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EQUIVALENCE OF FAMILIES OF DIFFEOMORPHISMS ON
BANACH SPACES

GENRICH BELITSKII, VICTORIA RAYSKIN

Abstract. We consider two families of C∞-diffeomorphisms (with hyperbolic

linear part at 0) on a Banach space. Suppose that these two families for-
mally conjugate at 0. We prove that they admit local conjugation, which is

infinitely smooth in both, the space variable and the family parameter. In

particular, subject to non-resonance condition, there exists a family of local
C∞ linearizations of the family of diffeomorphisms. The linearizing family has

C∞ smoothness in parameter. The results are proved under the assumption

that the Banach space allows a special extension of the maps. We discuss
corresponding properties of Banach spaces.

1. Introduction

Approximations by normal forms and especially linear approximation are conve-
nient simplifications of a physical system.

Most of the physical systems are assumed to be analytic. The study of analytic
conjugation was initiated by Poincaré and extended in numerous works. But it was
shown in the work of Bruno ([Br]) that the class of systems, which admits analytic
reduction to the Poincaré-Dulac normal form is small even in Rn. For that reason
we study this problem in the class of C∞ transformations.

This question was studied in numerous works (for example, in [S], [Ch], [B]). The
first step in the proofs of these results in Rn is the condition of formal solvability in
C∞. The latter generates an algebraic expression, called resonance condition. For
a generic diffeomorphism, the non-resonance assumption is a necessary condition
for removing resonant non-linear terms.

Although, resonance is an obstacle for a smooth conjugation in dimensions higher
than two, for a contracting (or expanding) diffeomorphisms in Rn this assumption
can be removed (see [H] or [B4] for a more general result). The situation is qual-
itatively different in Banach spaces. It was shown in the work of [RS-M] that the
non-resonance assumption in Banach space is essential even for contractions. They
construct an example of a contraction diffeomorphism in infinite dimensions that
is not C1 linearizable.

In this paper we study the question of smooth conjugation of two families of
diffeomorphisms with hyperbolic linear part Λ. The diffeomorphisms are defined
on a Banach space B1, and the family parameter is also an element of another
Banach space, B2.

The second author thanks Ben-Gurion University of the Negev and the Institute for Ad-
vanced Studies of the Department of Mathematics for their hospitality and stimulating research

atmosphere.
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If we restrict our attention to the question of smooth dependence of linearizing
homeomorphisms on the parameter, we do not need to make a non-resonance as-
sumption for some class of diffeomorphisms. It was shown in [R] that for a family
of diffeomorphisms with non-linearities of the second order, there exists a family
of linearizing homeomorphisms which have C1 dependence on the parameter. Un-
fortunately, the methods, used in the paper can only be used for diffeomorphisms
with resonances. Also, we only proved C1 differentiability. The proof for higher
regularity would be very routine.

In this paper we show that, subject to formal conjugation, a family of germs
with hyperbolic linear part Λ admits a C∞ local conjugation between the members
of the family. This conjugation has C∞ dependence on the parameter of the family.

As a consequence, we deduce that subject to the non-resonance condition, there
exists a C∞ local linearization, which has smooth dependence on the parameter of
the family of diffeomorphisms.

One of the technical difficulties is the question of C∞ extension of a local map to
the whole space B1. It is connected to the question of existence of ”hat” functions,
i.e., τ(x) ∈ C∞ with bounded support. (One can also see the assumption about
”hat” function in the proof of C1 conjugation for contracting diffeomorphisms on
Banach spaces in the paper of RS-M1.) If τ(x) is such a function, then the extension
of f , call it f̂ can be defined as f̂(x) = f (τ(x) · x). In this expression τ(x)·x defines
a map K(x) : B1 → B1 (K(x) = τ(x) · x) with the following properties:

1. K(x) = x for ||x|| < 1
2. K ∈ C∞ and ||K(j)(x)|| ≤ cj , j = 0, 1, ...

Therefore, we can see that for existence of extension f̂ it is enough to have map K,
defined on the Banach space.
It turns out that there exist Banach spaces (for example, C([0, 1])) without ”hat”
functions, but with K maps. Moreover, the question of extension of a map remains
open. It is not know whether there are Banach spaces without K maps.

