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1 Introdu
tionWhi
h approa
h to model redu
tion is the most important? Population is not the ultimatejudge, and popularity is not a s
ienti�
 
riterion, but \Vox populi, vox Dei," espe
iallyin the epo
h of 
itation indexes, impa
t fa
tors and bibliometri
s. Let us ask Google. Itgave on 31st De
ember 2006:� for \quasi-equilibrium" { 301000 links;� for \quasi steady state" 347000 and for \pseudo steady state" 76200, 423000 together;� for our favorite \slow manifold" [1,2℄ 29800 links only, and for \invariant manifold"slightly more, 98100;� for su
h a framework topi
 as \singular perturbation" Google gave 361000 links;� for \model redu
tion" even more, as we did expe
t, 373000;� but for \limiting step" almost two times more { 714000!Our goal is the general theory of stati
 and dynami
 limitation for multis
ale networks.The 
on
ept of limiting step gives, in some sense, the limit simpli�
ation: the wholenetwork behaves as a single step. As the �rst result of our paper we introdu
e furtherspe
i�
ation in this idea: the whole network behaves as a single step in stati
s, andas another single step in dynami
s, the stationary rate and the relaxation time to thisstationary rate are limited by di�erent rea
tion steps, and we des
ribe how to �nd thesesteps.The 
on
ept of limitation is very attra
tive both for theorists and experimentalists. It isvery useful to �nd 
onditions when a sele
ted rea
tion step be
omes the limiting step.We 
an 
hange 
onditions and study the network experimentally, step by step. It is very
onvenient to model a system with limiting steps: the model is extremely simple and 
anserve as a very elementary building blo
k for further study of more 
omplex systems, atypi
al situation both in industry and in systems biology.In IUPAC Compendium of Chemi
al Terminology one 
an �nd two arti
les with de�nitionof limitation [3,4℄. Rate-determining step (rate-limiting step): \These terms are best re-garded as synonymous with rate-
ontrolling step." \A rate-
ontrolling (rate-determiningor rate-limiting) step in a rea
tion o

urring by a 
omposite rea
tion sequen
e is an ele-mentary rea
tion the rate 
onstant for whi
h exerts a strong e�e
t { stronger than thatof any other rate 
onstant { on the overall rate."It is not wise to obje
t to a de�nition and here we do not obje
t, but, rather, 
omplementthe de�nition by additional 
omments. The main 
omment is that usually when peopleare talking about limitation they expe
t signi�
antly more: there exists an elementaryrea
tion a rate 
onstant for whi
h exerts su
h a strong e�e
t on the overall rate that thee�e
t of all other rate 
onstants together is signi�
antly smaller. Of 
ourse, this is not yeta formal de�nition, and should be 
omplemented by a de�nition of \e�e
t", for example,by \
ontrol fun
tion" identi�ed by derivatives [3℄ of the overall rate of rea
tion, or byother overall rate \sensitivity parameters". 2



For the IUPAC Compendium de�nition a rate-
ontrolling step always exists, be
auseamong the 
ontrol fun
tions generi
ally exists the biggest one. For the notion of limitationthat is used in pra
ti
e there exists a di�eren
e between systems with limitation andsystems without limitation.An additional problem arises: are systems without limitation rare or should they be treatedequitably with limitation 
ases? The arguments in favor of limitation typi
alness are asfollows: the real 
hemi
al networks are very multis
ale with very di�erent 
onstants and
on
entrations. For su
h systems it is improbable to meet a situation with 
ompatiblee�e
ts of di�erent stages. Of 
ourse, these arguments are statisti
al and apply to generi
systems from spe
ial ensembles.During last 
entury, the 
on
ept of limiting step was revised several times. First simpleidea of a \narrow pla
e" (a least 
ondu
tive step) 
ould be applied without adaptationonly to a simple 
y
le of irreversible steps that are of the �rst order (see Chap. 16 of [5℄or the paper of R.K. Boyd [6℄). When resear
hers try to apply this idea in more generalsituations they meet various diÆ
ulties su
h as:� Some rea
tions have to be \pseudomonomole
ular." Their 
onstants depend on 
on
en-trations of outer 
omponents, and are 
onstant only under 
ondition that these outer
omponents are present in 
onstant 
on
entrations, or 
hange suÆ
iently slow. For ex-ample, the simplest Mi
haelis{Menten enzymati
 rea
tion is E+S ! ES ! E+P (Ehere stands for enzyme, S for substrate, and P for produ
t), and the linear 
atalyti

y
le here is S ! ES ! S. Hen
e, in general we must 
onsider nonlinear systems.� Even under �xed outer 
omponents 
on
entration, the simple \narrow pla
e" behaviour
ould be spoiled by bran
hing or by reverse rea
tions. For su
h rea
tion systems de�ni-tion of a limiting step simply as a step with the smallest 
onstant does not work. Thesimplest example is given by the 
y
le: A1 $ A2 ! A3 ! A1. Even if the 
onstant ofthe last step A3 ! A1 is the smallest one, the stationary rate may be mu
h smaller thank3b (where b is the overall balan
e of 
on
entrations, b = 
1 + 
2 + 
3), if the 
onstantof the reverse rea
tion A2 ! A1 is suÆ
iently big.In a series of papers [7,8℄, D.B. Northrop 
learly explained these diÆ
ulties with manyexamples based on the isotope e�e
t analysis and suggested that the 
on
ept of rate{limiting step is \outmoded". Nevertheless, the main idea of limiting is so attra
tive thatNorthrop's arguments stimulated the sear
h for modi�
ation and improvement of themain 
on
ept.W.J. Ray (Jr.) [9℄ proposed to use the sensitivity analysis. He 
onsidered 
y
les of re-versible rea
tions and suggested a de�nition: The rate{limiting step in a rea
tion sequen
eis that forward step for whi
h a 
hange of its rate 
onstant produ
es the largest e�e
t onthe overall rate. In his formal de�nition of sensitivity fun
tions the re
ipro
al rea
tion rate(1=W ) and rate 
onstants (1=ki) were used (see [9℄ ) and the 
onne
tion between forwardand reverse step 
onstants (the equilibrium 
onstant) was kept �xed.Ray's approa
h was revised by G.C. Brown and C.E. Cooper [10℄ from the system 
ontrolanalysis point of view (see [11℄). They stress again that there is no unique rate{limitingstep spe
i�
 for an enzyme, and this step, even if it exists, depends on substrate, produ
t3



and e�e
tor 
on
entrations. They demonstrated also that the 
ontrol 
oeÆ
ientsCWki =  kiW �W�ki ![S℄;[P ℄;::: ;where W is the stationary rea
tion rate and ki are 
onstants, are additive and obey thesummation theorems (as 
on
entrations do). Simple relation between 
ontrol 
oeÆ
ientsof rate 
onstants and intermediate 
on
entrations was reported in [12℄. This relation
onne
ts two type of experiments: measurement of intermediate levels and steady{staterate measurements.For the analysis of nonlinear 
y
les the new 
on
ept of kineti
 polynomial was developed[13,14℄. It was proven that the stationary state of the single-route rea
tion me
hanism of
atalyti
 rea
tion 
an be des
ribed by a single polynomial equation for the rea
tion rate.The roots of kineti
 polynomial are the values of the rea
tion rate in the steady state. Fora system with limiting step the kineti
 polynomial 
an be approximately solved and therea
tion rate found in the form of a series in powers of the limiting step 
onstant [15℄.In our approa
h, we analyze not only the steady state rea
tion rates, but also the re-laxation dynami
s of multis
ale systems. We fo
used mostly on the 
ase when all theelementary pro
esses have signi�
antly di�erent time s
ales. In this 
ase, we obtain \limitsimpli�
ation" of the model: all stationary states and relaxation pro
esses 
ould be ana-lyzed \to the very end", by straightforward 
omputations, mostly analyti
ally. Chemi
alkineti
s is an inexhaustible sour
e of examples of multis
ale systems for analysis. It is notsurprising that many ideas and methods for su
h analysis were �rst invented for 
hemi
alsystems.In Se
. 2 we analyze a simple example and the sour
e of most generalizations, the 
at-alyti
 
y
le, and demonstrate the main notions on this example. This analysis is quiteelementary, but in
ludes many ideas elaborated in full in subsequent se
tions.There exist several estimates for relaxation time in 
hemi
al rea
tions (for example, [16℄),but even for the simplest 
y
le with limitation the main property of relaxation time is notwidely known. For a simple irreversible 
atalyti
 
y
le with limiting step the stationaryrate is 
ontrolled by the smallest 
onstant, but the relaxation time is determined by these
ond in order 
onstant. Hen
e, if in the stationary rate experiments for that 
y
le wemostly extra
t the smallest 
onstant, in relaxation experiments another, the se
ond inorder 
onstant will be observed.It is also proven that for 
y
les with well separated 
onstants damped os
illations areimpossible, and spe
trum of the matrix of kineti
 
oeÆ
ients is real. For general rea
tionnetworks with well separated 
onstants this property is proven in Se
. 4.Another general e�e
t observed for a 
y
le is robustness of stationary rate and relaxationtime. For multis
ale systems with random 
onstants, the standard deviation of 
onstantsthat determine stationary rate (the smallest 
onstant for a 
y
le) or relaxation time (these
ond in order 
onstant) is approximately n times smaller than the standard deviation ofthe individual 
onstant (where n is the 
y
le length). Here we deal with the so-
alled \order4



statisti
s". This de
rease of the deviation as n�1 is mu
h faster than for the standard errorsummation, where it de
reases with in
reasing n as n�1=2.In more general settings, robustness of the relaxation time was studied in [17℄ for 
hem-i
al kineti
s models of geneti
 and signalling networks. We proved in [17℄ that for largemultis
ale systems with hierar
hi
al distribution of time s
ales the varian
e of the inverserelaxation time (as well as the varian
e of the stationary rate) is mu
h lower than thevarian
e of the separate 
onstants. Moreover, it 
an tend to 0 faster than 1/n, where nis the number of rea
tions. It was demonstrated that similar phenomena are valid in thenonlinear 
ase as well. As a numeri
al illustration we used a model of signalling networkthat 
an be applied to important trans
ription fa
tors su
h as NFkB.Ea
h multis
ale system is 
hara
terized by its stru
ture (the system of elementary pro-
esses) and by the rate 
onstants of these pro
esses. To make any general statement aboutsu
h systems when the stru
ture is given but the 
onstants are unknown it is useful totake the 
onstant set as random and independent. But it is not obvious how to 
hose therandom distribution. The usual idea to take normal or uniform distribution meets obviousdiÆ
ulties, the time s
ales are not suÆ
iently well separated.Statisti
al approa
h to 
hemi
al kineti
s was developed in [18,19℄ and high-dimensionalmodel representations (HDMR) were proposed as eÆ
ient tools to provide a fully globalstatisti
al analysis of a model. The work [20℄ was fo
used on how the network propertiesare a�e
ted by random rate 
onstant 
hanges. The rate 
onstants were transformed to alogarithmi
 s
ale to ensure an even distribution over the large spa
e.The log-uniform distribution on suÆ
iently wide interval helps us to improve the situation,indeed, but a 
ouple of extra parameters appears: � = �min log k and � = max log k.We have to study the asymptoti
s �! �1, � !1. This approa
h 
ould be formalizedby means of the uniform invariant distributions of log k on Rn . These distributions are�nite{additive, but not 
ountable{additive (not �-additive).The probability and measure theory without 
ountable additivity has a long history. InEu
lid's time only arguments based on �nite{additive properties of volume were legal.Eu
lid meant by equal area the s
issors 
ongruent area. Two polyhedra are s
issors{
ongruent if one of them 
an be 
ut into �nitely many polyhedral pie
es whi
h 
an bere-assembled to yield the se
ond. But all proofs of the formula for the volume of a pyramidinvolve some form of limiting pro
ess. Hilbert asks in his third problem: are two Eu
lideanpolyhedra of the same volume s
issors 
ongruent? The answer is \no" (a review of oldand re
ent results is presented in [46℄). There is another invariant of 
utting and gluingpolyhedra.Finite{additive invariant measures on non-
ompa
t groups were studied by G. Birkho�[39℄ (see also [40℄, Chap. 4). The frequen
y{based Mises approa
h to probability foun-dations [41℄, as well as logi
al foundations of probability by R. Carnap [42℄ do not needthe �-additivity. Non-Kolmogorov probability theories are dis
ussed now in the 
ontextof quantum physi
s [44℄, nonstandard analysis [45℄ and many other problems (and we donot pretend to provide here a full review of related works).5



We answer the question: What does it mean \to pi
k a multis
ale system at random"?We introdu
e and analyze a notion of multis
ale ensemble of rea
tion systems. Theseensembles with well separated variables are presented in Se
. 3.The best geometri
 example that helps us to understand this problem is one of LewisCarroll's Pillow Problems (published in 1883) [21℄: \Three points are taken at randomon an in�nite plane. Find the 
han
e of their being the verti
es of an obtuse-angledtriangle." (In an a
ute-angled triangle all angles are 
omparable, in an obtuse-angledtriangle the obtuse angle is bigger than others and 
ould be mu
h bigger.) The solution ofthis problem depends signi�
antly on the ensemble de�nition. What does it mean \pointsare taken at random on an in�nite plane"? Our intuition requires translation invarian
e,but the normalized translation invariant measure on the plain 
ould not be �-additive.Nevertheless, there exist �nite{additive invariant measures.Lewis Carroll proposed a solution that did not satisfy modern s
ientists. There exists a lotof attempts to improve the problem statement [22{25℄: redu
tion from in�nite plane to abounded set, to a 
ompa
t symmetri
 spa
e, et
. But the elimination of paradox destroysthe essen
e of Carroll's problem. If we follow the paradox and try to give a meaning to\points are taken at random on an in�nite plane" then we repla
e �-additivity of theprobability measure by �nite{additivity and 
ome to the applied probability theory for�nite{additive probabilities. Of 
ourse, this theory for abstra
t probability spa
es wouldbe too poor, and some additional geometri
 and algebrai
 stru
tures are ne
essary tobuild ri
h enough theory.This is not just a beautiful geometri
al problem, but rather an applied question aboutproper de�nition of multis
ale ensembles. We need su
h a de�nition to make any generalstatement about multis
ale systems, and brie
y analyze lessons of Carroll's problem inSe
. 3.In this se
tion we use some mathemati
s to de�ne the multis
ale ensembles with wellseparated 
onstants. This is ne
essary for ba
kground of the analysis of systems withlimitation, but te
hni
al 
onsequen
es are rather simple. We need only two properties ofa typi
al system from multis
ale ensemble with well separated 
onstants:(1) Every two rea
tion rate 
onstants k, k0 are 
onne
ted by relation k � k0 or k � k0(with probability 
lose to 1);(2) The �rst property persists, if we delete two 
onstants k, k0 from the list of 
onstants,and add a number kk0 or a number k=k0 to that list (with probability 
lose to 1).lIf the reader 
an use these properties (when it is ne
essary) without additiona 
lari�
ation,it is possible to skip reading Se
. 3 and go dire
tly to more applied se
tions. In. Se
. 4 westudy stati
 and dynami
 properties of linear multis
ale rea
tion networks. An importantinstrument for that study is a hierar
hy of auxiliary dis
rete dynami
al system. Let Aibe nodes of the network (\
omponents"), Ai ! Aj be edges (rea
tions), and kji be the
onstants of these rea
tions (please pay attention to the inverse order of subs
ripts). Adis
rete dynami
al system � is a map that maps any node Ai in a node A�(i). To 
onstru
ta �rst auxiliary dynami
al system for a given network we �nd for ea
h Ai the maximal
onstant of rea
tions Ai ! Aj: k�(i)i � kji for all j, and �(i) = i if there are no rea
tions6



