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Abstract

We consider operatorH,, of convolution with measureg on locally compact groups. We characterize
the spectrum offf,, by constructing auxiliary operators whose kernel contain the pure point and singular
subspaces aff,,, respectively. The proofs rely on commutator methods.
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1 Introduction

Any selfadjoint operatof] in a Hilbert spacé, with spectral measurEy and spectruna(H), is reduced by
an orthogonal decomposition
H =Hac(H) ®H,(H) ® Hee(H),

that we briefly recall ¢f. [30, Sec. 7.4]). Denote bBor(R) the family of Borel subsets dR. Then, for any
f € H, one has the positive Borel measure

vl : Bor(R) — [0,00), A vfy(4) = | Ea(A)fI? = (£. Eu(A)f).

We say thatf belongs to the spectral subspakg (H) if y}; is pure point,f belongs to the spectral subspace
Hac(H) if Vf; is absolutely continuous with respect to the Lebesgue measuref, balbngs to the spectral
subspacé{..(H) if u{I is singularly continuous with respect to the Lebesgue measure. One also uses the nota-
tionsH(H) := Hac(H) & Hs(H) for thecontinuous subspace &f andH(H) := H,(H) & Hs.(H) for the
singular subspace off. The setsr, (H) := o (H|3,(11)), Oac(H) := 0 (H |4, (1)) 0sc(H) = 0 (H|3(..(a1)).

oc(H) = o(H|n,mr)) andog(H) := o(H |y, m)) are calledoure point spectrupabsolutely continuous spec-

trum, continuous spectrupandsingular spectrum off, respectively.

An important issue in spectral theory consists in determining the above spectral subspaces or subsets for
concrete selfadjoint operators. Under various assumptions this has been performed for important classes of op-
erators: Schirdinger and more general partial differential operators, Toeplitz operators, Wiener-Hopf operators,
and many others. Since the mathematical literature on this subject is considerable, it seems pointless to try to
indicate references.

In the present article we consider locally compact grodpsabelian or not, and convolution operators
H,, acting onL?(X), defined by suitable measurgsbelonging toM(X), the Banach -algebra of complex
Radon measures oK. The casq: = xg, the characteristic function of a compact generating subset, leads to
Hecke operators associated to the left regular representation (notice that our groups need not to be discrete). The
precise definitions and statements are gathered in the next section. Essentially, our result consists in determining




subspacek’), andK?, of L?(X), explicitly defined in terms ofi and the familyHom (X, R) of continuous group
morphismsd : X — R, such thatH,,(H,,) C K, andHs(H,) C K. The casek’), = {0} or K7, = {0} are
interesting; in the first casH,, has no eigenvalues, and in the second désés purely absolutely continuous.
The subspacelé}t andlCﬁ can be calculated explicitly only in very convenient situations. Rather often we are
only able to show that they differ frof.

In Section 3 we prove the results stated and discussed in Section 2. The proofs rely on a modification of a
positive commutator technique calléee method of the weakly conjugate operafidtis method, an unbounded
version of the Kato-Putnam theorem [26, Thm. XII1.28], developed and used in various situations [5, 6, 19, 23,
24, 25, 27], is recalled in Section 3.1. The last section is devoted to examples.

We refer to [2, 3, 4, 7, 8,9, 11, 15, 17, 18, 20, 21, 22, 29] for some related works on the spectral theory
of operators on groups and graphs. Some of these articles put into evidence (Hecke-type) operators with large
singular or singular continuous components. In [25], where analogous technics are used, one gets restrictions on
the singular spectrum for adjacency operators on certain classes of graphs (which could be of non-Cayley type).

2 The main result

We give in this section the statement of our main result for convolution operators on arbitrary locally compact
groups (LCG). The reader is referred to [10, 16] for general information on the theory of LCG.

2.1 Statement of the main result

Let X be a LCG with identitye, centerZ(X) and modular functior\. Let us fix a left Haar measureon X,
using the notatiomlz := d\(x). The associated right Haar measgyris defined byp(E) := \(E~!) for each
Borel subsef of X. WheneverX is compact) is normalizedj.e. \(X) = 1. On discrete groups the counting
measure (assigning maks$o every point) is considered. The notatiar.stands for “almost everywhere” and
refers to the Haar measuke The Lebesgue spat8(X) = LP(X,d)), 1 < p < oo, of X with respect to\ is

endowed with the usual norm y
p
11 i= ([ aetrerr)
X

We are interested in convolution of functions by measures. Namely, we consider for every measure
M(X) and every functiorf € L?(X), 1 < p < oo, the convolution of: and f given (essentially) by

(u* f)(z) := /Xdu(y) fly~'z) forae.xec X.

