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Abstract
New calculus of the liquid-gas phase transition is developed for the canonical

ensemble of asymmetric nuclear matter. In contrast to the familiar geometrical
construction, the pressure and the chemical potentials are determined for de�nite
values of the baryon densities of proton and neutron and the temperature. Because
the derivatives of chemical potentials by pressure have discontinuities at the ends
of the phase transition, we conclude against the preceding works that the phase
transition is the �rst order. Due to the �eld-dependent meson-nucleon coupling
constants in our relativistic mean-�eld model of nuclear matter, the section of
binodal surface has no critical point. The appearance of the retrograde condensation
is also proved.

The liquid-gas phase transition in warm nuclear matter [1,2] is a recent topic in nuclear

physics. It is experimentally investigated [3,4] in the multifragmentation reactions of

heavy ions. The nuclear matter produced in the reaction is charge asymmetric. It is

a binary system that has two independent chemical potentials of proton and neutron.

Based on the Gibbs condition in the phase equilibrium, both the chemical potentials in

gaseous and liquid phases are equilibrated. Reference [5] determined them in terms of the

geometrical construction, which was also used in the other works [6-9] of the liquid-gas

phase transition in asymmetric nuclear matter.

In the geometrical construction, the chemical potentials are determined for a �xed

value of the pressure and the asymmetry of nuclear matter. However, the object is

neither a canonical nor a grand-canonical ensemble. In contrast to the condensed matter

physics we cannot press nuclear matter under a de�nite pressure in nuclear experiments.

In this point of view, the geometrical construction is not physically consistent with the

liquid-gas phase transition in nuclear multifragmentation reactions. On the other hand,

another strategy is proposed recently in Ref. [10], which considers a neutron grand-

canonical but proton canonical ensemble. The investigation of phase equilibrium is much

easier than the geometrical construction because the Maxwell construction is applicable.

Nevertheless, the total system in Ref. [10] is neither canonical nor grand-canonical yet.

In the present paper we investigate for the �rst time the liquid-gas phase transition in

the canonical ensemble of binary nuclear system. We are based on the relativistic mean-

�eld (RMF) model of asymmetric nuclear matter developed in Refs. [11] and [12]. The
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model has advantages over the other RMF models in Refs. [5-8]. It can reproduce the

recent astronomical observations of NSs, the density-dependence of the nuclear symmetry

energy and the critical temperature of symmetric nuclear matter. The successes are

essentially due to the �eld-dependent e¤ective NNX (X = �, !, � and �) coupling

constants in the model:

g�pp(nn)X =
1

2

h
(1 + �X) + (1� �X)

��
m�
p(n)

�2 � v2p(n)�i gNNX ; (1)

where M�
i = m�

iMN is the e¤ective mass and Vi = viMN is the vector potential of a

proton or a neutron in the medium. We assume �� = �! = 2=3 and �� = �� = 0. The

coupling constants gNNX are determined in Ref. [11].
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where kB is the Boltzmann constant and E�ki = (k
2 +M�

i
2)
1=2. The spin-isospin degen-

eracy is 
 = 2. The �i is de�ned using the chemical potential �i and the vector potential

Vi of a proton or a neutron as

�i = �i � Vi: (3)
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@ ~


@ Vn
= �Bn +m

2
�

h�i
MN

@ h�i
@ vn

+m2
�

h�3i
MN

@ h�3i
@ vn

� m2
!

h!0i
MN

@ h!0i
@ vn

�m2
�

h�03i
MN

@ h�03i
@ vn

= 0; (7)

where the mean-�elds are calculated [11] from the e¤ective masses and the vector poten-

tials. The explicit expressions of the derivatives of mean �elds are also given in Ref. [11].

The baryon and scalar densities are de�ned by
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The Fermi-Dirac distribution functions of nucleon and antinucleon are
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In the following numerical analyses we have performed the Fermi integral directly using

the adaptive automatic integration with 20-points Gaussian quadrature.

As mentioned above we consider the canonical ensemble of asymmetric nuclear matter.

