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ABSTRACT. We consider the nearest-neighbor simple random waIZ‘hrd > 2, driven by a

field of bounded random conductanegs, < [0, 1]. The conductance law is i.i.d. subject to the
condition that the probability abyxy > 0 exceeds the threshold for bond percolatioﬁ?ﬁn For
environments in which the origin is connected to infinity by bonds with positive conductances, we
study the decay of ther2step return probability%”(o, 0). We prove than,”(O, 0) is bounded

by a random constant times 9/2 in d = 2, 3, while itiso(n=2) ind > 5 andO(n~2logn) in

d = 4. By producing examples with anomalous heat-kernel decay approacm%g/\ns prove

that theo(n~2) bound ind > 5 is the best possible. We also construct natardlependent
environments that exhibit the extra Indactor ind = 4.

1. INTRODUCTION

Random walk in reversible random environments is one of the best studied subfields of random
motion in random media. In continuous time, such walks are usually defined by their genera-
tors £, which are of the form

(Lo =D o[ f(y) — F(0], (1.1)

yeZd

where (wyy) is a family of random (non-negative) conductances subject to the symmetry con-
dition wxy = wyx. The sumr,(X) = Zy wxy defines an invariant, reversible measure for the
corresponding continuous-time Markov chain. The discrete-time walk shares the same reversible
measure and is driven by the transition matrix

P, (X, ) = ”“"z)y(). (1.2)

In most situationsoy, are non-zero only for nearest neighborsZhand are sampled from a
shift-invariant, ergodic or even i.i.d. measiiréwith expectation henceforth denoted By,
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Two general classes of results are available for such random walks under the additional as-
sumptions of uniform ellipticity,

Jo>0: Pla <wy <¥,) =1, (1.3)
and the boundedness of the jump distribution,
JR<oc0: |XI>R = P,L0O,x)=0, P-as. (1.4)

First, as proved by Delmotte [7], one has the standard, local-CLT like decay of the heat kernel
(c1, ¢co are absolute constants):

n C1 X —y|?
PR Y) <~ exp|—ce—— . (L5)

Second, an annealed invariance principle holds in the sense that the law of the paths under the
measure integrated over the environment scales to a non-degenerate Brownian motion (Kipnis
and Varadhan [16]). A quenched invariance principle can also be proved by invoking techniques
of homogenization theory (Sidoravicius and Sznitman [23]).

Once the assumption of uniform ellipticity is relaxed, matters get more complicated. The
most-intensely studied example is the simple random walk on the infinite cluster of supercritical
bond percolation oZ%, d > 2. This corresponds @y € {0, 1} i.i.d. with P(wp, = 1) > pc(d)
wherep.(d) is the percolation threshold. Here an annealed invariance principle has been obtained
by De Masi, Ferrari, Goldstein and Wick [8, 9] in the late 1980s. More recently, Mathieu and
Remy [20] proved the on-diagonal (i.e.,= y) version of the heat-kernel upper bound (1.5)—a
slightly weaker version of which was also obtained by Heicklen and Hoffman [15]—and, soon
afterwards, Barlow [2] proved the full upper and lower boundsPgKix, y) of the form (1.5).

(Both of these results hold farexceeding some random time defined relative to the environment
in the vicinity of x andy.) Heat-kernel upper bounds were then used in the proofs of quenched
invariance principles by Sidoravicius and Sznitman [23]dor 4, and for alld > 2 by Berger

and Biskup [4] and Mathieu and Piatnitski [19].

Notwithstanding our precise definition (1.3), the case of supercritical percolation may still be
regarded as uniformly elliptic because the conductances on the percolation cluster are still uni-
formly bounded away from zero and infinity. It is thus not clear what phenomena we might en-
counter if we relax the uniform ellipticity assumption in an essential way. A number of quantities
are expected (or can be proved) to vary continuously with the conductance distribution, e.g., the
diffusive constant of the limiting Brownian motion. However, this may not apply to asymptotic
statements like the heat-kernel bound (1.5).

In a recent paper, Fontes and Mathieu [10] studied continuous-time random wafkwith
conductances given by

wxy = 0(X) A o(y) (1.6)
for some i.i.d. random variables(x) > 0. For these cases it was found that the annealed heat

kernel, E[P, o(X; = 0)], whereP, ¢ is the law of the walk started at the origin afidis the
expectation with respect to the environment, exhibitaaomalous decafpr environments with
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too heavy lower tails at zero. Explicitly, from [10, Theorem 4.3] we have

E[P,o(X; = 0)] = t=0"2HoM 5 oo, (1.7)
wherey > 0 characterizes the lower tail of teevariables,
P(w(x) <s) ~¢, sl 0. (1.8)

As for the quenched problem, fgr < 95, [10, Theorem 5.1] provides a lower bound on the
diagonal heat-kernel decay exponent (a.k.a. spectral dimension):

P[Puo(Xi =0) < t™*] — 1 (1.9)
for everya < ag where
dl+y
== . 11
% =514, (1.10)

But, sinceag < 9, this does not rule out the usual diffusive scaling. Neverthelessy as y
for y < d5,, the annealed and quenched heat-kernel decay at different rates.

The reason why the annealed heat kernel may decay slower than usual can be seen rather
directly from the following argument: The quenched probability that the walk does not even
leave the origin up to timeis '@ By 7,,(0) < w(0), we have

E[Po,0(X; = 0)] > Ee™**©, (1.11)

For w (0) with the tail (1.8), this yields a lower bound tf”. (A deeper analysis shows that this

is actually a dominating strategy [10].) A similar phenomenon can clearly be induceg,for

that are i.i.d. with a sufficiently heavy tail at zero, even though then the correspondence of the
exponents in (1.7-1.8) will take a slightly different form.

