. If H is of class C1,1(D) then its singular continuous spectrum is empty. The holomorphic
maps C± 3 z 7→ (H − z)−1 ∈ L(H1/2,1,H−1/2,∞) extend to weak∗ continuous functions on CH± .

9.5 Here we describe an explicit class of non-relativistic many-body Hamiltonians of class C1
u(D) and

then make a comment on the class C1,1(D). To simplify notations we shall consider only interactions
which are relatively bounded in operator sense with respect to the kinetic energy and summarize all the
conditions in this context below.

Proposition 9.7. Under the following assumptions the conditions of Theorem 9.4 are satisfied and the
domain of H is equal to H2.

(i) S is a finite set of subspaces of an Euclidean space X with X ∈ S and such that X ∩ Y ∈ S if
X,Y ∈ S . The Hilbert space of the system isH = ⊕XH(X) and its kinetic energy isK = ⊕X∆X

with domain H2 = ⊕XH2(X). The total Hamiltonian is H = K + I where the interaction is an
operator I = (IXY )X,Y ∈S : H2 → H with the properties described below.

(ii) The operators IXY : H2(Y ) → H(X) are of the form IXY =
∑
Z IXY (Z) with IXY (Z) = 0 if

Z 6⊂ X ∩ Y and if Z ⊂ X ∩ Y then

IXY (Z) = 1⊗ IZXY relatively to H(Y ) = H(Z)⊗H(Y/Z), H(X) = H(Z)⊗H(X/Z)

where IZXY : H2(Y/Z) → H(X/Z) is a compact operator satisfying (IZXY )∗ ⊃ IZYX .
(iii) We require [D, IZXY ] to be a compact operator H2(Y/Z) → H−2(X/Z).
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Note that under the assumption (ii) the operator

[D, IZXY ] ≡ DX/ZI
Z
XY − IZXYDY/Z : H2

loc(Y/Z) → H−1
loc(X/Z) (9.25)

is well defined. We indicated by a subindex the space where the operator D acts and we used for example

DX = DZ ⊗ 1 + 1⊗DX/Z relatively to H(X) = H(Z)⊗H(X/Z). (9.26)

Remark 9.8. If condition (ii) is satisfied for all X,Y, Z, and since IZXY is a restriction of the adjoint of
IZYX , we get by interpolation

IZXY : Hθ(Y/Z) → Hθ−2(X/Z) is a compact operator for all 0 ≤ θ ≤ 2. (9.27)

We make a comment on the compactness assumption from condition (ii) of Proposition 9.7. If E,F are
Euclidean spaces let us set

K 2
FE = K(H2(E),H(F )) and K 2

E = K 2
E,E . (9.28)

If we set E = (X ∩ Y )/Z then Y/Z = E ⊕ (Y/X) and X/Z = E ⊕ (X/Y ) hence

H(X/Z) = H(E)⊗H(X/Y ) and H2(Y/Z) =
(H2(E)⊗H(Y/X)

) ∩ (H(E)⊗H2(Y/X)
)
. (9.29)

From (A.5) we then get

K(H2(Y/Z),H(X/Z)) = K(H2(E),H(E))⊗K(H(Y/X),H(X/Y ))

+K(H(E),H(E))⊗K(H2(Y/X),H(X/Y )).

With the abbreviations introduced before this may also be written

K 2
X/Z,Y/Z = K 2

E ⊗KX/Y,Y/X + KE ⊗K 2
X/Y,Y/X . (9.30)

Condition (ii) of Proposition 9.7 requires IZXY ∈ K 2
X/Z,Y/Z . According to the preceding relation this

means
IZXY = J + J ′ for some J ∈ K 2

E ⊗KX/Y,Y/X and J ′ ∈ KE ⊗K 2
X/Y,Y/X . (9.31)

Some special cases of these conditions are worth to be mentioned, we shall consider this only for J ,
the discussion for J ′ is similar. We recall the notation X ¢ Y = X/Y × Y/X and that we identify a
Hilbert-Schmidt operator with its kernel. Thus we have an embedding L2(X ¢ Y ) ⊂ KX/Y,Y/X hence

