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Abstract

For the standard model of QED with static nuclei, nonrelativistic
electrons and an ultraviolet cutoff, a new simple proof of absence of
excited eigenstates with energies above the groundstate energy and
below the ionization threshold of an atom is presented. Our proof is
based on a multi-scale virial argument and exploits the fact that, in
perturbation theory, excited atomic states decay by emission of one or
two photons. Our arguments do not require an infrared cutoff (or reg-
ularization) and are applicable for all energies above the groundstate
energy, except in a small (α-dependent) interval around the ionization
threshold.

∗also at IHES, Bures-sur-Yvette
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I Description of the Problem and Summary

of Main Results

Radiative transitions are responsible for the disappearance of eigenvalues
corresponding to excited eigenstates from the spectrum of Hamiltonians de-
scribing atoms or molecules coupled to the quantized radiation field. The
known mathematical proofs of this fact involve steps only indirectly linked
to the physical intuition about this phenomenon. In nonrelativistic QED,
previous methods used to analyze the spectrum of such Hamiltonians are
based either on the method of complex spectral deformations, showing that
higher eigenvalues of the unperturbed Hamiltonian migrate to the lower com-
plex half-plane when the electrons are coupled to quantized radiation field,
or on a variant of Mourre’s method of positive commutators, which can be
used to exclude eigenvalues in certain energy intervals. There is a large body
of literature on this subject, dealing with different variants of the standard
model of nonrelativistic QED; see e.g. [2], [3], [4], [6], [7], [10], [9], [14], [18].
For a review of previous work, we also refer the reader to the Introduction of
[9]. General references on the method of complex spectral deformations and
on Mourre’s theory are [16], [17], [11].
We begin by summarizing some earlier results closely related to those proven
in the present paper.
1) Outside some O(g2)-neighborhoods (where g is a coupling constant) of the
groundstate energy and of the ionization threshold, proofs for the absence
of point spectrum and absolute continuity of the energy spectrum have been
given in [2] in the presence of an infrared regularization of the form factor
in the interaction coupling the electrons to the quantized radiation field.
These proofs are based on an operator renormalization group analysis of the
spectrum of a dilated Hamiltonian.
2) An approach involving positive commutators [4], as well as a refined version
[3] of the complex spectral deformation method yield analogous results, but
without any infrared regularization.
The results described in 1) and 2), however, apply only to situations where
the decay of an excited state takes place as a consequence of a dipole tran-
sition. Hence the assumptions in [2], [3], and [4] do, in general, not cover
the entire interval between the groundstate energy and the ionization thresh-
old. For example, the decay of the 2s level of the hydrogen atom, which is
due to two-photon or multi-photon transitions, is not understood in these
references.
3) Absence of eigenvalues and absolute continuity of the energy spectrum
in a neighborhood of the groundstate energy has recently been proven in [9]
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without any infrared regularization, using a multi-scale version of Mourre’s
theory.

The purpose of this paper is twofold. First, we prove a complete result for
the absence of point spectrum below the (unperturbed) ionization threshold
and above the groundstate energy, at least for the hydrogen atom. More-
over, and more importantly, we present a proof closely related to the usual
physical arguments of perturbation theory, which are made mathematically
precise in this paper. Our starting point is the spectroscopic evidence that
one- and two-photon transitions are responsible for the decay of all excited
atomic or molecular bound states. In fact, starting from a perturbative ex-
pansion for a putative excited eigenstate of the total Hamiltonian, we arrive
at a contradiction by taking scalar products of the putative eigenvector with
trial vectors. These trial vectors represent the decay products of the puta-
tive excited states after emission of one or two photons. The perturbative
nature of any solution of the eigenvalue equation, should one exist, is derived
from a multiscale virial argument. Our multiscale virial argument yields an
estimate of the expected number of photons in a putative excited eigenstate
of energy below the ionization threshold. An outline of our main arguments
is presented at the end of this section.
Definition of the model

In the standard model of QED with nonrelativistic matter, an atom or
molecule is described as a quantum-mechanical bound state consisting of
static, positively charged, pointlike nuclei surrounded by pointlike electrons
of charge −e and spin 1

2
with nonrelativistic kinematics, (Pauli electrons).

For simplicity, the system studied in this paper is a hydrogen atom con-
sisting of a single, static proton and one electron. The electron is bound
to the proton by electrostatic Coulomb attraction, and it interacts with the
transverse soft modes of the quantized electromagnetic field. We eliminate
ultraviolet divergences by imposing an ultraviolet cutoff on the interactions
between the electron and the photons. For simplicity of presentation, we ne-
glect the spin of the electron, so that the Zeeman coupling of the electron’s
magnetic moment to the quantized magnetic field is turned off.
In the following, we choose the same units as in [1]: The electron position is
measured in units of 1

2
rBohr, and one unit of energy corresponds to 4Rydberg.

The Hilbert space of pure state vectors of the system is given by

H := Fphys. ⊗Hel , (I.1)

where Hel = L2(R3) is the Hilbert space appropriate to describe states of
a single electron (neglecting its spin), and Fphys. is the Fock space used to
describe the states of the transverse modes of the quantized electromagnetic
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field, i.e., the photons. This space is defined starting from the Fock space F
of general vector bosons, which is given by

F :=
∞⊕

N=0

F (N) , F (0) = C Ω , (I.2)

where Ω is the vacuum vector, i.e., the state without any vector boson, and
the state space, F (N), of N vector bosons is given by

F (N) := SN h⊗N , N ≥ 1 , (I.3)

where the Hilbert space, h, of state vectors of a single vector boson is given
by

h := L2[R3 ⊗ C3]. (I.4)

In (I.4), R3 is the momentum space of our vector bosons, and C3 accounts
for the three independent vector components. In Eq. (I.3), SN denotes the
orthogonal projection onto the subspace of h⊗N of totally symmetric N -
particle wave functions.

The physical Fock space, Fphys., which describes the states of photons is
the subspace contained in F spanned by wave functions

1

N !

∑
PN

[~fp1(
~k1)]⊗ · · · ⊗ [~fpN

(~kN)] ∈ SN h⊗N ,

where PN is the permutation group of N -elements, and [~fl(~k)] is a column

vector with components f (1)
l

(~k), f (2)
l

(~k), f (3)
l

(~k), which is transverse, i.e.,∑
j=1,2,3

kjf
(j)
l (~k) = 0 , ~k = (k1, k2, k3) .

The dynamics of the system is generated by the Hamiltonian

Hα :=
(
− i~∇~x + α3/2 ~A(α~x)

)2
− 1

|~x|
+ Hf . (I.5)

Here, ~∇~x denotes the gradient with respect to the electron position variable
~x ∈ R3, α ∼= 1/137 is the feinstructure constant, ~A(~x) denotes the vector
potential of the transverse modes of the quantized electromagnetic field in
the Coulomb gauge,

~∇~x · ~A(~x) = 0 , (I.6)

with an ultraviolet cutoff imposed on the high-frequency modes, and − 1
|~x|

is the Coulomb potential of electrostatic attraction of the electron to the
nucleus. The atomic Hamiltonian, Hel, is defined by

Hel := −∆~x −
1

|~x|
, (I.7)
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where ∆~x is the Laplacian.
In equation (I.5), Hf is the Hamiltonian of quantized, free massless vector
bosons. It is given by

Hf :=
∑

i=1,2,3

∫
d3k a∗i (

~k) |~k| ai(~k) , (I.8)

where a∗i (
~k) and ai(~k) are the usual creation- and annihilation operators

obeying the canonical commutation relations

[a∗i (
~k) , a∗i′(

~k′)] = [ai(~k) , ai′(~k
′)] = 0 , (I.9)

[ai(~k) , a
∗
i′(
~k′)] = δi,i′ δ(~k − ~k′) , (I.10)

ai(~k) Ω = 0 , (I.11)

for all ~k,~k′ ∈ R3 and i, i′ = 1, 2, 3.
The vector potential in the Coulomb gauge is given by

Aj(~x) := (I.12)

1

(2π)3/2

∑
l=1,2,3

∫ d3k√
2 |~k|

Λ(~k)
{
e−i~k·~xP⊥

j,l(
~k)a∗l (

~k) + ei~k·~xP⊥
j,l(
~k)al(~k)

}
,

where Λ(~k) is a nonnegative, smooth approximation of the characteristic

function of the ball {~k ∈ R3 | |~k| ≤ κ}, and

P⊥
j,l(
~k) := δj,l −

kjkl

|~k|2
. (I.13)

The equation

kjP
⊥
j,l(
~k) = kjδj,l − kj

kjkl

|~k|2
= 0 , (I.14)

where, here and in the following, repeated indices are summed over, expresses
the Coulomb gauge condition.