Ai ! Aj. Attra
tors in this dis
rete dynami
al system are 
y
les and �xed points.The fast stage of relaxation of a 
omplex rea
tion network 
ould be des
ribed as masstransfer from nodes to 
orrespondent attra
tors of auxiliary dynami
al system and massdistribution in the attra
tors. After that, a slower pro
ess of mass redistribution betweenattra
tors should play a more important role. To study the next stage of relaxation,we should glue 
y
les of the �rst auxiliary system (ea
h 
y
le transforms into a point),de�ne 
onstants of the �rst derivative network on this new set of nodes, 
onstru
t for thisnew network a (�rst) auxiliary dis
rete dynami
al system, et
. The pro
ess terminateswhen we get a dis
rete dynami
al system with one attra
tor. Then the inverse pro
ess of
y
le restoration and 
utting starts. As a result, we 
reate an expli
it des
ription of therelaxation pro
ess in the rea
tion network, �nd estimates of eigenvalues and eigenve
torsfor the kineti
 equation, and provide full analysis of steady states for systems with wellseparated 
onstants.The problem of multis
ale asymptoti
s of eigenvalues of non-selfadjoint matri
es wasstudied by Vishik, Ljusternik [27℄ and Lidskii [28℄. Re
ently, some generalizations wereobtained by idempotent (min-plus) algebra methods [29℄. These methods provide naturallanguage for dis
ussion of some multis
ale problems [30℄. In the Vishik{Ljusternik{Lidskiitheorem and its generalizations the asymptoti
s of eigenvalues and eigenve
tors for thefamily of matri
es Aij(�) = aij�Aij + o(�Aij) is studied for � > 0, �! 0.In the 
hemi
al rea
tion networks that we study, there is no small parameter � with agiven distribution of the orders �Aij of the matrix nodes. Instead of these powers of � wehave orderings of rate 
onstants. On the other hand, the matri
es of kineti
 equationshave some spe
i�
 properties. The possibility to operate with the graph of rea
tions(
y
les surgery) signi�
antly helps in our 
onstru
tions. Nevertheless, there exists somesimilarity between these problems and, even for general matri
es, graphi
al representationis useful. The language of idempotent algebra [30℄, as well as nonstandard analysis within�nitisemals [31℄, 
an be used for des
ription of the multis
ale rea
tion networks, butnow we postpone this for later use.A multis
ale system where every two 
onstants have very di�erent orders of magnitude is,of 
ourse, an idealization. In parametri
 families of multis
ale systems there 
ould appearsystems with several 
onstants of the same order. Hen
e, it is ne
essary to study e�e
tsthat appear due to a group of 
onstants of the same order in a multis
ale network. Thesystem 
an have modular stru
ture, with di�erent time s
ales in di�erent modules, butwithout separation of times inside modules. We dis
uss systems with modular stru
turein Se
. 5. The full theory of su
h systems is a 
hallenge for future work, and here we studystru
ture of one module. The elementary modules have to be solvable. That means thatthe kineti
 equations 
ould be solved in expli
it analyti
al form. We give the ne
essary andsuÆ
ient 
onditions for solvability of rea
tion networks. These 
onditions are presented
onstru
tively, by algorithm of analysis of the rea
tion graph.It is ne
essary to repeat our study for nonlinear networks. We dis
uss this problem andperspe
tive of its solution in 
on
lusion. Here we again use the experien
e summarizedin the IUPAC Compendium [3℄ where the notion of 
ontrolling step is generalized ontononlinear elementary rea
tion by in
lusion of some 
on
entration into \pseudo-�rst order7



rate 
onstant".2 Stati
 and dynami
 limitation in a simple 
atalyti
 
y
le2.1 General properties of a 
y
leThe 
atalyti
 
y
le is one of the most important substru
tures that we study in rea
tionnetworks. In the redu
ed form the 
atalyti
 
y
le is a set of linear rea
tions:A1 ! A2 ! : : : An ! A1:Redu
ed form means that in reality some of these rea
tion are not monomole
ular andin
lude some other 
omponents (not from the list A1; : : : An). But in the study of theisolated 
y
le dynami
s, 
on
entrations of these 
omponents are taken as 
onstant andare in
luded into kineti
 
onstants of the 
y
le linear rea
tions.For the 
onstant of elementary rea
tion Ai ! we use the simpli�ed notation ki be
ausethe produ
t of this elementary rea
tion is known, it is Ai+1 for i < n and A1 for i = n.The elementary rea
tion rate is wi = ki
i, where 
i is the 
on
entration of Ai. The kineti
equation is: _
i = wi�1 � wi; (1)where by de�nition w0 = wn. In the stationary state ( _
i = 0), all the wi are equal: wi = w.This 
ommon rate w we 
all the 
y
le stationary rate, andw = b1k1 + : : : 1kn ; 
i = wki ; (2)where b = Pi 
i is the 
onserved quantity for rea
tions in 
onstant volume (for general
ase of 
hemi
al kineti
 equations see elsewhere, for example, [26℄). The stationary ratew (2) is a produ
t of the arithmeti
 mean of 
on
entrations, b=n, and the harmoni
 meanof 
onstants (inverse mean of inverse ki).2.2 Stati
 limitation in a 
y
leIf one of the 
onstants, kmin, is mu
h smaller than others (let it be kmin = kn), then
n = b 1�Xi<n knki + o Xi<n knki !! ; 
i = b knki + o Xi<n knki !! ;w = knb 1 +O Xi<n knki !! ; (3)
8



or simply in linear approximation
n = b 1�Xi<n knki ! ; 
i = bknki ; w = knb; (4)where we should keep the �rst{order terms in 
n in order not to violate the 
onservationlaw.The simplest zero order approximation for the steady state gives
n = b; 
i = 0 (i 6= n): (5)This is trivial: all the 
on
entration is 
olle
ted at the starting point of the \narrow pla
e",but may be useful as an origin point for various approximation pro
edures.So, the stationary rate of a 
y
le is determined by the smallest 
onstant, kmin, if kmin issuÆ
iently small: w = kminb if Xki 6=kmin kminki � 1: (6)In that 
ase we say that the 
y
le has a limiting step with 
onstant kmin.2.3 Dynami
al limitation in a 
y
leIf kn=ki is small for all i < n, then the kineti
 behaviour of the 
y
le is extremely simple:the 
oeÆ
ients matrix on the right hand side of kineti
 equation (1) has one simple zeroeigenvalue that 
orresponds to the 
onservation lawP 
i = b and n�1 nonzero eigenvalues�i = �ki + Æi (i < n): (7)where Æi ! 0 when Pi<n knki ! 0.It is easy to demonstrate (7): let us ex
lude the 
onservation law (the zero eigenvalue)P 
i = b and use independent 
oordinates 
i (i = 1; : : : n� 1); 
n = b �Pi<n 
i. In these
oordinates the kineti
 equation (1) has the form_
 = K
� knA
+ knbe1 (8)where 
 is the ve
tor{
olumn with 
omponents 
i (i < n), K is the lower triangle matrixwith nonzero elements only in two diagonals: (K)ii = �ki (i = 1; : : : n� 1), (K)i+1; i = ki(i = 1; : : : n�2) (other elements are equal to zero); A is the matrix with nonzero elementsonly in the �rst row: (A)1i � 1, e1 is the �rst basis ve
tor (e11 = 1, e1i = 0 for 1 < i < n).After that, eq. (7) follows simply from 
ontinuous dependen
e of spe
tra on matrix.The relaxation time of a stable linear system (8) is, by de�nition, � = [minfRe(��i) j i =1; : : : n� 1g℄�1. For small kn,� � 1=k� ; k� = minfki j i = 1; : : : n� 1g: (9)In other words, k� is the se
ond slowest rate 
onstant: kmin � k� � ::: .9



2.4 Relaxation equation for a 
y
le rateA de�nition of the 
y
le rate is 
lear for steady states be
ause stationary rates of allelementary rea
tions in 
y
le 
oin
ide. There is no 
ommon de�nition of the 
y
le rate fornonstationary regimes. In pra
ti
e, one of steps is the step of produ
t release (the \�nal"step of the 
atalyti
 transformation), and we 
an 
onsider its rate as the rate of the 
y
le.Formally, we 
an take any step and study relaxation of its rate to the 
ommon stationaryrate. The single relaxation time approximation gives for rate wi of any step:_wi = k� (kminb� wi); wi(t) = kminb + e�k� t(wi(0)� kminb); (10)where kmin is the limiting (the minimal) rate 
onstant of the 
y
le, k� is the se
ond inorder rate 
onstant of the 
y
le.So, for 
atalyti
 
y
les with the limiting 
onstant kmin, the relaxation time is also deter-mined by one 
onstant, but another one. This is k� , the se
ond in order rate 
onstant.It should be stressed that the only smallness 
ondition is required, kmin should be mu
hsmaller than other 
onstants. The se
ond 
onstant, k� should be just smaller than others(and bigger than kmin), but there is no � 
ondition for k� required.One of the methods for measurement of 
hemi
al rea
tion 
onstants is the relaxationspe
tros
opy [32℄. Relaxation of a system after an impa
t gives us a relaxation time oreven a spe
trum of relaxation times. For 
atalyti
 
y
le with limitation, the relaxationexperiment gives us the se
ond 
onstant k� , while the measurement of stationary rategives the smallest 
onstant, kmin. This simple remark may be important for relaxationspe
tros
opy of open system.2.5 Ensembles of 
y
les and robustness of stationary rate and relaxation timeLet us 
onsider a 
atalyti
 
y
le with random rate 
onstants. For a given sample 
onstantsk1; : : : kn the ith order statisti
s is equal its ith-smallest value. We are interested in the�rst order (the minimal) and the se
ond order statisti
s.For independent identi
ally distributed 
onstants the varian
e of kmin = minfk1; : : : kngis signi�
antly smaller then the varian
e of ea
h ki, Var(k). The same is true for statisti
of every order. For many important distributions (for example, for uniform distribution),the varian
e of ith order statisti
 is of order � Var(k)=n2. For big n it goes to zerofaster than varian
e of the mean that is of order � Var(k)=n. To illustrate this, let us
onsider n 
onstants distributed in interval [a; b℄. For ea
h set of 
onstants, k1; : : : kn weintrodu
e \symmetri
 
oordinates" si: �rst, we order the 
onstants, a � ki1 � ki2 �: : : kin � b, then 
al
ulate s0 = ki1 � a, sj = kij+1 � kij (j = 1; : : : n � 1), sn = b � kin.Transformation (k1; : : : kn) 7! (s0; : : : sn) maps a 
ube [a; b℄n onto n-dimensional simplex�n = f(s0; : : : sn) j Pi si = b � ag and uniform distribution on a 
ube transforms intouniform distribution on a simplex.For large n, almost all volume of the simplex is 
on
entrated in a small neighborhood of its10




enter and this e�e
t is an example of measure 
on
entration e�e
ts that play importantrole in modern geometry and analysis [34℄. All si are identi
ally distributed, and fornormalized variable s = si=(b�a) the �rst moments are: E(s) = 1=(n+1) = 1=n+o(1=n),E(s2) = 2=[(n+ 1)(n+ 2)℄ = 2=n2 + o(1=n2),Var(s) = E(s2)� (E(s))2 = n(n+ 1)2(n+ 2) = 1n2 + o� 1n2� :Hen
e, for example, Var(kmin) = (b�a)2=n2+o(1=n2). The standard deviation of kmin goesto zero as 1=n when n in
reases. This is mu
h faster than 1=pn pres
ribed to the deviationof the mean value of independent observation (the \law of errors"). The same asymptoti
� 1=n is true for the standard deviation of the se
ond 
onstant also. These parameters
u
tuate mu
h less than individual 
onstants, and even less than mean 
onstant (for moreexamples with appli
ations to statisti
al physi
s we address to [35℄).It is impossible to use this observation for 
y
les with limitation dire
tly, be
ause theinequality of limitation (6) is not true for uniform distribution. A

ording to this inequal-ity, ratios ki=kmin should be suÆ
iently small (if ki 6= kmin). To provide this inequalitywe need to use at least the log-uniform distribution: ki = exp�i and �i are independentvariables uniformly distributed in interval [�; �℄ with suÆ
iently big (� � �)=n.One 
an interpret the log-uniform distribution through the Arrhenius law: k = A exp(��G=kT ),where �G is the 
hange of the Gibbs free energy inrea
tion (it in
ludes both energeti
and entropi
 terms: �G = �H � TS, where �H is enthalpy 
hange and �S is entropy
hange in rea
tion, T is temperature). The log-uniform distribution of k 
orresponds tothe uniform distribution of �G.For log-uniform distribution of 
onstants k1; : : : kn, if the interval of distribution is suf-�
iently big (i.e. (� � �)=n � 1), then the 
y
le with these 
onstants has the limitingstep with probability 
lose to one. More pre
isely we 
an show that for any two 
onstantski; kj the probability P[ki=kj > r or kj=ki > r℄ = (1 � log(r)=(� � �))2 approa
hes onefor any �xed r > 1 when � � �!1. Relaxation time of this 
y
le is determined by these
ond 
onstant k� (also with probability 
lose to one). Standard deviations of kmin andk� are mu
h smaller than standard deviation of single 
onstant ki and even smaller thanstandard deviation of mean 
onstant Pi ki=n. This e�e
t of stationary rate and relax-ation time robustness seems to be important for understanding robustness in bio
hemi
alnetworks: behaviour of the entire system is mu
h more stable than the parameters of itsparts; even for large 
u
tuations of parameters, the system does not 
hange signi�
antlythe stationary rate (stati
s) and the relaxation time (dynami
s).2.6 Systems with well separated 
onstants and monotone relaxationThe log-uniform identi
al distribution of independent 
onstants k1; : : : kn with suÆ
ientlybig interval of distribution ((� � �)=n � 1) gives us the �rst example of ensembleswith well separated 
onstants: any two 
onstants are 
onne
ted by relation� or� withprobability 
lose to one. Su
h systems (not only 
y
les, but mu
h more 
omplex networkstoo) 
ould be studied analyti
ally \up to the end".11



Some of their properties are simpler than for general networks. For example, the dampingos
illations are impossible, i.e. the eigenvalues of kineti
 matrix are real (with probability
lose to one). If 
onstants are not separated, damped os
illations 
ould exist, for example,if all 
onstants of the 
y
le are equal, k1 = k2 = : : : = kn = k, then (1 + �=k)n = 1and �m = k(exp(2�im=n) � 1) (m = 1; : : : n � 1), the 
ase m = 0 
orresponds to thelinear 
onservation law. Relaxation time of this 
y
le may be relatively big: � = 1k(1 �
os(2�=n))�1 � n2=(2�k) (for big n).The 
atalyti
 
y
le without limitation 
an have relaxation time mu
h bigger then 1=kmin,where kmin is the minimal rea
tion rate 
onstant. For example, if all k are equal, thenfor n = 11 we get � � 20=k. In more detail the possible relations between � and theslowest 
onstant were dis
ussed in [33℄. In that paper, a variety of 
ases with di�erentrelationships between the steady-state rea
tion rate and relaxation was presented.For 
atalyti
 
y
le, if a matrixK�knA (8) has a pair of 
omplex eigenvalues with nonzeroimaginary part, then for some g 2 [0; 1℄ the matrix K� gknA has a degenerate eigenvalue(we use a simple 
ontinuity argument). With probability 
lose to one, kmin� jki� kjj forany two ki; kj that are not minimal. Hen
e, the kmin-small perturbation 
annot transformmatrix K with eigenvalues ki (7) and given stru
ture into a matrix with a degenerateeigenvalue. For proof of this statement it is suÆ
ient to refer to diagonal dominan
e ofK (the absolute value of ea
h diagonal element is greater than the sum of the absolutevalues of the other elements in its 
olumn) and 
lassi
al inequalities.Let us give a detailed proof based on the expli
it form of K left and right eigenve
tors.Let ve
tor{
olumn xi and ve
tor{row li be right and left eigenve
tors of K for eigenvalue�ki. For 
oordinates of these eigenve
tors we use notation xij and lij. Let us 
hoose anormalization 
ondition xii = lii = 1. It is straightforward to 
he
k that xij = 0 (j < i) andlij = 0 (j > i), xij+1 = kjxj=(kj+1 � ki) (j � i) and lij�1 = kj�1lj=(kj�1 � kj) (j � i), andxii+m = mYj=1 ki+j�1ki+j � ki ; lii�m = mYj=1 ki�jki�j � ki (11)(when these 
oordinates have sense). Under sele
ted normalization 
ondition, the innerprodu
t of eigenve
tors is: lixj = Æij, where Æij is the Krone
ker delta.For ensembles with well separated 
onstants, with probability 
lose to one,ki�jki�j � ki � ( 1; if ki � ki�j;0; if ki � ki+j; (12)Hen
e, jlii�mj � 1 or jlii�mj � 0. To demonstrate that also jxii+mj � 1 or jxii+mj � 0, weshift nominators in the produ
t (11) on su
h a way:xii+m = kiki+m � ki m�1Yj=1 ki+jki+j � ki :Exa
tly as in (12), ea
h multiplier ki+j=(ki+j � ki) here is either almost 1 or almost 0,12



and ki=(ki+m � ki) is either almost 0 or almost �1. In this 0-1 asymptoti
slii = 1; lii�m = 1 if ki�j > ki for all j = 1; : : :m; else lii�m = 0;rii = 1; rii+m = �1 if ki+j > ki for all j = 1; : : :m� 1 and ki+m < ki;else rii+m = 0: (13)In this asymptoti
, only two 
oordinates of right eigenve
tor ri 
an have nonzero values,rii = 1 and rii+m = �1 where m is the �rst su
h positive integer that i + m < n andki+m < ki. It is possible that su
h m does not exist. In that 
ase only rii = 1. (Let usremind that we 
onsider ve
tors in the subspa
e Pi 
i = 1 with 
oordinates 
1; : : : 
n�1.In the full system of 
oordinates 
1; : : : 
n, the last 
ase 
orresponds to rii = 1, rin = �1.)For left eigenve
tor li, lii = : : : lii�q = 1 and lii�q�j = 0 where j > 0 and q is the �rst su
hpositive integer that i�q�1 > 0 and ki�q�1 < ki. It is possible that su
h q does not exist.In that 
ase all lii�j = 1. It is straightforward to 
he
k that in this asymptoti
 lirj = Æij.The simplest example gives the order k1 > k2 > ::: > kn: lii�j = 1 for j � 0, rii = 1,rin = �1 and all other 
oordinates of eigenve
tors are zero.For less trivial example, let us �nd the asymptoti
 of left and right eigenve
tors for a
hain of rea
tions: A1!5 A2!3 A3!4 A4!1 A5!2 A6;where the upper index marks the order of rate 
onstants: k4 > k5 > k2 > k3 > k1 (ki isthe rate 
onstant of rea
tion Ai ! :::).For left eigenve
tors, rows li, we have the following asymptoti
s:l1 � (1; 0; 0; 0; 0; 0); l2 � (0; 1; 0; 0; 0; 0); l3 � (0; 1; 1; 0; 0; 0);l4 � (0; 0; 0; 1; 0; 0); l5 � (0; 0; 0; 1; 1; 0): (14)For right eigenve
tors, 
olumns ri, we have the following asymptoti
s (we write ve
tor-
olumns in rows):r1 � (1; 0; 0; 0; 0;�1); r2 � (0; 1;�1; 0; 0; 0); r3 � (0; 0; 1; 0; 0;�1);r4 � (0; 0; 0; 1;�1; 0); r5 � (0; 0; 0; 0; 1;�1): (15)For 
onvenien
e, we use all six 
oordinates, 
1�6.The matrix elements of A in the eigenbasis of K are (A)ij = liAxj. From obtainedestimates for eigenve
tors we get j(A)ijj . 1 (with probability 
lose to one). This estimatedoes not depend on values of kineti
 
onstants. Now, we 
an apply the Gershgorin theorem(see, for example, [36℄ and for more details [37℄) to the matrix K � knA in the eigenbasisof K: the 
hara
teristi
 roots of K � knA belong to dis
s jz + kij � knRi(A), whereRi(A) = Pj j(A)ijj. If the dis
s do not interse
t, then ea
h of them 
ontains one andonly one 
hara
teristi
 number. For ensembles with well separated 
onstants these dis
sdo not interse
t (with probability 
lose to one). Complex 
onjugate eigenvalues 
ould notbelong to di�erent dis
s. In this 
ase, the eigenvalues are real { there exist no dampedos
illations. 13



