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Abstract

The long-time behaviour of solutions of systems of cong@rmdaws has been extensively studied. In particular, lnd a
Zeng [4] have given a detailed exposition of the leading nadgmptotics of solutions close to a constant backgrouate st
In this paper, we extend the analysis of [4] by examining &igbrder terms in the asymptotics in the framework of the
so-called two dimensiona-systemthough we believe that our methods and results also appiyote general systems.
We give a constructive procedure for obtaining these teamd we show that their structure is determined by the iragrpl
of the parabolic and hyperbolic parts of the problem. Inipaldr, we prove that the corresponding solutions devédag
tails that precede the characteristics.

1 Introduction

In this paper, we consider the long-time behavior of sohgiof systems of viscous conservation laws. This topic has be
extensively studied. In particular, for the case of sohsiclose to a constant background state, [4] contains aletbtai
exposition of the leading order long-time behavior of suclusons. More precisely, it is shown in [4] that the leading
order asymptotics are given as a sum of contributions mowiitly the characteristic speeds of the undamped system of
conservation laws and that each contribution evolves agreit Gaussian solution of the heat equation or as a selfasimi
solution of the viscous Burger’s equation. Thus with theeption of the translation along characteristics, thesditea
order terms reflect primarily the dissipative aspects oftudlem.

In this paper, in an effort to better understand the intgrpletween the hyperbolic and parabolic aspects of the pmgble
we examine higher order terms in the asymptotics. We work wispecific two-dimensional system of equations — the
p-systembut we believe that its behavior is prototypical. In partar, we think that our methods and results would extend
to more complicated systems such as the ‘full gas dynamiw$'the equations of Magneto-Hydro-Dynamics (MHD) as
considered in [4].

The specific set of equations we consider is the following:
Ora = ¢10;b , a(z,0) = ap(x) , 11
O¢b = c20,a + 05g9(a,b) + a (92b + 9 (f(a,b)d:b)) ,  b(x,0) = by(z) . (&.1)

We will make precise the assumptions on the nonlinear tgrarsdg below, but in order to describe our results informally,
we basically assume th@(a,b)| ~ O((|a| + |b])?) and|f(a,b)| ~ O((|la] + |b])). We also note that without loss of
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generality, we can set = ¢, = 1 anda = 2in (1.1), which can be achieved by appropriate scalings atsptime and the
dependent variables, and possible redefinition of the fonsi andg.

Physically, (1.1) is a model for compressible, constantagyt flow, wherea represents the volume fraction (i.e. the
reciprocal of the density) anid is the fluid velocity. The first of the two equations in (1.1)tige consistency relation
between these two physical quantities. In particular, itldamot be physically reasonable to include a dissipatit ta this
equation, whereas such a term arises naturally in the sesmprtion which is essentially Newton’s law, in which int&rn
frictional forces are often present. As a consequence dbtime of the dissipation the damping here is not ‘diagondliea

in the terminology of [4].

Next, we note that with the scaling = ¢c; = 1 anda = 2 in (1.1), the characteristic speeds aré. Then, following
Liu and Zeng [4], we introduce new dependent variablesnd v which translate with those characteristic speeds
respectively. If the initial conditiong, andb, in (1.1) decay sufficiently fast d8| — oo, Liu and Zeng showed that in the
translating frame of reference(x,t) = \/%—Hgo(\/%) + O((1 + t)~ %), and similarly forv, whereg, is a self-similar
solution of either the heat equation, or of Burger's equatitepending on the detailed form of the nonlinear termshikn t
paper we derive similar expressions for the higher ordengen the asymptotics through a constructive procedurectimat
be carried out to arbitrary order.