The fact that the dominating strategy is so simple makes one wonder how much of this phenom-
enon is simply an artifact of taking the annealed average. Of not much help in this matter is the
main result (Theorem 3.3) of Fontes and Mathieu [10] which shows that the mixing time for the
random walk on the largest connected component of a torus will exhibit anomalous (quenched)
decay once < 9,. Indeed, the mixing time is by definition dominated by the worst-case local
configurations that one can firsshywhereon the torus and thus effectively mimics the reasoning
we used to explain the anomalous decay of the annealed heat kernel.

The main goal of this paper is to provide universal upper bounds ogubechedeat kernel
and support them by examples exhibiting the corresponding lower bounds. Somewhat surpris-
ingly, and unlike for the annealed heat kernel, the existence of anomalous quenched heat-kernel
decay turns out to be dimension dependent.

2. MAIN RESULTS

We will work with a collection of bounded, nearest-neighbor conductatwogse Q = [0, 1]®
whereb ranges over the sé@ of unordered pairs of nearest neighborszih The lawP of
thew’s will be i.i.d. subject to the condition that the bonds with positive conductances percolate.
Givenw, we USE6,, = %~ (w) to denote the set of sites that have a path to infinity along bonds
with positive conductances. It is well known th4y, is connected with probability one.
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The main result of this paper is as follows:

Theorem 2.1 Let d > 2 and consider a collectiom = (wp) of i.i.d. conductances if0, 1]
with P(wp, > 0) > pc(d) where p(d) is the threshold for bond percolation ¢&f'. For almost
everyw € {0 € 6}, there is C= C(w) < oo such that

n-9/2 d=23,
P"(0,0) < C(w) 1 n~2logn, d=4, (2.1)
n—2, d > 5,
foralln > 1. In fact, for d > 5, almost surely
lim. n?P"(0,0) = 0. (2.2)

Note that these estimates imply that the random walk is almost surely transient in all dimen-
sionsd > 3. This is of course a consequence of the fact—to be exploited in more depth later—
that underp > pc(d) one has an infinite cluster of bonds with conductances bounded strictly
from below. Then a.s. transience dh > 3 follows by monotonicity in conductances and the
result of Grimmett, Kesten and Zhang [14]. (Recurrence #a 1, 2 is inferred directly from the
monotonicity of this notion in the conductances.)

To show that our general upper bounddr> 5 represents a real phenomenon, we state the
existence of appropriate examples:

Theorem 2.2 (1) Letd > 5andx > ly4. There exists an i.i.d. la#’ on bounded, nearest-
neighbor conductances with(w, > 0) > pc(d) and a random variable G= C(w) such that for
almost everyn € {0 € G},

e (ogn)*
P2'(0,0) > C(w)

S n=Ll (2.3)

(2) Letd > 5. For every increasing sequené&, o2, An — o0, there exists an i.i.d. la# on
bounded, nearest-neighbor conductances Wi, > 0) > p.(d) and an a.s. positive random
variable C = C(w) such that for almost every € {0 € %},

C(w)
P"(0,0) >
20,0 > =

(2.4)

n
along a subsequence that does not depend.on

The upper bounds in Theorem 2.1 can be extended to more general shift-invariant, ergodic
environments under suitable assumptions on their percolation properties. In particular, it follows
that for the Fontes-Mathieu example (1.7-1.8) no anomaly occurs for the quenched heat kernel
in dimensionsl = 2, 3. On the other hand, Theorem 2.2 can be specialized to the case (1.6) with
i.i.d. w(x)’s and, ind > 5, we can produce anomalous decay as soon as the tailsabero
are sufficiently heavy. (The constructions in the proof of Theorem 2.2 work far alR but the
result if of course interesting only far > 5.)

The distributions that we use in part (1) of Theorem 2.2 have a tail near zero of the form

P(wxy < S) ~ | log(s)| ™ (2.5)
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with 8 > 0. Presumably, one can come up with examples of distributions that exhibit “anoma-
lous” behavior and have the power law tail,

P(owxy < s) = 9, (2.6)

for somey > 0. However, the construction seems to require subtle control of heat-kewesi
bounds which go beyond the estimates that can be easily pulled out from the literature.

As we will see in the proofs, the underlying idea of all examples in Theorem 2.2 is the same:
The walk finds arap which, by our specific choice, is a “strong” edge that can be reached only
by crossing an edge of strength of ordgr Such traps allow the walk to get stuck for time of
ordern and thus improve its chances to make it back to the origin at the required time. To enter
and exit the trap, the walk has to make two steps ovelQfig,)-edge; these are responsible for
the overalin—2-decay. Of course, id = 2, 3 this cannot compete with the “usual” decay of the
heat kernel and so we have to gadta- 4 to make this strategy dominant.

The upper bound in (2.2) and the lower bound in (2.4) show that tiné decay ind > 5
is never achieved, but can be approached arbitrary closely. We believe the same holds also for
d = 4 for the decay rate=?logn. We demonstrate the reason for our optimism by proving a
lower bound for environments where the aforementioned traps occur with a positive density:

Theorem 2.3 Letd > 4and let p> p.(d). Sample a percolation configuratiehwith param-
eter p. For each n> 1 consider the i.i.d. environment™ defined from» by puttingwf)”) =1on
occupied bonds andt()”) = ¥, on vacant bonds. For a.@ in which0 has an occupied path to

infinity, there is G@) > 0 such that for all n> 1,

-2 d>5
Pf;zm<o,0)zC(a)){” ’ =

2.7
n~2logn, d=4 @1

We conclude with a remark concerning the path properties of the above random walk. As
mentioned previously, heat-kernel estimates of the form (1.5) have been crucial for the proof of
the quenched invariance principle for simple random walk on supercritical percolation clusters
ind > 3. (Thed = 2 argument of Berger and Biskup [4] actually avoids these bounds by appeal-
ing to the nearest-neighbor structure of the walk and to an underlying maximum principle.) The
absence of “usual” decay might suggest difficulty in following the same strategy. Notwithstand-
ing, using truncation to a “strong component,” a version of which is invoked also in the present
paper, this problem can be circumvented and the corresponding quenched invariance principle
proved (Mathieu [18], Biskup and Prescott [5]).