The cut-off function Λ(~k) ensures that modes of the electromagnetic field

corresponding to wave vectors ~k with |~k| ≥ κ do not interact with the elec-
tron, (ultraviolet cutoff ); κ can be chosen to correspond roughly to the rest
energy of an electron, and, throughout our analysis, will be kept fixed and
larger than the absolute value of the groundstate energy of the unperturbed
system.
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Given an operator-valued function F : R3 × J → B(Hel), J := {1, 2, 3},
with kjF (~k, j) = 0, we write

a∗(F ) :=
∑

j=1,2,3

∫
a∗j(
~k)⊗ F (~k, j) d3k , (I.15)

a(F ) :=
∑

j=1,2,3

∫
aj(~k)⊗ F (~k, j)∗ d3k. (I.16)

This allows us to write the velocity operator ~v (rescaled by 2) as

~v ≡ ~vα := −i~∇x + a∗(~Gα
~x) + a(~Gα

~x) , (I.17)

where ~Gα
~x : R3 × J → B(Hel)

3 are the multiplication operators defined by

Gα
j,~x(
~k, l) :=

α3/2

(2π)3/2

Λ(~k)√
2 |~k|

e−iα~k·~x P⊥
j,l(
~k) . (I.18)

In terms of the velocity operator, the Hamiltonian has the simple form

Hα = (~vα)2 − 1

|~x|
+ Hf . (I.19)

We proceed to recall some basic properties of the Hamiltonian Hα and of
other operators that will be used in the following sections.
For sufficiently small values of α, the Hamiltonian Hα is selfadjoint on its
domain D(Hα) = D(H0), where D(H0) is the domain of the selfadjoint op-
erator

H0 := −∆~x − 1

|~x|
+ Hf . (I.20)

The operator Hα is bounded from below, and the infimum of the spectrum
is a non-degenerate eigenvalue, the groundstate energy, Egs ≡ Egs(α), corre-
sponding to a unique eigenvector, ψgs; see, e.g., [1],[3] (α small), and [13] (α
arbitrary).
The atomic Hamiltonian

Hel := −∆~x − 1

|~x|
(I.21)

has an ionization threshold Σ = 0, above which the spectrum is absolutely
continuous, and the electron is not bound to the nucleus, anymore. By H(j)

el ,
j ≥ 1, we denote the subspace of eigenstates of Hel corresponding to the jth

excited energy level; H(0)
el is the one-dimensional subspace {Cφ(0)} of Hel,

where φ(0) is the unique groundstate of Hel. We recall that the degeneracy
of H(j)

el is (j + 1)2.
Some crucial properties of the eigenfunctions of Hel are summarized below.
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(P1) Given any state φ(j) ∈ H(j)
el , with j ≥ 2, or with j = 1 and for an

angular momentum of φ(1) different from zero, there is a state φ(i) ∈
H(i)

el , for some i with i < j, such that

|(φ(i) , ~p φ(j))| > 0 , (I.22)

where ~p = −i~∇~x.

(P2) The scalar product below is different from zero:

(φ(0) , p1 PH(1)
el

x1 φ
(1)
l=0) , (I.23)

where PH(1)
el

is the spectral projection on the subspace H(1)
el , and φ

(1)
l=0

has angular momentum equal to 0.

Property (P1) is typically true, i.e., up to miraculous selection rules, one
can check it either starting from the analytic expression of the radial ma-
trix elements (see [15]), or by using classical methods for the approximate
calculation of these matrix elements (see [5]), in different regimes depending
on the energy levels, E(i), E(j), of the two considered states, on the size of
their difference, E(j) −E(i), and on the angular momenta. In this paper, we
assume Property (P1) to be always fulfilled. Property (P2) can be checked
by an elementary calculation.
Notation

1) The symbol ‖ . ‖ denotes the norm of vectors in H and of operators on
H. The symbol ‖ . ‖h is used for the vector and the operator norm on
h and B(h), respectively.

2) Given a selfadjoint operator, b, on the one-particle subspace of Fock
space F , dΓ(b) denotes the corresponding second-quantized operator
acting on F .

3) Throughout our paper, the symbol O(αn) stands for a positive quantity
bounded from above by const · αn, where the constant is independent
of α, unless specified otherwise.

Summary of key ideas of proof
The main result of our paper is stated in the following

Theorem
For arbitrary ∆Σ > 0, there is a constant ᾱ(∆Σ) > 0 such that, for
|α| < ᾱ(∆Σ), the Hamiltonian Hα does not have any eigenvalue in the energy
interval (Egs(α),Σ−∆Σ).
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The proof of this result (see Corollary III.3) is completed in Section III, using
a multiscale virial argument presented in Section II.

As mentioned above, our proof of this result is indirect. We assume that
an eigenvector ψα ∈ H of Hα exists, with

Hα ψα = Eαψα , (I.24)

for some energy Eα ∈ (Egs,Σ). Then, using a multiscale virial argument (see
Theorem II.1.), we conclude that

(ψα, N
fψα) ≤ O(α3) , (I.25)

whereN f :=
∑

l=1,2,3

∫
d3k a∗l (

~k) al(~k) is the number operator. Our multiscale
virial argument involves the dilatation operators

dn :=
1

2
χn(|~k|)[~k · i~∇~k + i~∇~k · ~k ]χn(|~k|) , (I.26)

on the one-particle space h, (see Section II.1), where χn is a suitable smooth
approximation to the characteristic function of the interval [ 1

n+1
, 1

n
] con-

tained in the positive frequency half axis, n = 1, 2, ..., and χ0 is a suitable
smooth approximation to the characteristic function of the interval [1 , +∞).
In Lemma II.1., the eigenvalue equation (I.24) and the bound (I.25) are
combined to conclude that the vector ψα and the eigenvalue Eα must have
the following asymptotic expansions in α: For some j ≥ 0,

‖ψα − Ω⊗ φ(j)‖2 ≤ O(α3) , (I.27)

|Eα − E(j)| ≤ O(α3) . (I.28)

This result implies that putative eigenvalues ofHα lie inO(α3)-neighborhoods
of eigenvalues of the Hamiltonian H0.
A neighborhood of the groundstate energy E(0) is trivially excluded, for small
α, by combining (I.27) with the fact that Ω⊗φ(0) is asymptotic to the unique
groundstate, ψgs(α), of the Hamiltonian Hα, as α→ 0, i.e.,

‖Ω⊗ φ(0) − ψgs(α)‖ = o(1) ; (I.29)

see [1].
A more refined argument is necessary to exclude point spectrum in O(α3)-
neighborhoods of the excited eigenvalues of the Hamiltonian H0. Heuristi-
cally, this argument goes as follows.
A formal asymptotic expansion of ψα in powers of α

3
2 yields the equation

ψα = Ω⊗ φ(j) +
2α

3
2

H0 − E(j)
~p · ~A(0) Ω⊗ φ(j) + o(α

3
2 ) . (I.30)
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This expansion is ill-defined whenever the range of photon frequencies (0, κ)

is such that, for some ~k with |~k| ∈ (0, κ) and some i < j,

E(j) − E(i) = |~k|

and Property (P1) is fulfilled, i.e.,

|(φ(i) , ~p φ(j))| > 0 . (I.31)

In fact, in this situation the vector ~p · ~A(0) Ω ⊗ φ(j) is not in the domain of
definition of (H0 − E(j))−1, and hence

1

H0 − E(j)
~p · ~A(0) Ω⊗ φ(j) (I.32)

is not a vector in the Hilbert space.
One may then expect that the nonexistence of the vector in (I.32) and the
asymptotic expansions in (I.27) and (I.28) yield a contradiction. The key
idea to substantiate this expectation is to introduce a trial vector in H of the
following type

η(i) :=
∫
d3k

1

ε
1
2

h
( |~k| − Eα + E(i)

ε

)
θl(k̂)a

∗
l (
~k) Ω⊗ φ(i) , (I.33)

with spectral support w.r. to H0 peaked at the resonance energy Eα ≈ E(j),
for ε > 0 small enough (see Theorem III.2. for a precise definition), and to
consider the scalar product

α
3
2 ((H0 − E(j))η(i) ,

2

H0 − E(j)
~p · ~A(0) Ω⊗ φ(j)) (I.34)

= 2α
3
2 (η(i) , ~p · ~A(0) Ω⊗ φ(j)) , (I.35)

which is well defined.
The expression above vanishes, as ε → 0, but, thanks to (I.31), and for a
suitable choice of the functions θl(k̂), the following estimate from below holds

2α
3
2 |(η(i), ~p · ~A(0) Ω⊗ φ(j))| > Q1 α

3
2 ε

1
2 , (I.36)

where Q1 is an ε- and α- independent constant.
Notice however that, in (I.35), the vector

2α
3
2 ~p · ~A(0) Ω⊗ φ(j) (I.37)

can be replaced by
−(H0 − Eα)(ψα − Ω⊗ φ(j)) , (I.38)
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up to corrections o(α
3
2 ), because of (I.27) and (I.28). This is made precise in

Section III. Hence,

2α
3
2 (η(i) , ~p · ~A(0) Ω⊗ φ(j)) = (I.39)

= −(η(i) , (H0 − Eα)(ψα − Ω⊗ φ(j))) +O(α3)

= −((H0 − Eα) η(i) , (ψα − Ω⊗ φ(j))) +O(α3) . (I.40)

We now observe that the norm ‖(H0 − Eα)η(i)‖ is proportional to ε, and
therefore, using the Schwarz inequality and (I.27), the absolute value of the

scalar product (I.39) is bounded from above by const α
3
2 ε:

|((H0 − Eα) η(i) , (ψα − Ω⊗ φ(j)))| ≤ O(α
3
2 ε) . (I.41)

The bounds (I.36),(I.40) and (I.41) imply that

Q1 α
3
2 ε

1
2 ≤ 2α

3
2 |(η(i), ~p · ~A(0) Ω⊗ φ(j))| ≤ O(α

3
2 ε) +O(α3) , (I.42)

which yields a contradiction for ε proportional to α and α small enough.
This is the essence of our arguments for dipole transitions. For precise

statements see Theorem III.2. For the decay of the state φ
(1)
l=0 (the first excited

atomic state with angular momentum l = 0), we are forced to consider a two-
photon transition, and a similar, but more elaborate argument applies;(see
Theorem III.2.).
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II Multiscale virial argument and photon bound

II.1 Definitions

We define dilatation operators on the one-particle space h, constrained to
suitable ranges of frequencies, by

dn :=
1

2
χn(|~k|)[~k · i~∇~k + i~∇~k · ~k ]χn(|~k|) , (II.1)

where χn(|~k|), n ∈ N, are nonnegative, C∞(R+) functions with the properties

(i) χn(|~k|) = 0, for |~k| ≤ 1
2(n+1)

and for |~k| ≥ 3
2n

,

(ii) χn(|~k|) = 1 for 1
n+1

≤ |~k| ≤ 1
n
,

(iii) |χ′n(|~k|)| ≤ Cχ n, for all n ∈ N, where the constant Cχ is independent
of n.