Another technical difficulty, associated with infinite dimensional space, is the
fact that we cannot construct a compact set of maps on this space, to which we
would apply Banach Contraction Principle. A special method for this situation is
introduced in Section 3.

The methods, used in this proof, were developed in the two works of G. Belitskii:
[B1], [B2]. The technique of the first article allows us to consider the problem in
Banach spaces, where we use a special metric, induced by a countable collection of
norms. The special metric (with ”inner” contraction) permits us to use the Banach
Contraction Principle on the bounded set of smooth maps. The idea to use the
Banach Contraction Principle for the study of smooth dependence on parameters
comes from the second paper, [B2].

2. The main theorem

Lets consider a linear hyperbolic operator Λ on a Banach space B1. It divides B1

into contracting and expanding subspaces L+ and L− (see, for example [N]). Lets
assume that there exist K+ and K−, defined on L+ and L− correspondingly, with
the properties 1-2, discussed above. Then, it is clear that the map K : B1 → B1

can be defined as K = (K+,K−). But it is unknown, whether the existence of K
on B1 implies the existence of K± on the subspaces. Thus, assuming that there
exists a pair of maps K±, we can prove the following theorem.
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Theorem 1. Assume that there exist K± on L± ⊂ B1. Let

F (x, t) =
{

Λx+ f(x, t)
t

and

G(x, t) =
{

Λx+ g(x, t)
t

be two C∞(B1×B2) diffeomorphisms on the product of Banach spaces B1 and B2.
Assume that Λ is hyperbolic, f(x, t) = ot(x), g(x, t) = ot(x) and f(x, t)− g(x, t) =
ot(xn) for all n ∈ N, as ||x|| → 0, for small values of ||t||.

Then, there exists a C∞(B1 ×B2) diffeomorphism

H(x, t) =
{
x+ h(x, t)
t

,

with h(x, t) = ot(xn) for all n ∈ N, as ||x|| → 0, such that for small values of ||x||
and ||t||
(1) H ◦ F = G ◦H.

Proof. It is known that the map F has local stable and unstable manifolds WU

and WS , which are C∞ graphs over L+ and L− correspondingly. We can smoothly
straighten WU and WS . I. e., we shell assume that WU = L+ and WS = L−.

We are interested in the local properties of the maps F and G. Thus, we can
modify the maps F and G with the help of K, so that the new maps coincide with
the original maps in a small δ neighborhood of the origin. From now on we shell
assume that

(2) F (x, t) =
{

Λx+ f(δ ·K(x/δ), t),
t

and

(3) G(x, t) =
{

Λx+ g(δ ·K(x/δ), t),
t.

The first derivatives of the non-linear parts of these maps are close to 0 and all
other derivatives are bounded. Thus, we obtained the desired extensions of these
maps to B1 ×B2.

It is enough to prove the existence of a C∞ solution h for the equation

(4) (Id+h) ◦ (Λ + f) = (Λ + g) ◦ (Id+h).

Consider closed subspaces of C∞ maps:

EL+ = {φ ∈ C∞(B1 ×B2) : φ(k)
x∈L+

= 0, k ∈ N}

and
EL− = {φ ∈ C∞(B1 ×B2) : φ(k)

x∈L− = 0, k ∈ N}
We shell say that φ is flat on L− (or L+), if φ ∈ EL− (or φ ∈ EL+).
The equation (4) can be reduced to

(5) h (Λx+ f(x, t), t)− Λh(x, t)− (g (x+ h(x, t), t)− g(x)) = (g(x)− f(x))