Thus there are i.i.d. environments for which one has a functional Witifout a local CLT.

This should not be too surprising as a CLT describes the typical behavior whereas the heat-kernel
decay, and a local-CLT, describe rare events. Naturally, a CLT is much more robust than its local
counterpart.

Theorem 2.1 is proved in Sect. 3 while Theorems 2.2-2.3 are proved in Sect. 4. The Appen-
dix (Sect. 5) contains a self-contained proof of the isoperimetric inequality on the supercritical
percolation cluster that we need in the proof of Theorem 2.1.
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3. HEAT-KERNEL UPPER BOUNDS

Here we will prove the heat-kernel bounds from Theorem 2.1. The general strategy of our proof
is as follows: For every. > 0, we USE6, , = 0.« (@) to denote the set of all sites #f that

have a path to infinity along edges with conductances at teastlearly, ¢, is a subgraph

of ¢.; we will sometimes refer t&, , as thestrong componentWe first prove the “standard”
heat-kernel decay for the Markov chain obtained by recording the position of the random walk
when it is on the strong compone#t, , for an appropriately chosesm. Then we control the
difference between the time scales for the two walks using rather straightforward estimates.

3.1 Coarse-grained walk.

The i.i.d. nature of the measuPeensures there is an a.s.-unique infinite connected comp@hent
of bonds with positive conductances. Giver %, we define the random walk = (X,) as a
Markov chain oré,, with transition probabilities

Py 2(Xn1 = Y1Xn = X) = Po(X, y) = — (3.1)
To(X)

and initial condition
Poz(Xo=2) =1 (3.2)
We useE, ; to denote expectation with respect By ,. (Note the typographical distinction
between the path distributio®, ;, the heat kernd?,,, and the law of the environmefit)
Next we will disregard bonds whose conductance is less than some small positive rumber

which is chosen so that the remaining bonds still form an infinite component—to be denoted
by ¢~... We quote Proposition 2.2 from Biskup and Prescott [5]:

Lemma 3.1 Letd > 2and p= P(wp, > 0) > pc(d). Then there exists(p, d) > 0 such that
if o satisfies

P(wp > a) > pe(d) (3.3)
and
PO < wy < a) <c(p,d) (3.4)

then% . is nonempty an&’, \ ¢~ . has only finite components a.s. In fact7if is the set of
sites (possibly empty) in the finite componeri#Qf\ ¢, containing X, then

P(X € € & diamFy > n) < Ce™", n>1, (3.5)
for some C< oo andy > 0. Here “diant’ is the diameter in thef ..-distance orZd.

Givenz € %, We consider theoarse grainedandom walkX = (X,)—started az—which
records the successive visits ¥f= (X;) t0 ¢ . Explicitly, let T1, T, ... denote the timeX
takes between the successive step&pi‘.e.,TgH = inf{n > 0: Xt,4n € G} With Ty = 0.
Note that, as all components &f, \ ¢, are finite,T, < co a.s. for all¢. Then

Xe = XtyposTyn ¢ > 1 (3.6)
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Let P, (X, y) denote the transition probability of the random wxlk

ﬁ’w(x, y) = Pux(X1, =Y), X,Y € Coo- (3.7)

As is easy to check, the restriction of the meastydo ¢, is invariant and reversible for the
Markov chain orfé,  induced byP,,.
Consider the quantities

C?)xy = ﬂ(u(x)lsw(xa y)a Xa y € %oo,tx- (38)

We may think ofX as the walk Ot .. With the weak components “re-wired” by putting a bond
with conductancéyy between any pair of sitgs, y) on their (strong) boundary. By Lemma 3.1,
all weak components are finite and everything is well defined.

Our first item of business is to show thétobeys the standard heat-kernel bound:
Lemma 3.2 For almost everyw € {0 € 6} and every xe ¢ () there exists random
variable C(w, X) < oo such that
C(w, x)
nd/2
We remark that the reversibility of the random walk, and the facttfat a on % ., imply
thatP! (x, y) may also be bounded in terms ©f{w, y). Note that, unlike foilP, the powers for
which P"(x, y) is hon-zero are not necessarily tied to the parity of x.

Ph(X, y) < n>1. (3.9)

Lemma 3.2 will be implied by the fact that the Markov chafhobeys the “usual’d-di-
mensional isoperimetric inequality. The connection between isoperimetric inequalities and heat-
kernel decay can be traced back to the work on elliptic PDEs done by Nash, Moser and others.
In its geometric form it was first proved using Sobolev inequalities (Varopoulos [24]). Alterna-
tive approaches use Nash inequalities (Carlen, Kusoka and Stroock [6]), Faber-Krahn inequalities
(Grigor'yan [12], Goel, Montenegro and Tetali [11]) and evolving sets (Morris and Peres [17]).
The paper [17] will serve us as a convenient reference.

Consider a Markov chain on a countable state-spawgth transition probabilityP (x, y) and
invariant measure . DefineQ(x, y) = 7 (X)P(x, y) and for eacts, S c V, let

QASL ) =D D QX ). (3.10)
xeS; yeS
For eachS c V with z(S) € (0, co) we define
Og = Q;S(’S?C) (3.11)
and use it to define the isoperimetric profile
O(r) = inf{@s: z(S) <r}. (3.12)

(Herexz (S) is the measure db.) It is easy to check that we may restrict the infimum to $ts
that are connected in the graph structure induced duy P.
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The following summarizes Theorem 2 of [17]: Suppose that, x) > y for somey e (0, ¥/
and allx € V. Lete > Oandx,y € V. Then

PM(X,y) < en(y) (3.13)
for all n such that _—
1- € 4
n>1+ ( 2)/) / ———— du. (3.14)
Y Az Az (y)] UP(U)

Note that, to prove the “usual” dec&®?(x, y) < cn~9/2, it suffices to show thab(r) < cr—/d
for r sufficiently large.