2.7 Limitation by two steps with 
omparable 
onstantsIf we 
onsider one-parametri
 families of systems, then appearan
e of systems with two
omparable 
onstants may be unavoidable. On a 
ontinuous way ki(s) from one systemwith well separated 
onstants to another su
h system 
onstants may 
oin
ide: su
h a points that ki(s) = kj(s) may exist, and this existen
e may be stable, that is, su
h a pointpersists under 
ontinuous perturbations.For 
atalyti
 
y
le, we are interested in the following interse
tion only: kmin and these
ond 
onstant are of the same order, and are mu
h smaller than other 
onstants. Letthese 
onstants be kj and kl, j 6= l. The limitation 
ondition is1kj + 1kl � Xi6=j;l 1ki : (16)The steady state rea
tion rate and relaxation time are determined by these two 
on-stants. In that 
ase their e�e
ts are 
oupled. For the steady state we get in �rst orderapproximation instead of (4):w = kjklkj + kl b; 
i = wki = bki kjklkj + kl (i 6= j; l);
j = bklkj + kl 0�1� Xi6=j;l 1ki kjklkj + kl1A ; 
l = bkjkj + kl 0�1� Xi6=j;l 1ki kjklkj + kl1A : (17)Elementary analysis shows that under the limitation 
ondition (16) the relaxation time is� = 1kj + kl : (18)The single relaxation time approximation for all elementary rea
tion rates in a 
y
le withtwo limiting rea
tions is_wi = kjklb� (kj + kl)wi; wi(t) = kjklkj + kl b+ e�(kj+kl)t  wi(0)� kjklkj + kl b! : (19)The 
atalyti
 
y
le with two limiting rea
tions has the same stationary rate w (17) andrelaxation time (18) as a reversible rea
tion A$ B with k+ = kj, k� = kl.In two-parametri
 families three 
onstants 
an meet. If three smallest 
onstants kj; kl; kmhave 
omparable values and are mu
h smaller than others, then stati
 and dynami
 prop-erties would be determined by these three 
onstants. Stationary rate w and dynami
 ofrelaxation for the whole 
y
le would be the same as for 3-rea
tion 
y
le A! B ! C ! Awith 
onstants kj; kl; km. The damped os
illation here are possible, for example, if kj =kl = km = k, then there are 
omplex eigenvalues � = k(�32 � ip32 ). Therefore, if a 
y
lemanifests damped os
illation, then at least three slowest 
onstants are of the same order.The same is true, of 
ourse, for more general rea
tion networks.14



In N -parametri
 families of systems N + 1 smallest 
onstants 
an meet, and near su
ha \meeting point" a slow auxiliary 
y
le of N + 1 rea
tions determines behaviour of theentire 
y
le.
3 Multis
ale ensembles and �nite{additive distributions3.1 Ensembles with well separated 
onstants, formal approa
hIn previous se
tion, ensembles with well separated 
onstants appear. We represented themby a log-uniform distribution in a suÆ
iently big interval log k 2 [�; �℄, but we were notinterested in most of probability distribution properties, and did not use them. The onlyproperty we really used is: if ki > kj, then ki=kj � 1 (with probability 
lose to one). Itmeans that we 
an assume that ki=kj � a for any preassigned value of a that does notdepend on k values. One 
an interpret this property as an asymptoti
 one for �! �1,� !1.That property allows us to simplify algebrai
 formulas. For example, ki + kj 
ould besubstituted by maxfki; kjg (with small relative error), oraki + bkj
ki + dkj � ( a=
; if ki � kj;b=d; if ki � kj;for nonzero a; b; 
; d (see, for example, (12)).Of 
ourse, some ambiguity 
an be introdu
ed, for example, what is it, (k1 + k2) � k1, ifk1 � k2? If we �rst simplify the expression in bra
kets, it is zero, but if we open bra
ketswithout simpli�
ation, it is k2. This is a standard diÆ
ulty in use of relative errors forround-o�. If we estimate the error in the �nal answer, and then simplify, we shall avoidthis diÆ
ulty. Use of o and O symbols also helps to 
ontrol the error qualitatively: ifk1 � k2, then we 
an write (k1 + k2) = k1(1 + o(1)), and k1(1 + o(1)) � k1 = k1o(1).The last expression is neither zero, nor absolutely small { it is just relatively small withrespe
t to k1.The formal approa
h is: for any ordering of rate 
onstants, we use relations � and �,and assume that ki=kj � a for any preassigned value of a that does not depend on kvalues. This approa
h allows us to perform asymptoti
 analysis of rea
tion networks. Aspe
ial version of this approa
h 
onsists of group ordering: 
onstants are separated onseveral groups, inside groups they are 
omparable, and between groups there are relations� or�. An example of su
h group ordering was dis
ussed at the end of previous se
tion(several limiting 
onstants in a 
y
le). 15



3.2 Probability approa
h: �nite additive measuresThe asymptoti
 analysis of multis
ale systems for log-uniform distribution of independent
onstants on an interval log k 2 [�; �℄ (�; � !1) is possible, but parameters �; � do notpresent in any answer, they just should be suÆ
iently big. A natural question arises, whatis the limit? It is a log-uniform distribution on a line, or, for n independent identi
allydistributed 
onstants, a log-uniform distribution on Rn).It is well known that the uniform distribution on Rn is impossible: if a 
ube has positiveprobability � > 0 (i.e. the distribution has positive density) then the union of N > 1=�su
h disjoint 
ubes has probability bigger than 1 (here we use the �nite{additivity ofprobability). This is impossible. But if that 
ube has probability zero, then the wholespa
e has also zero probability, be
ause it 
an be 
overed by 
ountable family of the 
ubetranslation. Hen
e, translation invarian
e and �-additivity (
ountable additivity) are in
ontradi
tion (if we have no doubt about probability normalization).Nevertheless, there exists �nite{additive probability whi
h is invariant with respe
t toEu
lidean group E(n) (generated by rotations and translations). Its values are densitiesof sets.Let D � Rn be a Lebesgue measurable subset. Density of D is the limit (if it exists):�(D) = limr!1 �(D \ B nr )�(B nr ) ; (20)where B nr is a ball with radius r and 
entre at origin. Density of Rn is 1, density ofevery half{spa
e is 1/2, density of bounded set is zero, density of a 
one is its solid angle(measured as a sphere surfa
e fra
tional area). Density (20) and translation and rotationalinvariant. It is �nite-additive: if densities �(D) and �(H) (20) exist and D \H = ? then�(D [H) exists and �(D [H) = �(D) + �(H).Every polyhedron has a density. A polyhedron 
ould be de�ned as the union of a �nitenumber of 
onvex polyhedra. A 
onvex polyhedron is the interse
tion of a �nite numberof half-spa
es. It may be bounded or unbounded. The family of polyhedra is 
losed withrespe
t to union, interse
tion and subtra
tion of sets. For our goals, polyhedra form suÆ-
iently ri
h 
lass. It is important that in de�nition of polyhedron �nite interse
tions andunions are used. If one uses 
ountable unions, he gets too many sets in
luding all opensets, be
ause open 
onvex polyhedra (or just 
ubes with rational verti
es) form a basis ofstandard topology.Of 
ourse, not every measurable set has density. If it is ne
essary, we 
an use the Hahn{Bana
h theorem and study extensions �Ex of � with the following property:�(D) � �Ex(D) � �(D);where �(D) = limr!1inf �(D \ B nr )�(B nr ) ; �(D) = limr!1sup �(D \ B nr )�(B nr ) :16



Fun
tionals �(D) and �(D) are de�ned for all measurable D. We should stress that su
hextensions are not unique. Extension of density (20) using the Hahn{Bana
h theorem forpi
king up a random integer was used in a very re
ent work [43℄.One of the most important 
on
epts of any probability theory is the 
onditional probabil-ity. In the density{based approa
h we 
an introdu
e the 
onditional density. If densities�(D) and �(H) (20) exist, �(H) 6= 0 and the following limit �(DjH) exists, then we 
allit 
onditional density: �(DjH) = limr!1 �(D \H \ B nr )�(H \ B nr ) : (21)For polyhedra the situation is similar to usual probability theory: densities �(D) and �(H)always exist and if �(H) 6= 0 then 
onditional density exists too. For general measurablesets the situation is not so simple, and existen
e of �(D) and �(H) 6= 0 does not guaranteeexisten
e of �(DjH).On a line, 
onvex polyhedra are just intervals, �nite or in�nite. The probability de�nedon polyhedra is: for �nite intervals and their �nite unions it is zero, for half{lines x > � orx < � it is 1/2, and for the whole line R the probability is 1. If one takes a set of positiveprobability and adds or subtra
ts a zero{probability set, the probability does not 
hange.If independent random variables x and y are uniformly distributed on a line, then theirlinear 
ombination z = �x + �y is also uniformly distributed on a line. Indeed, ve
tor(x; y) is uniformly distributed on a plane (by de�nition), a set z > 
 is a half-plane, the
orrespondent probability is 1/2. This is a simple, but useful stability property. We shalluse this result in the following form. If independent random variables k1; : : : kn are log-uniformly distributed on a line, then the monomialQni=1 k�ii for real �i is also log-uniformlydistributed on a line.3.3 Carroll obtuse problem and paradoxes of 
onditioningLewis Carroll's Pillow Problem #58 [21℄: \Three points are taken at random on an in�niteplane. Find the 
han
e of their being the verti
es of an obtuse{angled triangle."A random triangle on an in�nite plane is presented by a point equidistributed in R6 . Dueto the density { based de�nition, we should take and 
al
ulate the density of the set ofobtuse{angled triangles in R6 . This is equivalent to the problem: �nd a fra
tion of thesphere S5 � R6 that 
orresponds to obtuse{angled triangles. Just integrate... . But thereremains a problem. Verti
es of triangle are independent. Let us use the standard logi
for dis
ussion of independent trials: we take the �rst point A at random, then the se
ondpoint B, and then the third point C. Let us draw the �rst side AB. Immediately we �ndthat for almost all positions of the the third point C the triangle is obtuse{angled (see[22℄). L. Carroll proposed to take another 
ondition: let AB be the longest side and let Cbe uniformly distributed in the allowed area. The answer then is easy { just a ratio of areasof two simple �gures. But there are absolutely no reasons for uniformity of C distribution.And it is more important that the absolutely standard reasoning for independently 
hosenpoints gives another answer than 
ould be found on the base of joint distribution. Why17



these approa
hes are in disagreement now? Be
ause there is no 
lassi
al Fubini theoremfor our �nite{additive probabilities, and we 
annot easily transfer from a multiple integralto a repeated one.There exists a mu
h simpler example. Let x and y be independent positive real number.This means that ve
tor (x; y) is uniformly and independently distributed in the �rstquadrant. What is probability that x � y? Following the de�nition of probability basedon the density of sets, we take the 
orrespondent angle and �nd immediately that thisprobability is 1/2. This meets our intuition well. But let us take the �rst number x andlook for possible values of y. The result: for given x the se
ond number y is uniformlydistributed on [0;1), and only a �nite interval [0; x℄ 
orresponds to x � y. For the in�niterest we have x < y. Hen
e, x < y with probability 1. This is nonsense be
ause of symmetry.So, for our �nite{additive measure we 
annot use repeated integrals (or, may be, shoulduse them in a very pe
uliar manner).3.4 Law of total probability and orderingsFor polyhedra, there appear no 
onditioning problems. The law of total probabilities holds:if Rn = [mi=1Hi, Hi are polyhedra, �(Hi) > 0, �(Hi \Hj) = 0 for i 6= j, and D � Rn is apolyhedron, then �(D) = mXi=1 �(D \Hi) = mXi=1 �(DjHi)�(Hi): (22)Our basi
 example of multis
ale ensemble is log-uniform distribution of rea
tion 
onstantsin Rn+ (log ki are independent and uniformly distributed on the line). For every orderingkj1 > kj2 > : : : > kjn a polyhedral 
one Hj1j2:::jn in Rn is de�ned. These 
ones haveequal probabilities �(Hj1j2:::jn) = 1=n! and probability of interse
tion of 
ones for di�erentorderings is zero. Hen
e, we 
an apply the law of total probability (22). This means thatwe 
an study every event D 
onditionally, for di�erent orderings, and than 
ombine theresults of these studies in the �nal answer (22).For example, if we study a simple 
y
le then formula (4) for steady state is valid with anygiven a

ura
y with unite probability for any ordering with the given minimal elementkn.For 
y
le with given ordering of 
onstants we 
an �nd 0-1 approximation of left and righteigenve
tors (13). This approximation is valid with any given a

ura
y for this orderingwith unite probability.If we 
onsider suÆ
iently wide log-uniform distribution of 
onstants on a bounded intervalinstead of the in�nite axis then these statements are true with probability 
lose to 1.For general system that we study below the situation is slightly more 
ompli
ated: newterms, auxiliary rea
tions with monomial rate 
onstants k& = Qi k&ii 
ould appear withinteger (but not ne
essary positive) &i, and we should in
lude these k& in ordering. Itfollows from stability property that these monomials are log-uniform distributed on in�niteinterval, if ki are. Therefore the situation seems to be similar to ordering of 
onstants,18



but there is a signi�
ant di�eren
e: monomials are not independent, they depend on kiwith &i 6= 0.Happily, in the forth
oming analysis when we in
lude auxiliary rea
tions with 
onstantk& , we always ex
lude at least one of rea
tions with rate 
onstant ki and &i 6= 0. Hen
e,for we always 
an use the following statement (for the new list of 
onstants, or for the oldone): if kj1 > kj2 > : : : > kjn then kj1 � kj2 � : : : � kjn, where a � b for positive a; bmeans: for any given " > 0 the inequality "a > b holds with unite probability.If we use suÆ
iently wide but �nite log-uniform distribution then " 
ould not be arbi-trarily small (this depends on the interval with), and probability is not unite but 
loseto one. For given " > 0 probability tends to one when the interval width goes to in�nity.It is important that we use only �nite number of auxiliary rea
tions with monomial 
on-stants, and this number is bounded from above for given number of elementary rea
tions.For 
ompleteness, we should mention here general algebrai
 theory of orderings that isne
essary in more sophisti
ated 
ases [47,48℄.4 Relaxation of multis
ale networks and hierar
hy of auxiliary dis
rete dy-nami
al systems4.1 De�nitions, notations and auxiliary results4.1.1 NotationsIn this Se
., we 
onsider a general network of linear (monomole
ular) rea
tions. Thisnetwork is represented as a dire
ted graph (digraph): verti
es 
orrespond to 
omponentsAi, edges 
orrespond to rea
tions Ai ! Aj with kineti
 
onstants kji > 0. For ea
h vertex,Ai, a positive real variable 
i (
on
entration) is de�ned. A basis ve
tor ei 
orresponds toAi with 
omponents eij = Æij, where Æij is the Krone
ker delta. The kineti
 equation forthe system is d
idt =Xj (kij
j � kji
i); (23)or in ve
tor form: _
 = K
.To write another form of (23) we use stoi
hiometri
 ve
tors: for a rea
tion Ai ! Ajthe stoi
hiometri
 ve
tor 
ji is a ve
tor in 
on
entration spa
e with ith 
oordinate �1,jth 
oordinate 1, and zero other 
oordinates. The rea
tion rate wji = kji
i. The kineti
equation has the form d
dt =Xi;j wji
ji; (24)where 
 is the 
on
entration ve
tor. One more form of (23) des
ribes dire
tly dynami
sof rea
tion rates: dwjidt  = kjid
idt ! = kjiXl (wil � wli): (25)19