We also introduce a regularized dilatation operator, d ε
n, on h, by setting

d ε
n :=

1

2
χn(|~k|)[~k · i~∇ ε

~k
+ i~∇ ε

~k
· ~k ]χn(|~k|) , (II.2)

where ~∇ ε
~k
, ε > 0, is the regularized gradient

~∇ ε
~k

:=
~∇~k

1− ε2 ∆~k

. (II.3)

The operators d ε
n are bounded. In the limit ε ↘ 0, the action of d ε

n on the

jth component of the ~x-dependent form factor ~Gα
~x is given by

idnG
α
j,~x(
~k, l) := (II.4)

= −χn(|~k|)
(
~k · ~∇~kχn(|~k|)

) α3/2

(2π)3/2

Λ(~k)√
2 |k|

P⊥
j,l(
~k) e−iα~k·~x (II.5)

− α3/2

(2π)3/2
χ2

n(|~k|)
(
~k · ~∇~k

Λ(~k)√
2 |k|

P⊥
j,l(
~k)

)
e−iα~k·~x (II.6)

−1

2
χ2

n(|~k|)
(
~∇~k · ~k

) α3/2

(2π)3/2

Λ(~k)√
2 |k|

e−iα~k·~x P⊥
j,l(
~k) (II.7)

− α3/2

(2π)3/2
χ2

n(|~k|) Λ(~k)√
2 |k|

P⊥
j,l(
~k)

(
~k · ~∇~ke

−iα~k·~x
)
. (II.8)
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For later use, the following inequalities should be noted.

|(II.5)| ≤ O(α
3
2 (n |~k|

1
2 χn(|~k|)) , (II.9)

|(II.6)|+ |(II.7)|+ |(II.8)| ≤ O(α
3
2 (|~x|+ 1) |~k|−

1
2 χn(|~k|)2) ,(II.10)

and

|Im(II.5)| ≤ O(α
3
2 n (|~x|+ 1) |~k|

3
2 χn(|~k|)) ,(II.11)

|Im(II.6)|+ |Im(II.7)|+ |Im(II.8)| ≤ O(α
3
2 (|~x|+ 1) |~k|

1
2 χn(|~k|)2) . (II.12)

Next, we introduce the second quantized operators Dn := dΓ(dn) and
D ε

n := dΓ(d ε
n). In passing, we also define

Hf
n :=

∑
l=1,2,3

∫
d3k a∗l (

~k)χn(|~k|) |~k|χn(|~k|)al(~k) , (II.13)

N f
n :=

∑
l=1,2,3

∫
d3k a∗l (

~k)χn(|~k|)2 al(~k) , (II.14)

for all n ∈ N.

II.2 Virial theorem

We fix an α−independent, arbitrarily small constant ∆Σ > 0, and assume
that an eigenvector, ψα, corresponding to an eigenvalue in the open interval
(Egs ,Σ −∆Σ), exists. We propose to prove a virial theorem allowing us to
estimate the expectation value of the photon number operators N f

n – scale
by scale, i.e., for each n ∈ N – in the eigenvector ψα. Our estimates will
prove the bound

(ψα , N
f ψα) < O(α3) , (II.15)

see Theorem II.1.. We remind the reader that, since ψα ∈ PHα<Σ−∆Σ
H,

where PHα<Σ−∆Σ
is the projection onto the subspace of vectors with spectral

support below Σ−∆Σ w.r.t. the operator Hα, we have that

‖ |~x|m ψα ‖ < O(1) , ∀m ∈ N , (II.16)

where the constant only depends on the choice of ∆Σ > 0 and on m; see
[3],[12].
Below, we will give a rigorous justification for the virial identity

0 = (ψα , i[Hα , Dn]ψα) = (II.17)

= (ψα , dΓ(i[|~k|, dn])ψα)

−(ψα , ~v · [a∗(idn
~Gα

~x) + a(idn
~Gα

~x)]ψα)

−(ψα , [a∗(idn
~Gα

~x) + a(idn
~Gα

~x)] · ~v ψα) .
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For ε > 0, the following identity holds

0 = (ψα , [iHα , D
ε
n]ψα) (II.18)

= (ψα , dΓ(i[|~k|, d ε
n])ψα) (II.19)

−(ψα , ~v · [a∗(id ε
n
~Gα

~x) + a(id ε
n
~G~x)]ψα) (II.20)

−(ψα , [a∗(id ε
n
~Gα

~x) + a(id ε
n
~Gα

~x)] · ~v ψα) . (II.21)

In (II.18), the right hand side is meaningful because

ψα ∈ D(Hα) ⇒ ψα ∈ D(Hf ) ⇒ ψα ∈ D(D ε
n) . (II.22)

The terms (II.19), (II.20), and (II.21) are well defined because, thanks to the
fact that ψα ∈ PHα<Σ−∆Σ

H, the following norms are finite:

∥∥∥ 1

|~x|+ 1
a(id ε

n
~Gα

~x)ψα

∥∥∥ , (II.23)

‖|~x| vl ψα‖ . (II.24)

Furthermore, for ε > 0, (II.18) holds because ψα is assumed to be an eigen-
vector of Hα. Thus, it is enough to prove that the right hand side converges
to the right hand side of (II.17), as ε tends to 0. This can be shown by
adapting arguments in [8] (for Nelson’s model) to the present model.
We note that

ia)
1

|~x|+ 1
‖id ε

n
~Gα

~x − idn
~Gα

~x‖L2(R3;d3k) → 0 , (II.25)

as ε → 0, uniformly in ~x ∈ R3;

ib) the norm ∥∥∥ 1

|~x|+ 1
a(id ε

n
~Gα

~x)
1

N f
n

∥∥∥ (II.26)

is uniformly bounded in ε;

iia)

i[ |~k| , d ε
n] → |~k|χn(|~k|)2 (II.27)

as ε → 0, strongly on a dense subset of the one-photon Hilbert space
h; and
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iib) the operator norms

‖ [ |~k| , d ε
n] ‖h (II.28)

‖dΓ(i[|~k|, d ε
n])

1

N f
n

‖ (II.29)

are bounded uniformly in ε.

Since D(N f
n ) ∩ D(Hα) = D(Hα) for all n ∈ N, properties ia) and ib) imply

that

(ψα , ~v · [a∗(id ε
n
~Gα

~x) + a(id ε
n
~Gα

~x)]ψα) → (II.30)

→ (ψα , ~v · [a∗(idn
~Gα

~x) + a(idn
~Gα

~x)]ψα) , (II.31)

as ε→ 0, and an analogous result holds for the expression in (II.21);
From iia) and iib), we conclude that

s− lim
ε→0

dΓ(i[|~k|, d ε
n])ψα = dΓ(i[|~k|, dn])ψα (II.32)

= Hf
n ψα (II.33)

where Hf
n has been defined in (II.13).

Theorem II.1. Assume that ψα is a normalized eigenvector of Hα, with
ψα ∈ PH<Σ−∆Σ

H. Then

|(ψα , N
f ψα)| ≤ O(α3) . (II.34)

Proof.
We have shown in (II.17)

0 = (ψα , H
f
nψα)− (ψα , [~v ·

(
a∗(idn

~Gα
~x) + a(idn

~Gα
~x)

)
+ h.c.]ψα) . (II.35)

In order to analyze the right hand side of (II.35), we first calculate some
formal commutators.
(i)

[Hα , a(idnG
α
j,~x)] = (II.36)

= vl [vl , a(idnG
α
j,~x)] + [vl , a(idnG

α
j,~x)] vl (II.37)

+[Hf , a(idnG
α
j,~x)] . (II.38)

(ii)

[vl , a(idnG
α
j,~x)] = (II.39)

= a
(
i
∂

∂xl

(
idnG

α
j,~x

))
− α

3
2

∫
Λ(~k)P⊥

l,l′(
~k) e−iα~k·~x i(dnGα

j,~x)(
~k, l′)

(2π)
3
2 |2~k| 12

d3k , (II.40)



FP-Abs. Excit. Eigenst., 18-April-2007 14

[vl , a
∗(idnG

α
j,~x)] = (II.41)

= a∗
(
− i

∂

∂xl

(
idnG

α
j,~x

))
+ α

3
2

∫
Λ(~k)P⊥

l,l′(
~k) eiα~k·~x i(dnG

α
j,~x)(

~k, l′)

(2π)
3
2 |2~k| 12

d3k . (II.42)

(iii)

[Hf , a(idnG
α
j,~x)] = −a(|~k|idnG

α
j,~x) (II.43)

[Hf , a∗(idnG
α
j,~x)] = a∗(|~k|idnG

α
j,~x) . (II.44)

Then we use the identity

~v = − i
2
[~x , Hα] , (II.45)

which holds in the sense of quadratic forms on vectors belonging to D(Hα)∩
D(|~x|). Making use of the commutators (i),(ii), (iii), and thanks to our
assumption that ψα ∈ PHα<Σ−∆Σ

H, we can write

(ψα , ~v · a(idn
~Gα

~x)ψα) = (II.46)

=
i

2
(ψα , [Hα, ~x] · a(idn

~Gα
~x)ψα) (II.47)

= − i
2
(ψα , ~x · [Hα , a(idn

~Gα
~x)]ψα) , (II.48)

hence

(ψα , ~v · a(idn
~Gα

~x)ψα) = (II.49)

=
i

2
(ψα , xj a(|~k|idnG

α
j,~x)ψα) (II.50)

+
iα

3
2

2

(
ψα , xj vl

∫
Λ(~k)P⊥

l,l′(
~k) e−iα~k·~x i(dnGα

j,~x)(
~k, l′)

(2π)
3
2 |2~k| 12

d3kψα

)
(II.51)

+
iα

3
2

2

(
ψα , xj

∫
Λ(~k)P⊥

l,l′(
~k) e−iα~k·~x i(dnGα

j,~x)(
~k, l′)

(2π)
3
2 |2~k| 12

d3k vl ψα

)
(II.52)

−i
(
ψα , xj vl a

(
i
∂

∂xl

(
idnG

α
j,~x

))
ψα

)
(II.53)

− i
2

(
ψα , xj

[
a
(
i
∂

∂xl

(
idnG

α
j,~x

))
, vl

]
ψα

)
. (II.54)
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Similarly,

(ψα , ~v · a∗(idn
~Gα

~x)ψα) = (II.55)