We will adapt this machinery to the following setting
V=%4(w), P=P2 and 7 =um,, (3.15)

with all other objectx,,, CD(S“’) and @, (r) defined accordingly. The most annoying part of the
proof is the extraction of appropriate bounds on surface and volume terms:

Lemma 3.3 Letd > 0,d > 2 and leta be as above. Then there exists a constant 6 and
random variable R = Rj(w) with P(R; < oco) = 1 such that for a.ew € {0 € ¥ ,} and
all R > Ry(w) the following holds: For any connected ¢ %, N [—R, R]® with

To(A) > R (3.16)

we have .
Qo(A, Goou \ A) > Crp(A) T . (3.17)

Proof. Since%., has the law of the infinite bond-percolation cluster, we will infer this from
isoperimetry for the percolation cluster; cf. Theorem 5.1. &etA denote the set of edges
in ., With one endpoint iM\ and the other ¥, \ A. We claim that

2
Qu(A, G \ A) > g—d ERZN (3.18)

and

To(A) < 2d|Al. (3.19)
Since A obeys the conditions of Theorem 5.1, oriRes> 1, we havelo®*A| > c2|A|%, cf.
equation (5.2) in Sect. 5. Then (3.17) will follow from (3.18-3.19).

It remains to prove (3.18-3.19). The bound (3.19) is impliedzhyx) < 2d. For (3.18),
sinceP represents two steps of the walk, we get a lower boun@om\, ¢, \ A) by picking
a sitex € A which has a neighboy € A that has a neighbaron the outer boundary of. The
relevant contribution is bounded BY(X)P(X, 2) > wxywy,/7,(Y) > a?/(2d). OnceA has at
least two elements, we can do this {gf, z) ranging over all bonds ia”:*A, so summing over
(Y, 2) € 0”“A we get (3.18). g

Now we are finally ready to estimate the decaﬁ’@(x, y):

Proof of Lemma 3.21t clearly suffices to prove this fax = 0. Pickd < (0,%,) and letR be
the largest ..-distance the walkX can go oné,, by time Ty + --- + Ty, i.€., by the timeX
makes 2 steps. Lemma 3.1 tells us that the largest juipan make in a box of side lengt?
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is O(logn), and soR = O(nlogn). As the walk will not leave the box{R, R]¢ by timen,
we may restrict the infimum defining (r) to sets entirely contained inR, R]9. (This can be
achieved explicitly by modifying the Markov chain “outsideZ R, R]¢.)

We will derive a bound ome{") for A C %nq(w) N[—R, R]9. Since the infimum (3.12) is
achieved by connected sets, we may takeonnected. Henceforthdenotes a generic constant.
If 7,,(A) > R?, then (3.17) implies

D > ey, (A) . (3.20)
On the other hand, for,,(A) < R’ the bound (3.18) yields
o\ > cr,(A)t > cR. (3.21)
From here we conclude that
®,(r) > cr Y9I AR (3.22)

onceR > Ry(w). The crossover between the two regimes occurs when R¥ which (due
to 6 < 1) is much less than/4 oncee ~ n~%2, The relevant integral is thus bounded by

4/¢ 4
——du < c;R? log R + e %9 < cze 2/ (3.23)

[l[n’(x)/\n(y)] uq)w(u)z
for some constantsy, ¢, c; > 0. Settinge proportional ton~%?2 and noting thaty > «?,
the right-hand side is less thanand P"(0, x) < cn~9/2 for eachx € % N[-R, R]%. As
P"(0, x) = 0 forx ¢ [—R, R]¢, the bound holds in general. This proves the claim for eyeor
oddn we just concatenate this with a single step of the random walk. a

3.2 Integral bound.

We now want to link the estimates éhto a heat-kernel type bound for the watk Specifically,
we will prove the following estimate:

Proposition 3.4 For almost everyo € {0 € %4}, there exists a constant & C(w) < oo
such that for every > 1 and every n> 1,

1-d/2

PooX =0, Ti+---4+T; > n) < C(w) (3.24)

—.
and, in fact,
im nP,o(X, =0, Ty +---+T,>n) =0 as. (3.25)

n—oo
In order to prove this claim, we will need to occasionally refer to the Markov chain on en-
vironments “from the point of view of the particle.” Let be the shift byx on Q and let
Q, = {0 € €x,}. We define a random shitty : Q, — «© by samplingX; for the givenw
and applyingr, with x = X1. This random map induces a Markov chain®@f via the iterated
action ofzy . Define the measure

Q4 (dw) = Z7,(0) P(dw|0 € Gy (3.26)
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whereZ=! = E(z,,(0)|0 € 6x.). Let Eg, denote expectation with respect@. We recall the
following standard facts whose proof can be found in, e.g., [4, Section 3]:

Lemma 3.5 (Ergodicity of Markov chain on environments)he measuré), is stationary and
ergodic with respect to the Markov shiff on environments. In particular, if £ LY(Q, P) then
for Q,-a.e.w and for R, o-a.e. trajectoryX = (X1, Xz, ...),

. 1 -1
Jim = ,Z; f(r5,@) = Eq, (). (3.27)

The convergence occurs also in (i.e., under expectation &, and, if desired, also E, ).

Recall our notatiorfy for the finite component of, \ ¢ . containingy. Forx € ¢ ,, let

= U & (3.28)

y: wxy>0

and letGy denote the union off; with all of its neighbors or¢ .. We will refer to this set as
the weak componerihcident tox. Note thatGy is the set of vertices that can be visited by the
walk X started ak by the timeX steps again onto the strong component.

Lemma 3.6 Recall that k, denotes expectation with respect@p and let|Gy| be the number
of sites inGy. Under the conditions of Lemma 3.1, we havg, [E€o| < oo.