It is known [16, Thm. 20.12] that = f € LP(X) and that|u * fll, < [|u|| [|f]l,, where|lu|| == |x|(X) is the
norm of the measurg. Since we are mainly concerned with the hilbertian theory, we consider in the sequel the
convolution operatofd,,, . € M(X), acting in the Hilbert spac := L2(X):

Hﬂ«f:::u*fv fEH

The operator,, is bounded with norni{ /7, || < [|x[|, and it admits an adjoint operatéf;; equal tof,,, the

convolution operator by.* € M(X) defined byu*(E) = u(E-1). If the measure: is absolutely continuous
w.r.t. the left Haar measurg so thatdy = a d\ with a € L'(X), theny* is also absolutely continuous w.rx.
anddu* = a*d\, wherea* () := a(x—1)A(z~1) fora.e.x € X. In such a case we simply writé, for H,q».
We shall always assume théi, is selfadjoint,.e. thaty = p*.

Let U (H) stands for the group of unitary operatorsfihand letL : X — U(H) be the left regular
representation ok’. ThenH,, is equal to the strong operator integral

H, = /X du(y) L(y),

andp — H,, is the integrated form of.



We recall that given two measurgsy € M(X), their convolutiory + v € M(X) is defined by the relation
[10, Eq. 2.34] generalizing the usual convolutiorLbffunctions:

/X d(p V) (@) g(z) = /X /X du(x)dv(y) glzy) Vg € Co(X),

whereCj(X) denotes th€'*-algebra of continuous complex functions &rdecaying at infinity. The inequality
[l v < el [|v]| holds.
Givenpu € M(X), letp : X — R be such that the linear functional

is bounded. Then there exists a unique measuld (X ) associated t@’, due to the Riesz-Markov representa-
tion theorem. We writepoy for this measure, and we simply say thais such thatpp € M(X).

Let us callreal characterany continuous group morphistn: X — R. Their set forms a real vector space
Hom (X, R), which can be infinite dimensional.

Definition 2.1. Lety = p* € M(X).

(@) A real characterd is semi-adapted tqu if ®p, 2y € M(X), and(Pu) * = p + (Pu). The set of real
characters that are semi-adapted ds denoted b)Homli (X,R).

(b) A real character® is adapted tou if ® is semi-adapted t@, @3y € M(X), and (®u) * (®2u) =
(®2u) * (®p). The set of real characters that are adapteqltis denoted b;Homi(X ,R).

Let IC{L = m@eHomf;,(X,R) ker(Hg,), for j = 1,2; then our main result is the following.
Theorem 2.2. Let X be a LCG and lelx = p* € M(X). Then
Hp(H,) C K,  and M (H,) C K.
A more precise result is obtained in a particular situation.

Corollary 2.3. Let X be a LCG and lef: = p* € M(X). Assume that there exists a real characteadapted
to u such thatb? is equal to an nonzero constant smpp(). ThenH,, has a purely absolutely continuous spec-
trum, with the possible exception of an eigenvalue located at the origin, with eigerispégg,) = ker(Hg,,).

Corollary 2.3 specially applies to adjacency operators on certain classes of Cayley graphs, which are
Hecke-type operators in the regular representation, thus convolution operators on discrete groups.

Remark 2.4. Using the method of the weakly conjugate operator, some extra results (as a Limiting Absorp-
tion Principle, global smooth operators, perturbations/@f) can also be obtained. For simplicity we do not
include them here, even if they can be inferred quite straightforwardly from [5] and [6]. Improvements in the
assumptions are also possible, but with the cost of more complicated statements and proofs. Proposition 2.1 in
[6] shows the generality of the method.

2.2 Comments and remarks

(A) One obstacle in applying Theorem 2.2 is the fact that certain locally compact groups admit few nonzero real
characters, maybe none.

We say that: € X is compactand we writer € B(X), if the closed subgroup generatedabis compact.
If the order ofz € B(X) is finite, thenx is clearly a compact element (but in non-discrete groups there could
be others). AlthougtB(X) is the union of all the compact subgroupsXf it is in general neither a subgroup,
nor a closed set itX. We write (X)) for the closed subgroup generated B¢X ).

A continuous group morphism sends compact subgroups to compact subgroups. But the unique compact
subgroup oRR is {0}. Thus a real character ot annihilatesZ(X). Itis not clear in general that the “smallness”



of the vector spacélom(X,R) is related to a tendancy for convolution operatorsioro have a substantial
singular subspace, but for certain classes of groups this is indeed the case. For exafhie;ampact, then
X = %(X), Hom(X,R) = {0} and all operatorg/,,, n € M(X), are pure point (see (B) below).

(B) Itis not at all exceptional for a convolution operator to have eigenvalues. For example, if a type | repre-
sentation is contained in the left regular representatiarthen any functiom € L!(X) which is transformed
by (the integrated form of)y into a compact operator will lead to a convolution operdfgrthaving eigenvalues.

To consider just an exteme case, let us assumeXhata CCR group and thdt is completely reducible.
ThenH, can be written as a direct sum of compact operators, thus it has pure point spectrum. These conditions
are fulfilled in the very particular case of compact groups. Actually, in this case, the irreducible representations
are all finite-dimensional, so even convolution operators by elemeits &f) are pure point.