= − i
2
(ψα , xj a

∗(|~k|idnG
α
j,~x)ψα) (II.56)

−iα
3
2

2

(
ψα , xj vl

∫
Λ(~k)P⊥

l,l′(
~k) eiα~k·~x idnG

α
j,~x(
~k, l′)

(2π)
3
2 |2~k| 12

d3k ψα

)
(II.57)

−iα
3
2

2

(
ψα , xj

∫
Λ(~k)P⊥

l,l′(
~k) eiα~k·~x idnG

α
j,~x(
~k, l′)

(2π)
3
2 |2~k| 12

d3k vl ψα

)
(II.58)

−i(ψα , a
∗
(
− i

∂

∂xl

(
idnG

α
j,~x

)
xj vlψα) . (II.59)

− i
2

(
ψα , xj

[
vl , a

∗
(
− i

∂

∂xl

(
idnG

α
j,~x

)]
ψα

)
. (II.60)

To bound the terms appearing in the expressions above, with the expected
n-dependence, it is convenient to suitably separate them into two groups.
We separately treat the terms – said to be of type I – containing the creation-
and annihilation operators smeared out with derivatives w.r. to ~x of the
function dn

~Gα
~x(~k), or with dn

~Gα
~x(~k) multiplied by |~k|, and the terms – said to

be of type II – where they only appear in the velocity operator.
Thus, we first analyze the expressions (II.50),(II.53),(II.56) and (II.59). Sim-
ilar arguments will apply to terms arising from the commutators in (II.54),
and (II.60).
Afterwards, we will analyze the terms (II.51),(II.52),(II.57) and (II.58), and
those arising from the commutators in (II.54),(II.60), which do not contain
field variables.
Terms of type I
In estimating norms of the type

‖a
(
|~k|idnG

α
j,~x

)
ψα‖, (II.61)

we make use of the inequalities in (II.9), (II.10):

|(ψα , xj a(|~k|idnG
α
j,~x)ψα)| ≤ (II.62)

≤ α
3
2 c1 ‖|~x|ψα‖

(
n2

∫
1( 1

2(n+1)
, 3
2n

)(
~k)|~k|3d3k

) 1
2 (ψα , N

f
n ψα)

1
2 (II.63)

+α
3
2 c2 ‖|~x|2ψα‖

( ∫
1( 1

2(n+1)
, 3
2n

)(
~k)|~k|d3k

) 1
2 (ψα , N

f
n ψα)

1
2 , (II.64)

where c1 and c2 are n- and α-independent, and 1( 1
2(n+1)

, 3
2n

)(
~k) is the charac-

teristic function of the set

{~k ∈ R3 ,
1

2(n+ 1)
< |~k| < 3

2n
} . (II.65)
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Similar estimates can be derived for the terms in Eqs. (II.53), (II.59), and
for those of the same type that result from the commutators in Eqs. (II.54),
(II.60).
Terms of type II

To analyze expressions (II.51),(II.52),(II.57) and (II.58), we first observe
that the contributions proportional to

Re
(
e−iα~k·~x i(dnGα

j,~x)(
~k, l′)

)
= Re

(
eiα~k·~x i(dnG

α
j,~x)(

~k, l′)
)

(II.66)

cancel. The contributions corresponding to the imaginary parts can be esti-
mated individually as follows

∣∣∣ iα 3
2

2
(ψα , xj vl

∫
iIm

(
P⊥

l,l′(
~k)e−iα~k·~x i(dnGα

j,~x)(
~k, l′)

|~k| 12

)
d3kψα)

∣∣∣ ≤ (II.67)

≤ α3 c′′1
∑

l

‖|~x|vl|~x|ψα‖
( ∫

1( 1
2
(n+1) , 3

2
n)(
~k) d3k

)
(II.68)

+α3 c′′2
∑

l

‖|~x|vl|~x|ψα‖
(
n

∫
1( 1

2
(n+1) , 3

2
n)(
~k)|~k| d3k

)
, (II.69)

where c′′1 and c′′2 are n- and α-independent constants; here we have exploited
inequalities (II.11), (II.12).
Similar estimates can be proven for other terms arising from the commutators
in Eqs. (II.54), (II.60).
To prove Theorem II.1., the following ingredients must be used:

(1) ‖|~x|vl|~x|ψα‖,‖vl|~x|ψα‖ and ‖|~x|ψα‖ are uniformly bounded in α, be-
cause ψα ∈ PHα<Σ−∆Σ

H;

(2) the crucial scaling behavior of the bounds

n2
(
n2

∫
1( 1

2(n+1)
, 3
2n

)(
~k)|~k|3d3k

) 1
2 ≤ O(1) (II.70)

n2
( ∫

1( 1
2(n+1)

, 3
2n

)(
~k)|~k|d3k

) 1
2 ≤ O(1) (II.71)

n3
( ∫

1( 1
2(n+1)

, 3
2n

)(
~k) d3k

)
≤ O(1) (II.72)

n3
(
n

∫
1( 1

2(n+1)
, 3
2n

)(
~k)|~k|d3k

)
≤ O(1) . (II.73)

Returning to (II.35) and using the bounds just proven, we can write

0 ≥ (ψα , H
f
nψα)− α

3
2 Q1

1

n2
(ψα , N

f
n ψα)

1
2 − α3Q2

1

n3
, (II.74)
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for some n− and α-independent positive constants Q1 and Q2. Due to the
support of χn(|~k|), we have

(ψα , H
f
nψα) ≥ 1

2(n+ 1)
(ψα , N

f
nψα) , (II.75)

hence, from the inequality (II.74), we derive the bound

n2 (ψα , N
f
nψα) ≤ O(α3) (II.76)

for all n ∈ N. These estimates enable us to bound the expectation value of
the photon number operator in ψα:

N f = N f
(1,+∞) +

∞∑
n=1

N f

( 1
n+1

, 1
n

)
, (II.77)

where N f
(a,b) :=

∑
l=1,2,3

∫
d3k a∗l (

~k)1(a,b)(|~k|) al(~k); namely

(ψα , N
fψα) = (II.78)

= (ψα , N
f
(1,+∞)ψα) +

∞∑
n=1

(ψα , N
f

( 1
n+1

, 1
n

)
ψα) (II.79)

≤ (ψα , N
f
0 ψα) +

∞∑
n=1

(ψα , N
f
nψα) (II.80)

≤ O(α3) , (II.81)

where
N f

0 :=
∑

l=1,2,3

∫
d3k a∗l (

~k)χ0(|~k|)2 al(~k) ,

with χ0(|~k|) a nonnegative, C∞(R+) function such that χ0(~k) = 0 for |~k| ≤ 1
2

and χ0(~k) = 1 for |~k| ≥ 1. By the same virial argument, the estimate
(ψα , N

f
0 ψα) ≤ O(α3) follows.

This completes our proof of Theorem II.1..

III Absence of excited eigenstates of Hα

We start this section with an important technical lemma on properties of
eigenvalues and eigenstates of the Hamiltonian Hα. In Theorem II.1., we
have seen that, if ψα is a normalized eigenvector of Hα corresponding to an
eigenvalue Eα, Eα ≤ Σ−∆Σ, ∆Σ > 0, then

(ψα , N
fψα) ≤ CNf α3 , (III.1)
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where CNf only depends on the distance between the eigenvalue Eα and the
ionization threshold, Σ, of the unperturbed system.

Lemma III.1. Let ∆Σ > 0, and assume that |α| < ᾱ(∆Σ), for a suffi-
ciently small ᾱ(∆Σ) > 0. Let Eα be an eigenvalue of Hα in the interval
(Egs(α),Σ −∆Σ) corresponding to an eigenvector ψα. Then the eigenvector
ψα, with ‖ψα‖ = 1, and Eα can be written as

ψα = PΩ ⊗ PH(j)
el

ψα + PΩ ⊗ P⊥
H(j)

el

ψα + P⊥
Ω ⊗ 1Hel

ψα , (III.2)

Eα = E(j) + ∆E(j)
α , (III.3)

where PH′ is the projection onto a subspace H′ of a Hilbert space H̃, P⊥
H′ is

the orthogonal projection onto the orthogonal complement of H′ in H̃, and
PΩ = P{C Ω}. Furthermore, for some j ≥ 0, the terms on the right hand side
of (III.2) and (III.3) obey the following bounds:

‖PΩ ⊗ PH(j)
el

ψα‖2 ≥ 1−Bjα
3 , (III.4)

‖P⊥
Ω ⊗ 1Hel

ψα‖ ≤ C
1
2

Nfα
3
2 , (III.5)

‖PΩ ⊗ P⊥
H(j)

el

ψα‖ ≤ C⊥
j α

3 , (III.6)

|∆E(j)
α | ≤ CE(j)α3 , (III.7)

and the constants Bj,C
⊥
j , and CE(j) depend only on the distance of E(j) from

the rest of the spectrum of the atomic Hamiltonian Hel.

Proof.
We divide the interval (Egs(α) , Σ −∆Σ) into ī + 1 intervals, where ī is the
number of excited energy levels of the atomic Hamiltonian Hel contained in
the open interval (Egs(α) , Σ −∆Σ), for some arbitrary, but fixed, ∆Σ > 0.
We define the subintervals

I0 := (Egs(α) , E(0) +
σ1,0

2
) , (III.8)

Ii := [E(i) − σi,i−1

2
, E(i) +

σi+1,i

2
) 1 ≤ i < ī− 1 , (III.9)

Iī := [E (̄i) −
σī,̄i−1

2
, Σ−∆Σ) , (III.10)

where σi,i−1 := E(i) − E(i−1). Henceforth, the feinstructure constant α is
assumed to be so small that E(0) + σ1,0

2
> Egs(α).

Since Eα < Σ − ∆Σ, Eα belongs to one of the intervals Ii, 0 ≤ i ≤ ī; Ij,
say. We will show that it is, in fact, as close to E(j) as we wish if α is chosen
sufficiently small.
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Any vector ψα can be written as in Eq. (III.2). Thus, we only have to prove
the bounds in (III.4),(III.5),(III.6) and (III.7).