K 2
E ⊗KX/Y,Y/X ⊃ K 2

E ⊗ L2(X/Y × Y/X) ⊃ L2(X/Y × Y/X;K 2
E )

cf. the discussion in §2.5 and Definition 2.5. The condition IZXY ∈ L2(X/Y × Y/X;K 2
E ) is very

explicit and seems to us already quite general. The action of IZXY under this condition may be described
as follows. Think of u ∈ H2(Y/Z) as an element of L2(Y/X;H2(E)). Then we may represent IZXY u
as element of H(X/Z) = L2(X/Y ;H(E)) as

(IZXY u)(x
′) =

∫
Y/X

IZXY (x′, y′)u(y′)dy′.

Observe that if we assume IZXY ∈ L2(X ¢ Y ;K 2
E ) for all X,Y, Z then as in Remark 9.8 we get

IZXY ∈ L2(X ¢ Y ;K(H(E)θ,Hθ−2(E)) for all 0 ≤ θ ≤ 2.
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We now consider a Hamiltonian satisfying (i)–(iii) of Proposition 9.7 and discuss conditions which ensure
thatH is of class C 1,1(D). It is important to observe that the domainH2 ofH is stable under the dilation
group Wτ . Thus we may use Theorem 6.3.4 from [ABG] to see that H is of class C 1,1(D) if and only if

∫ 1

0

‖(Wε − 1)2H‖H2→H−2
dε
ε2

<∞. (9.32)

Here WεH = W ∗
εHWε hence

(Wε − 1)2H = W ∗
2εHW2ε − 2W ∗

εHWε +H.

The relation (9.32) is trivially verified by the kinetic part ∆ of H hence we need that (9.32) be satisfied
with H replaced by I . The condition we get will be satisfied if and only if each coefficient IXY of I
satisfies a similar relation. Thus it suffices to have

∫ 1

0

‖(Wε − 1)2IZXY ‖H2(Y/Z)→H−2(X/Z)
dε
ε2

<∞ for all X,Y, Z. (9.33)

A similar argument may be used in the context of the Dini condition (1.24) to get as sufficient conditions

∫ 1

0

‖W ∗
ε [D, IZXY ]Wε − [D, IZXY ]‖H2(Y/Z)→H−2(X/Z)

dε
ε
<∞. (9.34)

In fact each of the three terms in the decomposition

[D, IZXY ] = [DE , I
Z
XY ] +DX/Y I

Z
XY − IZXYDY/X (9.35)

(see (1.22)) should be treated separately.

The techniques developed in §7.5.3 and on pages 425–429 from [ABG] can be used to get optimal and
more concrete conditions. The only new fact with respect to the N -body situation as treated in [ABG]
is that Wτ : T 7→ W−τTWτ when considered as an operator on L(H(Y/Z),H(X/Z)) factorizes in a
product of three commuting operators. Indeed, if we write

H(Y/Z) = H(E)⊗H(Y/X), H(X/Z) = H(E)⊗H(X/Y )

then we get Wτ (T ) = W
X/Y
−τ WE

τ (T )WY/X
τ where this time we indicated by an upper index the space

to which the operator is related and, for example, we identified WY/X
τ = 1E ⊗ W

Y/X
τ . Let Lτ be

the operator of left multiplication by WX/Y
−τ and Nτ the operator of right multiplication by WY/X

τ on
L(H(Y/Z),H(X/Z)). If we also set Mτ = WE

τ then we get three commuting operators Lτ ,Mτ , Nτ
on L(H(Y/Z),H(X/Z)) such that Wτ = LτMτNτ . Then in order to check a Dini type condition as
(9.34) we use

Wτ − 1 = (Lτ − 1)MτNτ + (Mτ − 1)Nτ +Nτ − 1 (9.36)

hence
‖W ∗

τ TWτ − T‖ ≤ ‖(WX/Y
−τ − 1)T‖+ ‖WE

−τTW
E
τ − T‖+ ‖T (WY/X

τ − 1)‖.
This relation remains true modulo a constant factor if the norms are those of L(H2(Y/Z),H−2(X/Z)).
An analog argument works for the second order differences. Indeed, if A,B,C are commuting operators
on a Banach space then starting from

(AB − 1)2 = (A− 1)2B2 + 2(A− 1)(B − 1)B + (B − 1)2
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we obtain

(ABC − 1)2 = (A− 1)2B2C2 + 2(A− 1)(B − 1)BC2 + 2(A− 1)B(C − 1)C2

+ (B − 1)2C2 + 2(B − 1)(C − 1)C + (C − 1)2.