It is ne
essary to mention that, in general, system (25) is not equivalent to (24), be
ausethere are additional 
onne
tions between variables wji. If there exists at least one Ai withtwo di�erent outgoing rea
tions, Ai ! Aj and Ai ! Al (j 6= l), then wji=wli � kji=kli. Ifthe rea
tion network generates a dis
rete dynami
al system Ai ! Aj on the set of Ai (seebelow), then the variables wji are independent, and (25) gives equivalent representationof kineti
s.A linear 
onservation law is a linear fun
tion de�ned on the 
on
entrations q(
) =Pni=1 qi
i, whose value is preserved by the dynami
s (23). The set of all the 
onservationlaws forms the left kernel of the matrix K. Equation (23) always has a linear 
onservationlaw: b(
) = Pi 
i = 
onst. If there is no other independent linear 
onservation law, thenthe system is weakly ergodi
.Two verti
es are 
alled adja
ent if they share a 
ommon edge. A path is a sequen
e ofadja
ent verti
es. A graph is 
onne
ted if any two of its verti
es are linked by a path. Amaximal 
onne
ted subgraph of graph G is 
alled a 
onne
ted 
omponent of G. Everygraph 
an be de
omposed into 
onne
ted 
omponents.A dire
ted path is a sequen
e of adja
ent edges where ea
h step goes in dire
tion of anedge. A vertex A is rea
hable by a vertex B, if there exists an oriented path from B to A.A nonempty set V of graph vertexes forms a sink, if there are no oriented edges fromAi 2 V to any Aj =2 V . For example, in the rea
tion graph A1  A2 ! A3 the one-vertexsets fA1g and fA3g are sinks. A sink is minimal if it does not 
ontain a stri
tly smallersink. In the previous example, fA1g, fA3g are minimal sinks. Minimal sinks are also 
alledergodi
 
omponents.A digraph is strongly 
onne
ted, if every vertex A is rea
hable by any other vertex B.Ergodi
 
omponents are maximal strongly 
onne
ted subgraphs of the graph, but inverseis not true: there may exist maximal strongly 
onne
ted subgraphs that have outgoingedges and, therefore, are not sinks.We study ensembles of systems with a given graph and independent and well separatedkineti
 
onstants kij. This means that we study asymptoti
 behaviour of ensembles withindependent identi
ally distributed 
onstants, log-uniform distributed in suÆ
iently biginterval log k 2 [�; �℄, for �! �1, � !1, or just a log-uniform distribution on in�niteaxis, log k 2 R.4.1.2 Sinks and ergodi
ityIf there is no other independent linear 
onservation law, then the system is weakly ergodi
.The weak ergodi
ity of the network follows from its topologi
al properties.The following properties are equivalent and ea
h one of them 
an be used as an alternativede�nition of weak ergodi
ity:(1) There exist the only independent linear 
onservation law for kineti
 equations (23)(this is b(
) = Pi 
i = 
onst). 20



(2) For any normalized initial state 
(0) (b(
) = 1) there exists a limit state 
� =limt!1 exp(Kt) 
(0) that is the same for all normalized initial 
onditions. (For all 
,limt!1 exp(Kt) 
 = b(
)
�.)(3) For ea
h two verti
es Ai; Aj (i 6= j) we 
an �nd su
h a vertex Ak that oriented pathsexist from Ai to Ak and from Aj to Ak. This means that the following stru
tureexists: Ai ! : : :! Ak  : : : Aj:One of these paths 
an be degenerated: it might be i = k or j = k.(4) The network has only one minimal sink (one ergodi
 
omponent).For every monomole
ular kineti
 system, the Jordan 
ell for zero eigenvalue of matrixK is diagonal and the maximal number of independent linear 
onservation laws (i.e. thegeometri
 multipli
ity of the zero eigenvalue of the matrix K) is equal to the maximalnumber of disjoint ergodi
 
omponents (minimal sinks).Let G = fAi1; : : : Ailg be an ergodi
 
omponent. Then there exists a unique ve
tor (nor-malized invariant distribution) 
G with the following properties: 
Gi = 0 for i =2 fi1; : : : ilg,
Gi > 0 for all i 2 fi1; : : : ilg b(
G) = 1, K
G = 0.If G1; : : : Gm are all ergodi
 
omponents of the system, then there exist m independentpositive linear fun
tionals b1(
), ... bm(
) su
h that Pi bi = b and for ea
h 
limt!1 exp(Kt)
 = mXi=1 bi(
)
Gi: (26)So, for any solution of kineti
 equations (23), 
(t), the limit at t!1 is a linear 
ombi-nation of normalized invariant distributions 
Gi with 
oeÆ
ients bi(
(0)). In the simplestexample, A1  A2 ! A3, G1 = fA1g, G2 = fA3g, 
omponents of ve
tors 
G1, 
G2 are(1; 0; 0) and (0; 0; 1), 
orrespondingly. For fun
tionals b1;2 we get:b1(
) = 
1 + k1k1 + k2 
2; b2(
) = k2k1 + k2 
2 + 
3; (27)where k1; k2 are rate 
onstants for rea
tion A2 ! A1, and A2 ! A3, 
orrespondingly. We
an mention that for well separated 
onstants either k1 � k2 or k1 � k2. Hen
e, oneof the 
oeÆ
ients k1=(k1 + k2), k2=(k1 + k2) is 
lose to 0, another is 
lose to 1. This isan example of the general zero{one law for multis
ale systems: for any l; i, the value offun
tional bl (26) on basis ve
tor ei, bl(ei), is either 
lose to one or 
lose to zero (withprobability 
lose to 1).We 
an understand better this asymptoti
s by using the Markov 
hain language. Fornon-separated 
onstants a parti
le in A2 has nonzero probability to rea
h A1 and nonzeroprobability to rea
h A3. The zero{one law in this simplest 
ase means that the dynami
sof the parti
le be
omes deterministi
: with probability one it 
hooses to go to one ofverti
es A2; A3 and to avoid another. Instead of bran
hing, A2 ! A1 and A2 ! A3, wesele
t only one way: either A2 ! A1 or A2 ! A3. Graphs without bran
hing representdis
rete dynami
al systems. 21



4.1.3 De
omposition of dis
rete dynami
al systemsDis
rete dynami
al system on a �nite set V = fA1; A2; : : : Ang is a semigroup 1; �; �2; :::,where � is a map � : V ! V . Ai 2 V is a periodi
 point, if �l(Ai) = Ai for some l > 0;else Ai is a transient point. A 
y
le of period l is a sequen
e of l distin
t periodi
 pointsA; �(A); �2(A); : : : �l�1(A) with �l(A) = A. A 
y
le of period one 
onsists of one �xedpoint, �(A) = A. Two 
y
les, C;C 0 either 
oin
ide or have empty interse
tion.The set of periodi
 points, V p, is always nonempty. It is a union of 
y
les: V p = [jCj.For ea
h point A 2 V there exist su
h a positive integer �(A) and a 
y
le C(A) = Cjthat �q(A) 2 Cj for q � �(A). In that 
ase we say that A belongs to basin of attra
tionof 
y
le Cj and use notation Att(Cj) = fA j C(A) = Cjg. Of 
ourse, Cj � Att(Cj). Fordi�erent 
y
les, Att(Cj)\Att(Cl) = ?. If A is periodi
 point then �(A) = 0. For transientpoints �(A) > 0.So, the phase spa
e V is divided onto subsets Att(Cj). Ea
h of these subsets in
ludesone 
y
le (or a �xed point, that is a 
y
le of length 1). Sets Att(Cj) are �-invariant:�(Att(Cj)) � Att(Cj). The set Att(Cj) n Cj 
onsist of transient points and there existssu
h positive integer � that �q(Att(Cj)) = Cj if q � � .4.2 Auxiliary dis
rete dynami
al systems and relaxation analysis4.2.1 Auxiliary dis
rete dynami
al systemFor ea
h Ai, we de�ne �i as the maximal kineti
 
onstant for rea
tions Ai ! Aj: �i =maxjfkjig. For 
orrespondent j we use notation �(i): �(i) = argmaxjfkjig. The fun
tion�(i) is de�ned under 
ondition that for Ai outgoing rea
tions Ai ! Aj exist. Let us extendthe de�nition: �(i) = i if there exist no su
h outgoing rea
tions.The map � determines dis
rete dynami
al system on a set of 
omponents V = fAig. We
all it the auxiliary dis
rete dynami
al system for a given network of monomole
ular rea
-tions. Let us de
ompose this system and �nd the 
y
les Cj and their basins of attra
tion,Att(Cj).Noti
e that for the graph that represents a dis
rete dynami
 system, attra
tors are ergodi

omponents, while basins are 
onne
ted 
omponents.An auxiliary rea
tion network is asso
iated with the auxiliary dis
rete dynami
al system.This is the set of rea
tions Ai ! A�(i) with kineti
 
onstants �i. The 
orrespondent kineti
equation is _
i = ��i
i + X�(j)=i �j
j; (28)or in ve
tor notations (24)d
dt = ~K
 =Xi �i
i
�(i) i; ~Kij = ��jÆij + �jÆi �(j): (29)22



For deriving of the auxiliary dis
rete dynami
al system we do not need the values ofrate 
onstants. Only the ordering is important. Below we 
onsider multis
ale ensemblesof kineti
 systems with given ordering and with well separated kineti
 
onstants (k�(1) �k�(2) � ::: for some permutation �).In the following, we analyze �rst the situation when the system is 
onne
ted and has onlyone attra
tor. This 
an be a point or a 
y
le. Then, we dis
uss the general situation withany number of attra
tors.4.2.2 A
y
li
 auxiliary system with one attra
tor: stru
ture and eigenve
torsIn the simplest 
ase, the auxiliary dis
rete dynami
al system is a
y
li
 and has only oneattra
tor, a �xed point. Let this point be An (n is the number of verti
es). For su
h asystem, it is easy to �nd expli
it analyti
 solution of kineti
 equation (28). First of all,these systems have a 
hara
teristi
 property among all auxiliary dynami
al systems: thestoi
hiometri
 ve
tors of rea
tions Ai ! A�(i) form a basis in the subspa
e of 
on
entrationspa
e with Pi 
i = 0: there exist n � 1 rea
tion, and their stoi
hiometri
 ve
tors areindependent. On the other hand, existen
e of 
y
les implies linear 
onne
tions betweenstoi
hiometri
 ve
tors, and existen
e of two attra
tors in a
y
li
 system implies that thenumber of rea
tions is less n� 1, and their stoi
hiometri
 ve
tors 
ould not form a basisin n� 1-dimensional spa
e.For ensembles with well separate 
onstants, relaxation of the whole network is approxi-mated by solution of auxiliary kineti
 equation (28) with high a

ura
y, with probability
lose to 1. To prove this statement, let us �rst �nd left and right eigenve
tors of matrix~K of auxiliary kineti
 system (28) for a
y
li
 auxiliary dynami
s. In this 
ase, for anyvertex di�erent from the attra
tor there is an eigenve
tor. Right eigenve
tors will be 
on-stru
ted by re
urren
e starting from the vertex and moving in the dire
tion of the 
ow.The 
onstru
tion is in opposite dire
tion for left eigenve
tors.For zero eigenvalue, the right eigenve
tor r0 has only one nonzero 
oordinate, 
n = 1, theleft eigenve
tor is a raw l0 = (1; 1; : : : 1) (this 
orresponds to the linear 
onservation lawl0
 = Pi 
i = 
onst), the normalization 
ondition holds: l0r0 = 1. Of 
ourse, l0 is lefteigenve
tor with zero eigenvalue for any network of monomole
ular rea
tions. If for su
ha network the auxiliary dis
rete dynami
al system is a
y
li
 and has only one attra
tor,a �xed point, then ve
tor r0 is right eigenve
tor with zero eigenvalue, be
ause in this 
asethere is no outgoing rea
tion of the form An ! Ai (i = 1; : : : n� 1).Nonzero eigenvalues of ~K (28) are ��i (i = 1; : : : n � 1). For left and right eigenve
torsof ~K with eigenvalue ��i we use notations li (ve
tor-raw) and ri (ve
tor-
olumn), 
orre-spondingly, and apply normalization 
ondition rii = lii = 1. For given i, �i is the minimalinteger su
h that ��i(i) = n (this is a \relaxation time" i.e. the number of steps to rea
hattra
tor). All indi
es f�k(i) j k = 0; 1; : : : �ig are di�erent. For right eigenve
tor ri only
oordinates ri�k(i) (k = 0; 1; : : : �i) 
ould have nonzero values, and( ~Kri)�k+1(i) = ���k+1(i)ri�k+1(i) + ��k(i)ri�k(i) = ��iri�k+1(i):23



Hen
e, ri�k+1(i) = ��k(i)��k+1(i) � �i ri�k(i) = kYj=0 ��j(i)��j+1(i) � �i= �i��k+1(i) � �i k�1Yj=0 ��j+1(i)��j+1(i) � �i : (30)The last transformation is 
onvenient for estimation of the produ
t for well separated
onstants (
ompare to (12)):��j+1(i)��j+1(i) � �i � ( 1; if ��j+1(i) � �i;0; if ��j+1(i) � �i; �i��k+1(i) � �i � (�1; if �i � ��k+1(i);0; if �i � ��k+1(i): (31)For left eigenve
tor li 
oordinate lij 
ould have nonzero value only if there exists su
hq � 0 that �q(j) = i (this q is unique be
ause the auxiliary dynami
al system has no
y
les). In that 
ase (for q > 0),(li ~K)j = ��jlij + �jli�(j) = ��ilij:Hen
e, lij = �j�j � �i li�(j) = q�1Yk=0 ��k(j)��k(j) � �i : (32)For every fra
tion in (32) the following estimate holds:��k(j)��k(j) � �i � ( 1; if ��k(j) � �i;0; if ��k(j) � �i: (33)As we 
an see, every 
oordinate of left and right eigenve
tors of ~K (30), (32) is either 0or �1, or 
lose to 0 or to 1 (with probability 
lose to 1). We 
an write this asymptoti
representation expli
itly (analogously to (13)). For left eigenve
tors, lii = 1 and lij = 1 (fori 6= j) if there exists su
h q that �q(j) = i, and ��d(j) > �i for all d = 0; : : : q � 1, elselij = 0. For right eigenve
tors, rii = 1 and ri�k(j) = �1 if ��k(j) < �i and for all positivem < k inequality ��m(j) > �i holds, i.e. k is �rst su
h positive integer that ��k(j) < �i.Ve
tor ri has not more than two nonzero 
oordinates. It is straightforward to 
he
k thatin this asymptoti
 lirj = Æij.In general, 
oordinates of eigenve
tors lij, rij are simultaneously nonzero only for one valuej = i be
ause the auxiliary system is a
y
li
. On the other hand, lirj = 0 if i 6= j, justbe
ause that are eigenve
tors for di�erent eigenvalues, �i and �j. Hen
e, lirj = Æij.For example, let us �nd the asymptoti
 of left and right eigenve
tors for a bran
hed a
y
li
system of rea
tions: A1!7 A2!5 A3!6 A4!2 A5!4 A8; A6!1 A7!3 A424



where the upper index marks the order of rate 
onstants: �6 > �4 > �7 > �5 > �2 > �3 >�1 (�i is the rate 
onstant of rea
tion Ai ! :::).For left eigenve
tors, rows li, we have the following asymptoti
s:l1 � (1; 0; 0; 0; 0; 0; 0; 0); l2 � (0; 1; 0; 0; 0; 0; 0; 0); l3 � (0; 1; 1; 0; 0; 0; 0; 0);l4 � (0; 0; 0; 1; 0; 0; 0; 0); l5 � (0; 0; 0; 1; 1; 1; 1; 0); l6 � (0; 0; 0; 0; 0; 1; 0; 0):l7 � (0; 0; 0; 0; 0; 1; 1; 0) (34)For right eigenve
tors, 
olumns ri, we have the following asymptoti
s (we write ve
tor-
olumns in rows):r1 � (1; 0; 0; 0; 0; 0; 0;�1); r2 � (0; 1;�1; 0; 0; 0; 0; 0); r3 � (0; 0; 1; 0; 0; 0; 0;�1);r4 � (0; 0; 0; 1;�1; 0; 0; 0); r5 � (0; 0; 0; 0; 1; 0; 0;�1); r6 � (0; 0; 0; 0; 0; 1;�1; 0);r7 � (0; 0; 0; 0;�1; 0; 1; 0): (35)For 
onvenien
e, we use all eight 
oordinates, 
1�8.4.2.3 Relaxation of a system with a
y
li
 auxiliary dynami
al systemLet us assume that the auxiliary dynami
al system is a
y
li
 and has only one attra
tor,a �xed point. This means that stoi
hiometri
 ve
tors 
�(i) i form a basis in a subspa
eof 
on
entration spa
e with Pi 
i = 0. For every rea
tion Ai ! Al the following linearoperators Qil 
an be de�ned:Qil(
�(i) i) = 
li; Qil(
�(p) p) = 0 for p 6= i: (36)The kineti
 equation for the whole rea
tion network (24) 
ould be transformed in theform d
dt =Xi 0�1 + Xl l 6=�(i) kli�iQil1A 
�(i) i�i
i= 0�1 + Xj;l (l 6=�(j)) klj�j Qjl1AXi 
�(i) i�i
i= 0�1 + Xj;l (l 6=�(j)) klj�j Qjl1A ~K
; (37)
where ~K is kineti
 matrix of auxiliary kineti
 equation (29). By 
onstru
tion of auxiliarydynami
al system, kli � �i if l 6= �(i). Noti
e also that jQjlj does not depend on rate
onstants.Let us represent system (37) in eigenbasis of ~K obtained in previous subse
tion. Anymatrix B in this eigenbasis has the form B = (~bij), ~bij = liBrj = Pqs liqbqsrjs, where (bqs)is matrix B in the initial basis, li and rj are left and right eigenve
tors of ~K (30), (32).In eigenbasis of ~K the Gershgorin estimates of eigenvalues and estimates of eigenve
torsare mu
h more eÆ
ient than in original 
oordinates: the system is stronger diagonally25