In other words we specify the temperature T and the baryon densities of proton and

neutron in nuclear matter. In place of each baryon density the total baryon density

�B = �Bp + �Bn; (12)

and the isospin asymmetry

a =
�Bn � �Bp

�B
; (13)

are speci�ed. Then, the 6th-rank nonlinear simultaneous equations (4)-(7), (12) and (13)

are solved so that we have the e¤ective masses, the vector potentials and the chemical

potentials of proton and neutron. Using the results, the pressure is calculated by
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The black curve in Fig. 1 shows an isotherm in the pressure-density plane for a = 0:3 and

T = 13MeV. (We set the Boltzmann constant as unit.) It exhibits typical nature of van

der Waals equation-of-state. The black curve in Fig. 2 shows the Helmholtz energy per

baryon F=A = G=A� P=�B as a function of volume, where G=A =
�
�p�Bp + �n�Bn

�
=�B

is the Gibbs energy per baryon. A concave on the curve is a signal of the liquid-gas phase

transition. Because the physical Helmholtz energy must be convex, we can draw the

common tangent depicted by the red line between ��1B = 9:64fm3 and 47:54fm3 marked

by the red dots. Its inclination is the pressure P = 0:165MeV=fm3 in the phase transition,

which is shown by the red horizontal line in Fig. 1. The pressure is also determined from

a crossing point on the black curve in Fig. 3, which shows the Gibbs energy per baryon

as a function of pressure. The Gibbs energy on the crossing point is its equilibrated

value in gaseous and liquid phases. To the contrary, the chemical potentials �p and �n
are not equilibrated. As a matter of fact the black solid curves in Figs. 4 and 5, which

show the chemical potentials as the functions of pressure, have discontinuities denoted

by the vertical red dashed lines. We have �p = 909:5MeV and �n = 923:5MeV in gaseous

phase but �p = 898:7MeV and �n = 929:3MeV in liquid phase. The black dashed curves

correspond to the concave of the Helmholtz energy in Fig. 2 and so are not physically

realized. Consequently, the Gibbs condition on the phase equilibrium is not satis�ed.

So as to construct the physically reasonable liquid-gas mixed phase to be consistent

with the Gibbs condition, we have to calculate the following 11th-rank simultaneous

nonlinear equations. The four equations of them determine the e¤ective masses and the

vector potentials of proton and neutron in gaseous phase:
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where the su¢ x g indicates the gaseous phase. It is noted again that the mean-�elds are

expressed by the e¤ective masses and the vector potentials. Similarly, the equations for

liquid phase are
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The other two equations determine the mixture of gas and liquid in the phase transition:
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where fg (0 � fg � 1) is the ratio of gas. The baryon densities in gaseous and liquid

phases are
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The last equation imposes the equilibrium condition on pressures in gaseous and liquid

phases:
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Solving Eqs. (15)-(24) and (27), we have the e¤ective masses and the vector potentials

of proton and neutron in each of phases, the chemical potentials of proton and neutron,

and the ratio of gas (or liquid) in the phase transition. It is noted again that in the

canonical ensemble the chemical potentials �p and �n are determined for the de�nite

baryon densities (23) and (24). For numerical calculations we have used the globally

convergent Newton algorism in Ref. [13]. The trial values are easily found from the

corresponding results in the common tangent method.

The numerical results for a = 0:3 and T = 13MeV are shown by the blue curves in Figs.

1-5. In Fig. 1 the pressure, which is the value of the right or left hand side of Eq. (27),

increases slowly in the phase transition from gas to liquid against the constant pressure

from the common tangent. The region of phase transition between �B = 0:017fm�3

and 0:109fm�3 is wider than the one between �B = 0:021fm�3 and 0:104fm�3 from the

common tangent. This is due to the fact that the Helmholtz energy in Fig. 2 is convex and

minimized so as to be lower than the common tangent. It is noted that the minimization

of the Helmholtz energy leads to the equilibrium condition on pressure and chemical

potentials in the isothermal process through the fundamental thermodynamic equation

dF = �SdT � PdV +
P
i=p;n

�idNi. The Gibbs energy in Fig. 3 is also minimized as

a function of pressure because of G=A = F=A + P=�B. The chemical potentials in

Figs. 4 and 5 become the continuous functions of pressure. Figure 6 shows the ratio of

liquid fl = 1 � fg, the asymmetry of gas ag =
�
�
(g)
Bn��

(g)
Bp

�
�
�
(g)
Bn+�

(g)
Bp

� and the asymmetry of liquid
al =

�
�
(l)
Bn��

(l)
Bp

�
�
�
(l)
Bn+�

(l)
Bp

� in the phase transition.
Here we have to discuss the order of the phase transition. Because the black curve and

the blue dashed curve in Fig. 3 connect smoothly on the points marked by the blue dots,
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@G=@P has no discontinuity. Reference [5] therefore asserts that the liquid-gas phase

transition in asymmetric nuclear matter is the second order. However, the argument is

not consistent with the Gibbs condition, to which each of the chemical potentials rather

than the Gibbs energy is relevant. We see readily in Figs. 4 and 5 that @�p=@P and

@�n=@P have discontinuities at the starting and ending points in the phase transition.