Thus in our case we get the estimate

‖(Wτ − 1)2T‖ ≤ ‖(Lτ − 1)2T‖+ ‖(Mτ − 1)2T‖+ ‖(Nτ − 1)2T‖+ 2‖(Lτ − 1)(Mτ − 1)T‖
+ 2‖(Lτ − 1)(Nτ − 1)T‖+ 2‖(Mτ − 1)(Nτ − 1)T‖

which remains true modulo a constant factor if the norms are those of L(H2(Y/Z),H−2(X/Z)). This
relation is helpful in checking the C1,1(D) property. However, it is possible to go further and to get rid
off the last three terms by interpreting (9.33) in terms of real interpolation theory.

Lemma 9.9. If T ∈ H ≡ L(H2(Y/Z),H−2(X/Z)) then
∫ 1

0
‖(Wε− 1)2T‖H dε/ε2 <∞ follows from

∫ 1

0

(
‖(WX/Y

ε − 1)2T‖H + ‖(WE
ε − 1)2T‖H + ‖T (WY/X

ε − 1)2‖H

) dε
ε2

<∞. (9.37)

Proof: We use the notations and conventions from [ABG]. Observe that Wτ ,Lτ ,Mτ ,Nτ are one pa-
rameter groups of operators on the Banach space H = L(H2(Y/Z),H−2(X/Z)). These groups are not
continuous in the ordinary sense but this does not really matter, in fact we are in the setting of [ABG,
Chapter 5]. The main point is that the finiteness of the integral

∫ 1

0
‖(Wε − 1)2T‖H dε/ε2 <∞ is equiv-

alent to that of
∫ 1

0
‖(Wε− 1)6T‖H dε/ε2 <∞. Now by taking the sixth power of (9.36) and developing

the right hand side we easily get the result, cf. the formula on top of page 132 of [ABG].

9.6 To see the relation with the creation-annihilation type interactions characteristic to quantum field
models we consider in detail the simplest situation when Y ⊂ X strictly. For any X,Y we define

IXY =
∑
Z∈S(X∩Y )1Z ⊗K 2

X/Z,Y/Z ⊂ L 0,2
XY and IX ≡ IXX .

Note that the sum is direct and IXY is closed. A non-relativistic N -body Hamiltonian associated to the
semilattice S(X) of subspaces of X is usually of the form ∆X + V with V ∈ IX .

If Y ⊂ X then, according to (8.9),

CXY = CY ⊗H(X/Y ), CXY (Z) = CY (Z)⊗H(X/Y ), H(X) = H(Y )⊗H(X/Y ) (9.38)

where the first two tensor product have to be interpreted as explained in §2.5. In particular we have

L2(X/Y ;CY ) ⊂ CXY and L2(X/Y ; CY (Z)) ⊂ CXY (Z) strictly. (9.39)

Note that for each Z ⊂ Y we have X = Z ⊕ (Y/Z) ⊕ (X/Y ) and X/Z = (Y/Z) ⊕ (X/Y ). Then
H(X/Z) = H(Y/Z)⊗H(X/Y ) and thus the operator IZXY from (ii) above is just a compact operator

IZXY : H2(Y/Z) → H(Y/Z)⊗H(X/Y ). (9.40)

If E ,F ,G are Hilbert spaces then K(E ,F ⊗ G) ∼= K(E ,F)⊗ G, see §2.5. Hence (9.40) means

IZXY ∈ K 2
Y/Z ⊗H(X/Y ) (9.41)
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so the interaction which couples the X and Y systems is

IXY =
∑
Z∈S(Y )1Z ⊗ IZXY ∈ IY ⊗H(X/Y ). (9.42)