dominant. Transformation to this basis is an e�e
tive pre
onditioning for perturbationtheory that uses auxiliary kineti
s as a �rst approximation to the kineti
s of the wholesystem.First of all, we 
an ex
lude the 
onservation law. Any solution of (37) has the form
(t) = br0 + ~
(t), where b = l0~
(t) = Pi ~
i(t) = 0. On the subspa
e of 
on
entration spa
ewith Pi 
i = 0 we get d
dt = (1 + E)diagf��1; : : :� �n�1g
; (38)where E = ("ij), j"ijj � 1, and diagf��1; : : :��n�1g is diagonal matrix with��1; : : :��n�1on the main diagonal. If j"ijj � 1 then we 
an use the Gershgorin theorem and state thateigenvalues of matrix (1+E)diagf��1; : : :��n�1g are real and have the form �i = ��i+�iwith j�ij � �i.To prove inequality j"ijj � 1 (for ensembles with well separated 
onstants, with proba-bility 
lose to 1) we use that the left and right eigenve
tors of ~K (30), (32) are uniformlybounded under some non-degeneration 
onditions and those 
onditions are true for wellseparated 
onstants. For ensembles with well separated 
onstants, for any given positiveg < 1 and all i; j (i 6= j) the following inequality is true with probability 
lose to 1:j�i � �jj > g�i. Let us sele
t a value of g and assume that this diagonal gap 
ondition isalways true. In this 
ase, for every fra
tion in (30), (32) we have estimate�ij�j � �ij < 1g :Therefore, for 
oordinates of right and left eigenve
tors of ~K (30), (32) we getjri�k+1(i)j < 1gk < 1gn ; jlijj < 1gq < 1gn : (39)We 
an estimate j"ijj and j�ij=�i from above as 
onst�maxl 6=�(s)fkls=�sg. So, the eigen-values for kineti
 matrix of the whole system (37) are real and 
lose to eigenvalues ofauxiliary kineti
 matrix ~K (29). For eigenve
tors, the Gershgorin theorem gives no re-sult, and additionally to diagonal dominan
e we must assume the diagonal gap 
ondition.Based on this assumption, we proved the Gershgorin type estimate of eigenve
tors inAppendix 1. In parti
ular, a

ording to this estimate, eigenve
tors for the whole rea
tionnetwork are arbitrarily 
lose to eigenve
tors of ~K (with probability 
lose to 1).So, if the auxiliary dis
rete dynami
al system is a
y
li
 and has only one attra
tor (a�xed point), then the relaxation of the whole rea
tion network 
ould be approximated bythe auxiliary kineti
s (28):
(t) = (l0
(0))r0 + n�1Xi=1(li
(0))ri exp(��it); (40)where l0 and r0 are left (ve
tor-raw) and right (ve
tor-
olumn) eigenve
tors of ~K 
or-respondent to zero eigenvalue (l0 = (1; 1; : : : 1), r0i = Æin, and Æin is Krone
ker delta), liand ri are left and right eigenve
tors of ~K 
orrespondent to eigenvalue ��i. For li and ri26



one 
an use exa
t formulas (30) and (32) or 0-1 asymptoti
 representations based on (33)and (31) for multis
ale systems. This approximation (40) 
ould be improved by iterativemethods, if ne
essary.4.2.4 Auxiliary system with one 
y
li
 attra
torThe se
ond simple parti
ular 
ase on the way to general 
ase is a rea
tion network with
omponents A1; : : : An whose auxiliary dis
rete dynami
al system has one attra
tor, a
y
le with period � > 1: An��+1 ! An��+2 ! : : : An ! An��+1 (after some 
hangeof enumeration). We assume that the limiting step in this 
y
le (rea
tion with minimal
onstant) is An ! An��+1. If auxiliary dis
rete dynami
al system has only one attra
torthen the whole network is weakly ergodi
. But the attra
tor of the auxiliary system maynot 
oin
ide with a sink of the rea
tion network.There are two possibilities:(1) In the whole network, all the outgoing rea
tions from the 
y
le have the formAn��+i ! An��+j (i; j > 0). This means that the 
y
le verti
es An��+1; An��+2; : : : Anform a sink for the whole network.(2) There exists a rea
tion from a 
y
le vertex An��+i to Am, m � n � � . This meansthat the set fAn��+1; An��+2; : : : Ang is not a sink for the whole network.In the �rst 
ase, the limit (for t !1) distribution for the auxiliary kineti
s is the well-studied stationary distribution of the 
y
le An��+1; An��+2; : : : An des
ribed in Se
. 2 (2),(3) (4), (6). The set fAn��+1; An��+2; : : :Ang is the only ergodi
 
omponent for the wholenetwork too, and the limit distribution for that system is nonzero on verti
es only. Thestationary distribution for the 
y
le An��+1 ! An��+2 ! : : : An ! An��+1 approximatesthe stationary distribution for the whole system. To approximate the relaxation pro
ess,let us delete the limiting step An ! An��+1 from this 
y
le. By this deletion we produ
ean a
y
li
 system with one �xed point, An, and auxiliary kineti
 equation (29) transformsinto d
dt = ~K0
 = n�1Xi=1 �i
i
�(i) i: (41)As it is demonstrated, dynami
s of this system approximates relaxation of the wholenetwork in subspa
e Pi 
i = 0. Eigenvalues for (41) are ��i (i < n), the 
orrespondedeigenve
tors are represented by (30), (32) and 0-1 multis
ale asymptoti
 representation isbased on (33) and (31).In the se
ond 
ase, the set fAn��+1; An��+2; : : : Ang is not a sink for the whole net-work. This means that there exist outgoing rea
tions from the 
y
le, An��+i ! Aj withAj =2 fAn��+1; An��+2; : : : Ang. For every 
y
le vertex An��+i the rate 
onstant �n��+ithat 
orresponds to the 
y
le rea
tion An��+i ! An��+i+1 is mu
h bigger than any other
onstant kj n��+i that 
orresponds to a \side" rea
tion An��+i ! Aj (j 6= n� � + i + 1):�n��+i � kj n��+i. This is be
ause de�nition of auxiliary dis
rete dynami
al system andassumption of ensemble with well separated 
onstants (multis
ale asymptoti
s). This in-equality allows us to separate motion and to use for 
omputation of the rates of outgo-ing rea
tion An��+i ! Aj the quasi steady state distribution in the 
y
le. This means27



that we 
an glue the 
y
le into one vertex A1n��+1 with the 
orrespondent 
on
entration
1n��+1 = P1�i�� 
n��+i and substitute the rea
tion An��+i ! Aj by A1n��+1 ! Aj withthe rate 
onstant renormalization: k1j n��+1 = kj n��+i
QSn��+i=
1n��+1. By the supers
riptQS we mark here the quasistationary 
on
entrations for given total 
y
le 
on
entration
1n��+1. Another possibility is to re
harge the link An��+i ! Aj to another vertex ofthe 
y
le (usually to An): we 
an substitute the rea
tion An��+i ! Aj by the rea
tionAn��+q ! Aj with the rate 
onstant renormalization:kj n��+q = kj n��+i
QSn��+i=
QSn��+q: (42)We apply this approa
h now and demonstrate its appli
ability in more details later in thisse
tion.For the quasi-stationary distribution on the 
y
le we get 
n��+i = 
n�n=�n��+i (1 � i < �).The original rea
tion network is transformed by gluing the 
y
le fAn��+1, An��+2; : : :Ang into a point A1n��+1. We say that 
omponents An��+1, An��+2; : : : An of the originalsystem belong to the 
omponent A1n��+1 of the new system. All the rea
tions Ai ! Aj withi; j � n� � remain the same with rate 
onstant kji. Rea
tions of the form Ai ! Aj withi � n� � , j > n� � (in
oming rea
tions of the 
y
le fAn��+1; An��+2; : : : Ang) transforminto Ai ! A1n��+1 with the same rate 
onstant kji. Rea
tions of the form Ai ! Aj withi > n� � , j � n� � (outgoing rea
tions of the 
y
le fAn��+1; An��+2; : : : Ang) transforminto rea
tions A1n��+1 ! Aj with the \quasistationary" rate 
onstant kQSji = kji�n=�n��+i.After that, we sele
t the maximal kQSji for given j: k(1)j n��+1 = maxi>n�� kQSji . This k(1)j n��+1is the rate 
onstant for rea
tion A1n��+1 ! Aj in the new system. Rea
tions Ai ! Ajwith i; j > n� � (internal rea
tions of the site) vanish.Among rea
tions of the form An��+i ! Am (m � n� �) we �nd�(1)n��+i = maxi;m fkmn��+i�n=�n��+ig: (43)Let the 
orrespondent i;m be i1; m1.After that, we 
reate a new auxiliary dis
rete dynami
al system for the new rea
tionnetwork on the set fA1; : : : An�� ; A1n��+1g. We 
an des
ribe this new auxiliary system as aresult of transformation of the �rst auxiliary dis
rete dynami
al system of initial rea
tionnetwork. All the rea
tion from this �rst auxiliary system of the form Ai ! Aj withi; j � n� � remain the same with rate 
onstant �i. Rea
tions of the form Ai ! Aj withi � n�� , j > n�� transform into Ai ! A1n��+1 with the same rate 
onstant �i. One morerea
tion is to be added: A1n��+1 ! Am1 with rate 
onstant �(1)n��+i. We \glued" the 
y
leinto one vertex, A1n��+1, and added new rea
tion from this vertex to Am1 with maximalpossible 
onstant (43). Without this rea
tion the new auxiliary dynami
al system hasonly one attra
tor, the �xed point A1n��+1. With this additional rea
tion that point is not�xed, and a new 
y
le appears: Am1 ! : : : A1n��+1 ! Am1 .Again we should analyze, whether this new 
y
le is a sink in the new rea
tion network,et
. Finally, after a 
hain of transformations, we should 
ome to an auxiliary dis
retedynami
al system with one attra
tor, a 
y
le, that is the sink of the transformed wholerea
tion network. After that, we 
an �nd stationary distribution by restoring of glued28




y
les in auxiliary kineti
 system and applying formulas (2), (3) (4), (6) from Se
. 2.First, we �nd the stationary state of the 
y
le 
onstru
ted on the last iteration, afterthat for ea
h vertex Akj that is a glued 
y
le we know its 
on
entration (the sum of all
on
entrations) and 
an �nd the stationary distribution, then if there remain some verti
esthat are glued 
y
les we �nd distribution of 
on
entrations in these 
y
les, et
. At the endof this pro
ess we �nd all stationary 
on
entrations with high a

ura
y, with probability
lose to one.As a simple example we use the following system, a 
hain supplemented by three rea
tions:A1!1 A2!2 A3!3 A4!4 A5!5 A6; A6!6 A4; A5!7 A2; A3!8 A1; (44)where the upper index marks the order of rate 
onstants.Auxiliary dis
rete dynami
al system for the network (44) in
ludes the 
hain and onerea
tion: A1!1 A2!2 A3!3 A4!4 A5!5 A6!6 A4:It has one attra
tor, the 
y
le A4!4 A5!5 A6!6 A4. This 
y
le is not a sink for the wholesystem, be
ause there exists an outgoing rea
tion A5!7 A2.By gluing the 
y
le A4!4 A5!5 A6!6 A4 into a vertex A14 we get new network with a 
hainsupplemented by two rea
tions:A1!1 A2!2 A3!3 A14; A14!? A2; A3!? A1: (45)Here the new rate 
onstant is k(1)24 = k25�6=�5 (�6 = k46 is the limiting step of the 
y
leA4!4 A5!5 A6!6 A4, �5 = k65).Here we 
an make a simple but important observation: the new 
onstant k124 = k25�6=�5has the same log-uniform distribution on the whole axis as 
onstants k25, �6 and �5 have.The new 
onstant k124 depends on k25 and the internal 
y
le 
onstants �6 and �5, and isindependent from other 
onstants.Of 
ourse, k(1)24 < �5, but relations between k(1)24 and k13 are a priori unknown. Bothorderings, k(1)24 > k13 and k(1)24 < k13, are possible, and should be 
onsidered separately, ifne
essary. But for both orderings the auxiliary dynami
al system for network (45) isA1!1 A2!2 A3!3 A14!? A2(of 
ourse, �(1)4 < �3 < �2 < �1). It has one attra
tor, the 
y
le A2!2 A3!3 A14!? A2. This
y
le is not a sink for the whole system, be
ause there exists an outgoing rea
tion A3!? A1.The limiting 
onstant for this 
y
le is �(1)4 = k(1)24 = k25k46=k65. We glue this 
y
le intoone point, A22. The new transformed system is very simple, it is just a two step 
y
le:A1!1 A22!? A1. The new rea
tion 
onstant is k(2)12 = k13�(1)4 =�3 = k13k25k46=(k65k43). Theauxiliary dis
rete dynami
al system is the same graph A1!1 A22!? A1, this is a 
y
le, andwe do not need further transformations.Let us �nd the steady state on the way ba
k, from this �nal auxiliary system to theoriginal one. For steady state of ea
h 
y
le we use formula (4).29



The steady state for the �nal system is 
1 = bk(2)12 =k21, 
22 = b(1�k(2)12 =k21). The 
omponentA22 in
ludes the 
y
le A2!2 A3!3 A14!? A2. The steady state of this 
y
le is 
2 = 
(2)2 k(1)24 =k32,
3 = 
(2)2 k(1)24 =k43, 
(1)4 = 
(2)2 (1� k(1)24 =k32� k(1)24 =k43). The 
omponent A14 in
ludes the 
y
leA4!4 A5!5 A6!6 A4. The steady state of this 
y
le is 
4 = 
(1)4 k46=k54, 
5 = 
(1)4 k46=k65,
6 = 
(1)4 (1� k46=k54 � k46=k65).For one 
atalyti
 
y
le, relaxation in the subspa
e Pi 
i = 0 is approximated by relaxationof a 
hain that is produ
ed from the 
y
le by 
utting the limiting step (Se
. 2). For rea
tionnetworks under 
onsideration (with one 
y
li
 attra
tor in auxiliary dis
rete dynami
alsystem) the dire
t generalization works: for approximation of relaxation in the subspa
ePi 
i = 0 it is suÆ
ient to perform the following pro
edures:� To glue iteratively attra
tors (
y
les) of the auxiliary system that are not sinks of thewhole system;� To restore these 
y
les from the end of the �rst pro
edure to its beginning. For ea
hof 
y
les (in
luding the last one that is a sink) the limited step should be deleted, andthe outgoing rea
tion should be re
harged to the head of the limiting steps (with theproper normalization), if it was not deleted before as a limiting step of one of the 
y
les.The heads of outgoing rea
tions of that 
y
les should be re
harged to the heads of thelimiting steps. Let for a 
y
le this limiting step be Am ! Aq. If for a glued 
y
le Ak thereexists an outgoing rea
tion Ak ! Aj with the 
onstant � (43), then after restoration weadd the outgoing rea
tion Am ! Aj with the rate 
onstant �. Kineti
 of the resultinga
y
li
 system approximates relaxation of the initial networks (under assumption of wellseparated 
onstants, for given ordering, with probability 
lose to 1).Let us 
onstru
t this a
y
li
 network for the same example (44). The �nal 
y
le isA1!1 A22!? A1. The limiting step in this 
y
le is A22!? A1. After 
utting we get A1!1 A22.The 
omponent A22 is glued 
y
le A2!2 A3!3 A14!? A2. The rea
tion A1!1 A22 
orresponds tothe rea
tion A1!1 A2 (in this 
ase, this is the only rea
tion from A1 to 
y
le; in other 
aseone should take the rea
tion from A1 to 
y
le with maximal 
onstant). The limiting stepin the 
y
le is A14!? A2. After 
utting, we get a system A1!1 A2!2 A3!3 A14. The 
omponentA14 is the glued 
y
le A4!4 A5!5 A6!6 A4 from the previous step. The limiting step in this
y
le is A6!6 A4. After restoring this 
y
le and 
utting the limiting step, we get an a
y
li
system A1!1 A2!2 A3!3 A4!4 A5!5 A6 (as one 
an guess from the beginning: this 
oin
iden
eis provided by the simple 
onstant ordering sele
ted in (44)). Relaxation of this systemapproximates relaxation of the whole initial network.To demonstrate possible bran
hing of des
ribed algorithm for 
y
les surgery (gluing,restoring and 
utting) with ne
essity of additional orderings, let us 
onsider the followingsystem: A1!1 A2!6 A3!2 A4!3 A5!4 A3; A4!5 A2; (46)The auxiliary dis
rete dynami
al system for rea
tion network (46) isA1!1 A2!6 A3!2 A4!3 A5!4 A3:30