The right side of this equation (call it γ) is flat at the origin. By Lemma 9, γ can
be written as a sum of two maps, γ+ and γ−, flat on L− and L+ correspondingly.
We shell search for a solution h of equation 5 as a sum of two solutions, h+ ∈ EL+

and h− ∈ EL− , where h+ satisfies
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(6)

h+(x, t) = Λh+

(
(Λx+ f(x, t))−1, t

)
+ g

((
Λx+ f(x, t))−1 + h+

(
(Λx+ f(x, t)

)−1
, t

)
, t

)
− g((Λx+ f(x, t))−1) + γ+

(
(Λx+ f(x, t))−1, t

)
.

The second addend, h− shell satisfy the equation

h− (x, t) = Λ−1h−
(
Λx+ f(x, t), t

)
+ Λ−1g(x+ h−(x, t) + h+(x, t), t)

− Λ−1g(x+ h+(x, t), t)− Λ−1γ−(x, t),

or, if we put ĝ(x, t) = Λ−1g
(
x+ h+(x, t), t

)
,

(7)
h− (x, t) = Λ−1h−

(
Λx+ f(x, t), t

)
+ ĝ(x+ h−(x, t), t)

− ĝ(x, t)− Λ−1γ−(x, t).

The existence of solutions to these equations follows from Lemma 5 �

It is known that one can define a ”hat” function on a Hilbert space. It can
be done in the following way: τ(x) := τ̂(||x||2), where τ̂(t) is a ”hat” function in
R. Moreover, there exists a pair of maps K±, which can be defined as K± :=
(x± · τ(x±)), and there exists a map K = (K+,K−). Then, the following corollary
follows immediately from Theorem 1.

Corollary 2. Assume that B1 is a Hilbert space. Let

F (x, t) =
{

Λx+ f(x, t)
t

and

G(x, t) =
{

Λx+ g(x, t)
t

be two C∞(B1×B2) diffeomorphisms on the product of Banach spaces B1 and B2.
Assume that Λ is hyperbolic, f(x, t) = ot(x), g(x, t) = ot(x) and f(x, t)− g(x, t) =
ot(xn) for all n ∈ N, as ||x|| → 0, for small values of ||t||.

Then, there exists a C∞(B1 ×B2) diffeomorphism

H(x, t) =
{
x+ h(x, t)
t

,

with h(x, t) = ot(xn) for all n ∈ N, as ||x|| → 0, such that for small values of ||x||
and ||t||

(8) H ◦ F = G ◦H.

Remark 3. Note, that there exists K on C([0, 1]), but it is unclear whether there
exist K± on the subspaces.

Remark 4. Let B1 = C([0, 1]). Consider two families of purely contracting (or
expanding) diffeomorphisms on C([0, 1]) × B2. Then, if the two families formally
conjugate, they smoothly conjugate in the class C([0, 1])×B2.
The same conclusion is true for finite dimensional Banach spaces.
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3. Solvability in flat maps

The following lemma is presented for the ”negative” subspaces L−, EL− , etc.
Proof for the ”positive” subspaces is similar.

Lemma 5. Consider the equation

(9)

φ(x, t) = Aφ
(
Λx+ f(x, t), t

)
+ g

(
Λx+ f(x, t) + φ(

(
Λx+ f(x, t), t

)
), t

)
− g

(
Λx+ f(x, t), t

)
+ ρ(x, t)

with a linear operator A, hyperbolic linear operator Λ and a map ρ, which is flat on
the linear stable invariant manifold L− ⊂ B1 of Λ. Then, there exists flat on L−
solution φ ∈ C∞(B1 ×B2).