Inequality (III.5) is a straightforward consequence of Theorem II.1. In
fact, since Eα < Σ − ∆Σ, by assumption, the electron in the state ψα is
exponentially well localized near the nucleus. Thus, the assumptions in The-
orem II.1 are satisfied, and we have the bound

‖P⊥
Ω ⊗ 1Hel

ψα‖2 ≤ (ψα , N
fψα) ≤ CNf α3 , (III.11)

for some α−independent constant CNf only depending on Σ−∆Σ.
To prove the remaining bounds, we consider the eigenvalue equation,

Hαψα = Eαψα, from which we derive the following identities.

i) Let HI := Hα−H0, and let P±
j denote the projection PΩ⊗P⊥ ,±

H(j)
el

, where

P⊥ ,±
H(j)

el

are the spectral projections onto the subspaces of Hel orthogonal

to H(j)
el and with spectral support w.r. to Hel above and below E(j),

respectively. Then

H0P±
j ψα = EαP±

j ψα − P±
j HI P

⊥
Ω ⊗ 1Hel

ψα (III.12)

−〈HI〉ΩP±
j ψα ,

where 〈HI〉Ω is a multiple of the identity obtained by Wick-ordering
HI . Note that if j = 0 only P+

0 is present.

ii) Moreover,

P⊥
Ω ⊗ 1Hel

Hα P
⊥
Ω ⊗ 1Hel

ψα = (III.13)

= −P⊥
Ω ⊗ 1Hel

HI (PΩ ⊗ PH(j)
el

ψα + PΩ ⊗ P⊥
H(j)

el

ψα)

+EαP
⊥
Ω ⊗ 1Hel

ψα .

From Eq. (III.12), we derive the equation

P±
j ψα = − 1

H0 − Eα + 〈HI〉Ω
P±

j HIP
⊥
Ω ⊗ 1Hel

ψα . (III.14)

Note that the R.S. of (III.14) is well defined for α so small that

|〈HI〉Ω| =
α3

(2π)3

∫ d3k

2|~k|
Λ(~k)P⊥

i,l(
~k)P⊥

i,l(
~k)d3k < min{σj+1,j

2
,
σj,j−1

2
} .

(III.15)
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Using (III.1), it is then straightforward to derive the bound

‖P±
j ψα‖ ≤ C⊥

j α
3 , (III.16)

where the constant C⊥
j depends on CNf and on the energy differences σj,j−1 , σj+1,j.

This proves (III.6). From (III.2), (III.1), and (III.16) we then conclude that

(ψα , ψα) = 1 ≤ ‖PΩ ⊗ PH(j)
el

ψα‖2 + (C⊥
j )2 α6 + CNf α3 , (III.17)

which implies that

1 ≥ |cj(α)|2 := ‖PΩ ⊗ PH(j)
el

ψα‖2 ≥ 1−Bjα
3 , (III.18)

for some Bj independent of α. This proves (III.4).
Next, we estimate the difference Eα − E(j) starting from the eigenvalue

equation Eα = 〈ψα , Hα ψα〉, with ψα given by (III.2). Thus

Eα = (E(j) + 〈HI〉Ω)|cj(α)|2 (III.19)

+[(PΩ ⊗ PH(j)
el

ψα , HI P
⊥
Ω ⊗ 1Hel

ψα) + c.c.] (III.20)

+(PΩ ⊗ P⊥
H(j)

el

ψα, HαPΩ ⊗ P⊥
H(j)

el

ψα) (III.21)

+[(P⊥
Ω ⊗ 1Hel

ψα, HIPΩ ⊗ P⊥
H(j)

el

ψα) + c.c.] (III.22)

+(P⊥
Ω ⊗ 1Hel

ψα, HαP
⊥
Ω ⊗ 1Hel

ψα) , (III.23)

where we have used that PΩ ⊗ 1Hel
H0 P

⊥
Ω ⊗ 1Hel

= 0. The different terms,
(III.20) - (III.23), on the R.S. are bounded as follows.

1) Bound on (III.20):

|(PΩ ⊗ PH(j)
el

ψα , HI P
⊥
Ω ⊗ 1Hel

ψα)| ≤ (III.24)

≤ 2α
3
2 |(PΩ ⊗ PH(j)

el

ψα , ~p · ~A(α~x)P⊥
Ω ⊗ 1Hel

ψα)| (III.25)

+α3 |(PΩ ⊗ PH(j)
el

ψα , ~A(α~x) · ~A(α~x)P⊥
Ω ⊗ 1Hel

ψα)|(III.26)

≤ D1 α
3
2 |cj(α)| ‖P⊥

Ω ⊗ 1Hel
ψα‖ ≤ D̃1 α

3 (III.27)

where D1 only depends on j.

2) Bound on (III.21): To estimate, e.g., the contribution to (III.21) pro-



FP-Abs. Excit. Eigenst., 18-April-2007 21

portional to H0, we use Eq. (III.14) as follows.∑
±
|(PΩ ⊗ P⊥ ,±

H(j)
el

ψα, H0 PΩ ⊗ P⊥ ,±
H(j)

el

ψα))| = (III.28)

=
∑
±
|( 1

H0 − Eα + 〈HI〉Ω
P±

j HIP
⊥
Ω ⊗ 1H(j)

el

ψα , (III.29)

, H0
1

H0 − Eα + 〈HI〉Ω
P±

j HIP
⊥
Ω ⊗ 1H(j)

el

ψα)| (III.30)

≤ D2 ‖(N f )
1
2 P⊥

Ω ⊗ 1H(j)
el

ψα‖2 ≤ D̃2 α
3 , (III.31)

where D2 depends on the maximum of the following operator norms∥∥∥∥R1P±
j

( 1

H0 − Eα − 〈HI〉Ω

)2
H0P±

j R2

∥∥∥∥ , (III.32)

where the operators R1 , R2 can be either a component of ~p or a com-
ponent of ~A(α~x). These norms are bounded uniformly in α.

The expectation value of HI in (III.21) is bounded similarly.

3) Bound on (III.22): Using Eq. (III.14) we find that

|(P⊥
Ω ⊗ 1Hel

ψα, HIPΩ ⊗ P⊥
H(j)

el

ψα)| ≤ (III.33)

≤
∑
±
|(P⊥

Ω ⊗ 1Hel
ψα, HI

1

H0 − Eα + 〈HI〉Ω
P±

j HIP
⊥
Ω ⊗ 1Hel

ψα)| ≤ D̃3α
3

4) Bound on (III.23): We use the eigenvalue equation and (III.13) to find
that

|(P⊥
Ω ⊗ 1Hel

ψα , HαP
⊥
Ω ⊗ 1Hel

ψα)| = (III.34)

= |(P⊥
Ω ⊗ 1Hel

ψα, P
⊥
Ω ⊗ 1Hel

HαP
⊥
Ω ⊗ 1Hel

ψα)| (III.35)

≤ |(P⊥
Ω ⊗ 1Hel

ψα , HI(PΩ ⊗ PHj
el
ψα + PΩ ⊗ P⊥

H(j)
el

ψα))| (III.36)

+|Eα| |(P⊥
Ω ⊗ 1Hel

ψα , P
⊥
Ω ⊗ 1Hel

ψα)| (III.37)

≤ |(P⊥
Ω ⊗ 1Hel

ψα , HI(PΩ ⊗ PH(j)
el

ψα))| (III.38)

+|
∑
±

(P⊥
Ω ⊗ 1Hel

ψα , HI
1

H0 − Eα + 〈HI〉Ω
P±

j HIP
⊥
Ω ⊗ 1H(j)

el

ψα)|(III.39)

+|Eα| |(P⊥
Ω ⊗ 1Hel

ψα , P
⊥
Ω ⊗ 1Hel

ψα)| ≤ D̃4 α
3 . (III.40)

To conclude the proof of (III.7) we use (III.19)-(III.23) and exploit the bounds
(III.11),(III.16) and (III.18) to show that there is a constant CE(j) depending
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on Σ − E(j) and on the energy shifts σj,j−1 , σj+1,j, but uniform in α, such
that

|Eα − E(j)| = |∆E(j)
α | ≤ CE(j)α3 . (III.41)

We are now in a position to show that an eigenvector ψα corresponding
to an eigenvalue Eα ∈ Ij cannot exist for α small enough, where our estimate
of the upper bound on |α| depends on the interval Ij.

Theorem III.2. Let ψα be an arbitrary normalized vector. Assume that there
exists some j, with j ≤ ī, such that the bounds in Eqs. (III.4),(III.5),(III.6),
and (III.7) hold. Then, for α small enough, ψα cannot be solution of the
eigenvalue equation Hα ψα = Eα ψα if κ > |E(0)|, where κ is the u.v. cutoff.

Proof.
Our proof is indirect. Thus, we assume that ψα obeys the eigenvalue equation
with ‖ψα‖ = 1. We also assume that κ > |E(0)|. We distinguish three cases,
j > 1, j = 1 and j = 0.
Case j > 1

Because of Property (P1) stated in the Introduction, see Eq. (I.22), there
exists a dipole transition from the eigenstate φ(j) of Hel to a lower-energy
eigenstate φ(i). More precisely, there is an eigenvector, Ω ⊗ φ(i), ‖φ(i)‖ = 1,

φ(i) ∈ H(i)
el , of Hel such that

θl(k̂) (φ(i) , pl′ P
⊥
l,l′(
~k)φ(j)) = θl(k̂) (φ(i) , pl φ

(j)) 6= 0 , (III.42)

for some functions θl(k̂), klθl(k̂) = 0, peaked at some
¯̂
k :=

~k

|~k| , where φ(j) is

such that

Ω⊗ φ(j) =
PΩ ⊗ PH(j)

el

ψα

‖PΩ ⊗ PH(j)
el

ψα‖
.

We then consider the vector η(i) ∈ Fphys.