It has only one attra
tor, a 
y
le A3!2 A4!3 A5!4 A3. This 
y
le is not a sink for the wholenetwork (46) be
ause rea
tion A4!5 A2 leads from that 
y
le. After gluing the 
y
le into avertex A13 we get the new network A1!1 A2!6 A13!? A2. The rate 
onstant for the rea
tionA13!A2 is k123 = k24k35=k54, where kij is the rate 
onstant for the rea
tion Aj ! Ai inthe initial network (k35 is the 
y
le limiting rea
tion). The new network 
oin
ides with itsauxiliary system and has one 
y
le, A2!6 A13!? A2. This 
y
le is a sink, hen
e, we 
an startthe ba
k pro
ess of 
y
les restoring and 
utting. One question arises immediately: whi
h
onstant is smaller, k32 or k123. The smallest of them is the limiting 
onstant, and theanswer depends on this 
hoi
e. Let us 
onsider two possibilities separately: (1) k32 > k123and (2) k32 < k123. Of 
ourse, for any 
hoi
e the stationary 
on
entration of the sour
e
omponent A1 vanishes: 
1 = 0.(1) Let as assume that k32 > k123. In this 
ase, the steady state of the 
y
le A2!6 A13!? A2is (a

ording to (4)) 
2 = bk123=k32, 
13 = b(1 � k123=k32), where b = P 
i. The 
omponentA13 is a glued 
y
le A3!2 A4!3 A5!4 A3. Its steady state is 
3 = 
13k35=k43, 
4 = 
13k35=k54,
5 = 
13(1� k35=k43 � k35=k54).Let us 
onstru
t an a
y
li
 system that approximates relaxation of (46) under the same as-sumption (1) k32 > k123. The �nal auxiliary system after gluing 
y
les is A1!1 A2!6 A13!? A2.Let us delete the limiting rea
tion A13!? A2 from the 
y
le. We get an a
y
li
 systemA1!1 A2!6 A13. The 
omponent A13 is the glued 
y
le A3!2 A4!3 A5!4 A3. Let us restore this
y
le and delete the limiting rea
tionA5!4 A3. We get an a
y
li
 system A1!1 A2!6 A3!2 A4!3 A5.Relaxation of this system approximates relaxation of the initial network (46) under addi-tional 
ondition k32 > k123.(2) Let as assume now that k32 < k123. In this 
ase, the steady state of the 
y
le A2!6 A13!? A2is (a

ording to (4)) 
2 = b(1�k32=k123), 
13 = bk32=k123. The further analysis is the same asit was above: 
3 = 
13k35=k43, 
4 = 
13k35=k54, 
5 = 
13(1� k35=k43 � k35=k54) (with another
13).Let us 
onstru
t an a
y
li
 system that approximates relaxation of (46) under assumption(2) k32 < k123. The �nal auxiliary system after gluing 
y
les is the same, A1!1 A2!6 A13!? A2,but the limiting step in the 
y
le is di�erent, A2!6 A13. After 
utting this step, we get a
y
li
system A1!1 A2 ?A13, where the last rea
tion has rate 
onstant k123.The 
omponent A13 is the glued 
y
le A3!2 A4!3 A5!4 A3. Let us restore this 
y
le and deletethe limiting rea
tion A5!4 A3. The 
onne
tion from glued 
y
le A13!? A2 with 
onstant k123transforms into 
onne
tion A5!? A2 with the same 
onstant k123.We get the a
y
li
 system: A1!1 A2, A3!2 A4!3 A5!? A2. The order of 
onstants is nowknown: k21 > k43 > k54 > k123, and we 
an substitute the sign \?" by \4":A3!2 A4!3 A5!4 A2.For both 
ases, k32 > k123 (k123 = k24k35=k54) and k32 < k123 it is easy to �nd the eigenve
torsexpli
itly and to write the solution to the kineti
 equations in expli
it form.31



4.3 Cy
les surgery for auxiliary dis
rete dynami
al system with arbitrary family of at-tra
torsIn this subse
tion, we summarize results of relaxation analysis and des
ribe the algorithmof approximation of steady state and relaxation pro
ess for arbitrary rea
tion networkwith well separated 
onstants.4.3.1 Hierar
hy of 
y
les gluingLet us 
onsider a rea
tion network W with a given stru
ture and �xed ordering of 
on-stants. The set of verti
es of W is A and the set of elementary rea
tions is R. Ea
hrea
tion from R has the form Ai ! Aj, Ai; Aj 2 A. The 
orrespondent 
onstant is kji.For ea
h Ai 2 A we de�ne �i = maxjfkjig and �(i) = argmaxjfkjig. In addition, �(i) = iif kji = 0 for all j.The auxiliary dis
rete dynami
al system for the rea
tion network W is the dynami
alsystem � = �W de�ned by the map � on the set A. Auxiliary rea
tion network V = VWhas the same set of verti
es A and the set of rea
tions Ai ! A�(i) with rea
tion 
onstants�i. Auxiliary kineti
s is des
ribed by _
 = ~K
, where ~Kij = ��jÆij + �jÆi �(j).Every �xed point of �W is also a sink for the rea
tion network W. If all attra
tors of thesystem �W are �xed points Af1; Af2; ::: 2 A then the set of stationary distributions for theinitial kineti
s as well as for the auxiliary kineti
s is the set of distributions 
on
entratedthe set of �xed points fAf1; Af2; :::g. In this 
ase, the auxiliary rea
tion network is a
y
li
,and the auxiliary kineti
s approximates relaxation of the whole network W.In general 
ase, let the system �W have several attra
tors that are not �xed points, but
y
les C1; C2; ::: with periods �1; �2; ::: > 1. By gluing these 
y
les in points, we transformthe rea
tion network W into W1. The dynami
al system �W is transformed into �1. Forthese new system and network, the 
onne
tion �1 = �W1 persists: �1 is the auxiliarydis
rete dynami
al system for W1.For ea
h 
y
le, Ci, we introdu
e a new vertex Ai. The new set of verti
es, A1 = A [fA1; A2; :::g n ([iCi) (we delete 
y
les Ci and add verti
es Ai).All the rea
tion between A! B (A;B 2 A) 
an be separated into 5 groups:(1) both A;B =2 [iCi;(2) A =2 [iCi, but B 2 Ci;(3) A 2 Ci, but B =2 [iCi;(4) A 2 Ci, B 2 Cj, i 6= j;(5) A;B 2 Ci.Rea
tions from the �rst group do not 
hange. Rea
tion from the se
ond group transformsinto A ! Ai (to the whole glued 
y
le) with the same 
onstant. Rea
tion of the thirdtype 
hanges into Ai ! B with the rate 
onstant renormalization (42): let the 
y
le Cibe the following sequen
e of rea
tions A1 ! A2 ! :::A�i ! A1, and the rea
tion rate32




onstant for Ai ! Ai+1 is ki (k�i for A�i ! A1). For the limiting rea
tion of the 
y
leCi we use notation klim i. If A = Aj and k is the rate rea
tion for A ! B, then the newrea
tion Ai ! B has the rate 
onstant kklim i=kj. This 
orresponds to a quasistationarydistribution on the 
y
le (4). The same 
onstant renormalization is ne
essary for rea
tionsof the fourth type. These rea
tions transform into Ai ! Aj. Finally, rea
tions of the �fthtype vanish.After we glue all the 
y
les of auxiliary dynami
al system in the rea
tion network W,we get W1. Stri
tly speaking, the whole network W1 is not ne
essary, and in eÆ
ientrealization of the algorithm for large networks the 
omputation 
ould be signi�
antlyredu
ed. What we need, is the 
orrespondent auxiliary dynami
al system �1 = �W1 withauxiliary kineti
s.To �nd the auxiliary kineti
 system, we should glue all 
y
les in the �rst auxiliary system,and then add several rea
tions: for ea
h Ai it is ne
essary to �nd in W1 the rea
tion ofthe form Ai ! B with maximal 
onstant and add this rea
tion to the auxiliary network.If there is no rea
tion of the form Ai ! B for given i then the point Ai is the �xed pointfor W1 and verti
es of the 
y
le Ci form a sink for the initial network.After that, we de
ompose the new auxiliary dynami
al system, �nd 
y
les and repeatgluing. Terminate when all attra
tors of the auxiliary dynami
al system �m be
ome �xedpoints.4.3.2 Re
onstru
tion of steady statesAfter this termination, we 
an �nd all steady state distributions by restoring 
y
les in theauxiliary rea
tion network Vm. Let Amf1; Amf2; ::: be �xed points of �m. The set of steadystates for Vm is the set of all distributions on the set of �xed points fAmf1; Amf2; :::g. Let ustake one of these distributions, 
 = (
mf1; 
mf2; :::) (we mark the 
on
entrations by the sameindexes as the vertex has; other 
i = 0).To make a step of 
y
le restoration we sele
t those vertexes Amfi that are glued 
y
les andsubstitute them in the list Amf1; Amf2; ::: by all the verti
es of these 
y
les. For ea
h of those
y
les we �nd the limiting rate 
onstant and redistribute the 
on
entration 
mfi betweenthe verti
es of the 
orrespondent 
y
le by the rule (4) (with b = 
mfi). As a result, we geta set of verti
es and a distribution on this set of verti
es. If among these verti
es thereare glued 
y
les, then we repeat the pro
edure of 
y
le restoration. Terminate when thereis no glued 
y
les in the support of the distribution. The resulting distribution is theapproximation to a steady state of W, and all steady states for W 
an be approximatedby this method.In order to 
onstru
t the approximation to the basis of stationary distributions ofW, it issuÆ
ient to apply the des
ribed algorithm to distributions 
on
entrated on a single �xedpoint Amfi, 
mfj = Æij, for every i.The steady state approximation on the base of the rule (4) has �rst order in the limiting
onstants. The zero order approximation also makes sense. For one 
y
le is gives (5):33



all the 
on
entration is 
olle
ted at the start of the limiting step. The algorithm for thezero order approximation is even simpler than for the �rst order. Let us start from thedistributions 
on
entrated on a single �xed point Amfi, 
mfj = Æij for some i. If this pointis a glued 
y
le then restore that 
y
le, and �nd the limiting step. The new distributionis 
on
entrated at the starting vertex of that step. If this vertex is a glued 
y
le, thenrepeat. If it is not then terminate. As a result we get a distribution 
on
entrated in onevertex of A.
4.3.3 Dominant kineti
 system for approximation of relaxationTo 
onstru
t an approximation to the relaxation pro
ess in the rea
tion network W, wealso need to restore 
y
les, but for this purpose we should start from the whole gluednetwork network Vm on Am (not only from �xed points as we did for the steady stateapproximation). On a step ba
k, from the set Am to Am�1 and so on some of glued 
y
lesshould be restored and 
ut. On ea
h step we build an a
y
li
 rea
tion network, the �nalnetwork is de�ned on the initial vertex set and approximates relaxation of W.To make one step ba
k from Vm let us sele
t the verti
es of Am that are glued 
y
lesfrom Vm�1. Let these verti
es be Am1 ; Am2 ; :::. Ea
h Ami 
orresponds to a glued 
y
le fromVm�1, Am�1i1 ! Am�1i2 ! :::Am�1i�i ! Am�1i1 , of the length �i. We assume that the limitingsteps in these 
y
les are Am�1i�i ! Am�1i1 . Let us substitute ea
h vertex Ami in Vm by diverti
es Am�1i1 ; Am�1i2 ; :::Am�1i�i and add to Vm rea
tions Am�1i1 ! Am�1i2 ! :::Am�1i�i (that arethe 
y
le rea
tions without the limiting step) with 
orrespondent 
onstants from Vm�1.If there exists an outgoing rea
tion Ami ! B in Vm then we substitute it by the rea
tionAm�1i�i ! B with the same 
onstant, i.e. outgoing rea
tions Ami ! ::: are reatta
hed tothe heads of the limiting steps. Let us rearrange rea
tions from Vm of the form B ! Ami .These rea
tions have prototypes in Vm�1 (before the last gluing). We simply restore theserea
tions. If there exists a rea
tion Ami ! Amj then we �nd the prototype in Vm�1, A! B,and substitute the rea
tion by Am�1i�i ! B with the same 
onstant, as for Ami ! Amj .After that step is performed, the verti
es set is Am�1, but the rea
tion set di�ers from therea
tions of the network Vm�1: the limiting steps of 
y
les are ex
luded and the outgoingrea
tions of glued 
y
les are in
luded (reatta
hed to the heads of the limiting steps). Tomake the next step, we sele
t verti
es of Am�1 that are glued 
y
les from Vm�2, substitutethese verti
es by verti
es of 
y
les, delete the limiting steps, atta
h outgoing rea
tions tothe heads of the limiting steps, and for in
oming rea
tions restore their prototypes fromVm�2, and so on.After all, we restore all the glued 
y
les, and 
onstru
t an a
y
li
 rea
tion network onthe set A. This a
y
li
 network approximates relaxation of the network W. We 
all thissystem the dominant system of W and use notation dommod(W).34



4.3.4 Zero-one law for nonergodi
 multis
ale networksThe �xed points Amfi of the dis
rete dynami
al system �m are the glued ergodi
 
om-ponents Gi � A of the initial network W. At the same time, these points are attra
-tors of �m. Let us 
onsider the 
orrespondent de
omposition of this system with parti-tion Am = [iAtt(Amfi). In the 
y
le restoration during 
onstru
tion of dominant systemdommod(W) this partition transforms into partition of A: A = [iUi, Att(Amfi) transformsinto Ui and Gi � Ui (and Ui transforms into Att(Amfi) in hierar
hi
al gluing of 
y
les).It is straightforward to see that during 
onstru
tion of dominant systems for W fromthe network Vm no 
onne
tion between Ui are 
reated. Therefore, the rea
tion networkdommod(W) is a union of networks on sets Ui without any link between sets.If G1; : : : Gm are all ergodi
 
omponents of the system, then there exist m independentpositive linear fun
tionals b1(
), ... bm(
) that des
ribe asymptoti
al behaviour of kineti
system when t!1 (26). For dommod(W) these fun
tionals are: bl(
) = PA2Ul 
A where
A is 
on
entration of A. Hen
e, for the initial rea
tion network W with well separated
onstants bl(
) � XA2Ul 
A: (47)This is the zero{one law for multis
ale networks: for any l; i, the value of fun
tional bl (26)on basis ve
tor ei, bl(ei), is either 
lose to one or 
lose to zero (with probability 
lose to 1).We already mentioned this law in dis
ussion of a simple example (27). The approximateequality (47) means that for ea
h reagent A 2 A there exists su
h an ergodi
 
omponentG of W that A transforms when t!1 preferably into elements of G even if there existpaths from A to other ergodi
 
omponents of W.4.4 Example: a prism of rea
tionsLet us demonstrate work of the algorithm on a typi
al example, a prism of rea
tionthat 
onsists of two 
onne
ted 
y
les (Fig. 1,2). Su
h systems appear in many areas ofbiophysi
s and bio
hemistry (see, for example, [49℄).For the �rst example we use the rea
tion rate 
onstants ordering presented in Fig. 1a.For this ordering, the auxiliary dynami
al system 
onsists of two 
y
les (Fig. 1b) withthe limiting 
onstants k54 and k32, 
orrespondingly. These 
y
les are 
onne
ted by fourrea
tion (Fig. 1
). We glue the 
y
les into new 
omponents A11 and A12 (Fig. 1d), and therea
tion network is transformed into A11 $ A12. Following the general rule (k1 = kklim=kj),we determine the rate 
onstants: for rea
tion A11 ! A12k121 = maxfk41k32=k21; k52; k63k32=k13g;and for rea
tion A12 ! A11 k112 = k36k54=k46:There are six possible orderings of the 
onstant 
ombinations: three possibilities for the
hoi
e of k121 and for ea
h su
h a 
hoi
e there exist two possibilities: k121 > k112 or k121 < k112.35
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Fig. 1. Gluing of 
y
les for the prism of rea
tions with a given ordering of rate 
onstants inthe 
ase of two attra
tors in the auxiliary dynami
al system: (a) initial rea
tion network, (b)auxiliary dynami
al system that 
onsists of two 
y
les, (
) 
onne
tion between 
y
les, (d) gluing
y
les into new 
omponents, (e) network W1 with glued verti
es.The zero order approximation of the steady state depends only on the sign of inequalitybetween k121 and k112. If k121 � k112 then almost all 
on
entration in the steady state isa

umulated inside A12. After restoring the 
y
le A4 ! A5 ! A6 ! A4 we �nd that inthe steady state almost all 
on
entration is a

umulated in A4 (the 
omponent at thebeginning of the limiting step of this 
y
le, A4 ! A5). Finally, the eigenve
tor for zeroeigenvalue is estimated as the ve
tor 
olumn with 
oordinates (0; 0; 0; 1; 0; 0).If, inverse, k121 � k112 then almost all 
on
entration in the steady state is a

umulatedinside A11. After restoring the 
y
le A1 ! A2 ! A3 ! A1 we �nd that in the steadystate almost all 
on
entration is a

umulated in A2 (the 
omponent at the beginning ofthe limiting step of this 
y
le, A2 ! A3). Finally, the eigenve
tor for zero eigenvalue isestimated as the ve
tor 
olumn with 
oordinates (0; 1; 0; 0; 0; 0).For analysis of relaxation, let us analyze one of the six parti
ular 
ases separately.1. k121 = k41k32=k21 and k121 > k112.In this 
ase, the �nite a
y
li
 auxiliary dynami
al system, �m = �1, is A11 ! A12, andW1 is A11 $ A12. We restore both 
y
les and delete the limiting rea
tions A2 ! A3 andA4 ! A5. This is the 
ommon step for all 
ases. Following the general pro
edure, wesubstitute the rea
tion A11 ! A12 by A2 ! A4 with the rate 
onstant k121 = k41k32=k21(be
ause A2 is the head of the limiting step for the 
y
le A1 ! A2 ! A3 ! A1, and theprototype of the rea
tion A11 ! A12 is in that 
ase A1 ! A4.We �nd the approximate system for relaxation des
ription: rea
tions A3 ! A1 ! A2 andA5 ! A6 ! A4 with original 
onstants, and rea
tion A2 ! A4 with the rate 
onstantk121 = k41k32=k21. 36