(C) The occurrence in Theorem 2.2 of the subspéfc{gk; not as mysterious as it could seem at first sight.
For example, ifu = J., then®p = 0 for any® € Hom(X,R), so that]CfL = H. Accordingly H,, = 1, with
spectrum composed of the single eigenvalweéth corresponding eigenspatgé

Another simple example is obtained by considerfigompact. On one hand the single real character is
® = 0, with associated subspadeég = H for any = p* € M(X). On the other hand we know from (B) that
Hy(H,) is also equal td+.

If the support ofu is contained in a subgrodp of X with 0 < A(Y") < oo, then a direct calculation shows
that the associated characteristic functign is an eigenvector off,, with eigenvalueu(Y"). Actually, since
(®u)(Y) = 0for any® € Hom(X,R) with @1 € M(X), Cxy is contained irker(Hg,,).

3 Proof of the main result

The proof of Theorem 2.2 relies on an abstract method, that we briefly recall in a simple form.

3.1 The method of the weakly conjugate operator

The method of the weakly conjugate operator works for unbounded operators, but for our purposes it will
be enough to assum@ bounded. It also produces estimations on the boundary values of the resolvent and
information on wave operators, but we shall only concentrate on spectral results.

We start by introducing some notations. The synfiatands for a Hilbert space with scalar prod{ict)
and norm|| - ||. Given two Hilbert spaces{; and ., we denote byZ(H;, H:) the set of bounded operators
from H; to Hs, and putB(H) := B(H, H). We assume th&t is endowed with a strongly continuous unitary
group{W, }+cr. Its selfadjoint generator is denoted Hyand has domai®(A). In most of the applicationd
is unbounded.

Definition 3.1. A bounded selfadjoint operatdf in H belongs toC'! (A; H) if one of the following equivalent
condition is satisfied:

(i) themapR > ¢ — W_,HW, € #(H) is strongly differentiable,
(i) the sesquilinear form
D(A) x D(A) 3 (f,9) — i(Hf, Ag) —i(Af,Hg) € C
is continuous whe®(A) is endowed with the topology &f.

We denote byB the strong derivative in (i) calculated &t= 0, or equivalently the bounded selfadjoint
operator associated with the extension of the form in (ii). The opefatprovides a rigorous meaning to the
commutatori[H, A]. We shall writeB > 0 if B is positive and injective, namely iff, Bf) > 0 for all

feH\{0}.

Definition 3.2. The operatorA is weakly conjugate téhe bounded selfadjoint operatdf if H € C'(A;H)
andB =i[H, A] > 0.



For B > 0 let us consider the completidhof 7 with respect to the norihf|| 5 := (/f, Bf)l/z. The adjoint

spaceB* of B can be identified with the completion & with respect to the norrig||z- := (g, B_lg>1/2.
One has then the continuous dense embeddfigs— H — B, and B extends to an isometric operator
from B to B*. Due to these embeddings it makes sense to assumgihatcr restricts to aCy-group in

B*, or equivalently that it extends to@y-group inB. Under this assumption (tacitly assumed in the sequel)
we keep the same notation for theSg-groups. The domain of the generator of thggroup in5 (resp.5*)
endowed with the graph norm is denoted ByA, B) (resp.D(A, B*)). In analogy with Definition 3.1 the
requirementB € C'(A; B, B*) means that the map > ¢ — W_,BW, € #(B, B*) is strongly differentiable,

or equivalently that the sesquilinear form

is continuous whef®( A, B) is endowed with the topology &. Here,(-, -) denotes the duality betweéhand
B*.

Theorem 3.3. Assume that! is weakly conjugate té/ and thatB = i[H, A] belongs taC'(A; B, B*). Then
the spectrum off is purely absolutely continuous.

Note that the method should be conveniently adapted when absolute continuity is expected only in a sub-
space of the Hilbert space. This is the case considered in the sequel.

3.2 Proof of Theorem 2.2

In this section we construct suitable weakly conjugate operators in the framework of section 2, and we prove our
main result. For that purpose, let us fix a real charadter Hom(X,R) and a measurg = p* € M(X). We

shall keep writing? for the associated operator of multiplicatiorif In most of the applications this operator

is unbounded:; its domain is equal®{®) = {f € H | Df € H}.

One ingredient of our approach is the fact that multiplication by morphisms behaves like a derivation
with respect to the convolution product: for suitable functions or measies X — C, one hasb(f * g) =
(®f)*g+ f+(Dg). Using this observation we show in the next lemma that the commutaigr @] (constructed
as in Definition 3.1) is related to the operatdg,,. This provides a partial explanation of our choice of the
“semi-adapted” and “adapted” conditions.

Lemma3.4. (a) If ®is semi-adapted tp, thenH,, € C*(®;H), andi[H,,, ®] = —iHg, € B(H). Simi-
larly, —iHg, € C*(®,H), andi[—iHg,, ®] = —Hg2, € %(H). Moreover, the equalityfl,,, He,| = 0
holds.

(b) If @ is adapted tqu, then—Hg2,, € C*(®,H), and the equalityHs,,, Hg2,] = 0 holds.