Proof. We shell search for a fixed point of the operator T , defined by the right hand
side of the equation 9:

(10)
Tφ = Aφ

(
Λx+ f(x, t), t

)
+ g

(
Λx+ f(x, t) + φ(

(
Λx+ f(x, t), t

)
), t

)
− g

(
Λx+ f(x, t), t

)
+ ρ(x, t)

Consider space EL− of smooth maps, flat on the manifold L−. To simplify our
notations, we shell call it E

Define a norm

Nk,p(φ) := max
0≤j≤k

sup
{
||φ(j)(x, t)||

||ξ||p
, φ ∈ E , ξ ∈ L−, x ∈ B1, t ∈ B2

}
.

Proposition 6. There exist a real number q < 1 and sequences of bk,p ∈ R+ and
pk ∈ N, such that for all p, k ∈ N, p > pk and φ, ψ ∈ E

1. N0,p(Tφ) ≤ qN0,p(φ) +N0,p(ρ),
Nk,p(Tφ) ≤ qNk,p(φ) + bk,pNk−1,p(φ) +Nk,p(ρ) for k = 1, 2, ... and

2. N0,p(Tφ − Tψ) ≤ qN0,p(φ− ψ),
Nk,p(Tφ − Tψ) ≤ qNk,p(φ− ψ) + bk,pNk−1,p(φ− ψ) for k = 1, 2, ....

Proof. First, we shell do the estimates for the part 2. The proof will require induc-
tive arguments on the index k. It is easy to see that for k = 0

N0,p(Tφ − Tψ) ≤ ||A||N0,p

(
φ
(
Λx+ f(x, t), t

)
− ψ

(
Λx+ f(x, t), t

))
+

∫ 1

0

g′σ(s)ds ·N0,p

(
φ
(
Λx+ f(x, t), t

)
− ψ

(
Λx+ f(x, t), t

))
.

Here σ : [0, 1] → B1 ×B2 denotes a path, connecting the points

σ(0) =
(
Λx+ f(x, t) + φ(

(
Λx+ f(x, t), t

)
and

σ(1) =
(
Λx+ f(x, t) + ψ(

(
Λx+ f(x, t), t

)
), t

)
.

Then,

N0,p(Tφ) ≤
(
||A||+ sup

x, t
||g′(x, t)||

)
· N0,p

(
φ(Λx+ f(x, t), t)− ψ(Λx+ f(x, t), t)

)
.
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Let us recall that choosing sufficiently small δ in the K function, we can make
supx, t ||g′(x, t)|| less than an arbitrary ∆. (See formula 3.) Then,

N0,p(Tφ − Tψ) ≤
(
||A||+ ∆

)
· N0,p

(
φ(x, t)− ψ(x, t)

)
·
(

sup
x, ξ, t

||
(
Λx+ f(x, t), t

)
|L−

||
||ξ||

)p
.

Since the spectrum of Λ|L− is less than 1, and with sufficiently small δ in the K
function we can make ||f(x, t)|| as small as we want (see formula 2), there exists
α < 1 such that

sup
x, ξ, t

||
(
Λx+ f(x, t), t

)
|L−

||
||ξ||

< α < 1.

Then, there exists p0, such that for all p > p0(
||A||+ ∆

)
·
(

sup
x, ξ, t

||
(
Λx+ f(x, t), t

)
|L−

||
||ξ||

)p
< q << 1.

Thus,
N0,p(Tφ − Tψ) ≤ qN0,p(φ− ψ).

The estimates for k = 1 are more complex.

N1,p(Tφ − Tψ) ≤
(
||A|| ·N1,p

(
φ(x, t)− ψ(x, t)

)
· ||

(
Λx+ f(x, t)

)′||
+ sup

x, t
||g′||N1,p

(
φ(x, t)− ψ(x, t)

)
+ sup

x, t
||g′′||N0,p

(
φ(x, t)− ψ(x, t)

))
·
(

sup
x, ξ, t

||
(
Λx+ f(x, t)

)
|L−

||
||ξ||

)p
≤

(
||A|| · ||

(
Λx+ f(x, t)

)′||+ ε
)
N1,p

(
φ(x, t)− ψ(x, t)

)
·
(

sup
x, ξ, t

||
(
Λx+ f(x, t)

)
|L−

||
||ξ||

)p
+ b1,pN0,p

(
φ(x, t)− ψ(x, t)

)
.