η(i) :=
∫
d3k

1

ε
1
2

h
( |~k| − Eα + E(i)

ε

)
θl(k̂)a

∗
l (
~k) Ω⊗ φ(i) , (III.43)

where ε > 0, and h(z) ∈ C∞
0 (R), h(0) = 1.

The eigenvalue equation for ψα implies that

(η(i) , (H0 − Eα)ψα) = −(η(i) , HI ψα) . (III.44)
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By Lemma III.1., this equation implies that

(η(i), (H0 −Eα)P⊥
Ω ⊗ 1Hel

ψα) + 2α
3
2 (η(i), ~p · ~A(α~x)PΩ ⊗ PH(j)

el

ψα) = O(α3) ,

(III.45)
with PΩ ⊗ PH(j)

el

ψα =: cj(α)Ω⊗ φ(j). We now notice that

(η(i), ~p · ~A(α~x) Ω⊗ φ(j)) = (III.46)

=
∫
d3k

1

ε
1
2

h
( |~k| − Eα + E(i)

ε

)
θl(k̂)

Λ(~k)

|2~k| 12
(φ(i) , pl′ P

⊥
l,l′(
~k)e−iα~k·~xφ(j)) .

Hence, using (III.42) we see that, for ε and α small enough, the following
bound holds

2|(η(i), ~p · ~A(α~x) Ω⊗ φ(j))| > Q1 ε
1
2 , (III.47)

where Q1 is an ε- and α- independent constant.
By (III.1), we have that

|(η(i), (H0 − Eα)P⊥
Ω ⊗ 1Hel

ψα)| ≤ (III.48)

≤ ‖(H0 − Eα) η(i)‖ ‖P⊥
Ω ⊗ 1Hel

ψα‖ (III.49)

≤ C
1
2

Nf α
3
2 ‖(H0 − Eα) η(i)‖ , (III.50)

and

‖(H0 − Eα) η(i)‖ =

=
[ ∑

l=1,2,3

∫
d3k

1

ε
|h

( |~k| − Eα + E(i)

ε

)
θl(k̂)|2 (|~k| − Eα + E(i))2

] 1
2

≤ Q2 ε , (III.51)

where Q2 is an ε- and α- independent constant. Inequalities (III.47), (III.50)
and (III.51) imply that

Q1 ε
1
2 ≤ Q2 ε+O(α

3
2 ) , (III.52)

which yields a contradiction if we choose ε proportional to α, and α is small
enough.
Case j = 1

If j = 1, the same arguments as for j > 1 apply if the initial state φ(j=1),
in Eq. (III.42), has angular momentum l 6= 0. But if φ(j=1) has angular

momentum l = 0, i.e., φ(j=1) ≡ φ
(j=1)
l=0 , the matrix element in (III.42) vanishes,

because of the selection rule that forbids transitions with l′ − l 6= ±1, where
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l′ and l are the orbital angular momenta of the final and of the initial state,
respectively.
Therefore, in this particular case, we are forced to consider two-photon tran-
sitions.
We then construct a suitable vector ξ(0) ∈ H yielding a contradiction to the
assumption that ψα obeys the eigenvalue equation.

Choice of ξ(0).

ξ(0) :=
∫ ∫

d3kd3q
1

ε
1
2

h1

( |~k|+ |~q|+ α3f(|~k|+ |~q|)− Eα + E(0)

ε

)
h2

(
|~k| − |~q|

)
×

×θj(k̂)θj′(q̂)a∗j(
~k)a∗j′(~q) Ω⊗ φ(0) , (III.53)

where:

• h1(z) ∈ C∞
0 ((−1, 1)) and h1(0) = 1;

• h2(z) ≥ 0 has support in

(Eα − E(0) − ε− 4δ, Eα − E(0) + ε− 2δ) ,

with 0 < ε, α� δ � 1 and α4 ≤ ε; thus,

|~k|+ |~q| ≥ Eα − E(0) − ε− 4δ ; (III.54)

• for z = |~k|+ |~q|, we define

f(z) := (III.55)

= − 4

(2π)3

∫
(φ(0) , pi P

⊥
i,j(~r) e

−iα~r·~x 1

Hel + z + |~r| − Eα

eiα~r·~x P⊥
j,i′(~r) pi′φ

(0))
Λ(~r)2 d3r

2|~r|

+
〈HI〉
α3

.

Note that, being α,ε and δ small enough, and thanks to the constraint
in (III.54),

|f(z)| ≤ K (III.56)

and

c1 ≥ 1 + α3 df(z)

dz
≥ c2 > 0 , (III.57)

for constants K, c1, and c2 uniform in α and ε; this follows because

|Eα − E(1)| ≤ O(α3)

and
PH(0)

el

eiα~r·~x P⊥
j,i′(~r) pi′φ

(0) = 0 ;
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• the angular functions θj(k̂), j = 1, 2, 3, kjθj(k̂) = 0, are peaked at some
¯̂
k.

We derive some constraints on the values of |~k| and |~q|, that follow from
our definitions of the functions h1 , h2: The two inequalities

Eα − E(0) − ε ≤ |~k|+ |~q|+ α3f(|~k|+ |~q|) ≤ Eα − E(0) + ε (III.58)

and
Eα − E(0) − ε− 4δ ≤ |~k| − |~q| ≤ Eα − E(0) + ε− 2δ (III.59)

imply that

Eα − E(0) − ε− 2δ ≤ |~k|+O(α3) ≤ Eα − E(0) + ε− δ (III.60)

and
δ − 2ε ≤ |~q|+O(α3) ≤ 2δ + 2ε . (III.61)

Similarly to the dipole case, we are going to consider the nonvanishing matrix
elements below

θj(ŵ) θj′(ŵ′)(φ(0) , pl′ P
⊥
l′,j(~w)

1

Hel − Eα + | ~w′|
pl′′ P

⊥
l′′,j′( ~w′)φ

(1)
l=0) = (III.62)

= θj(ŵ) θj′(ŵ′)(φ(0) , pj
1

Hel − Eα + | ~w′|
pj′ φ

(1)
l=0) (III.63)

=
∑
j

θj(ŵ) θj(ŵ′)(φ(0) , pj
1

Hel − Eα + | ~w′|
pj φ

(1)
l=0) , (III.64)

with ~w, ~w′ either equal to ~k, ~q or to ~q, ~k, respectively, with the constraints
specified in (III.60) and (III.61). The step from (III.63) to (III.64) follows

because the wave functions representing the vectors φ(0) and φ
(1)
l=0 are rota-

tionally invariant.

The eigenvalue equation for ψα implies that

(ξ(0) , (H0 − Eα)ψα) = −(ξ(0) , HI ψα) . (III.65)

The term on the right hand side is given by

−2α
3
2 (ξ(0) , ~p · ~A(α~x)ψα)− α3 (ξ(0) , ( ~A(0) + ∆ ~A(α~x))2ψα) , (III.66)

where ∆ ~A(α~x) := ~A(α~x)− ~A(0). Thus

(ξ(0) , (H0 − Eα)ψα) = (III.67)

= −2α
3
2 (ξ(0) , ~p · ~A(α~x)ψα)− α3 (ξ(0) , ~A(0)2ψα) (III.68)

−2α3 (ξ(0) , ~A(0) ·∆ ~A(α~x)ψα) (III.69)

−α3 (ξ(0) , ∆ ~A(α~x)2ψα) . (III.70)
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For the moment, we just observe that the absolute values of the terms in
(III.69), (III.70) are bounded above by O(α5). For the term (III.70), the
claim is evident. To bound the term (III.69), it is enough to notice that

the first order term in the expansion in α of ∆ ~A(α~x) does not give any
contribution not bounded by O(α5), thanks to the selection rule for the
angular momentum;(hint: the first order term in the expansion of

(ξ(0) , ~A(0) ·∆ ~A(α~x)φ
(1)
l=0 ⊗ Ω)

vanishes). Thus, we conclude that

(ξ(0) , (H0 − Eα)ψα) = (III.71)

= −2α
3
2 (ξ(0) , ~p · ~A(α~x)ψα) (III.72)

−α3 (ξ(0) , ~A(0)2ψα) (III.73)

+O(α5) . (III.74)

We then need to analyze terms (III.72) and (III.73). To bound (III.72), we
start by noticing that

−2α
3
2 (ξ(0) , ~p · ~A(α~x)ψα) (III.75)

= −2α
3
2 (ξ(0) , ~p · ~A(α~x)

1

H0 − Eα

(H0 − Eα)ψα) (III.76)

= 2α
3
2 (ξ(0) , ~p · ~A(α~x)

1

H0 − Eα

HI ψα) . (III.77)

The step from line (III.75) to line (III.76) is legitimate because:

(i)

1Fphys.
⊗ PH(0)

el

~p · ~A(α~x)ξ(0) = 0 ; (III.78)

this follows from the fact that the angular momentum of φ(0) is 0 and
~A is transverse.

(ii) By inequalities (III.60), (III.61),

|~k| ≥ |~q| ≥ O(δ) > 0 . (III.79)

Consequently, the denominator of 1
H0−Eα

, in the given expression, takes values

larger than a positive quantity of order O(δ).(We recall that |E(1) − Eα| ≤
O(α3))
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Next, we replace HI , in (III.77), by 2α
3
2 ~p · ~A(α~x), discarding a term that

can be bounded above by O(α6). To see this, we note that, for the term

proportional to ~A(α~x)2, the lowest-order contribution is given by

2α
3
2 α3(ξ(0) , ~p · ~A(α~x)

1

H0 − Eα

~A(0) ~A(0)ψα) = (III.80)

= 2α
3
2 α3(ξ(0) , ~p · ~A(α~x)

1

H0 − Eα

~A(0) ~A(0) (ψα − c1(α)Ω⊗ φ
(1)
l=0)) , (III.81)

where ‖ψα − c1(α)Ω⊗ φ(1))‖ ≤ O(α
3
2 ); see (III.5) and (III.6). In fact,

α
3
2 α3(ξ(0) , ~p · ~A(α~x)

1

H0 − Eα

∆ ~A(α~x) ~A(0) c1(α)Ω⊗ φ
(1)
l=0) = 0 , (III.82)

because the vector c1(α)Ω⊗ φ
(1)
l=0 does not contain any photons.