Proof. (a) Let® be semi-adapted to and letf € D(®). Then one hag, o € M(X) andf, ®f € H. Thus
w* f € D(®), and the equalityp (H,, f) = (®u) * f + =+ (& f) holds inH. It follows thati(H,® — ®H,) is
well-defined orD(®) and is equal te-iHs,. Hence Condition (ji) of Definition 3.1 is fulfilled.

The proof that-iHs,, belongs taC'* (®, H) and that[—iHs,,, ®] = —Hg2,, is similar. Finally the equality
[H,, Hs,] = 0is clearly equivalent to the requiremeidty) * o = p * (Pp).

(b) The proof is completely analogous to that of point (a). O

If ®is semi-adapted tp, we setK :=i[H,,®] = —iHg, andL :=i[K, ®| = i[—iHg,, P] = —Hgp2,
(for the sake of simplicity, we omit to write the dependence of these operatdrammul:). The first part of the
previous lemma states that, and K belongs taC! (®; H). In particular, it follows thats” leaves invariant the

domainD(®), and the operator
A= 3 (PK + K9)

is well-defined and symmetric dB(®). Similarly, if ® is adapted tq:, the second part of the lemma states that
L belongs taC! (®; H). Therefore the operatdr leavesD(®) invariant, and the operator

A =1 (L + LD)

is well-defined and symmetric aR(®).



Lemma3.5. (a) If ® is semi-adapted tq:, then the operatotd is essentially selfadjoint o®(®). The
domain of its closured is D(A) = D(®K) = {f € H | ?Kf € H} and A acts onD(A) as the
operatoré K — 3 L.

(b) If @ is adapted tqu, then the operatord’ is essentially selfadjoint of(®). The domain of its closure
A'isD(A)=D(@L)={f e H|DLf € H}.

Proof. One just has to reproduce the proof of [11, Lemma 3.1], replacing their cONpl€) by (@, K) for the
point (a) and by(®, L) for the point (b). O

In the next lemma we collect some results on commutators Withr A’. The commutation relations
exhibited in Lemma 3.4,e. [H,,, K] = 0 if ® is semi-adapted tp and[K, L] = 0 if ¢ is adapted tqu, are
essential.

Lemma 3.6. If  is semi-adapted tp, then

(a) The quadratic fornD(A4) > f — i (H,f, Af) — i (Af, H,f) extends uniquely to the bounded form
defined by the operatdk 2,

(b) The quadratic fornD(A) > f — i (K2f, Af) — i (Af, K?f) extends uniquely to the bounded form
defined by the operatdk LK + § (K?L + LK?) (which reduces taK LK if ® is adapted tqu),

(c) If @ is adapted tqu, then the quadratic forr(A’) > f — i (K f, A'f) — i (A’ f, K f) extends uniquely
to the bounded form defined by the operatdr

The proof is straightforward. Computations may be performed on thele@be. These results imply that
H, € C'Y(A;H), K* € C'(A4;H) and (when® is adapted)X € C'(A’; H). Using these results we now
establish a relation between the kernels of the operdfgrg< and L.

Lemma 3.7. If ® is semi-adapted tp, then one has
ker(H,) C Hy(H,) C ker(K) C Hy(K).

If ® is adapted tqu, one also has
Hp(K) C ker(L) C Hp(L).

Proof. Let f be an eigenvector aff,,. Due to the Virial Theorem [1, Proposition 7.2.10] and the fact filgt
belongs toC (A; H), one has(f, i[H,,, A]f) = 0. It follows by Lemma 3.6.(a) that = (f, K*f) = || K f||*,
i.e. f € ker(K). The inclusionH,(H,) C ker(K) follows. Similarly, by usingA’ instead ofA and Lemma
3.6.(c) one gets (whet is adapted) the inclusiol,, (K) C ker(L), and the lemma is proved. O

Assume now thafb is semi-adapted tp. Then we can decompose the Hilbert spaténto the direct
sumH = K & G, whereC := ker(K) andg is the closure of the rangE . It is easy to see thatl,, and
K are reduced by this decomposition and that their restrictions to the Hilbert §paeebounded selfadjoint
operators. In the next lemma we prove that this decompositiéh also reduces the operatdrif @ is adapted
to p.

Lemma 3.8. If & is adapted tqu, then the decompositich = K @ G reduces the operatod. The restriction
of A to G defines a selfadjoint operator denoted Ay.

Proof. We already know that oP(A) = D(®K) one hasA = ®K — £ L. By using Lemma 3.7 it follows that
K C ker(A) C D(A). Then one trivially checks that (Bt [ N D(A)] C K, (i) A[GND(A)] C G and (iii)
D(A) = [KND(A)]+[G N D(A)], which means that is reduced by the decompositiai= X & G. Thus by
[30, Theorem 7.28] the restriction af to D(A4y) = D(A) N G is selfadjoint inG. O



Proof of Theorem 2.2We know from Lemma 3.7 thalt(,(H,,) C ker(—iHg,) for each® € Homi(X, R).
This obviously implies the first inclusion of the theorem.