Here the term b1,pN0,p

(
φ(x)− ψ(x)

)
(with some positive constant b1,p) appears in

the estimate, as a result of differentiation of the product of
∫ 1

0
g′ds · F (x). There

exists p1, such that for all p > p1(
||A|| ·

∣∣(Λx+ f(x, t)
)′∣∣ + ε

)
·
(

sup
x, ξ, t

||
(
Λx+ f(x, t)

)
|L−

||
||ξ||

)p
< q < 1.

Then, it follows that

N1,p(Tφ − Tψ) < qN1,p(φ− ψ) + b1,pN0,p(φ− ψ).

Suppose that the estimates are correct for i = 1, ..., k − 1. Then, for i = k

Nk,p(Tφ − Tψ) ≤
((
||A||+ ||g′||

)
·Nk,p

(
φ(x, t)− ψ(x, t)

)
· ||

(
Λx+ f(x, t)

)′||k
+ bk,pNk−1,p

(
φ(x, t)− ψ(x, t)

))
·
(

sup
x, ξ, t

||
(
Λx+ f(x, t)

)
|L−

||
||ξ||

)p
.
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Here the term bk,pNk−1,p

(
φ(x)−ψ(x)

)
(with some positive constant bk,p) is related

to taking the kth derivative of the compusition (φ − ψ) ◦ F , and estimating all
addends with (φ− ψ)′,...,(φ− ψ)(k−1), plus the sum of the derivatives:

k−1∑
j=0

k!
j!(k − j)!

||g(j+1)|| · sup
x, ξ, t

||(φ− ψ)(k−j)(x, t)||
||ξ||p

.

There exists pk, such that for all p > pk(
||A||+ ||g′||

)
·
∣∣(Λx+ f(x, t)

)′∣∣k · ( sup
x, ξ, t

||
(
Λx+ f(x, t)

)
|L−

||
||ξ||

)p
< q < 1.

Thus,
Nk,p(Tφ − Tψ) < qNk,p(φ− ψ) + bk,pNk−1,p(φ− ψ).

Thus, we proved part 2.
Part 1 follows easily from part 2. Indeed,

N0,p(Tφ) = N0,p(Tφ − T0 + ρ) ≤ N0,p(Tφ − T0) +N0,p(ρ)

< qN0,p(φ) +N0,p(ρ).

and for k = 1, 2, ...
Nk,p(Tφ) = Nk,p(Tφ − T0 + ρ) ≤ Nk,p(Tφ − T0) +Nk,p(ρ)

< qNk,p(φ) + bk,pNk−1,p(φ) +Nk,p(ρ).

�

Using the above estimates, we introduce a new set of norms ||.||k,p, defined with
the help of Nk,p, such that the operator T is a contraction in ||.||k,p.
Let ||.||k,p be defined on E according to the following rule:

||φ||0,p := N0,p(φ)

||φ||1,p := N1,p(φ) +A1
1,pN0,p(φ)

...

||φ||k,p := Nk,p(φ) +A1
k,pNk−1,p(φ) +A2

k,pNk−2,p(φ) + ...+Akk,pN0,p(φ).

Choosing appropriate constants Ajk,p, one can show that the operator T is a con-
traction in each norm ||.||k,p.

Proposition 7. Let q be as in Proposition 6. Fix ε > 0 such that q + ε < 1. Let
the constants Ajk,p (j = 1, ..., k) in the definition of the norms ||.||k,p satisfy the
following inequalities:

(11)

A1
k,p >

bk,p
ε

A2
k,p >

A1
k,pbk−1,p

ε
...