More precisely, we show that for ady > 1, there exist (universal) functiodg;"} _, and constant§d;" }_, determined
by the initial conditions, such that

N
T

1
_ +(_z +,t
u(wif\/1—Hg()(\/m>+7;(1+t>1_2n1+1 dngn(\/m)+0

(m) . (1.2)

We give explicit expressions for the functiogis below, but focusing for the moment on the cdée= 1 and the variable
u, we have

1 1
t) = (= df gt (=2 0
U(l‘,) \/1—_H90(\/m)+(1+t)% lgl(\/m)—i_ ((1+t)%),

where the functiong (z) andg;" (z) are solutions of the following ordinary differential egioats:

%ga'(z) +¢40.(95 (2)*) =0 (1.3)

0267 (2) + 52097 (2) + 307 (2) + 204.0. (03 ()97 (2)) = 0. (1.4)

1
O2gf (2) + 526298“(2) +

Herec, is a constant that depends on the Hessian matriX@fb) ata = b = 0 and that will be specified in the course
of our analysis. We will prove that while all solutions of 1 have Gaussian decay a3 — oo, general solutions of the
linear equation (1.4) are linear combinations of two functi@ﬁ&(z), Whereglfi(z) decays like a Gaussian as— Foo

but only like|z| =2 asz — +oc0. The graphs of the functiong () andg;" (z) are presented in Figure 1.

Thus, the higher order terms in the asymptotics devkog tails These tails are a manifestation of the hyperbolic part of
the problem (or perhaps more precisely of the interplay betwthe parabolic and hyperbolic parts). Were we to consider
just the asymptotic behavior of the viscous Burger's equratvhich gives the leading order behavior of the solutiores, w
would find that if the initial data is well localized, the highorder terms in the long-time asymptotics decay rapidgpiace

and have temporal decay rates given by half-integers.

Another somewhat surprising aspect of our analysis is Heatdils actuallyprecedehe characteristics.

We also note one additional fact about the expansion in.(1R2)or research [2, 7] has shown that for both parabolic
equations and damped wave equations the eigenfunctiohe operator

Lu(z) = 0%u + %z@zu
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Figure 1: Graphs of the functiong (left panel) andy;” (right panel). Note théong tail of
gfr asz — oo.

play an important role for the asymptotics. In particular,appropriate function spaces this operator has a sequénce o
isolated eigenvalues whose associated eigenfunctionsecased to construct an expansion for the long-time asyinptot

In this connection we prove that the functiajs are closely approximated by eigenfunctionsCofvith eigenvalues\,, =

—% +2~("+1); more precisely, the functiong are eigenfunctions of a compact perturbatiopéee e.g. (1.4). However,

so far we have not succeeded in finding a function space wihitthdontains these eigenfunctions (the functigfislecay
slowly asz — 4o00) and in which the corresponding eigenvalues are isolatédim the spectrum. We plan to investigate
this point further in future research.

Before moving to a precise statement of our results we natetlr approach makes no use of Kawashima'’s energy estimates
for hyperbolic-parabolic conservation laws [3]. Insteag pvove existence by directly studying the integral formlod}.

We now state our results on the Cauchy problem (1.1). We hegistating the precise assumptions we make on the
nonlinearitiesf andg in (1.1).

Definition 1 The mapg, ¢ : R* — R are admissible nonlinearities for (1.1) if there is a quatitanapg, : R* — R and

a constantC such that for allz, |z;| and|zz| small enough,

lg(z)] < Clz|*, l9(z1) — g(z2)| < Clz1 — 22|(|21] + |22]) ,
|Ag(z)| < Clz]*, |Ag(z1) — Ag(z2)| < Clz1 — z2|(|21] + |22])?
|f(z)| < Clz| and |f(z1) — f(z2)| < Clz1 —22] ,

whereAg(z) = g(z) — go(2).
The main result of this paper can be formulated as follows:

Theorem 2 Fix N > 0. There existg, > 0 sufficiently small such that if



() laolur ) + |aolLi(r) < €0 @and|bo|p2(r) + [bolL1®) < €0

(i) [22aolrzm) + [22bolL2r) < 00,

then (1.1) has a unique (mild) solution with initial conditisay andb,. Moreover, there exist functiodgr})\_, (indepen-
dent of initial conditions) and constantsy, {d:f})_, determined by the initial conditions such that if we define

u(z,t) =alx —t,t) + bz —t,t) and ov(x,t) =alz+tt) —blx+t,1t)

then
1 al 1
) = F(—2=) + ——d g (=) + RY (vt
) = i () + 2 e i (i) ) .
N :
1 1
v(z,t) = + ——d,, 9,, (- + RN (z,1),
where the remainderB)Y and RY satisfy the estimates
3__ 1 N
sup(1+1)* 2V || Ry 03 (5 )Lz < Cn
t>0
= (1.6)

sup(l+ ) 173977 9, RY, 1 () Lege) < Cn -
>0

Furthermore, forn > 1, the functiong; satisfyg* (z) ~ |2| 172" asz — +oc.

There is a slight incongruity in this result in that the nomwihich we estimate the remainder term is weaker than that we
use on the initial data; namely, we do not give estimatestferemainder irH?(RR), or in the localization normg*! (R)

and the weighted.?(R)-norm (on that aspect of the problem, see Remark 3 below)orEne 2 actually holds for slightly
more general initial conditions than those satisfyindif))-Furthermore, we will prove that the estimates (1.6)dHor all
initial conditions(ao, bo) in a subseD, C H; x H, that ispositively invarianunder the flow of (1.1). However, since the
topology used to define the subgat is somewhat non-standard, we have chosen to state theirgsally in this slightly
weaker, but hopefully more comprehensible, form to keeprttreduction as simple as possible.

Remark 3 It is interesting to note (see Proposition 7 below) thata(-, t)||r2r) + [|#2b(:, t)||L2(r) is finite for all finite
t > 0, but that the terms witlhh > 1 in the asymptotic expansion do not satisfy this propertytdue long tails of the
functionsg*.

Remark 4 As the asymmetry in the degreezoflerivatives in (1.1) suggests, we require more spatial lagpy from the
second component (tibevariable) than from the first (the variable). It is then natural to expect th&" or R are not
necessarily i, but that only their difference is.

We conclude this section with a few remarks. Defingz,t) = a(z,t) £ b(x, t). Then the asymptotics of the solutions of
(1.1) in the variables . are the same as those of the two dimensional (generalizedeBsiequation

Opuy = 0%uy + Opuy + 0, (C+“i —c_u?)

1.7
du_ = 2u_ — pu_ + Ip(c_u® —cpul), (1)

where the constants. are determined by the Hessianggt:, b) ata = b = 0 through
_ .1 929 DuDby 1
cx = +5(1£1) '(&labg 29 )| oo (il) '
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We will see that the hyperbolic effects manifest themsethesugh the ‘source’ terms-c_u? , respectivelyc v in the
first, respectively second equation in (1.7). In particulane of the termg: with n» > 1 would be presentin the asymptotic
expansion if those terms were absent.

Finally, note that we have chosen to state Theorem 2 for fiNiteAs it turns out, the sums appearing in (1.5) converge
in the limit asN — oo, in which case the estimates (1.6) hold with time weightdaegd by(1 + t)% In(2 +¢)~! and
(141t)4 In(2 +t)~1. The proof can easily be done with the techniques used iptiper and is left to the reader.

The remainder of the paper is organized as follows: In Se@iowe discuss the well-posedness of the Cauchy problem
(1.1) in an appropriately defined topology. In Section 3, wpl&n our strategy for proving our main result, Theorem 2,
on the long time asymptotics of solutions of (1.1). Namelg,decompose that proof into a series of simpler sub-problems
which are then tackled in subsequent sections: in Secti@ml%b, we investigate properties of solutions of Burgerfsety
equations, respectively of inhomogeneous heat equatisrtbiey occur naturally in the asymptotic analysis. In $ed,

we collect some estimates that are used in the proof of thepsskdness of (1.1). Finally, in Section 7, we specify the
sense in which the semigroup of the linearization of (1.Xjase to heat kernels translating along the charactesjsdied

we give estimates on the remainder terms occurring in Tine@re

2 Cauchy problem

To motivate our technical treatment of the problem and inigalar our choice of function spaces, we first note that upon
taking the Fourier transform of the linearization of (Litjpllows that

a ay (0 ik a
o (b) B L(b) - <zk: —2k2) (b) ' @1
We then find that the (Fourier transform of) the semigroupeissed with (2.1) is

oLt — eth(cos(ktA) + £ sin(ktA) % sin(ktA) ) 7 2.2)