Thus, we have shown that

(III.72) = 4α3(ξ(0) , ~p · ~A(α~x)
1

H0 − Eα

~p · ~A(α~x)ψα) +O(α5). (III.83)

We continue by estimating the first term on the right hand side of (III.83).
We first consider the contribution

4α3(ξ(0) , ~p · ~A(α~x)
1

H0 − Eα

~p · ~A(α~x) c1(α)Ω⊗ φ
(1)
l=0) , (III.84)

which can be estimated from below as follows.
In the following we assume the properties of h1, h2, θj, ε, δ, and α described
above. By using the steps from (III.63) to (III.64), the result proven in
Lemma A1 implies that, for some Q1 > 0 independent of α and ε,

|c1(α)|
∣∣∣∣ ∫ ∫ Λ(~k)

|~k| 12
Λ(~q)

|~q| 12
1

ε
1
2

h1

(g(|~k|+ |~q|)− Eα + E(0)

ε

)
h2

(
|~k| − |~q|

)
θj(k̂)θj′(q̂)× (III.85)

×(φ(0) , pl′ P
⊥
l′,j(~q)

1

Hel − Eα + |~k|
pl′′ P

⊥
l′′,j′(~k)φ

(1)
l=0) d

3q d3k

+
∫ ∫ Λ(~k)

|~k| 12
Λ(~q)

|~q| 12
1

ε
1
2

h1

(g(|~k|+ |~q|)− Eα + E(0)

ε

)
h2

(
|~k| − |~q|

)
θj(k̂)θj′(q̂)× (III.86)

×(φ(0) , pl′ P
⊥
l′,j(

~k)
1

Hel − Eα + |~q|
pl′′ P

⊥
l′′,j′(~q)φ

(1)
l=0) d

3q d3k
∣∣∣∣

≥ Q1 ε
1
2 , (III.87)

where
g(z) := z + α3f(z) (z > 0) . (III.88)
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Therefore, for some Q′
1 > 0 independent of α and ε, and for α and ε small

enough, we have
|(III.84)| ≥ Q′

1 ε
1
2 α3 . (III.89)

Notice, moreover, that the contribution corresponding to P±
1 ≡ PΩ ⊗ P⊥±

H(1)
el

in the first term of the R. S. of (III.83) is O(α6), thanks to (III.6). Thus we
have that

(III.72) = (III.90)

= (III.84) (III.91)

+4α3(ξ(0) , ~p · ~A(α~x)
1

H0 − Eα

~p · ~A(α~x)P⊥
Ω ⊗ 1Hel

ψα) (III.92)

+O(α5) , (III.93)

if ε and α are chosen small enough. Our next step is to treat the term in
(III.92). For this purpose we note that the possible combinations of photon
operators are the following ones:

4α3(ξ(0) , ~p · ~A(−)(α~x)
1

H0 − Eα

~p · ~A(+)(α~x)P⊥
Ω ⊗ 1Hel

ψα) , (III.94)

4α3(ξ(0) , ~p · ~A(+)(α~x)
1

H0 − Eα

~p · ~A(−)(α~x)P⊥
Ω ⊗ 1Hel

ψα) , (III.95)

and

4α3(ξ(0) , ~p · ~A(−)(α~x)
1

H0 − Eα

~p · ~A(−)(α~x)P⊥
Ω ⊗ 1Hel

ψα) . (III.96)

Here, ~A(+)(α~x) , ~A(−)(α~x) denote the contributions to ~A(α~x) proportional to
the creation- and the annihilation operators, respectively.

In expression (III.94), we contract the photon operator in ~A(+)(α~x) first
with the two photon operators in ξ(0) (term (III.98)) and after with the

photon operator in ~A(−)(α~x) (term (III.99)) , and we obtain

(III.94) = (III.97)

= 4α3(

︷ ︸︸ ︷
ξ(0) , ~p · ~A(−)(α~x)

1

H0 − Eα

~p · ~A(+)(α~x)P⊥
Ω ⊗ 1Hel

ψα) (III.98)

+4α3(ξ(0) , ~p · ~A(−)

︷ ︸︸ ︷
(α~x)

1

H0 − Eα

~p · ~A(+)(α~x) 〉P⊥
Ω ⊗ 1Hel

ψα) , (III.99)

where

~p · ~A(−)

︷ ︸︸ ︷
(α~x)

1

H0 − Eα

~p · ~A(+)(α~x) (III.100)
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stands for the expression

~p · ~A(−)(α~x)
1

H0 − Eα

~p · ~A(+)(α~x)

after contracting the operators ~A(−)(α~x), ~A(+)(α~x).
By standard calculations, the absolute value of (III.95) and (III.98) can be

bounded from above by O(ε
1
2 α3α

3
2 ). The factor ε

1
2 comes from the contrac-

tion of ~A(+)(α~x) with one of the two photon creation operators appearing in

the expression for the vector ξ(0), the factor α
3
2 comes from (III.1).

To control the term (III.96), we proceed as follows: In one of the op-

erators ~A(−)(α~x), we split the photon momentum space integral into two
contributions corresponding to photon frequencies larger and smaller than
ε

1
4 , respectively:

A
(−)
j (α~x) =

1

(2π)3/2

∑
j′=1,2,3

∫
B

ε1/4

d3k√
2 |~k|

Λ(~k)P⊥
j,j′(~k)ei~k·α~xaj′(~k) (III.101)

+
1

(2π)3/2

∑
j′=1,2,3

∫
R3\B

ε1/4

d3k√
2 |~k|

Λ(~k)P⊥
j,j′(~k)ei~k·α~xaj′(~k) (III.102)

where Bε1/4 := {~k ∈ R3 : |~k| < ε
1
4}. We denote the corresponding operators

by ~A
(−)
< (α~x) and ~A

(−)
> (α~x), respectively.

We first consider the term proportional to ~A
(−)
< (α~x). Because of the con-

straint on the frequencies, its contribution to expression (III.96) can be

bounded from above by O(ε
1
8 α3α

3
2 ).

To bound the term proportional to ~A
(−)
> (α~x), we observe that, in the scalar

product

4α3(ξ(0) , ~p · ~A(−)
> (α~x)

1

H0 − Eα

~p · ~A(−)(α~x)P⊥
Ω ⊗ 1Hel

ψα) , (III.103)

we can insert 1
H0−Eα

(H0 − Eα) again, as follows

4α3(ξ(0) , ~p· ~A(−)
> (α~x)

1

H0 − Eα

~p· ~A(−)(α~x)
1

H0 − Eα

(H0−Eα)P⊥
Ω⊗1Hel

ψα) .

(III.104)
For ε small enough, this is well defined, because, with respect to the operator
H0 − Eα, the vector

~p · ~A(+)(α~x)
1

H0 − Eα

~p · ~A(+)
> (α~x) ξ(0) (III.105)
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has spectral support above a positive constant of order ε−
1
4 . To see this,

notice that H0, applied to ξ(0), takes values larger than

E(0) + (Eα − E(0) − ε−O(α3)) ;

see (III.58). Furthermore the operator ~A
(+)
> (α~x) yields an additive term of

order O(ε
1
4 ). It follows that the spectral support of

~p · ~A(+)(α~x)
1

H0 − Eα

~p · ~A(+)
> (α~x) ξ(0)

w.r. to the operator H0 − Eα lies above

{[E(0) + (Eα − E(0) − ε−O(α3)) +O(ε
1
4 )]− Eα} ≥ O(ε

1
4 ) .

In expression (III.104), we may also replace

(H0 − Eα)P⊥
Ω ⊗ 1Hel

ψα by −HI P
⊥
Ω ⊗ 1Hel

ψα , (III.106)

because the remainder is given by the vector

−(Hα − Eα) (c1(α)Ω⊗ φ
(1)
l=0 + PΩ ⊗ P⊥

H(1)
el

ψα) , (III.107)

which contains only one or two photons, and, hence, does not contribute to
expression (III.104). Thus (III.104) can be replaced by

−4α3(ξ(0) , ~p · ~A(−)
> (α~x)

1

H0 − Eα

~p · ~A(−)(α~x)
1

H0 − Eα

HIP
⊥
Ω ⊗ 1Hel

ψα) ,

(III.108)
and the absolute value of this quantity can be bounded from above by
O(ε−

1
4 α6). This is seen by noticing that there are two powers of α

3
2 coming

from HI and from P⊥
Ω ⊗ 1Hel

ψα, respectively, while the denominator (in the

second resolvent) is bounded from below by a quantity of order ε
1
4 .