Akk,p >
Ak−1
k,p b1,p

ε

Then, for each pair of φ, ψ ∈ E and for each norm ||.||k,p (p > pk), the operator T
admits the following estimates:
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1′. ||Tφ||k,p < (q + ε)||φ||k,p + ||ρ||k,p and
2′. ||Tφ − Tψ||k,p < (q + ε)||φ− ψ||k,p.

Proof. We begin with the second part of the proposition. In this proof we shell also
use induction on the k-index.

||Tφ − Tψ||0,p = N0,p

(
Tφ − Tψ

)
< qN0,p

(
φ− ψ

)
= q||φ− ψ||0,p.

Thus, it is a contraction in ||.||0,p.

||Tφ − Tψ||1,p = N1,p

(
Tφ − Tψ

)
+A1

1,pN0,p

(
Tφ − Tψ

)
< qN1,p

(
φ− ψ

)
+ b1,pN0,p

(
φ− ψ

)
+A1

1,pqN0,p

(
φ− ψ

)
= qN1,p

(
φ− ψ

)
+ (A1

1,pq + b1,p)N0,p

(
φ− ψ

)
< (q + ε)N1,p

(
φ− ψ

)
+A1

1,p(q + ε)N0,p

(
φ− ψ

)
,

if A1
1,p >

b1,p

ε . Finally, note that

(q + ε)N1,p

(
φ− ψ

)
+A1

1,p(q + ε)N0,p

(
φ− ψ

)
= (q + ε)||φ− ψ||1,p.

Thus, in this norm, the operator T is a contraction as well.
Assume that the assertion of the Proposition is correct for all i = 1, ..., k − 1. We
shell prove it for i = k, i.e., we shell estimate ||Tφ − Tψ||k,p.

||Tφ − Tψ||k,p = Nk,p
(
Tφ − Tψ

)
+A1

k,pNk−1,p

(
Tφ − Tψ

)
+A2

k,pNk−2,p

(
Tφ− Tψ

)
+ ...+Akk,pN0,p

(
Tφ− Tψ

)
< qNk,p

(
φ− ψ

)
+ bk,pNk−1,p

(
φ− ψ

)
+A1

k,p[qNk−1,p

(
φ− ψ

)
+ bk−1,pNk−2,p

(
φ− ψ

)
]

+A2
k,p[qNk−2,p

(
φ− ψ

)
+ bk−2,pNk−3,p

(
φ− ψ

)
]

...

+Ak−1
k,p [qN1,p

(
φ− ψ

)
+ b1,pN0,p

(
φ− ψ

)
]

+Akk,p qN0,p

(
φ− ψ

)
= qNk,p

(
φ− ψ

)
+ (A1

k,pq + bk,p)Nk−1,p

(
φ− ψ

)
+ (A2

k,pq +A1
k,pbk−1,p)Nk−2,p

(
φ− ψ

)
...

+ (Ak−1
k,p q +Ak−2

k,p b2,p)N1,p

(
φ− ψ

)
+ (Akk,pq +Ak−1

k,p b1,p)N0,p

(
φ− ψ

)
From inequalities 11 it immediately follows that

(A1
k,pq + bk,p) < (q + ε)A1

k,p

and

Ak−jk,p q +Ak−j−1
k,p bj+1,p < (q + ε)Ak−jk,p
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for j = 0, ..., k − 2. Then,

||Tφ − Tψ||k,p < qNk,p
(
φ− ψ

)
+A1

k,p(q + ε)Nk−1,p

(
φ− ψ

)
+A2

k,p(q + ε)Nk−2,p

(
φ− ψ

)
...

+Ak−1
k,p (q + ε)N1,p

(
φ− ψ

)
+Akk,p(q + ε)N0,p

(
φ− ψ

)
,

< (q + ε)[Nk,p +A1
k,pNk−1,p + ...+Akk,pN0,p]

= (q + ε)||φ− ψ||k,p

Thus the first part of the theorem is proved. The second part follows immediately
from the first part. Indeed,

||Tφ||k,p = ||Tφ − (T0 − ρ)||k,p ≤ ||Tφ − T0||k,p + ||ρ||k,p ≤ (q + ε)||φ||k,p + ||ρ||k,p.