Let us denote by, and K, the restrictions tq@; of the operatorsi,, and K. We shall prove in points
(i)-(iii) below that if ® is adapted tq:, then the method of the weakly conjugate operator, presented in Section
3.1, applies to the operatofg and Ay in the Hilbert spacg. It follows then thalG C H..(H,,), anda fortiori
thatHy.(H,) C K = ker(—iHg,). Since this result holds for eadhe Homi(X, R), the second inclusion of
the theorem follows straightforwardly.

(i) Lemma 3.6.(a) implies that Hy Ag — AgHp) is equal in the form sense 62 onD(A4g) = D(A)NG.
Therefore the corresponding quadratic form extends uniquely to the bounded form defined by the éggerator
This implies thatH, belongs toC'! (Ag; G).

(i) Since By := i[Hy, Ag] = K2 > 0in G, the operatord, is weakly conjugate tdZ,. So we define the
space3 as the completion af with respect to the nortf|| 5 := (/f, Bof>1/2. The adjoint space df is denoted

by B* and can be identified with the completion B§G with respect to the norfif|| 5« := <f, B51f>1/2. It
can also be expressed as the closure of the subdpate= K,G with respect to the same norff|z =
||[Ko| = f||. Due to Lemma 3.6.(b) the quadratic fo(Ay) > f +— i(BofAof) — i (Aof, Bof) extends
uniguely to the bounded form defined by the operatey L, K, whereL is the restriction of. to G. We write
i[Bo, Ap] for this extension, which clearly defines an elementis, 5*).

(iii) Let {W, }+cr be the unitary group i generated byl,. We check now that this group extends to a
Cy-group inB. This easily reduces to proving that for ahye R there exists a constaa{¢) > 0 such that
IWiflls < c(®)|lfllg forall f € D(Ap). Due to point (ii) one has for eache D(Ay)

t [t]
WL I3 = (F. Bof) + / ar (W, £,i[Bo, AW £) < I£1% + 2I|Loll / ar W, 113

SinceG — B, the function(0, |t|) > 7 — ||W.f||% € R is bounded. Thus we get the inequality’; f||s <
eltllZLoll || f|| 5 by using a simple form of the Gronwall Lemma. Theref¢l¥, };cr extends to &,-group ins3,
and by duality{ "W, },<r also defines &-group inB*. This concludes the proof of the fact tha} extends to
an element o€0'* (Ay; B, B*). Thus all hypotheses of Theorem 3.3 are satisfied and this gives the resulil

Proof of Corollary 2.3.SinceL = —Hg:,, is proportional with/,,, one has
ker(H,) = Hy(H,) C Hs(H,) C ker(Hg,)

due to Lemma 3.7 and Theorem 2.2. Using this witieplaced by ®., one easily gets the identiker(Hg,,) =
ker(H,). Therefore
ker(Hy) = Hy(Hy) = Hs(Hy) = ker(Hay),

and the claim is proved. O

4 Examples

4.1 Perturbations of central measures

In this section, we exploit commutativity in a non-commutative setting by using central measures. Th&group
is assumed to be unimodular.

By definition, thecentral measureare the elements of the cent&fM(X)] of the convolution Banach
*-algebraM(X). They can be characterized by the conditipiyEy 1) = u(E) for anyy € X and any
Borel setE C X. Thecentral (or clas9 functionsare the elements ¢f[M(X)] N L}(X) = Z[L}(X)]. Thus a
characteristic functioty g is central iff A\(E') < oo andE is invariantunder all inner automorphisms.

The relevant simple facts are the followingyifis central,® € Hom(X,R) and®u € M(X), then®y is
also central (this follows from the identity(yzy 1) = ®(y) + ®(z) — ®(y) = ®(x), Vz,y € X). On the other
hand, ify: is arbitrary but supported o (X ), then®p = 0 for any real characteb. Thus all the commutation
relations in Definition 2.1 are satisfied, and one gets from Theorem 2.2 the following result:



Corollary 4.1. Let X be a unimodular LCG, ley = p§ € M(X) be a central measure, and Ig = uj €
M(X) with supp(p1) C #(X). Then

Hp(Hpg4p1) C ﬂ ker(Hop,)
dcHom(X,R)
Do, % po EM(X)

and

Hs(Hpgtp,) C ﬂ ker(Ha,,)-
PcHom(X,R)
P po, D10, o EM(X)

In order to get more explicit results, we restrict ourselves in the next section to a convenient class of LCG,
generalizing both abelian and compact groups.

4.2 Convolution operators on central groups

Following [12], we say thafX is central (or of class[Z]) if the quotientX/Z(X) is compact. Central groups
possess a specific structure [12, Thm. 4.4KIfs central, therX isomorphic to a direct produ® x H, where
H contains a compact open normal subgroup.

Proposition 4.2. Let X be a central group angg = u§ € M(X) a central measure such thatipp(uo) is
compact and not included iB8(X). Letyy = pi € M(X) with supp(p1) € Z(X) and sety :== po + 1.
ThenH,..(H,) # {0}.