Proof. This is an immediate consequence of (3.5). O
Next we will estimate the expected time the random walk hides in such a component:

Lemma 3.7 (Hiding time estimate) Let d > 2 and set c= 4da . Then for all xe Z¢ and all
o such that xe 6, andgy is finite, we have

Ew,x(Tl) < C|gx|- (3-29)

Proof. Fix X € %x.. and letGy be its incident weak component which we regard as a finite
graph. Add a siteA to this graph and connect it by an edge to every sité.ahat has a strong
bond to%.... \ Gx. (HereA represents the rest @f,, ,; note that multiple edges betweanand
sites ofGy are possible.) Equip each such edge with the corresponding conductance and call the
resulting finite graphy. Clearly, the random walk ofi, started atx and the corresponding
random walk or¢é , have the same law until they first hit (i.e., leavely). In particular,T; for
the walk oné, , is stochastically dominated [, the first time the walk oft{, returns back to
its starting point.

Notice thatx — =z, (X) is an invariant measure of the walk &y provided we set

To(A) =D D o (3.30)

X€Gx YEC 0,0 \Gx
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Standard Markov chain theory tells us ttat> (E,S,)~, whereE, is the expectation with
respect to the walk oty started at, is an invariant distribution and

xS = ”;’:Z;) (3.31)
Butx € ¢, implies thatr,(x) > a while the boundvy, < 1 yields
To(A) < mu(Gx) < 2d]Gy| (3.32)
and
m,(Hx) < 4d|Gx]. (3.33)
It follows thatE,, xT1 < ExS, < (49/,)|Gx|. O

Proof of Proposition 3.4For simplicity of the notation, let us assume tlias even; otherwise,
replace all occurrences 65 by [¢]. By reversibility of X, if k < ¢,

PooXe =0, Ti4 -4+ T > M) = Poo(Xe =0, Tr+ -+ 4 Tr_gp1 = ). (3.34)

This means that the probability of interest is bounded by twice the quantity on the lek withp.
Chebyshev’s inequality then yields

Poo(Xe =0, To4 -+ T, >n) < 2P, 0o(X, =0, Ty + -+ Ty2 > %)

4 (3.35)
< EEa),O( Kooy (TL - 4 Te12)).
Conditioning on the position oX at the times before and aftéf we then get
Poo(Xe =0, Ty+---+ T, >n)
£)2
<> Z Po.o(Xj—1=X) Eox(Te Lz _y)) Poy(Xeoj = 0). (3.36)
j=1 xy

The calculation now proceeds by inserting uniform bounds for the last two terms on the right-hand
side, and resumming the result using a stationarity argument.
Sincet — j > ¢/2, reversibility and Lemma 3.2 tell us

. 7, (0) c
Pw,y(xé’—j = 0) w( ) (JJO( {—]j y) = €d/2 (337)
uniformly iny € ¢, for some absolute constamtFurthermore, Lemma 3.7 gives
D Eox(Mlig,_y) = Eux(To) < clGyl (3.38)

y
wheregy is the weak component incident xo Rewriting the sum ovej as an ergodic average,
Lemma 3.5 withf (a)) = |Go| and Lemma 3.6 now show that, for &l> 1,
k—1
ZZ Po.o(Xj—1=X) |0x| = Ewo(z G, |) < C(w)k (3.39)
j=1 X
for a random constar@@ (w). Using (3.37-3.39) in (3.36), the desired bound (3.24) follows.
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In order to prove the convergence to zero in (3.25), we note that
(e.¢]
D Puo(Xe=0,Tod 4T, =) = Eyo(lig,_q (Te+-+To). (3.40)
n=1

The argument (3.36—-3.39) shows that the expectation on the right is finite a.s. rSirge
Pu.o(X; =0, T1+---+ T, > n)is non-increasing, the claim follows by noting that, for any non-
increasing non-negative sequertag) with limsup,_, ,, na, > 0, the sumd_ _, a, diverges. O

3.3 Proof of the upper bound.

To turn (3.24) into the proof of Theorem 2.1, we will also need the following standard fact:

Lemma 3.8 The sequence > P2"(0, 0) is decreasing.

Proof. Let (f, 9), = >4z T (X) T (X)g(X) denote a scalar product it (74, z,,). Then
P2(0, 0) = (do, P2'd0)... (3.41)

SinceP,, is self-adjoint and sincgP,,||> < 1, the sequence of operatdtd is decreasing. [

Now we put everything together and prove the desired heat-kernel upper bounds:
Proof of Theorem 2.1(1)ntroduce the random variable

Ri=sup¢>0:Ti+---+T, <nj. (3.42)
The fact that 0= ¢, (w) yields
> Poo(Xm=0, Ry=10) =P, o(X, =0, Ty+---+ T, > n). (3.43)

m>n

Proposition 3.4 now implies

fl—d/Z
> PuoXm=0, Ry={) < C() : (3.44)
n<m<2n n
By summing over = 1, ..., 2n and using thaR,, < 2n oncem < 2n we derive
ni-d/2, d=2,3,
> P10,0) < C(w) {ntlogn, d =4, (3.45)
n<m<2n n—l’ d > 5,

whereC is proportional ta«C. By Lemma 3.8P2M(0, 0) is decreasing im and so the sum on the
left is bounded below bynP2"(0, 0). From here the claim follows. O

Proof of Theorem 2.1(2By (3.25), for each fixed > 1 the sum in (3.44) multiplied bg tends
to zero am — oo. As ¢1-9/2 js summable ird > 5, the uniform bound (3.44) shows the same
holds even under the sum ower 1. O
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4. EXAMPLES WITH SLOW DECAY

Here we provide proofs of Theorems 2.2 and 2.3. The underlying ideas are very similar, but the
proof of Theorem 2.2 is technically easier.

4.1 Anomalous decay ird > 5.

The proof of Theorem 2.2 will be based on the following strategy: Suppose that in a box of side
length¢,, there exists a configuration where a strong bond is separated from other sites by bonds
of strengthl/,, and (at least) one of these “weak” bonds is connected to the origin by a “strong”
path not leaving the box. Then the probability that the walk is back to the origin atrtirme
bounded below by the probability that the walk goes directly towards the above pattern (this costs
e of probability) then crosses the weak bond (which cag)s spends timen — 2¢, on the

strong bond (which costs onl@ (1) of probability), then crosses a weak bond again (another
factor of;,) and then heads towards the origin to get there on time (ano®el &rm). The cost

of this strategy i90(1)e°“"n=? so if £, = o(logn) then we get leading order2.