�

Now, we shell define a closed disk, such that it is invariant under the action of
T . Choose a sequence of real positive numbers ck,p, and define the closed disc D in
the space E as

D = {φ ∈ E : ||φ||k,p ≤ ck,p}.
Assume that for some small ε > 0, the constants ck,p are such that

ck,p ≥
||ρ||k,p

1− q − ε
.

Corollary 8.
T (D) ⊂ D.

Proof. The proof is an immediate consequence of the estimate 1
′
in Proposition 7.

�

Thus, we have proved that in the countable collection of norms ||.||k,p, the op-
erator T is a contraction that maps the closed disc D into itself. Using these in-
equalities, we can now construct a metric on E with the properties, similar to those,
discussed for the norms ||.||k,p. Then, we can use Banach Contraction Principle to
show the existence of a fixed point of the operator T in the disc D.

Let us define the metric on D. Fix a positive R ∈ R. Let εk,p < 1 be a sequence
of positive real numbers, such that ck,pεk,p < R (here ck,p are the constants that
define the disc D). Then,

ρ(φ, ψ) :=
∑

k,p>pk

1
2kp

· εk,p||φ− ψ||k,p
1 + εk,p||φ− ψ||k,p

, φ, ψ ∈ D.

Obviously, D is a complete metric space.
Consider a function κ(t) = t

1+t , defined for positive values of t. This is an increasing
function, it is less than 1 for bounded values of t. Put

t := εk,p||φ− ψ||k,p < R.
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Since T is a contraction in ||.||k,p, and κ(t) is an increasing function,

ρ(Tφ, Tψ) <
∑

k,p>pk

1
2kp

· (q + ε)εk,p||φ− ψ||k,p
1 + (q + ε)εk,p||φ− ψ||k,p

.

Also for bounded values of t there exists 0 < r < 1 such that

κ((q + ε)t) < rκ(t).

In other words,
(q + ε)εk,p||φ− ψ||k,p

1 + (q + ε)εk,p||φ− ψ||k,p
< r

εk,p||φ− ψ||k,p
1 + εk,p||φ− ψ||k,p

.

We proved that T : D → D acts as a contraction operator on D:

ρ(Tφ, Tψ) < rρ(φ, ψ)

The Banach Contraction Principle implies the existence of a fixed point in D. This
fixed point is the solution of the equation 10. �

In the proof of Theorem 1 we used the fact that any map, which is flat at the
origin can be represented as a sum of two maps, flat on the linear subspaces. In
the next lemma we discuss how to split γ into the sum of γ+ and γ−.

Lemma 9. Let γ(x, t) ∈ C∞(B1×B2) be flat at 0, i.e., γ(k)(0, t) = 0 for all k ∈ N.
Let L+ and L− be subspaces of B1, such that L+ × L− = B1. Suppose that there
exists a C∞ K map on one of the subspaces. Then, there exist maps γ+ and γ−,
such that γ = γ− + γ+, and γ+ is flat on L− ×B2 and γ− is flat on L+ ×B2.

Proof. Lets write x = (ξ, η) ∈ B1 with ξ ∈ L+, η ∈ L−. For definiteness, lets
assume that there exists C∞ K map on L−. Then, we can explicitly construct γ+

map.
Let δj 6= 0 be so small that the following series converges in C∞ topology.

γ+ :=
∞∑
j=0

∂jγ

∂ηj
(ξ, 0, t)

(
K(δ−1

j η), ...,K(δ−1
j η)

)
·
δjj
j!