Now according to (9.42) we may view IXY as an element of L2
w(X/Y ; IY ) (see Definition 2.5). This

“weakly square integrable” function IXY : X/Y → IY determines the operator IXY : H2(Y ) →
H(X) by the following rule: it associates to u ∈ H2(Y ) the function y′ 7→ IXY (y′)u which belongs to
L2(X/Y ;H(X/Y )) = H(X). We may also write

(IXY u)(x) = (IXY (y′)u)(y) where x ∈ X = Y ⊕X/Y is written as x = (y, y′). (9.43)

We also say that the operator valued function IXY is the symbol of the operator IXY .

The particular case when the function IXY is factorizable gives the connection with the quantum field type
interactions: assume that IXY is a finite sum IXY =

∑
i V

i
Y ⊗ φi where V iY ∈ IY and φi ∈ H(X/Y ),

then

IXY u =
∑
i(V

i
Y u)⊗ φi as an operator IXY : H2(Y ) → H(X) = H(Y )⊗H(X/Y ). (9.44)

This is a sum ofN -body type interactions V iY tensorized with operators which create particles in states φi.
Note that this type of interactions is more subtle than those usually considered in quantum field theory.

We mention that the adjoint IY X = I∗XY acts like an integral operator in the y′ variable (like an an-
nihilation operator). Indeed, if v ∈ H(X) is thought as a map y′ 7→ v(y′) ∈ H(Y ) then we have
IY Xv =

∫
X/Y

I∗XY (y′)v(y′)dy′ at least formally.

Now the conditions on the “commutator” [D, IXY ] may be written in a quite explicit form in terms of
the symbol IXY . The relation (9.35) becomes [D, IXY ] = [DY , IXY ] + DX/Y IXY . The operator DY

acts only on the variable y and DX/Y acts only on the variable y′. Thus [DY , IXY ] and DX/Y IXY are
operators of the same nature as IXY but more singular. Indeed, the symbol of [DY , IXY ] is the function
y′ 7→ [DY , IXY (y′)] and that of 2iDX/Y IXY is the function y′ 7→ (y′ ·∇y′+n/2)IXY (y′). Thus we see
that to get condition (iii) of Proposition 9.7 it suffices to require two types of conditions on the symbol
IXY , one on [DY , IXY (y′)] and a second one on y′ · ∇y′IXY (y′).

To state more explicit conditions we need to decompose IXY as in (9.42). For this we assume given for
each Z ∈ S with Z ⊂ Y a function IZXY : X/Y → K 2

Y/Z in L2
w(X/Y ; K 2

Y/Z). This is the symbol of
an operator H2(Y/Z) → L2(X/Y ;H(Y/Z)) = H(X/Z) that we also denote IZXY and which is clearly
compact. Then we take IXY =

∑
Z∈S I

Z
XY .

Now each “commutator” [D, IZXY ] = [DY/Z , I
Z
XY ] + DX/Y I

Z
XY should be a compact operator from

H2(Y/Z) to H−2(X/Z). For simplicity we shall ask that each of the two components satisfies this
compactness condition.

As explained before the operator [DY/Z , I
Z
XY ] is associated to the symbol y′ 7→ [DY/Z , I

Z
XY (y′)] and the

main contribution to the operator 2iDX/Y I
Z
XY comes from the operator associated to the symbol y′ 7→

y′ · ∇y′IZXY (y′). So we ask that these two symbols induce compact operators H2(Y/Z) → H−2(X/Z).
On the other hand, from (8.13) and X/Z = (Y/Z)⊕ (X/Y ) we get

H2(X/Z) =
(H(Y/Z)⊗H2(X/Y )

) ∩ (H2(Y/Z)⊗H(X/Y )
)
, (9.45)

H−2(X/Z) = H(Y/Z)⊗H−2(X/Y ) +H−2(Y/Z)⊗H(X/Y ). (9.46)

This allows one to write down general and more or less explicit conditions to ensure that that the operator
IXY satisfies the conditions (ii) and (iii) of Proposition 9.7 in the case Y ⊂ X . Without trying to go into
any refinements we now state a sufficient set of assumptions on the symbols IZXY . We find convenient to
revert to the abstract tensor product notation.
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(a) IZXY ∈ K(H2(Y/Z),H(Y/Z))⊗H(X/Y ),
(b) [DY/Z , I

Z
XY ] ∈ K(H2(Y/Z),H−2(Y/Z))⊗H(X/Y ),

(c) DX/Y I
Z
XY ∈ K(H2(Y/Z),H(Y/Z))⊗H−2(X/Y ).