Proof of Theorem 2.2(10ur task is to construct environments for which (2.3) holds.x#or 1y

lete > 0 be such thatl + 4de)/d < «. LetB denote the set of edges#i and letP be an i.i.d.
conductance law of2~N: N > 0}® such that:

P(wp =1) > pe(d) (4.1)
and
P(wp = 27N) = cN~3+9), N >1, (4.2)
wherec = c(¢) is adjusted so that the distribution is normalized. &etlenote the unit vector in
the first coordinate direction. Define the scale
fn = N(Hde)/d (4.3)
and, giverx e Z9, let Ay (x) be the event that the configuration ngay = x+&; andz = x+2&,
is as follows (see the comments before this proof):

(1) wy; = 1 andayy = 2N, while every other bond emanating outybr z hase, < 27N.
(2) x is connected to the boundary of the box of side ler(lsig £ )? centered ax by bonds
with conductance one.

Since bonds witlw, = 1 percolate and sind&w, < 2~V) ~ N~¢, we have
P(An(X)) > cNTHH(Ad=2, (4.4)

Now consider a gridsy of sites in ¢y, £n]9NZY that are spaced by distancéd®) £n)?. The
events{ Ay (X): X € Gy} are independent, so

() An°) < exp{—c(—[N )dN—[1+<4d—2>4} < e (4.5)

2
oy (logtn)

and the intersection occurs only for finitely maRy
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By the stretched-exponential decay of truncated connectivities (Grimmett [13, Theorem 8.65]),
every connected component of side lengtg £y)? in [—¢n, {n]9NZY will eventually be con-
nected to the largest connected component-i@cl, 2(n]9NZY. We conclude that there ex-
ists Ng = Ng(w) with P(Ng < o0) = 1 such that oncéN > Ng, the eventAy(x) occurs for
some even-parity site = xy(w) € [—n, £n]9NZY that is connected to 0 by a path, Pattin
[—2¢n, 2¢n]9, on which only the lastNy edges—namely, those close to the origin—may have
conductance smaller than one.

We are now ready to employ the above strategy. SupploseNy and letn be such that® <
2n < 2N*1 Letxy be the site inf-¢y, fN]dﬂZd for which Ay (X) occurs and lety be the length
of Pathy. Leta = a(w) be the minimum ofwy, for b within Ng steps of the origin. The passage
from 0 toxy in time ry has probability at least™o(2d)~"~, while staying on the bondy, z)
for time 2n — 2ry — 2 costs an amount which is bounded independently.ofrhe transitions
acrosg(x, y) cost order 2N each. Hence we have

P2"(0, 0) > ca?Mo(2d)=2m 272N, (4.6)
By the comparison of the graph-theoretic distance and the Euclidean distance (Antal and Pisz-
tora [1]), we havey < cfy onceN is sufficiently large. Sinca is of order 2' we are done. O

The argument for the second part follows very much the same strategy:

Proof of Theorem 2.2(2)Let (1,) be a sequence in the statement and suppose, without loss of
generality, thatt; > 1. Let

_ (1 login a
G = (Elog(zd)) (4.7

and let{ny} be even numbers chosen as follows:

1-0g.t>pc and Gn,y > 200, (4.8)
Define an i.i.d. lawP on ({1} U {nc: k > 1})® as follows:
P, =1 =1-¢," and P(wp=Y) =0," -0, .. (4.9)

Let C, denote the (a.s. unique) infinite connected component of edges with conductance one.
By following the argument in the proof of Theorem 2.2(1), for almost evergnd everyk
large enough, we can finde C,, such that:

(1) Fory = x+ & andz = x + 2&;, we havewy , = 1, and all other bonds emanating frgm
andz are of conductance/hy.
(2) The chemical distance betweeand the closest point i, to the origin is less thaq;‘k.

Explicitly, set¢y = 60q; for some constant and letA,(x) be the event that (1) holds anxd

is connected to the boundary of the brex+ [—(log¢n)?, (logén)?]® by edges with strength
one. TherP(An(x)) > cgy?+2 = cey* for & = (2d)~%. Plugging this in (4.5) results in a
sequence that is summablelo(note thaiy increase exponentially). Percolation arguments, and
the choice of), then ensure that (most of) tikxés where Ay (X) occurs have a strong connection
near the origin of length at moqﬁk.
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The argument leading to (4.6)—witly replaced b;q;‘k—now gives

)
2Ng (Zd) 2an

P2(0,0) > ca = (4.10)
k

By the choice ofy,, we are done. O

4.2 Time-dependent environments.

Here we will prove Theorem 2.3. LBtbe the Bernoulli measure dhwith parametep > pc(d).
Let C, denote the infinite component of occupied bonds. We define 1 on occupied bonds
andwy, = Y, on vacant bonds. The proof proceeds via three lemmas:

Lemma 4.1 LetY = (Yi,...,Yq) be the first n steps of the random walk on environment
conditioned to avoid bonds with, = L. Let X = (X4, ..., X,) be the simple random walk on

the percolation cluster ab, = 1. Then the the corresponding path measures are absolutely con-
tinuous with respect to each other and the Radon-Nikodym derivatives are (essentially) bounded
away from zero and infinity, uniformly in n amgde {0 € C..}.