Proof. Central groups are unimodular [13, Prop. p. 366], @pd®2, 31 € M(X) for any® € Hom (X, R),

due to the hypotheses. Furthermore we know by [12, Thm. 5.7Bh&t) = #(X) is a closed normal subgroup

of X and thatX/%(X) is isomorphic to the direct produt’ x D, whereD is a discrete torsion-free abelian
group. But the groupR? x D are exactly those for which the real characters separate points [12, Cor. p. 335].
Therefore for anyr € supp(uo) \ #(X) there existsd € Hom(X, R) such that®(z) # 0. ThusHg, is a
nonzero convolution operator, and the claim follows by Corollary 4.1. O

In a central groupX there exists plenty of central compactly supported measures. For instance there always
exists inX [12, Thm. 4.2] a neighbourhood basecofomposed of compact sefs= S—! which are invariant
(under the inner automorphismgk. central groups belong to the class [SIN]. Therefore the meagiyres
Xxs dA satisfy g = pg and are subject to Proposition 4.2. Actually this also applies to central characteristic
functionsy g with “large” S, since inX any compact set is contained in a compact invariant neighbourhood
of the identity [13, Lemma p. 365]. One can also exihibit central measures satisfying Proposition 4.2 defined
by continuous functions. Indeed we know by [13, Thm. 1.3] that for any neighbourtioofdthe identitye
of a central groupX there exists a non-negative continuous central functignwith supp(ay) C U and
ay(e) > 0.

A simple way to construct examples is as follows. Ket= K x Y, whereK is a compact group with Haar

measure\x andY is an abelian LCG with Haar measuke . Clearly X is central andZ(X) = K x Z(Y).
Let £ be a finite family of invariant subsets &f such that eaclr € £ satisfies\x (E) > 0 andE~! € €.
For eachE € &, let I be a compact subset &f such that\y (Ig) > 0 and(Ig)~! = Ip-:. Suppose also
that Iz, is not a subset 0f4(Y') for someE, € £. Then one easily shows that the set= (J, .. F x Ig
satisfies the following properties: is compact,S = S—1, S is invariant, andS not included inZ(X). Thus
Hac(Hys+4,) # {0} foranyp, = pj € M(X) with supp(p1) C K x ZA(Y'), due to Proposition 4.2.

The following two examples are applications of the preceding construction.

Example 4.3. Let X := S3 x Z, whereSs is the symmetric group of degr8eThe groupSs has a presentation

{a,b|a? b (ab)?), and its conjugacy classes afey = E;' = {e}, B> = E; ' = {a,b,aba} and E3 =

E;' = {ab,ba}. Set€ = {E,, E3} and chooselg,, I, two finite symetric subsets @, each of them
containing at least two elements. Clearly these sets satisfy all the requirements of the above construction. Thus
Hac(Hys) #{0}if S :=Upee B X Ip.



Example 4.4. Let X = SU(2) xR, whereSU(2) is the group (with Haar measurg,) of 2 x 2 unitary matrices

of determinant-1. For eachy € [0, 7] let C(¢9) be the conjugacy class of the matdag(e??,e~*7) in SU(2).

A direct calculation (using for instance Euler angles) shows thal J,. ; C(9)) > 0 for each.J c [0, 7] with
nonzero Lebesgue measure. Bet= (¢ 1) C(V), E2 := Uy, C(V), € == {E1, B2}, I, == (=1,1),

and I, := (—3,-2) U (2,3). Clearly these sets and many others satisfy all the requirements of the above
construction. Thu$t,.(H,,) # {0} if S := Upce £ X IE.

A nice example of a central group which is not the product of a compact and an abelian group can be found
in [14, Ex. 4.7].

In a simple situation one even gets purely absolutely continuous operators; this should be compared with
the discussion in Section 2.2:

Example 4.5. Let X be a central group, let € Z(X) \ #(X), and setu := §, + §,—1 + p; for some

w1 = i € M(X) with supp(u1) € B(X). Theny satisfies the hypotheses of Proposition 4.2, and we can
choose® € Hom(X,R) such that®(z) = 1®(z2) # 0 (note in particular that: ¢ Z(X) iff 2> ¢ 2B(X)

and that®u;, = 0). ThusH.(H,) C ker(Hag,). But f € H belongs toker(Hsg,) = ker (Hos 45 _,)) iff
f(z71z) = f(zz) for a.e.z € X. This periodicity w.r.t. the non-compact elemefteasily implies that the

L?-function f should vanista.e.and thus that{,.(H,) = H.

4.3 Abelian groups

We consider in this section the casdatally compact abelian groupé.CAG), whose theory can be found in
the monograph [16]. LCAG are particular cases of central groups. Their convolution algéhrpis abelian,
so spectral results on convolution operators can be deduced from the preceding section. We shall not repete
them here, but rather invoke duality to obtain properties of a class of multiplication operators on the dual group
X.

Let X stands for a LCAG with elements, y, z, ..., and letX be the dual group of, i.e. the set of
characters o endowed with the topology of compact convergenceXormhe elements ok are denoted by
&,n,¢, ... and we shall use the notatidm, &) for the expressiog(z). The Fourier transformn of a measure
u € M(X) is given by

m(E) = [F(W)(€) = /X du(e) @8, €eX.