It is therefore concluded against Ref. [5] that the phase transition is the �rst order.

The same conclusion is also derived in Ref. [10] from a di¤erent point of view. It is

noted further that the existence of the mixed phase is intrinsic to the �rst-order phase

transition.

Next, we investigate the dependence of liquid-gas phase transition on the asymmetry.

Figure 7 shows the pressure-density isotherms for several asymmetries. The dashed curves

are spurious results from Eq. (14). The physically realized pressure are the solid curves

from Eq. (27). For a � 0:5 although the dashed curves do not show the nature of van

der Waals equation-of-state, the minimization of the Helmholtz energy still leads to the

liquid-gas phase transition. The �rst order phase transition from gas to liquid exists until

a = 0:64. On the other hands, from a = 0:65 to a = 0:67 there are upper limits on baryon

density, above which we �nd no solutions of Eqs. (15)-(24) and (27). The absence of phase

equilibrium was found �rst in Ref. [6] and was recovered in the recent work [9]. It was due

to the density-dependent [6] or the momentum-dependent [9] e¤ective NN interactions.

(Precisely speaking, the treatment of the density dependent �-meson coupling in Ref. [6]

was not physically accurate because the so-called rearrangement e¤ects [14] were not taken

into account.) In the present work it is due to the �eld-dependent coupling constants

(1), which are derived originally from the momentum dependent coupling constants [11]

and lead to e¤ective density dependencies. Although there are found in Refs. [6] and [9]

the upper limits on pressure, we have the upper limits on baryon density. The di¤erence

is because Refs. [6] and [9] investigate the system that is neither canonical nor grand-

canonical while we investigate the canonical ensemble. In this respect it is also noted

that the discussion on the chemical instability in Refs. [6] and [9] is not applicable to the

canonical ensemble in the present work.

From a = 0:675 to a = 0:72 we see the retrograde condensation. For an example Fig.

8 shows the ratio of liquid as a function of pressure for the asymmetry a = 0:675 and

the temperature T = 13MeV. It decreases steeply after the maximum value is reached.

Although the retrograde condensation is discussed in the other works [5,6,8,9], its clear

signal, the variation of the ratio of liquid, is presented for the �rst time in the present

paper. Above a = 0:72 we have no solutions of Eqs. (15)-(24) and (27) at any baryon

density and so the nuclear liquid does not appear.

The above results are summarized in Fig. 9, which shows the section of binodal

surface. There is no critical point, on which the liquid branch connects with the gas

branch. The gas branch shows a backbend with a bending point at a = 0:72, which leads

to the retrograde condensation.
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We have developed new calculus of the liquid-gas phase transition in the canonical

ensemble of asymmetric nuclear matter based on a new RMF model in Refs. [11] and

[12]. It is di¤erent from the geometrical construction used widely in the other works.

The pressure and the chemical potentials are determined for de�nite values of the baryon

densities and the temperature. The pressure increases in the phase transition from gas to

liquid against the constant value from the Maxwell construction of the phase equilibrium.

The Helmholtz energy is minimized and so is lower than the common tangent. As a re-

sult the region of the phase transition is wider than that from the Maxwell construction.

The chemical potentials �p and �n and the derivative of the Gibbs energy @G=@P have

no discontinuities. To the contrary the derivatives of chemical potentials @�p=@P and

@�n=@P have discontinuities at the ends of the phase transition. We can therefore con-

clude against the other works that the liquid-gas phase transition in asymmetric nuclear

matter is the �rst order. The liquid and gas branches in the section of binodal surface

are connected with each other only on the equal concentration a = 0, but there is no

critical point. Although the similar result is found using the density-dependent or the

momentum-dependent NN interactions, we have con�rmed that the absence of the criti-

cal point is also reproduced using the �eld-dependent meson-nucleon coupling constants.

Because the gas branch shows a backbend, the retrograde condensation of nuclear liquid

has been proved. In a future work we will apply the present calculus to another binary

nuclear system, that is, the strange baryon matter.