In expression (III.99), we first split (III.99)

4α3(ξ(0) , ~p · ~A(−)

︷ ︸︸ ︷
(α~x)

1

H0 − Eα

~p · ~A(+)(α~x)1Fphys
⊗ PH(0)

el

P⊥
Ω ⊗ 1Hel

ψα) (III.109)

+4α3(ξ(0) , ~p · ~A(−)

︷ ︸︸ ︷
(α~x)

1

H0 − Eα

~p · ~A(+)(α~x)1Fphys
⊗ P⊥

H(0)
el

P⊥
Ω ⊗ 1Hel

ψα) , (III.110)

and we notice that the absolute value of (III.110) can be bound from above
by O(α6), by means of a procedure similar to the treatment of (III.96).
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Returning to (III.90), we conclude that

(III.72) = (III.111)

= (III.84) + (III.109)

+O(α5) +O(ε
1
2 α

9
2 ) +O(ε−

1
4 α6) +O(ε

1
8 α

9
2 )

We proceed to control the term (III.73). First, we observe that

(III.73) = −α3 (ξ(0) , ~A(0)2ψα) = (III.112)

= −α3 (ξ(0) , ~A(0)2PΩ ⊗ P⊥
H(1)

el

ψα) (III.113)

−α3 (ξ(0) , ~A(0)2P⊥
Ω ⊗ 1Hel

ψα) . (III.114)

The absolute value of the expression in (III.113) is trivially bounded from
above by O(α6), see (III.6). As a result, we conclude that

(III.73) = (III.115)

= −α3 (ξ(0) , ~A(0)2P⊥
Ω ⊗ 1Hel

ψα) (III.116)

+O(α6) . (III.117)

As in the estimate of the term (III.92), we consider the following splitting of
(III.116):

−α3(ξ(0) , ~A(−)
︷ ︸︸ ︷
(α~x) · ~A(+)(α~x)1Fphys

⊗ PH(0)
el

P⊥
Ω ⊗ 1Hel

ψα) (III.118)

−α3(ξ(0) , ~A(−)
︷ ︸︸ ︷
(α~x) · ~A(+)(α~x)1Fphys

⊗ P⊥
H(0)

el

P⊥
Ω ⊗ 1Hel

ψα) (III.119)

−2α3(ξ(0) , ~A(+)(0) · ~A(−)(0) P⊥
Ω ⊗ 1Hel

ψα) (III.120)

−α3(ξ(0) , ~A(−)(0) · ~A(−)(0)P⊥
Ω ⊗ 1Hel

ψα) , (III.121)

by noticing that the term (III.119) vanishes, and that the terms (III.120),
(III.121) can be estimated like (III.95) and (III.96), respectively. Then we
can conclude that

(III.73) = (III.118) (III.122)

+O(α5) +O(ε
1
2 α

9
2 ) +O(ε−

1
4 α6) +O(ε

1
8 α

9
2 )

Putting it all together
Returning to the initial expression,

(ξ(0) , (H0 − Eα)ψα) = (III.123)

= −(ξ(0) , HI ψα) (III.124)

= (III.72) + (III.73) +O(α5) (III.125)
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and using the equations (III.111),(III.122) we can write

(ξ(0) , (H0 − Eα)ψα)− (III.118)− (III.109) = (III.126)

= (III.84) +O(α5) +O(ε
1
2 α

9
2 ) +O(ε−

1
4 α6) +O(ε

1
8 α

9
2 ) . (III.127)

We now observe that

(ξ(0) , (H0 − Eα)ψα) = (ξ(0) , (H0 − Eα)P⊥
Ω ⊗ 1Hel

ψα) , (III.128)

and that we can rewrite the L.S. of (III.126) as

(ξ(0) , (H ′
0 − Eα)P⊥

Ω ⊗ 1Hel
ψα) , (III.129)

with

H ′
0 := H0 (III.130)

−4α3 1Fphys
⊗ PH(0)

el

~p · ~A(−)

︷ ︸︸ ︷
(α~x)

1

H0 − Eα

~p · ~A(+)(α~x)1Fphys
⊗ PH(0)

el

+α3 1Fphys
⊗ PH(0)

el

~A(−)
︷ ︸︸ ︷
(α~x) · ~A(+)(α~x)1Fphys

⊗ PH(0)
el

.

Now, notice that

(H ′
0 − Eα)ξ(0) = (III.131)

=
∫ ∫

d3kd3q
1

ε
1
2

h1

( |~k|+ |~q|+ α3f(|~k|+ |~q|)− Eα + E(0)

ε

)
h2

(
|~k| − |~q|

)
×

×θj(k̂)θj′(q̂)a∗j(
~k)a∗j′(~q)

(
|~k|+ |~q|+ α3f(|~k|+ |~q|)− Eα + E(0)

)
Ω⊗ φ(0) ,

where f is defined in (III.62), with the property specified in (III.57). Hence
we can estimate

|(ξ(0) , (H ′
0 − Eα)P⊥

Ω ⊗ 1Hel
ψα)| ≤ (III.132)

≤ ‖(H ′
0 − Eα)ξ(0)‖‖P⊥

Ω ⊗ 1Hel
ψα‖ (III.133)

≤ O(ε α
3
2 ) . (III.134)

Together with inequality (III.89) yields

Q′
1 ε

1
2 α3 ≤ |(III.84)| ≤ O(ε α

3
2 )+O(α5)+O(ε

1
2 α

9
2 )+O(ε−

1
4 α6)+O(ε

1
8 α

9
2 ) .

(III.135)

If we choose ε
1
2 to be given by α

3
2
+ γ

2 , with 0 < γ < 1, then inequality (III.135)
cannot hold for α small enough.
Case j = 0
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In this case, the vector ψα is of the form

c0(α) Ω⊗ φ(0) + PΩ ⊗ P⊥
φ(0)ψα + P⊥

Ω ⊗ 1Hel
ψα , (III.136)

where φ(0) is the unique groundstate of the atomic Hamiltonian. We know,
however, (see [1]), that Ω ⊗ φ(0) is asymptotic to the unique groundstate,
ψgs(α), of the Hamiltonian Hα, as α→ 0, i.e.,

‖Ω⊗ φ(0) − ψgs(α)‖ = o(1) . (III.137)

Using (III.4), we conclude that ψα cannot be orthogonal to ψgs(α), for α
small enough. Since Eα > Egs, by hypothesis, we arrive at a contradiction.
This concludes our proof of Theorem III.2.

Corollary III.3. For arbitrary ∆Σ > 0, there is a constant ᾱ(∆Σ) > 0 such
that, for |α| < ᾱ(∆Σ), the Hamiltonian Hα does not have any eigenvalue in
the energy interval (Egs(α),Σ−∆Σ).
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A Appendix

The following lemma is the key ingredient to prove the bound in (III.87).

Lemma A.1. The sum of the scalar products

(φ(0) , pj
1

Hel − Eα + |~k|
pj φ

(1)
l=0)

+ (φ(0) , pj
1

Hel − Eα + |~q|
pj φ

(1)
l=0)

is not zero, for ε, δ, and α small enough, with 0 < ε, α � δ � 1, where |~k|
and |~q| fulfill the constraints

Eα − E(0) − ε− 2δ ≤ |~k|+O(α3) ≤ Eα − E(0) + ε− δ (A.1)

and
δ − 2ε ≤ |~q|+O(α3) ≤ 2δ + 2ε . (A.2)

Proof.
It suffices to show that the sum

(φ(0) , p1
1

Hel − E(1) + ∆1

p1 φ
(1)
l=0)+(φ(0) , p1

1

Hel − E(1) + ∆2

p1 φ
(1)
l=0) (A.3)

is different from zero for ∆1 = E(1) − E(0) + O(δ), ∆2 = O(δ) > 0, and δ
small enough.
We first analyze

(φ(0) , p1
1

Hel − E(1) + ∆1

p1 φ
(1)
l=0) , (A.4)

with ∆1 = E(1) − E(0) +O(δ).
First, notice that, because of the selection rule on the orbital angular mo-
mentum of the electron, we have

(φ(0) , p1
1

Hel − E(1) + ∆
p1 φ

(1)
l=0) = (A.5)

= (φ(0) , p1 P
⊥ , +

H(0)
el

1

Hel − E(1) + ∆1

p1 φ
(1)
l=0) , (A.6)

therefore the expression (A.4) is well defined.
Using that

p1 =
i

2
[Hel , x1] =

i

2
[Hel − E(0) , x1] ,
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and replacing ∆1 by E(1) − E(0) +O(δ), we can write

(φ(0) , p1
1

Hel − E(1) + ∆1

p1 φ
(1)
l=0) = (A.7)

= − i
2
(φ(0) , x1 (Hel − E(0))

1

Hel − E(0) +O(δ)
p1 φ

(1)
l=0) (A.8)

= − i
2
(φ(0) , x1 p1 φ

(1)
l=0) (A.9)

+O(δ)× [− i
2
(φ(0) , x1

1

Hel − E(0) +O(δ)
p1 φ

(1)
l=0)] , (A.10)

where

|1
2
(φ(0) , x1

1

Hel − E(0) +O(δ)
p1 φ

(1)
l=0)| < K , (A.11)

with K uniform in δ.
Consider now

(φ(0) , p1
1

Hel − E(1) + ∆2

p1 φ
(1)
l=0) , (A.12)

with ∆2 = O(δ) > 0.
Using that

p1 =
i

2
[Hel , x1] =

i

2
[Hel − E(1) , x1] ,

we can write

(φ(0) , p1
1

Hel − E(1) + ∆2

p1 φ
(1)
l=0) = (A.13)

=
i

2
(φ(0) , p1

1

Hel − E(1) + ∆2

(Hel − E(1))x1 φ
(1)
l=0) (A.14)

=
i

2
(φ(0) , p1 x1 φ

(1)
l=0) (A.15)

−∆2 × [
i

2
(φ(0) , p1

1

Hel − E(1) + ∆2

x1 φ
(1)
l=0)] , (A.16)

where

−∆2
i

2
(φ(0) , p1

1

Hel − E(1) + ∆2

x1 φ
(1)
l=0) = (A.17)

= − i
2
(φ(0) , p1 PH(1)

el

x1 φ
(1)
l=0) (A.18)

−∆2
i

2
(φ(0) , p1 P

⊥ , +

H(1)
el

1

Hel − E(1) + ∆2

x1 φ
(1)
l=0) , (A.19)
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and ∣∣∣ i
2
(φ(0) , p1 P

⊥ , +

H(1)
el

1

Hel − E(1) + ∆2

x1 φ
(1)
l=0)

∣∣∣ < K , (A.20)

with K uniform in δ.
Since (A.9) and (A.15) cancel each other, we have

(A.3) = − i
2
(φ(0) , p1 PH(1)

el

x1 φ
(1)
l=0) +O(δ) . (A.21)

Therefore, the result to be proven follows if

(φ(0) , p1 PH(1)
el

x1 φ
(1)
l=0) 6= 0 . (A.22)

The integrals corresponding to the scalar product in (A.22) can be calculated
analytically, and the expression turns out to be different from zero as stated
in Property (P2) in (I.23).
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[2] V. Bach, J. Fröhlich, and I. M. Sigal. Renormalization group analysis of
spectral problems in quantum field theory. Adv. in Math. , 137:205–298,
1998.
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