We recall from [16, Thm. 23.10] that belongs to theC*-aIgebraBC()?) of bounded continuous complex
functions onX, and that||m||- < ||x|| (showing that the bounfH,| < ||x| is not optimal in general).

Actually the subspaceZ (M(X)) is dense inBC(X), and the subspacé (L!(X)) is densely contained in
Co(X), the ideal of BC'(X) composed of continuous complex functions &nvanishing at infinity. For a
suitably normalized Haar measure &n the Fourier transform also defines a unitary isomorphism ftbonto
L2(X), which we denote by the same symbol. It maps unitaffjyon the operatod/,,, of multiplication with

m = % (u). Moreovery = p*, iff mis real, and

o(H,) =0(Mn) = m()/(:), op(Hy) = op(Mm) = {s € R| Ax (m~1(s)) > 0},

where\, is any Haar measure ox.
This does not solve the problem of determining the nature of the spectrum, at least for three reasons. First,
simple or natural conditions gncould be obscured when using the Fourier transform; the funetien % (1)
could be difficult to compute or to evaluate. Second, the dual gﬂ?iumn be complicated. We are not aware
of general results on the nature of the spectrum of multiplication operators on LCAG. Third, evenfa?,
the spectral theory of multiplication operators is quite subtle. For the particulattaseR?, one finds in [1,
Sec. 7.1.4 & 7.6.2] refined results both on the absolute continuity and on the occurence of singular continuous
spectrum for multiplication operators.



Let us recall that there is an almost canonical identificatidficofi( X, R) with the vector spacBom (R, X )
of all continuous one-parameter subgroups?oﬂ:or a given real charactér, we denote byy € Hom(R, )?)
the unique element satisfying

(z,p(t)) = @) VteR, r e X.

Definition 4.6. The functionm : X — C is differentiable at < X along the one-parameter subgroppe
Hom(R, X) if the functionR > t — m(£ + ¢(t)) € C is differentiable att = 0. In such a case we write
(dym) (€) for L m(& + ¢(t))|,_,. Higher order derivatives, when existing, are denoted/by:, k € N.

This definition triggers a formalism which has some of the properties of the differential calculRé.on
However a differentiable function might not be continuous. Moreovek ifs totally disconnected, then the
theory is trivial: Every complex function defined dhis differentiable with respect to the single trivial element
of Hom(R, X), and the derivative is always zero.df € M(X) is such thatby, € M(X), then [28, p. 68]
m = % (p) is differentiable at any poirg along the one-parameter subgroppnd—i.% (®p) = d,m.

Let us fix a bounded continuous functiom : X — R such thatZ ~'(m) € M(X). We say that the
one-parameter subgroyp: R — X is in Hom!, (R, X) if m is twice differentiable w.r.tp andd,m, d%m &
Z(M(X)). If, in addition,m is thrice differentiable w.r.tp andd?m € .7 (M(X)) too, we say thap belongs
to Hom?, (R, )A(). Then next result follows directly from Corollary 4.1.

Corollary 4.7. Let X be a LCAG and letng, m; be real functions with =1 (my), # ~1(m;) € M(X) and
supp(Z ~(m1)) C B(X). Then

HP(]V[mo+m1) - ﬂ kel"(]\/fd(pmo)
pEHom], (R,)?)

mQ

and
HS(Mmo+m1) - ﬂ ker(Mdg;mo)-
peHom?2, (R,X)

mg

Itis worth noting that forX abelian, the following assertions are equivalent [16, Thm. 24.34 & Cor. 24.35]:
(i) #(X) = {e}, (ii) the real characters separate points, (iii) the dual grBup connected, (iv)X is isomorphic
toR? x D, whereD is a discrete torsion-free abelian group.

Up to our knowledge, Corollary 4.7 is not known in the present generality. It is a by-product of a theory
working in a non-commutative framework and it is obviously far from being optimal. We hope to treat the spec-
tral analysis of (unbounded) multiplication operators on LCAG in greater detail in a forthcoming publication.

One may interpret our use &fom(X,R) in Theorem 2.2 as an attempt to involve “smoothness” and
“derivatives” in spectral theory for groups which might not be abelian or might not have a given Lie structure.

4.4 Semidirect products

Let NV, G be two discrete groups witf¥ abelian (for which we use additive notations), andrletd — Aut(V)
be a group morphism. LeX := N x. G be ther-semidirect produt ofV by G. The multiplication inX is
defined by

(n,g)(m, h) == (n74(m), g + h),
so that
(n,9)™" = (—4(n™"), ~9).
In the sequel we only consider real characters Hom (X, R) of the form® = ¢ o 7, where¢ € Hom (G, R)
andr : X — G is the canonical morphism given lyn, g) := g.