A Appendix

The main part of this appendix is devoted to comments concerning the generation of C∗-algebras of
“energy observables” by certain classes of “elementary” Hamiltonians. Then we prove a useful technical
result.

A.1 Let X be a lca group and let {Ux}x∈X be a strongly continuous unitary representation of X on
a Hilbert space H. Then one can associate to it a Borel regular spectral measure E on X∗ with values
projectors on H such that Ux =

∫
X∗ k(x)E(dk) and this allows us to define for each Borel function

ψ : X∗ → C a normal operator on H by the formula ψ(P ) =
∫
X∗ ψ(k)E(dk). The set C∗(X;H) of all

the operators ψ(P ) with ψ ∈ Co(X∗) is clearly a non-degenerate C∗-algebra of operators on H. We say
that an operator S ∈ L(H) is of class C0(P ) if the map x 7→ UxSU

∗
x is norm continuous.

Lemma A.1. Let S ∈ L(H) be of class C0(P ) and let T ∈ C∗(X;H). Then for each ε > 0 there is
Y ⊂ X finite and there are operators Ty ∈ C∗(X;H) such that ‖ST −∑

y∈Y TyUySU
∗
y ‖ < ε.

Proof: It suffices to assume that T = ψ(P ) where ψ has a Fourier transform integrable on X , so that
T =

∫
X
Uxψ̂ (x)dx, and then to use a partition of unity on X and the uniform continuity of the map

x 7→ UxSU
∗
x (see the proof of Lemma 2.1 in [DaG1]).

We say that a subset B of L(H) is X-stable if UxSU∗x ∈ B whenever S ∈ B and x ∈ X . From Lemma
A.1 we see that if B is an X-stable real linear space of operators of class C0(P ) then

B · C∗(X;H) = C∗(X;H) · B.

Since the C∗-algebra A generated by B is also X-stable and consists of operators of class C0(P )

A ≡ A · C∗(X;H) = C∗(X;H) · A (A.1)

is a C∗-algebra. The operators Ux implement a norm continuous action of X by automorphisms of the
algebra A so the C∗-algebra crossed product A o X is well defined and the algebra A is a quotient of
this crossed product.

A function h on X∗ is called p-periodic for some non-zero p ∈ X∗ if h(k + p) = h(k) for all k ∈ X∗.

Proposition A.2. Let V be anX-stable set of symmetric bounded operators of class C0(P ) and such that
λV ⊂ V if λ ∈ R. Denote A the C∗-algebra generated by V and define A by (A.1). Let h : X∗ → R be
continuous, not p-periodic if p 6= 0, and such that |h(k)| → ∞ as k → ∞. Then A is the C∗-algebra
generated by the self-adjoint operators of the form h(P + k) + V with k ∈ X∗ and V ∈ V .

Proof: Denote K = h(P + k) and let Rλ = (z −K − λV )−1 with z not real and λ real. Let C be the
C∗-algebra generated by such operators (with varying k and V ). By taking V = 0 we see that C will
contain the C∗-algebra generated by the operators R0. By the Stone-Weierstrass theorem this algebra
is C∗(X;H) because the set of functions p → (z − h(p + k))−1 where k runs over X∗ separates the
points of X∗. The derivative with respect to λ at λ = 0 of Rλ exists in norm and is equal to R0V R0,