% sin(ktA) cos(ktA) — £ sin(ktA)

whereA = /1 — k2. The most important fact about the semigrelipis that it is close te'°?, the semigroup associated
with the problem

(. w\ _ (02 + 0, 0 u
O (v) = Lo (v) :( 0 02 — az) (v) ' (2:3)
Formally,e™* can be obtained by settiny = 1 in e™* and by conjugating with the matrix
/11
S (1 _1> . (2.4)

These two operations correspond to a long wavelength eiqgraaad a change of dependent variables to quantities that
move along the characteristics. More precisely, we wilMprthate' satisfies the intertwining property

Lt ., Lot
Se™t = e 'S,

where the symbok means that the action of these two operators is the same liartieescale — long time limit; see Lemma
19 at the beginning of Section 7 for details.

Furthermoree! satisfies parabolic-like estimates

1
lelt| < Ce™ mi“(k2’1>%< } 11+k2> ; (2.5)
V1+k2



(8)] <o L) e

uniformlyin¢ > 0 andk € R.

Hence, to summarizel* behaves like a superposition of heat kernels translatimggathe characteristics of the underlying
hyperbolic problem. In view of the above observations as asebf classical techniques for parabolic PDE’s, see e,d.][5
we will consider (1.1) in the following (somewhat non-stard topology (cf also [6]):

Definition 5 We define3,, resp. B, as the closure of$°(R, R?), resp.C5° (R x [0, 00), R?), under the norm - |, resp.
|| - |I, where forzg = (ag,bo) : R — R? andz = (a,b) : R x [0,00) — R?, we define

20| = I|Zo]lc + llzoll2 + [Dzoll2 + [D*boll2 . lzl] = [2lloc.0 + ll2ll, 2 + [IDz]l3 5 + [D?b]|5,2+ -
Here (Da)(x,t) = Oya(x,t), a(k,t) is the Fourier transform odi(z, t),

(1+1)9
" ox = _ Al
pyq igg 1n(2+t)”f(’ Ny

[ £llp,g =sup(X + )Y FCOp s | f]
t>0

and| - ||, is the standard.”(R) norm.

Before turning to the Cauchy problem with initial datal3p we collect a few comments on our choice of function spaces.

Consider first the requirements on the initial conditionglirl). While the use ofl! space is quite natural in this context,
we choose to replace tle norm by the (weaker) control of tHe™ norm in Fourier space. This has the great advantage
that all estimates can then be done in Fourier space, whesethigroup™ has the simple, explicit, form (2.2).

In turn, our choice of-exponents in the normh- || is motivated by the fact that these are the highest possiplerents for
which the]| - ||-norm of the leading order asymptotic te%go(ﬁ) is bounded. Note also that for the linear evolution
(2.1), we have
le™z0|| < Clzol (2.7)
sincej(k, t) = e~ min(k*. Dy (k) satisfies
1D, 8)llz < €™ ID" o 2 + min(* % o o, D" o] 2 ))

foralln=0,1,....

Finally, we note that for admissible nonlinearities in teaese of Definition 1, the mag(a, b) = f(a, b)d.b+g(a,b) = h(z)
satisfies

1h(2)lly, 3 + 17(2)]l2,2 + [DA(2)]5,2 < Cllz]l? (2.8)
1P(21) = h(z2)]l1,1 + 1h(21) = P(22)ll5,3 < Cllza — z2[|([|za]] + [[22]]) , (2.9)
[1D((z1) = 1(22))ll2,5 < Cllza = z2[|(l|za]] + [[22]]) - (2.10)

We are now fully equipped to study the Cauchy problem (1.5:in

Theorem 6 For all zy € By with |zg| = |(ag, bo)| < €0 small enough, the Cauchy problem (1.1) is (locally) wellgzbi
B if the nonlinearities are admissible in the sense of Definitl. In particular, the solution satisfigz|| < ce, for some
¢ > 1 and is unigue among functions fsatisfying this bound.