This system graph is a
y
li
 and, moreover, represents a dis
rete dynami
al system, as itshould be (not more than one outgoing rea
tion for any 
omponent). Therefore, we 
anestimate the eigenvalues and eigenve
tors on the base of formulas (31), (33). It is easy todetermine the order of 
onstants be
ause k121 = k41k32=k21: this 
onstant is the smallestnonzero 
onstant in the obtained a
y
li
 system. Finally, we have the following orderingof 
onstants: A3!3 A1!1 A2!5 A4, A5!4 A6!2 A4.So, the eigenvalues of the prism of rea
tion for the given ordering are (with high a

ura
y,with probability 
lose to one) �k21 < �k46 < �k13 < �k65 < �k41k32=k21. The relaxationtime is � = k21=(k41k32).We use the same notations as in previous se
tions: eigenve
tors li and ri 
orrespond tothe eigenvalue ��i, where �i is the rea
tion rate 
onstant for the rea
tion Ai ! ::: . Theleft eigenve
tors li are:l1 � (1; 0; 0; 0; 0; 0); l2 � (1; 1; 1; 0; 0; 0); l3 � (0; 0; 1; 0; 0; 0);l4 � (1; 1; 1; 1; 1; 1); l5 � (0; 0; 0; 0; 1; 0); l6 � (0; 0; 0; 0; 0; 1): (48)The right eigenve
tors ri are (we represent ve
tor 
olumns as rows):r1 � (1;�1; 0; 0; 0; 0); r2 � (0; 1; 0;�1; 0; 0); r3 � (0;�1; 1; 0; 0; 0);r4 � (0; 0; 0; 1; 0; 0); r5 � (0; 0; 0;�1; 1; 0); r6 � (0; 0; 0;�1; 0; 1) (49)The vertex A4 is the �xed point for the dis
rete dynami
al system. There is no rea
tionA4 ! ::: . For 
onvenien
e, we in
lude the eigenve
tors l4 and r4 for zero eigenvalue,�4 = 0. These ve
tors 
orrespond to the steady state: r4 is the steady state ve
tor, andthe fun
tional l4 is the 
onservation law.The 
orrespondent approximation to the general solution of the kineti
 equation for theprism of rea
tion (Fig. 1a) is:
(t) = 6Xi=1 ri(li; 
(0)) exp(��it): (50)Analysis of other �ve parti
ular 
ases is similar. Of 
ourse, some of the eigenve
tors andeigenvalues 
an di�er.The �rst order in 
onstants ratios approximation for the steady state is des
ribed aboveas appli
ation of the rule (4) for restoring 
y
les. The �rst order approximation for eigen-ve
tors is presented in Appendix 1.Of 
ourse, di�erent ordering 
an lead to very di�erent approximations. For example, letus 
onsider the same prism of rea
tions, but with the ordering of 
onstants presented inFig. 2a. The auxiliary dynami
al system has one 
y
le (Fig. 2b) with the limiting 
onstantk36. This 
y
le is not a sink to the initial network, there are outgoing rea
tions from itsverti
es (Fig. 2
). After gluing, this 
y
les transforms into a vertex A11 (Fig. 2d). The gluednetwork,W1 (Fig. 2e), has two verti
es, A4 and A11 the rate 
onstant for the rea
tion A4 !A11 is k54, and the rate 
onstant for the rea
tion A11 ! A4 is k1 = maxfk41k36=k21; k46g.Hen
e, there are not more than four possible versions: two possibilities for the 
hoi
e of37
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?Fig. 2. Gluing of a 
y
le for the prism of rea
tions with a given ordering of rate 
onstants inthe 
ase of one attra
tors in the auxiliary dynami
al system: (a) initial rea
tion network, (b)auxiliary dynami
al system that has one attra
tor, (
) outgoing rea
tions from a 
y
le, (d) gluingof a 
y
le into new 
omponent, (e) network W1 with glued verti
es.k1 and for ea
h su
h a 
hoi
e there exist two possibilities: k1 > k54 or k1 < k54 (one ofthem is impossible, be
ause k46 > k54).Exa
tly as it was in the previous example, the zero order approximation of the steadystate depends only on the sign of inequality between k1 and k54. If k1 � k54 then almostall 
on
entration in the steady state is a

umulated inside A1. After restoring the 
y
leA3 ! A1 ! A2 ! A5 ! A6 ! A3 we �nd that in the steady state almost all 
on
entrationis a

umulated in A6 (the 
omponent at the beginning of the limiting step of this 
y
le,A6 ! A3). The eigenve
tor for zero eigenvalue is estimated as the ve
tor 
olumn with
oordinates (0; 0; 0; 0; 0; 1).If k1 � k54 then almost all 
on
entration in the steady state is a

umulated inside A4.This vertex is not a glued 
y
le, and immediately we �nd the approximate eigenve
tor forzero eigenvalue, the ve
tor 
olumn with 
oordinates (0; 0; 0; 1; 0; 0).Let us analyze the relaxation pro
ess for one of the possibilities: k1 = k46, and, thereforek1 > k54. We restore the 
y
le, delete the limiting step, transform the rea
tion A11 ! A4into rea
tion A6 ! A4 with the same 
onstant k1 = k46 and get the 
hain with ordered
onstants: A3!3 A1!1 A2!4 A5!2 A6!5 A4. Here the nonzero rate 
onstants kij have the samevalue as for the initial system (Fig. 2a). Left eigenve
tors are (in
luding l4 for the zeroeigenvalue): l1 � (1; 0; 0; 0; 0; 0); l2 � (1; 1; 1; 0; 0; 0); l3 � (0; 0; 1; 0; 0; 0);l4 � (1; 1; 1; 1; 1; 1); l5 � (0; 0; 0; 0; 1; 0); l6 � (1; 1; 1; 0; 1; 1): (51)38



Right eigenve
tors are (in
luding r4 for the zero eigenvalue):r1 � (1;�1; 0; 0; 0; 0); r2 � (0; 1; 0; 0; 0;�1); r3 � (0;�1; 1; 0; 0; 0);r4 � (0; 0; 0; 1; 0; 0); r5 � (0; 0; 0; 0; 1;�1); r6 � (0; 0; 0;�1; 0; 1); (52)Here we represent ve
tor 
olumns as rows.For the approximation of relaxation in that order we 
an use (50).5 Limitation in modular stru
ture and solvable modules5.1 Modular limitationThe simplest one-
onstant limitation 
on
ept 
annot be applied to all systems. There isanother very simple 
ase based on ex
lusion of \fast equilibria" Ai 
 Aj. In this limit,the ratio of rea
tion 
onstants Kij = kij=kji is bounded, 0 < a < Kij < b < 1, but fordi�erent pairs (i; j); (l; s) one of the inequalities kij � kls or kij � kls holds. (One usually
alls these K \equilibrium 
onstant", even if there is no relevant thermodynami
s.) W.J.Ray (Jr.) [9℄ dis
ussed that 
ase systemati
ally for some real examples. Of 
ourse, it ispossible to 
reate the theory for that 
ase very similarly to the theory presented above.This should be done, but it is worth to mention now that the limitation 
on
ept 
an beapplied to any modular stru
ture of rea
tion network. Let for the rea
tion network Wthe set of elementary rea
tions R is partitioned on some modules: R = [iRi. We 
an
onsider the related multis
ale ensemble of rea
tion 
onstants: let the ratio of any tworate 
onstants inside ea
h module be bounded (and separated from zero, of 
ourse), butthe ratios between modules form a well separated ensemble. This 
an be formalized bymultipli
ation of rate 
onstants of ea
h module Ri on a time s
ale 
oeÆ
ient ki. If weassume that lnki are uniformly and independently distributed on a real line (or ki areindependently and log-uniformly distributed on a suÆ
iently large interval) then we 
ometo the problem of modular limitation. The problem is quite general: des
ribe the typi
albehavior of multis
ale ensembles for systems with given modular stru
ture: ea
h modulehas its own time s
ale and these time s
ales are well separated.Development of su
h a general theory is outside the s
ope of our paper, and here wejust �nd building blo
ks for the future theory, solvable rea
tion modules. There may bemany various 
riteria of sele
tion the rea
tion modules. Here are several possible 
hoi
es:individual rea
tions (we developed the theory of multis
ale ensembles of individual rea
-tions in this paper), 
ouples of mutually inverse rea
tions, as we mentioned above, a
y
li
rea
tion networks, ... .Among the possible reasons for sele
tion the 
lass of rea
tion me
hanisms for this purpose,there is one formal, but important: the possibility to solve the kineti
 equation for everymodule in expli
it analyti
al (algebrai
) form with quadratures. We 
all these systems\solvable". 39



5.2 Solvable rea
tion me
hanismsLet us des
ribe all solvable rea
tion systems (with mass a
tion law), linear and nonlinear.Formally, we 
all the set of rea
tion solvable, if there exists a linear transformation of
oordinates 
 7! a su
h that kineti
 equation in new 
oordinates for all values of rea
tion
onstants has the triangle form: daidt = fi(a1; a2; ::: ai): (53)This system has the lower triangle Ja
obian matrix � _ai=�aj.To 
onstru
t the general mass a
tion law system we need: the list of 
omponents, A =fA1; ::: Ang and the list of rea
tions (the rea
tion me
hanism):Xi �riAi !Xk �rkAk; (54)where r is the rea
tion number, �ri; �rk are nonnegative integers (stoi
hiometri
 
oeÆ-
ients). Formally, it is possible that all �k = 0 or all �i = 0. We allow su
h rea
tions.They 
an appear in redu
ed models or in auxiliary systems.A real variable 
i is assigned to every 
omponent Ai, 
i is the 
on
entration of Ai, 
 is the
on
entration ve
tor with 
oordinates 
i. The rea
tion kineti
 equations ared
dt =Xr 
rwr(
); (55)where 
r is the rea
tion stoi
hiometri
 ve
tor with 
oordinates 
ri = �ri � �ri, wr(
) isthe rea
tion rate. For mass a
tion law,wr(
) = krYi 
�rii ; (56)where kr is the rea
tion 
onstant.Physi
ally, equations (55) 
orrespond to rea
tions in �xed volume, and in more general
ase a multiplier V (volume) is ne
essary:d(V 
)dt = V Xr 
rwr(
):Here we study the systems (55) and postpone any further generalization.The �rst example of solvable systems give the sets of rea
tions of the form�riAi ! Xk; k>i�rkAk (57)40



(
omponents Ak on the right hand side have higher numbers k than the 
omponent Aion the left hand side, i < k). For these systems, kineti
 equations (55) have the triangleform from the very beginning.The se
ond standard example gives the 
ouple of mutually inverse rea
tions:Xi �iAi 
Xk �kAk; (58)these rea
tions have stoi
hiometri
 ve
tors �
, 
i = �i � �i. The kineti
 equation _
 =(w+�w�)
 has the triangle form (53) in any orthogonal 
oordinate system with the last
oordinate an = (
; 
) = Pi 
i
i. Of 
ourse, if there are several rea
tions with proportionalstoi
hiometri
 ve
tors, the kineti
 equations have the triangle form in the same 
oordinatesystems.The general 
ase of solvable systems is essentially a 
ombination of that two (57), (58),with some generalization. Here we follow [50℄ and present an algorithm for analysis ofrea
tion network solvability. First, we introdu
e a relation between rea
tions \rth rea
tiondire
tly a�e
ts the rate of sth rea
tion" with notation r ! s: r ! s if there exists su
h Aithat 
ri�si 6= 0. This means that 
on
entration of Ai 
hanges in the rth rea
tion (
ri 6= 0)and the rate of the sth rea
tion depends on Ai 
on
entration (�si 6= 0). For that relationwe use r ! s. For transitive 
losure of this relation we use notation r � s (\rth rea
tiona�e
ts the rate of sth rea
tion"): r � s if there exists su
h a sequen
e s1; s2; ::: sq thatr! s1 ! s2 ! ::: sq ! s.The hanging 
omponent of the rea
tion network W is su
h Ai 2 A that for all rea
tions�ri = 0. This means that all rea
tion rates do not depend on 
on
entration of Ai. Thehanging rea
tion is su
h element of R with number r that r � s only if 
s = �
r forsome number �. An example of hanging 
omponents gives the last 
omponent An for thetriangle network (57). An example of hanging rea
tions gives a 
ouple of rea
tions (58) ifthey do not a�e
t any other rea
tion.In order to 
he
k solvability of the rea
tion network W we should �nd all hanging 
om-ponents and rea
tions and delete them from A and R, 
orrespondingly. After that, weget a new system, W1 with the 
omponent set A1 and the rea
tion set R1. Next, weshould �nd all hanging 
omponents and rea
tions for W1 and delete them from A1 andR1. Iterate until no hanging 
omponents or hanging rea
tions 
ould be found. If the �nalset of 
omponents is empty, then the rea
tion network W is solvable. If it is not empty,then W is not solvable.For example, let us 
onsider the rea
tion me
hanism with A = fA1; A2; A3; A4g andrea
tions A1 + A2 ! 2A3, A1 + A2 ! A3 + A4, A3 ! A4, A4 ! A3. There are nohanging 
omponents, but two hanging rea
tions, A3 ! A4 and A4 ! A3. After deletionof these two rea
tions, two hanging 
omponents appear, A3 and A4. After deletion thesetwo 
omponents, we get two hanging rea
tions, A1+A2 ! 0, A1+A2 ! 0 (they 
oin
ide).We delete these rea
tions and get two 
omponents A1, A2 without rea
tions. After deletionthese hanging 
omponents we obtain the empty system. The rea
tion network is solvable.An oriented 
y
le of the length more than two is not solvable. For ea
h number of ver-41



ti
es one 
an 
al
ulate the set of all maximal solvable me
hanisms. For example, for �ve
omponents there are two maximal solvable me
hanisms of monomole
ular rea
tions:(1) A1 ! A2 ! A4, A1 ! A4, A1 ! A3 ! A5, A1 ! A5, A4 $ A5;(2) A1 ! A2, A1 ! A3, A1 ! A4, A1 ! A5, A2 $ A3, A4 $ A5.It is straightforward to 
he
k solvability of these me
hanism. The �rst me
hanism hasa 
ouple of hanging rea
tions, A4 $ A5. After deletion of these rea
tion, the systembe
omes a
y
li
, of the form (57). The se
ond me
hanism has two 
ouples of hangingrea
tions, A2 $ A3 and A4 $ A5. After deletion of these rea
tions, the system also trans-forms into form (57). It is impossible to add any new monomole
ular rea
tions betweenfA1; A2; A3; A4; A5g to these me
hanisms with preservation of solvability.Finally, we should mention 
onne
tions between solvable rea
tion networks and solvableLie algebras [51,52℄. Let us remind that matri
esM1; :::Mq generate a solvable Lie algebrasif and only if they 
ould be transformed simultaneously into a triangle form by a 
hangeof basis.The Ja
obian matrix for the mass a
tion law kineti
 equation (55) is:J =  �
i�
j! =Xr wrJr =Xrj wr
j Mrj; (59)where Jr = 
r�>r diag� 1
1 ; 1
2 ; ::: 1
n� =Xj 1
jMrj;Mrj = �rj
rej>; (60)�>r is the ve
tor row (�r1; ::: �rn), ej> is the jth basis ve
tor row with 
oordinates ej>k = Æjk.The Ja
obian matrix (59) should have the lower triangle form in 
oordinates ai (53) for allnonnegative values of rate 
onstants and 
on
entrations. This is equivalent to the lowertriangle form of all matri
es Mrj in these 
oordinates. Be
ause usually there are manyzero matri
es among Mrj, it is 
onvenient to des
ribe the set of nonzero matri
es.For the rth rea
tion Ir = fi j�ri 6= 0g. The rea
tion rate wr depends on 
i if and only ifi 2 Ir. For ea
h i = 1; ::: n we de�ne a matrixmri = 2640; 0; ::: 
r|{z}i ::: 0375 :The ith 
olumn of this matrix 
oin
ides with the ve
tor 
olumn 
r. Other 
olumns areequal to zero. For ea
h r we de�ne a set of matri
esMr = fmri j i 2 Irg, andM = [rMr.The rea
tion network W is solvable if and only if the �nite set of matri
esM generatesa solvable Lie algebra.Classi�
ation of �nite dimensional solvable Lie algebras remains a diÆ
ult problem [52℄.42