63



so R0V R0 ∈ C . Since C∗(X) ⊂ C we get φ(P )V ψ(P ) ∈ C for all φ, ψ ∈ Co(X∗) and all V ∈ V .
Since V is of class C0(P ) we have (Ux − 1)V ψ(P ) ∼ V (Ux − 1)ψ(P ) → 0 in norm as x → 0 from
which we get φ(P )V ψ(P ) → Sψ(P ) in norm as φ → 1 conveniently. Thus V ψ(P ) ∈ C for V, ψ as
above. This implies V1 · · ·Vnψ(P ) ∈ C for all V1, . . . , Vn ∈ V . Indeed, assuming n = 2 for simplicity,
we write ψ = ψ1ψ2 with ψi ∈ Co(X∗) and then Lemma A.1 allows us to approximate V2ψ1(P ) in norm
with linear combinations of operators of the form φ(P )V x2 where the V x2 are translates of V2. Since C
is an algebra we get V1φ(P )V x2 ψ2(P ) ∈ C hence passing to the limit we get V1V2ψ(P ) ∈ C . Thus we
proved A ⊂ C . The converse inclusion follows from a series expansion of Rλ in powers of V .

The next two corollaries follow easily from Proposition A.2. We takeH = L2(X) which is equipped with
the usual representations Ux, Vk of X and X∗ respectively. Let Wξ = UxVk with ξ = (x, k) be the phase
space translation operator, so that {Wξ} is a projective representation of the phase space Ξ = X ⊕X∗.
Fix some classical kinetic energy function h as in the statement of Proposition A.2 and let the classical
potential v : X → R be a bounded uniformly continuous function. Then the quantum Hamiltonian will
be H = h(P )+ v(Q) ≡ K+V . Since the origins in the configuration and momentum spaces X and X∗

have no special physical meaning one may argue [Be1, Be2] that WξHW
∗
ξ = h(P − k) + v(Q+ x) is a

Hamiltonian as good as H for the description of the evolution of the system. It is not clear to us whether
the algebra generated by such Hamiltonians (with h and v fixed) is in a natural way a crossed product.
On the other hand, it is natural to say that the coupling constant in front of the potential is also a variable
of the system and so the Hamiltonians Hλ = K+λV with any real λ are as relevant as H . Then we may
apply Proposition A.2 with V equal to the set of operators of the form λτxv(Q). Thus:

Corollary A.3. Let v ∈ Cu
b(X) real and letA be theC∗-subalgebra of Cu

b(X) generated by the translates
of v. Let h : X∗ → R be continuous, not p-periodic if p 6= 0, and such that |h(k)| → ∞ as k → ∞.
Then the C∗-algebra generated by the self-adjoint operators of the form WξHλW

∗
ξ with ξ ∈ Ξ and real

λ is the crossed product AoX .

Now let T be a set of closed subgroups ofX such that the semilattice S generated by it (i.e. the set of finite
intersections of elements of T ) consists of pairwise compatible subgroups. Set CX(S) =

∑c
Y ∈S CX(Y ).

From (4.5) it follows that this is the C∗-algebra generated by
∑
Y ∈T CX(Y ).

Corollary A.4. Let h be as in Corollary A.3. Then theC∗-algebra generated by the self-adjoint operators
of the form h(P + k) + v(Q) with k ∈ X∗ and v ∈ ∑

Y ∈T CX(Y ) is the crossed product CX(S)oX .

Remark A.5. Proposition A.2 and Corollaries A.3 and A.4 remain true and are easier to prove if we
consider the C∗-algebra generated by the operators h(P ) + V with all h : X∗ → R continuous and such
that |h(k)| → ∞ as k → ∞. If in Proposition A.2 we take H = L2(X;E) with E a finite dimensional
Hilbert space (describing the spin degrees of freedom) then the operatorsH0 = h(P ) with h : X → L(E)
a continuous symmetric operator valued function such that ‖(h(k) + i)−1‖ → 0 as k →∞ are affiliated
to A hence also their perturbations H0 + V where V satisfies the criteria from [DaG3], for example.

Proof of Theorem 1.7: In the remaining part of the appendix we use the notations of §1.3.