Proof. Upon taking the Fourier transform of (1.1), we get

(3) (SC _2]22>(Z) + (i) (21)

which gives the following representation for the solution

_ (a(t)\ _ rtfao ! L(t—s) 0 _ Lt
z(t) = (b(t)) =e (bo) + /Ods e (azh(z(s))) =e'z + Nz](t) . (2.12)
We will prove below that for alk; € B, = 1, 2, we have

INz]|| < Cllzl|* and [|N[z1] = Nz2]|| < Cllz1 — za]|(]|21 ]| + [1z2]) (2.13)

for some constanf'. The proof of Theorem 6 then follows from the fact that foralle B, with |zo| < ey small enough
andc > 1, the r.h.s. of (2.12) defines a contraction map from somel(sbal of radiusceq in B onto itself.

The general rule for proving the various estimates invoine(@.13) is to split the integration interval into two panth
s €I =10, %] ands € I, = [%, t]. InZ;, we place as many derivatives (or equivalently, factork)ads possible on the

semigroup:"*=*), while onZ,, (most of) these derivatives need to actgsince the integral would otherwise be divergent
ats =t.

Additional difficulties arise from the fact that* has very little smoothing properties (slow or no decay @s|k| — o),
so that in some cases we need to consider separately theklaaye and the smalt-part of theL.? norm, say. This is done
through the use dP, defined as the Fourier multiplier with the characteristiedtion on[—1, 1].

We decompose the proof ¢/ [z]|| < C|z||? into that of

—

IVl < [[N2]lloc,0 + IN[2]ll2,2 + IPDNz][l5,5 + [[(1 — P)DNz]||,5
+ (1= P)D°Nzl2l5 5+ + [|(1 = QPD’N 2]z 5 5+ + [|QPD*Nz]2 |5 5+
< Cllz)?, (2.14)

whereQ is the characteristic function fér> 1 and\[z]. denotes the second componeni\Giz].

We now considefPDA[z] |, = as an example of the way we prove the above estimates. We have

PDNTa 0l < @)l (| su JHlvFe ) [ds 12

k|<1,720 t—s
L) [f A+
+ ||[Dh(z i( sup e 4)/d57
Dbl (| sw e R
2 (% ds 1 b ds 3
SCZQ(—/ + )§0z21+t7 2.15
;[ t + T )=t 219

for all £ > 0, which shows thaM]P’DN[z]HQ,% < C||z||*. All other estimates in (2.14) can be done similarly; we pose
their proof to Section 6 below.

Finally, we note that the Lipschitz-type estimate in (2.68) be obtained in the same manmeutatis mutandisdue to the
similarity between (2.9) and (2.10) with (2.8); we omit thretails. m

We can now turn to the question of the asymptotic structurth@fsolutions of (1.1) provided by Theorem 6. Note that
already if we wanted to prove that’z, satisfies ‘Gaussian asymptotics’ we would need more loaiidiz properties on
zo than those provided by th8y-topology. It will turn out to be sufficient to requitg) € By N L2(R, 2™dz) for (some)

m > 2. We now prove that this requirementigaward invariantunder the flow of (1.1):



Proposition 7 Letp,,(x) = |z|™ and define
Dy, = { zo € Bg such thatIZ()| + Hme()”Q < 0 } .