8



K. Miyazaki

References

[1] J. Richert and P. Wagner, Phys. Rep. 350 (2001) 1 [arXiv:nucl-th/0009023].

[2] S.D. Gupta, A.Z. Mekjian and M.B. Tsang, Advances in Nuclear Physics, Vol. 26
(Kluwer Academic, 2001) [arXiv:nucl-th/0009033].

[3] V.E. Viola et al., Phys. Rep. 434 (2006) 1 [arXiv:nucl-ex/0604012].

[4] V.A. Karnaukhov, Phys. Elem. Part. Atom. Nucl. 37 (2006) 312

[http://www1.jinr.ru/Pepan/Pepan_index.html].

[5] H. Müller and B. D. Serot, Phys. Rev. C 52 (1995) 2072 [arXiv:nucl-th/9505013].

[6] W.L. Qian, R-K. Su and P. Wang, Phys. Lett. B 491 (2000) 90 [arXiv:nucl-
th/0008057].

[7] P.K. Panda, G. Klein, D.P. Menezes and C. Providência, Phys. Rev. C 68 (2003)
015201 [arXiv:nucl-th/0306045].

[8] P. Wang, D.B. Leinweber, A.W. Thomas and A.G. Williams, Nucl. Phys. A 748
(2005) 226 [arXiv:nucl-th/0407057].

[9] J. Xu, L-W. Chen, B-A. Li and H-R. Ma, arXiv:nucl-th/0702085.

[10] C. Ducoin, Ph. Chomaz and F. Gulminelli, Nucl. Phys. A 771 (2006) 68 [arXiv:nucl-
th/0512029].

[11] K. Miyazaki, Mathematical Physics Preprint Archive (mp_arc) 06-336.

[12] K. Miyazaki, Mathematical Physics Preprint Archive (mp_arc) 07-64.

[13] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes

in C, 2nd edition, 1992, Cambridge University Press [http://www.nr.com/].

[14] F. Ho¤man, C.M. Keil and H. Lenske, Phys. Rev. C 64 (2001) 034314.

9



Liquid-gas phase transition in the canonical ensemble of asymmetric nuclear matter

Pr
es

su
re

(M
eV

/fm
3 )

Density (fm­3)

Asymmetry = 0.3
T = 13 MeV

0 0.02 0.04 0.06 0.08 0.1 0.12

0.1

0.2

0.3

Figure 1: The pressure-density isotherm for the asymmetry a = 0:3 and the temperature
T = 13MeV. The black curve is the result from Eq. (14). The red horizontal line is the
pressure in the phase transition derived from the common tangent prescription. The blue
curve is the pressure from Eq. (27). The vertical red and blue dashed lines indicate the
regions of the phase transition.
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Figure 2: The Helmholtz energy per baryon as a function of volume for the asymmetry
a = 0:3 and the temperature T = 13MeV. The black curve is the result corresponding
to the black curve in Fig. 1. The red line is the common tangent that contacts with the
black curve on the two red dots. The blue dashed curve between the two blue dots is
the minimized Helmholtz energy satisfying the Gibbs condition on the liquid-gas phase
equilibrium.
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Figure 3: The Gibbs energy per baryon as a function of pressure for the asymmetry
a = 0:3 and the temperature T = 13MeV. The black curve is the result corresponding
to the black curve in Fig. 1. It has a crossing point denoted by the red line. The blue
dashed curve between the two blue dots is the result satisfying the Gibbs condition on
the liquid-gas phase equilibrium.
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Figure 4: The proton chemical potential as a function of pressure for the asymmetry
a = 0:3 and the temperature T = 13MeV. The black dashed curve corresponds to the
concave of the Helmholtz energy in Fig. 2 and so is not realized. Consequently, the black
solid curve has a discontinuity denoted by the vertical red dashed line. The blue curve is
the result satisfying the Gibbs condition on the liquid-gas phase equilibrium.
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Figure 5: The same as Fig. 4 but for the neutron chemical potential.
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Figure 7: The pressure-density isotherms at T = 13MeV for the asymmetries from a = 0:1
to a = 0:6. The dashed curves from Eq. (14) are spurious while the solid curves from
Eq. (27) are realized.
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Figure 8: The ratio of liquid as a function of pressure for the asymmetry a = 0:675 and
the temperature T = 13MeV.
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Figure 9: The section of binodal surface at the temperature T = 13MeV.
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