Let C ′ be the C∗-algebra generated by the operators of the form (z − K − φ)−1 where z is a not real
number, K is a standard kinetic energy operator, and φ is a symmetric field operator. With the notation
(7.1) we easily get C∗(S) ⊂ C ′. If λ ∈ R then λφ is also a field operator so (z −K − λφ)−1 ∈ C ′. By
taking the derivative with respect to λ at λ = 0 of this operator we get (z−K)−1φ(z−K)−1 ∈ C . Since
(z−K)−1 = ⊕X(z−hX(P ))−1 (recall that P is the momentum observable independently of the group
X) and since C∗(S) ⊂ C ′ we get Sφ(θ)T ∈ C ′ for all S, T ∈ C∗(S) and θ = (θXY )X⊃Y , cf. §1.3.

Let C ′
XY = ΠXC ′ΠY ⊂ LXY be the components of the algebra C ′ and let us fix X ⊃ Y . Then we

get ϕ(P )a∗(u)ψ(P ) ∈ C ′
XY for all ϕ ∈ Co(X∗), ψ ∈ Co(Y ∗), and u ∈ H(X/Y ). The clspan of the
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operators a∗(u)ψ(P ) is TXY , see Proposition 4.19 and the comments after (2.5), and from (4.10) we
have C∗(X) · TXY = TXY . Thus the clspan of the operators ϕ(P )a∗(u)ψ(P ) is TXY for each X ⊃ Y
and then we get TXY ⊂ C ′

XY . By taking adjoints we get TXY ⊂ C ′
XY if X ∼ Y .

Now recall that the subspace T ◦ ⊂ L(H) defined by T ◦
XY = TXY if X ∼ Y and T ◦ = {0} if X 6∼ Y

is a closed self-adjoint linear subspace of T and that T ◦ · T ◦ = C , cf. Proposition 6.18. By what we
proved before we have T ◦ ⊂ C ′ hence C ⊂ C ′. The converse inclusions is easy to prove. This finishes
the proof of Theorem 1.7.

A.2 We prove here a useful technical result. Let E ,F ,G,H be Hilbert spaces and assume that we have
continuous injective embeddings E ⊂ G and F ⊂ G. Let us equip E ∩ F with the intersection topology
defined by the norm (‖g‖2E + ‖g‖2F )1/2. It is clear that E ∩ F becomes a Hilbert space continuously
embedded in G.

Lemma A.6. The map K(E ,H) × K(F ,H) → K(E ∩ F ,H) which associates to S ∈ K(E ,H) and
T ∈ K(F ,H) the operator S|E∩F + T |E∩F ∈ K(E ∩ F ,H) is surjective.

Proof: It is clear that the map is well defined. Let R ∈ K(E ∩F ,H), we have to show that there are S, T
as in the statement of the proposition such that R = S|E∩F + T |E∩F . Observe that the norm on E ∩ F
has been chosen such that the linear map g 7→ (g, g) ∈ E ⊕ F be an isometry with range a closed linear
subspace I. Consider R as a linear map I → H and extend it to the orthogonal of I by zero. The so
defined map R̃ : I → H is clearly compact. Let S, T be defined by Se = R̃(e, 0) and Tf = R̃(0, f).
Clearly S ∈ K(E ,H) and T ∈ K(F ,H) and if g ∈ E ∩ F then

Sg + Tg = R̃(g, 0) + R̃(0, g) = R̃(g, g) = Rg

which proves the lemma.

We shall write the assertion of this lemma in the slightly formal way

K(E ∩ F ,H) = K(E ,H) +K(F ,H). (A.2)

For example, if E,F are Euclidean spaces and s > 0 is real then

Hs(E ⊕ F ) =
(Hs(E)⊗H(F )

) ∩ (H(E)⊗Hs(F )
)

(A.3)

hence for an arbitrary Hilbert space H we have

K(Hs(E ⊕ F ),H) = K(Hs(E)⊗H(F ),H) +K(H(E)⊗Hs(F ),H). (A.4)

If H itself is a tensor product H = HE ⊗HF then we can combine this with (2.8) and get

K(Hs(E ⊕ F ),HE ⊗HF ) = K(Hs(E),HE)⊗K(H(F ),HF ) (A.5)
+K(H(E),HE)⊗K(Hs(F ),HF ).
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