Proof. Fix a sequence of sites, ..., X, € Cx such thatwy, x,, = 1foralli =1,...,n— 1.
Then the probability thaX executes this sequence[if_,d(x)~t, whered(x) is the degree of
the percolation cluster at. ForY we getC, ,”:_g 7o (%), whereC 1 is the probability that
the unconditioned random walk has not used a weak bond in its firsth steps. Since

T(X) — d(X) = O(*n), (4.11)
the ratio of the products is bounded away from zero and infinity uniformly amd the points
X1, ..., Xn. But both path distributions are normalized and3ds bounded as well. O

Next we provide a lower bound on the probability that the walkisits a given site im steps.
Let S, be the first visit ofX to x,

S =inf{n > 0: X, = x}. (4.12)
Then we have:

Lemma 4.2 Fora.e.w € {0 € C,} there is C= C(w) > 0and a constant § < oo such that
for alln > ng and all x € G, satisfying|x| < 4/n, we have

Po.o(S < n) > C(w)|x|~@2. (4.13)

Proof. The choice of the conductance values ensures that the probabilit( ttatys onC,, for
the firstn steps is uniformly positive. Conditioning on this event, and applying Lemma 4.1, it
thus suffices to prove (4.13) for the watk The proof makes use of Barlow’s heat-kernel bounds
for the random walk on percolation cluster; cf [2, Theorem 1].

Consider the continuous time versigh of the walk X, i.e., X’ executes the same steps but at
times that are i.i.d. exponential. By integrating the heat-kernel bounds we get that the expected
amount of timeX’ spends ak up to timen/2 is at leasiC(w)|x|~@2. A similar calculation
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shows that the expected time the waik spends ak conditioned on it hitting s uniformly
bounded. Therefore the probability &f hitting x before timen/2 is at leasC (w)|x|~@~2. To
get back toX, we need to subtract the probability that by continuous tirf@ the walk X’ did
more thann discrete steps, which is less tharf'e As |x| < /n, this cannot compete with
|x|~@=2 oncen is sufficiently large. O

We now define the notion of taap which is similar to that underlying the eveAk (x) in the
proof of Theorem 2.2. Explicitly, atrap is the triple of sitesy, zwith y = x+&; andz = x+2&,
such thatx € C,, and such that all bonds emanating outyofnd z are weak except the bond
between them. L€eT (x) be the event that a trap occursxat

Lemma 4.3 Fora.e.w € {0 € C} there is c< oo and ny(w) < oo such that

Z |X| (2d—4) > lcal j = ia (414)
. clogn, = 4,
T besrs

foralln > n;.

Proof. This is a consequence of the Spatial Ergodic Theorem. Indeed, let [—L, L]9NZd
and note that the fraction ok occupied by{x € A_: T(x) occurg converges a.s. tp =
P(T(0)) > 0. But then also the corresponding fraction in the anfyki.. \ A converges a.s.
to p. In particular, there i%; = ko(w) such that this fraction excee@g?2 for all k > ky. Now
taken and findk so that < ./n < 21, Bounding|x| < 2“1 on thek-th annulus, we get

k

—(2d—4) P Ageen \ Ayl
Z IXI Z 2 (20th2d—4 - (4.15)
X: x|y t=ko
T (x) occurs
As [Ays1 \ Ay| > (299, the result follows. O

We are now ready to prove the heat-kernel lower bounds (2.7):

Proof of Theorem 2.Rickw € {0 € C} and letx be a trap (i.e., everli (x) occurs and/ andz
are the endpoints of the “trapped” strong edge) With< %Jﬁ. LetU (x, k, ¢) be the event that
the random walk starts at the origin, hitSfor the first time at timek, crosses the edgs, z),
spends time 2 — k — £ — 2 on this edge and then exits, and then arrives back to the oridin in
units of time. Clearly,

Cc c\n—k—(-2 ¢
Poo(UOGK ) 2 Puo(S =K = (1=2) T SRu(S=0  (416)
wherec and¢ are constants depending only on dimension. Rever5|b|I|ty tells us
Pox(S=1) =P, 0o(Sc= 1) ng; CPuo(S =10) (4.17)

and so
Pw,O(U (X, K, 5)) > Cn_z Pw,O(S( = k) P(u,O(S( =10). (418)
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Denote
Uy = J Uxk 0. (4.19)

1<k<"s
1<t<"s

Using the disjointness af (x, k, ¢) for differentk and¢ and invoking Lemma 4.2,
Py,0(U (X)) > C(w) n™2|x|~@=4. (4.20)

But, for n large enough, the evenfld (x): x is a trap are disjoint because the restrictibn? <
"5 makes the walk spend more than half of its time at the strong bond constituting the trap. (This
bond determines the trap entrance/exit paiftHence,

P20.0 2P0 U UW)zc@n? X @ @
x: Ix|<3ym x: [x|<3ym
T (x) occurs
Applying Lemma 4.3, the desired claim is proved. O

5. APPENDIX. ISOPERIMETRY ON PERCOLATION CLUSTER

In this section we give a proof of isoperimetry of the percolation cluster which were needed in
the proof of Lemma 3.3. Consider bond percolation with parameterd letC,, denote the a.s.
unique infinite cluster. Fon ¢ Z9 let 8A denote the set of edges betwetmndZd \ A and let

0“A denote those edgesdm\ that are occupied. Then we have:

Theorem 5.1 Foralld > 2and p> p.(d), there are positive and finite constanis= ¢;(d, p)
and ¢ = c¢x(d, p) and an a.s. finite random variablegR= Ry(w) such that for each R- Ry and
eachA satisfying

ACCun[-R RY and |A|> (cilog Ryt (5.1)
we have
6°Al = ol Al'T . (5.2)

This claim was the basic technical point of Benjamini and Mossel [3] as well as of many
subsequent studies of random walk on percolation cluster. Unfortunately, the proof of [3] for the
cased > 3 andp close top.(d) contains a gap. A different proof was recently given in Rau [22,
Proposition 1.4] but the argument is quite long and it builds (ideologically) upon a weaker version
of (5.2) proved by Mathieu and Remy [20], whose proof is also rather long. Closely related
estimates were derived in Barlow [2], but additional arguments are needed to extract (5.2).