Define γ− as
γ− = γ − γ+

Then, it is easy to check that γ+ is flat on L− × B2 and γ− is flat on L+ × B2.
Indeed,

∂pγ+

∂ξp
(0, η, t) =

∞∑
j=0

∂jγ

∂ηj
(0, 0, t)

(
K(δ−1

j η), ...,K(δ−1
j η)

)
·
δjj
j!

= 0
(
K(δ−1

j η), ...,K(δ−1
j η)

)
·
δjj
j!

= 0.

Also,

∂qγ−
∂ηq

(ξ, 0, t) =
∂qγ

∂ηq
(ξ, 0, t)−

∞∑
j=0

∂q

∂ηq

(∂jγ
∂ηj

(ξ, 0, t)
(
K(δ−1

j η), ...,K(δ−1
j η)

))
·
δjj
j!

Recall that K(j)(0) = 0 for j 6= 1 and K ′(0) = 1. Then,

∂qγ−
∂ηq

(ξ, 0, t) =
∂qγ

∂ηq
(ξ, 0, t)− ∂qγ

∂ηq
(ξ, 0, t) · 1 · δ−kk · δkk = 0

�
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4. Linearization

In this section we shell study smooth dependence of linearization on parameters
of the family of germs. We shell also prove that the linearization is a C∞ map on
Banach space, if the non-resonance condition is satisfied.

Now we shell formally define the resonance for linear operators on Banach spaces.
Consider the following linear operator Lk, defined on the space of homogeneous
polynomial maps of degree k.

Lk : P (k)[B1] → P (k)[B1],

Lkφ(x) := Λφ(x)− φ(Λx).

Definition 10. Suppose that for all k ∈ N, k > 1, Lk is invertible on P (k)[B1].
Then, we say that the operator Λ has no resonances.

In particular, when B1 is a n-dimensional space and Λ is diagonal, the non-
resonance condition is equivalent to the following statement:
For any λj ∈ σ(Λ) and for any combination of p1, ..., pn ∈ N, p1 + ...+ pn > 1

λj − λp11 ...λ
pn
n 6= 0.

Now we present C∞ linearization theorem for a family of germs on Banach
spaces. The proof of this theorem easily follows from Theorem 1.

Theorem 11. Let

F (x, t) =
{

Λx+ f(x, t)
t

be a C∞(B1 × B2) diffeomorphism on the product of Banach spaces B1 and B2.
Assume that Λ is hyperbolic, f(x, t) = ot(x), as ||x|| → 0, for small values of ||t||.
Assume that there exist K± maps on the corresponding subspaces L± ⊂ B1, and Λ
has no resonances.

Then, there exists a C∞(B1 ×B2) diffeomorphisms

H(x, t) =
{
x+ h(x, t)
t

,

with h(x, t) = ot(x), as ||x|| → 0, such that for small values of ||x|| and ||t||
(12) H ◦ F = LH.

Proof. Let H(x, t) = x+ h(x, t). Then, the equation 12 can be simplified:

(13) f(x, t) + h(Λx+ f(x, t)) = Λh(x, t)

In order to get a flat residue, let us formally differentiate both sides of this equation

(14)
[
f(x, t) + h(Λx+ f(x, t))

](k)
x=0

= Λh(k)(x, t)x=0

and solve it for h(k)(0, t). The solution h(k)(0, t) exists, if Λ has no resonances.
Now, with the help of the Borel lemma, we can construct a map ĥ(x, t) on the

whole space with the same derivatives at 0. Since there exist K map on B1, the
Borel lemma is valid on the space B1. The proof of the Borel lemma for Banach
spaces can be found in [B3] (these ideas were also used in [B1]). Lets write h(x, t)
as the sum of ĥ(x, t) and a flat map φ(x, t). Then the equation 13 can be written
as

Λφ(x, t)− φ(Λx+ f(x, t)) = f(x, t) + ĥ(Λx+ f(x, t))− Λĥ(x, t).
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The right hand side of this equation is flat at 0. Then, by Lemma 5 we can solve
it for φ. �
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