If zg € Dy, and|zg| < € such that Theorem 6 holds, then the corresponding solutionof (1.1) satisfiez(t) € D,, for
all finite t > 0. Furthermore, there holdi(t)| < (1 + §)eo for some (small) constait

Proof. Note first that by Theorem 6z(t)| < ||z|| < (1 4 d)eg sincezg € By and|zg| < €. Then, fixm € N, m > 1. The
proof of Theorem 6 can easily be adapted to show that (1lbraly (in time) well posed irD,,,. Global existence then
follows from the fact that the quantity

N@) = llonaC. P = 5 [ do fol(a(e, ) + blat))

growsat most exponentiallgst — co. Namely, we have

BN () = /c:iox |:v|m(8x(ab) + 2002 + bal(f(a, b).b + g(a, b)))

— 00

- /ifx m|x|mﬂsign(x)(b(a +g(a,0) + (2 + f(a, b))bazb)

—00

_ /_33 2™ (@:0)%(2 + f(a,0))

< [ade ((m = 0t ol ba + gla, )+ 2+ fa b0,

- /d:c |x|””(8xb)2(2 + f(a,b))
< / de ((m = 1) 4 |2 b(a + g(a, b)) + 27 |2+ f(a, b)|6?)
S Cl(m7 60) + CQ(GO)N(t) )
due to the estimatef (a,b) o < Ceo < 2 and| 4L || < Cep. m

Var 162

3 Asymptotic structure - Proof of Theorem 2

We can now state our main result on the asymptotic structiselotions of (1.1) in a definitive manner:

Theorem 8 LetD,,, be as in Proposition 7 witm > 2, letz, € D,,, with |zy| < ey such that Theorem 6 holds and define
u(z,t) =alz —t,t) + bz —t,t) and ov(x,t) =alz+tt) —blx+1t,1t)

for the corresponding solution(t) = (a(t),b(t)) of (1.1). Then there exist functiodg:"}_, (independent of,) and
constantCy, {dF}N_, determined by, such that

N
1 . 1
u(wt) = ——0d () + D ot () + R ()
+ el 3.1)
- .
1 1 .
v(x,t) = Nl (\/f—H)JrZ dngn(\/l—H)JrRiv(fU,t),

(L t) T

n



where the remainderB’ and R’ satisfy the estimates

sup(1+1)17 557 |RY, 1 (1) L2y < O
=0 3.2)
sup(1 + 1) ||, RY, (D) la(z) < O -

Furthermore, forn > 1, the functiong/= satisfyg® (z) ~ |2|7172" asz — +oc.

Remark 9 As will be apparent from the proof of Theorem 8, any hypedspdirabolic system of the form
Oz + f(2). = (B(2)2,),

with admissible nonlinearities in the sense of (the natesaénsion of) Definition 1 gives rise to solutions havingdhme
asymptotic structure as those of the p-system as long asltbe/ing two conditions are satisfied:

1. There exist two matrices and A with S non-singular andA diagonal having eigenvalues of multiplicityfor which
Selt ~ elotS in the sense of Lemma 19 (see Section 7), whgre 92 + A9, andL = B(0)02 — f/(0)0,.

2. The Cauchy problem with initial condition in the correggang functional space (the natural extension3gfto the
problem considered) is well posed and satisfies the anatogii€heorem 6 and Proposition 7.

We now briefly comment on the above assumptions for speciitesys such as the ‘full gas dynamics’ and the MHD
system. The intertwining property of item 1 above is provef for quite general systems, though not in exactly theesam
topology as that used in Lemma 19. As for item 2, local webquness for initial data iff, is certainly not an issue, the
only difficulty is to prove that the various norms of Definitié exhibit ‘parabolic-like’ decay as— oco. This is very likely

to hold, particularly for systems satisfying item 1.

While the variablega, b) are adapted to the study of the Cauchy problem because ofiltleeeint asymmetry of spatial
regularity in (1.1), they are not the best framework for ging the asymptotic structure of the solutions to (1.1).uths
out to be more convenient to change variables to quantitegsove along the characteristics. We thus define

w(z,t)\ _(T-Y 0Y1 1 \sa(z,t)\ (7' 0
(U(m,t)) < 0 T)<1 —1)(b(x,t)) L0 7 Sz(2,1)
where7 is the translation operator defined by

(Tf)(z,t) = f(z +t,t) orequivalently by T f(k,t) = e™* f(k,1). (3.3)

Note in passing that

a(z,t) = %(u(x +t,t) +v(z —t, t)> and b(z,t) = %<u(:c +1,t) —v(x —t, t)) :