It seems plausible that the 
lassi�
ation of solvable algebras asso
iated with rea
tionnetworks 
an bring new ideas into this �eld of algebra.6 Con
lusion: Con
ept of limit simpli�
ation in multis
ale systemsIn this paper, we study networks of linear rea
tions. For any ordering of rea
tion rate
onstants we look for the dominant kineti
 system. The dominant system is, by de�nition,the system that gives us the main asymptoti
 terms of the stationary state and relaxationin the limit for well separated rate 
onstants. In this limit any two 
onstants are 
onne
tedby relation� or �.The topology of dominant systems is rather simple; they are those networks whi
h aregraphs of dis
rete dynami
al systems on the set of verti
es. In su
h graphs ea
h vertex hasno more than one outgoing rea
tion. This allows us to 
onstru
t the expli
it asymptoti
sof eigenve
tors and eigenvalues. In the limit of well separated 
onstants, the 
oordinatesof eigenve
tors for dominant systems 
an take only three values: �1 or 0. All algorithmsare represented topologi
ally by transformation of the graph of rea
tion (labeled by re-a
tion rate 
onstants). We 
all these transformations \
y
les surgery", be
ause the mainoperations are gluing 
y
les and 
utting 
y
les in graphs of auxiliary dis
rete dynami
alsystems.In the simplest 
ase, the dominant system is determined by the ordering of 
onstants.But for suÆ
iently 
omplex systems we need to introdu
e auxiliary elementary rea
tions.They appear after 
y
le gluing and have monomial rate 
onstants of the form k& = Qi k&ii .The dominant system depends on the pla
e of these monomial values among the ordered
onstants.Constru
tion of the dominant system 
lari�es the notion of limiting steps for relaxation.There is an exponential relaxation pro
ess that lasts mu
h more than the others in (40),(50). This is the slowest relaxation and it is 
ontrolled by one rea
tion in the dominantsystem, the limiting step. The limiting step for relaxation is not the slowest rea
tion, or these
ond slowest rea
tion of the whole network, but the slowest rea
tion of the dominantsystem. That limiting step 
onstant is not ne
essarily a rea
tion rate 
onstant for theinitial system, but 
an be represented by a monomial of su
h 
onstants as well.The idea of dominant subsystems in asymptoti
 analysis was proposed by Newton anddeveloped by Kruskal [54℄. A modern introdu
tion with some histori
al review is presentedin [55℄. In our analysis we do not use the degrees of small parameters (as it was done in[27{29,54,55℄), but operate dire
tly with the rate 
onstants orderings.To develop the idea of systems with well separated 
onstants to the state of a mathemat-i
al notion, we introdu
e multis
ale ensembles of 
onstant tuples. This notion allows usto dis
uss rigorously uniform distributions on in�nite spa
e and gives the answers to aquestion: what does it mean \to pi
k a multis
ale system at random".Now we have the 
omplete theory and the exhaustive 
onstru
tion of algorithms for linear43



rea
tion networks with well separated rate 
onstants. There are several ways of using thedeveloped theory and algorithms:(1) For dire
t 
omputation of steady states and relaxation dynami
s; this may be usefulfor 
omplex systems be
ause of the simpli
ity of the algorithm and resulting formulasand be
ause often we do not know the rate 
onstants for 
omplex networks, andkineti
s that is ruled by orderings rather than by exa
t values of rate 
onstants maybe very useful;(2) For planning of experiments and mining the experimental data { the observablekineti
s is more sensitive to rea
tions from the dominant network, and mu
h lesssensitive to other rea
tions, the relaxation spe
trum of the dominant network isexpli
itly 
onne
ted with the 
orrespondent rea
tion rate 
onstants, and the eigen-ve
tors (\modes") are sensitive to the 
onstant ordering, but not to exa
t values;(3) The steady states and dynami
s of the dominant system 
ould serve as a robust �rstapproximation in perturbation theory or as a pre
onditioning in numeri
al methods.From a theoreti
al point of view the outlook is more important. Let us answer the question:what has to be done, but is not done yet? Three dire
tions for further development are
lear now:(1) Constru
tion of dominant systems for the rea
tion network that has a group of 
on-stants with 
omparable values (without relations � between them). We 
onsidered
y
les with several 
omparable 
onstants in Se
. 2, but the general theory still hasto be developed.(2) Constru
tion of dominant systems for rea
tion networks with modular stru
ture. We
an assume that the ratio of any two rate 
onstants inside ea
h module be boundedand separated from zero, but the ratios between modules form a well separatedensemble. A rea
tion network that has a group of 
onstants with 
omparable valuesgives us an example of the simplest modular stru
ture: one module in
ludes severalrea
tions and other modules arise from one rea
tion. In Se
. 5 we des
ribe all solvablemodules su
h that it is possible to solve the kineti
 equation for every module inexpli
it analyti
al (algebrai
) form with quadratures (even for non
onstant in timerea
tion rate 
onstants).(3) Constru
tion of dominant systems for nonlinear rea
tion networks. The �rst ideahere is the representation of a nonlinear rea
tion as a pseudomonomole
ular rea
-tion: if for rea
tion A + B ! ::: 
on
entrations 
A and 
B are well separated, say,
A � 
B, then we 
an 
onsider this rea
tion as B ! ::: with rate 
onstant depen-dent on 
A. The relative 
hange of 
A is slow, and we 
an 
onsider this rea
tionas pseudomonomole
ular until the relation 
A � 
B 
hanges to 
A � 
B. We 
anassume that in the general 
ase only for small fra
tion of nonlinear rea
tions thepseudomonomole
ular approa
h is not appli
able, and this set of genuinely nonlin-ear rea
tions 
hanges in time, but remains small. For nonlinear systems, even therealization of the limiting step idea for steady states of a one-route me
hanism ofa 
atalyti
 rea
tion is nontrivial and was developed through the 
on
ept of kineti
polynomial [15℄.Finally, the 
on
ept of \limit simpli�
ation" will be developed. For multis
ale nonlinearrea
tion networks the expe
ted dynami
al behaviour is to be approximated by the system44



of dominant networks. These networks may 
hange in time but remain small enough. The
orresponding stru
ture of fast{slow time separation in phase spa
e is not ne
essarily asmooth slow invariant manifold, but may be similar to a \
razy quilt" and 
ould 
onsistof fragments of various dimensions that do not join 
ontinuously.Appendix 1: Estimates of eigenve
tors for diagonally dominant matri
es withdiagonal gap 
onditionThe famous Gershgorin theorem gives estimates of eigenvalues. The estimates of 
or-respondent eigenve
tors are not so well known. In the paper we use some estimates ofeigenve
tors of kineti
 matri
es. Here we formulate and prove these estimates for generalmatri
es. Below A = (aij) is a 
omplex n � n matrix, Pi = Pj;j 6=i jaijj (sums of non-diagonal elements in rows), Qi = Pj;j 6=i jajij (sums of non-diagonal elements in 
olumns).Gershgorin theorem ([36℄, p. 146): The 
hara
teristi
 roots of A lie in the 
losed regionGP of the z-plane GP =[i GPi (GPi = fz ��� jz � aiij � Pig: (61)Analogously, the 
hara
teristi
 roots of A lie in the 
losed region GQ of the z-planeGQ =[i GQi (GQi = fz ��� jz � aiij � Qig: (62)Areas GPi and GQi are the Gershgorin dis
s.Gershgorin dis
s GPi (i = 1; : : : n) are isolated, if GPi \ GPj = ? for i 6= j. If dis
s GPi(i = 1; : : : n) are isolated, then the spe
trum of A is simple, and ea
h Gershgorin dis
 GPi
ontains one and only one eigenvalue of A ([36℄, p. 147). The same is true for dis
s GQi .Below we assume that Gershgorin dis
s GQi (i = 1; : : : n) are isolated, this means that forall i; j jaii � ajjj > Qi +Qj: (63)Let us introdu
e the following notations:Qijaiij = "i; jaijjjajjj = �ij  "i =Xl Æli! ; minj jaii � ajjjjaiij = gi: (64)Usually, we 
onsider "i and �ij as suÆ
iently small numbers. In 
ontrary, gi should notbe small, (this is the gap 
ondition). For example, if for any two diagonal elements aii, ajjeither aii � ajj or aii � ajj, then gi & 1 for all i.Let �1 2 GQ1 be the eigenvalue of A (j�1 � a11j < Q1). Let us estimate the 
orrespondentright eigenve
tor x(1) = (xi): Ax(1) = �1x(1). We take x1 = 1 and write equations for xi(i 6= 1): (aii � a11 � �1)xi + Xj; j 6=1;i aijxj = �ai1; (65)where �1 = �1 � a11, j�1j < Q1. 45



Let us introdu
e new variables~x = (~xi); ~xi = xi(aii � a11) (i = 2; : : : n):In these variables,  1� �1aii � a11! ~xi + Xj; j 6=1;i aijajj � a11 ~xj = �ai1; (66)or in matrix notations: (1�B)~x = �~a1, where ~a1 is a ve
tor 
olumn with 
oordinates ai1.be
ause of gap 
ondition and smallness of "i and �ij we �ij we 
an 
onsider matrix B asa small matrix, for assume that kBk < 1 and (1� B) is reversible (for detailed estimateof kBk see below).For ~x we obtain: ~x = �~a1 � B(1�B)�1~a1; (67)and for residual estimate kB(1� B)�1~a1k � kBk1� kBkk~a1k: (68)For eigenve
tor 
oordinates we get from (67):xi = � ai1aii � a11 � (B(1� B)�1~a1)iaii � a11 (69)and for residual estimatej(B(1� B)�1~a1)ijjaii � a11j � kBk1� kBk k~a1kjaii � a11j : (70)Let us give more detailed estimate of residual. For ve
tors we use l1 norm: kxk = P jxij.The 
orrespondent operator norm of matrix B iskBk = maxkxk=1 kBxk �Xi maxj jbijj:With the last estimate for matrix B (66) we �nd:jbiij � Q1jaii � a11j � "1g1 � "g ; jbijj = jaijjjajj � a11j � �ijgj � �g (i 6= j); (71)where " = maxi "i, � = maxi;j �ij, g = mini gi. By de�nition, " � �, and for all i; jthe simple estimate holds: jbijj � "=g. Therefore, kBxk � n"=g and, kBk=(1� kBk) �n"=(g � n") (under 
ondition g > n"). Finally, k~a1k = Q1 and for residual estimate weget: ����xi + ai1aii � a11 ���� � n"2g(g � n") (i 6= 1): (72)46



More a

urate estimate 
an be produ
ed from inequalities (71), if it is ne
essary. For ourgoals it is suÆ
ient to use the following 
onsequen
e of (72):jxij � �g + n"2g(g � n") (i 6= 1): (73)With this a

ura
y, eigenve
tors of A 
oin
ide with standard basis ve
tors, i.e. with eigen-ve
tors of diagonal part of A, diagfa11; : : : anng.
Appendix 2: Time separation and averaging in 
y
lesIn Se
. 2 we analyzed relaxation of a simple 
y
le with limitation as a perturbation of thelinear 
hain relaxation by one more step that 
loses the 
hain into the 
y
le. The rea
tionrate 
onstant for this perturbation is the smallest one. For this analysis we used expli
itestimates (13) of the 
hain eginve
tors for rea
tions with well separated 
onstants.Of 
ourse, one 
an use estimates (30), (31) (32) and (33) to obtain a similar perturbationanalysis for more general a
y
li
 systems (instead of a linear 
hain). If we add a rea
tionto an a
y
li
 system (after that a 
y
le may appear) and assume that the rea
tion rate
onstant for additional rea
tion is smaller than all other rea
tion 
onstants, then thegeneralization is easy.This smallness with respe
t to all 
onstants is required only in a very spe
ial 
ase whenthe additional rea
tion has a form Ai ! Aj (with the rate 
onstant kji) and there is norea
tion of the form Ai ! ::: in the non-perturbed system. In Se
. 5 and Appendix 1we demonstrated that if in a non-perturbed a
y
li
 system there exists another rea
tionof the form Ai ! ::: with rate 
onstant �i, then we need inequality kji � �i only. Thisinequality allows us to get the uniform estimates of eigenve
tors for all possible values ofother rate 
onstants (under the diagonally gap 
ondition in the non-perturbed system).For substantiation of 
y
les surgery we need additional perturbation analysis for zeroeigenvalues. Let us 
onsider a simple 
y
le A1 ! A2 ! ::: ! An ! A1 with rea
tionAi ! ::: rate 
onstants �i. We add a perturbation A1 ! 0 (from A1 to nothing) withrate 
onstant ��1. Our goal is to demonstrate that the zero eigenvalue moves under thisperturbation to �0 = ��w�(1 + �w), the 
orrespondent left and right eigenve
tors r0 andl0 are r0i = 
�i (1+�ri) and l0i = 1+�li, and �w, �ri and �li are uniformly small for a givensuÆ
iently small � under all variations of rate 
onstants. Here, w� is the stationary 
y
lerea
tion rate and 
�i are stationary 
on
entrations for a 
y
le (2) normalized by 
onditionPi 
�i = 1. The estimate �w� for ��0 is �-small with respe
t to any rea
tion of the 
y
le:w� = �i
�i < �i for all i (be
ause 
�i < 1), and �w� � �i for all i.The kineti
 equation for the perturbed system is:_
1 = �(1 + �)�1
1 + �n
n; _
i = ��i
i + �i�1
i�1 (for i 6= 1): (74)47



In the matrix form we 
an write_
 = K
 = (K0 � �k1e1e1>)
; (75)where K0 is the kineti
 matrix for non-perturbed 
y
le. To estimate the right perturbedeigenve
tor r0 and eigenvalue �0 we are looking for transformation of matrix K into theform K = Kr � �re1>, where K is a kineti
 matrix for extended rea
tion system with
omponents A1; :::An, Krr = 0 and Pi ri = 1. In that 
ase, r is the eigenve
tor, and� = ��r1 is the 
orrespondent eigenvalue.To �nd ve
tor r, we add to the 
y
le new rea
tions A1 ! Ai with rate 
onstants ��1riand subtra
t the 
orrespondent kineti
 terms from the perturbation term �e1e1>
. Afterthat, we get K = Kr � �re1> with � = �k1 and(Kr
)1 = �k1
1 � �k1(1� r1)
1 + kn
n;(Kr
)i = �ki
i + �k1ri
1 + ki�1
i�1 for i > 1 (76)We have to �nd a positive normalized solution ri > 0, Pi ri = 1 to equation Krr = 0. Thisis the �xed point equation: for every positive normalized r there exists unique positivenormalized steady state 
�(r): Kr
�(r) = 0, 
�i > 0, Pi 
�i (r) = 1. We have to solve theequation r = 
�(r). The solution exists be
ause the Brauer �xed point theorem.If r = 
�(r) then kiri � �k1rir1 = ki�1ri�1. We use notation w�i (r) for the 
orrespondentstationary rea
tion rate along the \non-perturbed route": w�i (r) = kiri. In this notation,w�i (r) � �riw�1(r) = w�i�1(r). Hen
e, jw�i (r) � w�1(r)j < �w�1(r) (or jkiri � k1r1j < �k1r1).Assume � < 1=4 (to provide 1� 2� < 1=(1� �) < 1 + 2�). Finally,ri = 1ki 1 + �iPj 1kj = (1 + �i)
�i (77)where the relative errors j�ij < 3� and 
�i = 
�i (0) is the normalized steady state for thenon-perturbed system. For 
y
les with limitation, ri � (1 + �i)klim=ki with j�ij < 3�. Forthe eigenvalue we obtain �0 = ��w�1(r) = ��w�i (r)(1 + &i)= ��w�(1 + �) = ��ki
�i (0)(1 + �) (78)for all i, with j&ij < � and j�j < 3�. j�j < 3�. Therefore, �0 is �-small rate 
onstant ki ofthe non-perturbed 
y
le. This implies that �0 is �-small with respe
t to the real part ofevery non-zero eigenvalue of the non-perturbed kineti
 matrix K0 (for given number of
omponents n). For the 
y
les from multis
ale ensembles these eigenvalues are typi
allyreal and 
lose to �ki for non-limiting rate 
onstants, hen
e we proved for �0 even morethan we need.Let us estimate the 
orrespondent left eigenve
tor l0 (a ve
tor row). The eigenvalue isknown, hen
e it is easy to do just by solution of linear equations. This system of n � 1equations is: �l1(1 + �)k1 + l2k1 = �0l1;�liki + li+1ki = �0li; i = 2; :::n� 1: (79)48



For normalization, we take l1 = 1 and �nd:l2 =  �0k1 + 1 + �! l1; li+1 =  �0ki + 1! li i > 2: (80)Formulas (77), (78) and (80) give the ba
kgrounds for surgery of 
y
les with outgoingrea
tions. The left eigenve
tor gives the slow variable: if there are some in
omes to the
y
le, then_
1 = �(1 + �)�1
1 + �n
n + �1(t); _
i = ��i
i + �i�1
i�1 + �i(t) (for i 6= 1) (81)and for slow variable e
 = P li
i we getde
dt = �0e
+Xi li�i(t): (82)This is the kineti
 equation for a glued 
y
le. In the leading term, all the outgoing rea
tionsAi ! 0 with rate 
onstants k = �ki give the same eigenvalue ��w� (78).Of 
ourse, similar results for perturbations of zero eigenvalue are valid for more generalergodi
 
hemi
al rea
tion network with positive steady state, and not only for simple
y
les, but for 
y
les we get simple expli
it estimates, and this is enough for our goals.A
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