Proposition 4.8. Letay = af : X — C have a finite support and satisfy

> almig)ao(ne,g2) = D ao(ni,g2)ao(ne, g1), V1,92 € G, VmeN.  (4.1)
ny,ne €N ni,ne€N
m=niTg, (n2) M=n1Tg, (n2)
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Leta; = af : X — C have a finite support contained i#(X') and be such thad; * ap = ag * a;. Then

Hs(Hag+ar) C ﬂ ker (H(¢07T)a0)'
¢€Hom(G,R)

Proof. Sincea := ag + a1 has a finite support, we only have to check that
®axa— ax Pa = Pax d’a — P*axPa=0 forany® = ¢pon, ¢ € Hom(G,R). 4.2)

Sincea; * ag = ag * a1 and®a; = 0 for each® € Hom (X, R), we are easily reduced to check (4.2) only for
ag. Let(m, h) € X; then a direct calculation gives

(Pag * ag — ag * Pag)(m,h) = E »(2g — h) g ap(n1, g)ao(na, h — g).
geG nl,nQG(N)
m=mniTg(n2

This leads to the identity
(Pag * ag — ag * Pag)(m, h) = —(Pag * ag — ag * Pag)(m, h)

by using Condition (4.1) and the change of variaffle= h — g. Thus®aq * ag — ag * ®ag = 0.
By a similar argument one obtains thbt, * ®2ay — 2ag * Pay = 0 (the extra factor involved in this
computation is symmetric with respect to the change of variables). O

The proposition tells us thai, has a non-trivial absolutely continuous component if there exists a real
characterp € Hom(G,R) such that(¢ o m)a # 0. Consequently, as soon aspp(a) is not included in
N x %(G), we are done. For instance @ = Z?, we simply have to ask for the existence of an element
(n,g) € supp(a) with g # 0. In the remaining part we indicate several situations to which Proposition 4.8
applies; the perturbatiomy, is left apart for simplicity.

Procedure 4.9. Let G be a finite subset @ such thatG, = —Gy. For eachg € G, let N, be a finite subset
of N such thatr, (N_,) = N, ! for eachg € Gj. Set

S = I_I Ny x {g}.

9€Go

This is a convenient description of the most general finite subs€tsaftisfyingS—! = S (which is equivalent
to xs = x%). Condition(4.1) amounts to

#{(n1,n2) € Ny, X Ny, | m = n17y,(n2)} = #{(n1,m2) € Ny, X Ny, [ m = n17,,(n2))} (4.3)

for eachgy, g2 € Go andm € N. Under these assumptions Proposition 4.8 applies Hpd has a non-trivial
absolutely continuous componentif N [G \ #(G)] # 2.

One can ensure in various situations thas a system of generators (which is needed to asstgmaected
Cayley graph tq X, S)). This happens, for instance,d, generatess, U,c, N, generatesV and the unite
of N belongs taV, for eachg € Gj.

Example 4.10.LetN := S5 = (a,b | a?,b%, (ab)?), G := Z, Gy := {—1,1}, N_ := {a, aba}, Ny := {a, b},
andr,(n) := ana~9 foreachg € Z andn € S3. Then direct calculations show that all the assumptions in Pro-
cedure 4.9 are verified. Hen6é,.(H, ) # {0} for X := S5 x; Zif S = {(a, —1), (aba, —1), (a, 1), (b, 1)}.
Actually, by applying Corollary 2.3 witkb(n, g) := ¢, one finds that the single possible component of the sin-
gular spectrum ofd, ; is an eigenvalue located at the origin. However a careful inspection shows u&hat

is injective, and thus thaltl,.(H, ) = H.
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Arather simple (but not trivial) possibility consists in takiigy = Ny independent op € G, in Procedure
4.9.In such a casé = Ny x Gy andxs = xn, ® Xa, (Which does not implies in general thét, , is a tensor
product of operators). If we also assume thatis invariant under the sdt, | g € Gy}, then all the necessary
assumptions are satisfied. For instance, the invarianég @ermits to define a bijection between the two sets
in Formula (4.3). A particular case would be to cho6se= Z¢, with G := {(£1,...,0),...,(0,...,£1)}.

By using the real morphism : Z¢ — R defined byg(+1,...,0) =: £1,...,¢(0,...,41) =: £1, one can
apply Corollary 2.3 to conclude that, except the possible eigengaltig ; is purely absolutely continuous.

The following two examples are applications of the preceding construction.

Example 4.11. We consider a simple type of wreath product. Téka discrete abelian group and pW :=
R’, where R is an arbitrary discrete group and is a finite set on whiclt; acts by(g,j) — g(j). Then
79({rj}jes) == {ry()}jes defines an action af on R’, thus we can construct the semidirect prodfc't x ,
G. fGy = -Gy Cc Gand Ry = Ral C R are finite subsets wittiy N [G \ 8(G)] # @, thenN, = R
satisfies all the required conditions. Thig.(H, ) # {0} if S := Ny x Go.

Example 4.12. LetG be a discrete abelian group, |&f be the free group generated by the fanjidy , . . . , a,, },
and set\y := {af',...,aj'}. Choose a finite sef, = —Gy C G with Go N [G \ Z(G)] # @ and an action
7 on N such that the conditions o$i := Ny x G, are satisfied (for instance;, g € Go, may act by permutation
on the generators). TheH, , has a non-trivial absolutely continuous part.

Virtually the methods of this article could also be applied to non-split group extensions.
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