For the convenience of the reader, and future reference, we provide a self-contained (and rea-
sonably short) proof of Theorem 5.1 below. Our arguments are close to those of Benjamini and
Mossel [3] and they indicate that the seriousness of the gaps in [3] has been somewhat exagger-
ated. An independent argument, based on exponential cluster repulsion, has simultaneously been
found by Pete [21].
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Let us call a setA w-connectedf every two sites inA can be connected by a finite path
that uses only the sites in and whose every bond is occupieddn Theorem 5.1 will be a
consequence of the following, slightly more general estimate:

Proposition 5.2 Ford > 2and p> pc(d), there are g, c3, ¢ € (0, co) such that for all t> O,
P(3A 5 0, w-connected|A| > ta1, |0°A| < c2|A|%) < cge ¢, (5.3)

Proof of Theorem 5.1 from Proposition 5.2Jsing translation invariance, the probability that
there exists a set c Z9 N[—R, R]Y with the properties listed in (5.3) is bounded by a constant
timesRYe~¢t. This applies, in particular, to sets ¢ C,, N[—R, R]Y. Settingt = ¢, log R for ¢;
such thatc;¢ > d + 1, this probability is summable oR. By the Borel-Cantelli lemma, the
corresponding event occurs only for finitely maRy O

The advantage of the formulation (5.3) is that it links the tail boundRgto the cut-off on the
size of |A|. For instance, if we only care fgr\| > R’ for someé e (0, d), thenP(Ry > R)
decays exponentially witR/1~1/d),

As noted by Benjamini and Mossel [3] the proof is quite straightforwanti4a 2 and in anyd
oncep is close to one. However, to have a proof that workd in 3 all the way down tope,
we will have to invoke the “static” block-renormalization technique (Grimmett [13, Section 7.4]).
For each integeN > 1, consider the cubes

Bn(X) = x + 23 N[0, N]¢ (5.4)
and
Ban(X) = x + Z4 N [—N, 2N]¢ (5.5)
Let Gy (x) be the event such that:

(1) Foreach neighboy of x, the side of the blocBy (Ny) adjacent tdBy (N x) is connected
to the opposite side dBy (Ny) by an occupied path. .
(2) Any two occupied paths connectify (N x) to the boundary 0By (N x) are connected
by an occupied path using only edges with both endpoinBgir(N x).
From Theorem 8.97 and Lemma 7.89 in Grimmett [13] we know that, for @achp.(d),

P(Gn(0) — 1 (5.6)

By [13, Theorem 7.65], for eacp € [0, 1] there existgn(p) € [0, 1] with n(p) 1 Lasp T 1
such that the 0-1-valued procefks, x: X € Z% is dominated from below by independent
Bernoulli’'s with parametegy (p).

Given a finite sets © Z9, let AN = {x € Z9: A N By(NX) # 0} and definéA" to be the
complement of the unique infinite componenf\ A™. We will also need a notatio®*A for
the inner site-boundary of a sat

o*A ={xe A:JyeZ'\ Awith |x — y| =1}, (5.7)

and diamA for the diameter of\ in ¢-distance orZ¢. The crucial observation—which is where
the setting of [3] runs into a problem—is now as follows:
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Lemma5.3 Forw € Q, let A c Z9 bew-connected withT\N = A anddiamA > 3N. If

1
YAl < ——|0*A 5.8
[0“A] < 2_3d|6 I (5.8)
then L
[{x € 8*A: Gn(x)¢ occurg| > E|a*A|. (5.9)

Proof. Let A = A" and note thak € a*A impliesx € A", i.e., A N Bu(NX) # f. We claim
that, for eachx € 0*A,

Gn(x) C {Bsn(Nx) contains an edge ia”A}. (5.10)

Indeed, ifGy (x) occurs then, by diam > 3N, the boxBy (N x) is connected to a site on the
boundary ofBsy (N x) by an occupied path ith. As x € 8*A there exists a neighbar € A°.
Part (1) of the definition o6&y (x) ensures that there is another such path “crossBigNy); as
AN Bn(NY) = 6, this path contains no sites ix. By part (2) of the definition o6y (x), the two
paths must be joined by an occupied pattBiy (N x) which then must contain an edgedfiA.

Since each edge i“A belongs to at most®distinct cubesBsy (NX) with x € 6*A, the
number of boundary sites € 6*A whereGy (x) occurs is bounded by'®“A|, i.e.,

|0*A| — |{x € *A: Gn(x)° occurg| < 39|0“Al. (5.11)
Under the assumption (5.8), this implies (5.9). a

Proof of Proposition 5.2.Abbreviatec, = (2 - 39)~! and fix A ¢ Z finite, connected with

connected complement. Suppasds w-connected Withh " = A. Then|A| > N~9A| and,
invoking the standard isoperimetry @1,

6°Al = 05l A|T > sNYIIA|T, (5.12)
wherecs = cs(d) > 0. Settingc, = c,csN*~9 we then have
{10°A] < cIAIT} € {16°A] < calo*Al} (5.13)
and also
|0*A| > csNT 9t (5.14)

whenevelA| > ta=1. We will supposeté% > (3N)¢ to enable Lemma 5.3.
Equation (5.13), Lemma 5.3 and the fact thbg, ) : X € Z9} stochastically dominates site
percolation with parametefy (p) = 1 — ey then yield

P(3A 50, w-connected|A| >t°T, A" = A, [0”A] < ColA|'T)

1 Ak P
- IP)( > loww = ala*Al) < 27M(en)2 M. (5.15)

XEO*A

Here 22"l bounds the number of possible subdetss *A : Gy (x)¢ occurg of 6*A. To finish
the proof, we need to sum over all eligites.
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Let cg = cg(d) be a number such tha§ bounds the total number of connected skts 74
with connected complement, containing the origin and hayirig| = n. (The fact that this
grows exponentially im follows from the fact that*A is connected in an appropriate notion of
adjacency orZ¢.) Asey — 0 by (5.6), we can findN so thatcg,/en < ¥2. Summing (5.15) over
all connectedA with connected complement that obey (5.14) now gives

P(3A > 0, w-connected|A] > ta1, |0%A| < c2|A|%) < 2(dey) 2N, (5.16)
Choosing the constants appropriately, this yields the desired claim. O
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