We then use the fact thatsatisfies the integral equation

¢
_ oLt L(t—s) 0
Sz(t) = Se™'zg + Ads Se (&Ch(z(s)))

_ Lot ! o(t—5) 0
= eL SZ() + Ads eL S (aigo(z(s))) + R[Z] (t) s (34)

where

RI() =S — e+ fds | 800 (o000 ) =08 (o o) |
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To justify the notation, which suggests tiatis a remainder term, we will prove in Section 7 thidfz] = (R [z], Rv[z])
satisfies the improved decay rates

IR (w03 [2]ll2,5+ + DR (uwy[2]lls, 5+ < Ceo (3.5)
4 4

because of the intertwining relatidfe™ ~ eM0!S (see Lemma 19) and the fact thigt) = go(z) + h.o.t..

Recalling thayy, is quadratic (cf Definition 1), we will write

go() = e+ (a+b)® —c_(a—b)2 +es(a+b)(a—b)
= (Tu)? — (T ') + c3(Tu)(T )

for z = (a,b). We thus find from (3.4) that andv satisfy

u(t) = eait(ao +bo) + Oz /dS e t= 6)< u(s)? — 077_20(5)2)

F T IR[Z)(t) + 30, ds eai<t*5>rl((7u(s))(rlu(s))) , (3.6)

v(t) = % (ag — bo) + s /Els eai(t*5)<c,v(s)2 - c+72u(s)2)
+ TR, [2)(t) — 30, /ds e9a(t= S>T Tu( ))(T_lv(s))) . (3.7)

Note that, but for the presence of the second lines in (3.6)aT), these expressions are precisely Duhamel’s forfoula
the solution of the model problem (1.7), written in terms;of 7 'u, andv = Tu_. The next step is to write

u:u*—l—RiV:uo—i—ul—i—R,iV and UZU*—I—R{}V:UQ-i-’Ul-i-R{}V,

considering?Yy andRY as new ‘unknowns’ and

N
1 +(_z 1 +,t
uo(m,t): mgo(m)7 u1($,t):z:1(1+t)1_2n1+1 dngn( 1+t)
n= (3.8)
1 T > 1 - T
’U0($,t) \/FQO (\/m) and Ul(mat) Z (1 +t) 2nl+1 dn gn( 1+t)

for some coefficient$d: }_, and functionsg:* }V_, to be determined later.

We now use
u? = (u—uy)(u+uy) +u? = RY (u + uy) + u? 4 2upuy + ul
02 = (v —v) (v +vy) + 02 = RY (v +v,) + 0?2 + 20001 + 03,
(Tu) (T 'v) = (TRiV)T‘l(HTU*)—i- (T RY)T(* + S (Tu)(T o)
Since
N
g(-)‘_(l') = U()(LL‘,O) ) ul(:c,O) = ZdJrgn( ) ’
n=1

9o () = vo(x,0) and vy(z,0) Zd" gn (z),

n=1

10



we find thatR) and R’ satisfy
RY (1) = " (a0 + by — gy

t
+ [ ealtuo( ) + 10, [ds eaj(ts)u()(s)ﬂ - uo(t)
0

t
+ [ eawtul(O) +2¢40, [ds eag(ts)uo(s)ul(s)} —u (t)
0

t
e [a /dse HO U 2((1)0() + 2up(s )} Ze“ I

0 n=1

+ Rz, RN](t) + T 'Ry 2] (t) (3.9)

RN (t) = 662 (a() — b() 90

+ |:e x ’U() +C 8 /dse L(t 6)’U() )2:| 71)()(t)

+ [eaitvl(O) +2¢_0, ds e0i (1 D (s )vl(s)] — vy (t)
0

—cy {a /Odse HO S)T2<(u0( )2+ 2u(s )] Ze

n=1

+ Rolz, RN]() + TR, [2](t) , (3.10)
where
Rulz, RN](t) = ¢4 Eo[h1w + ha.u](t) — c_E_g[hy o + hs o] (t) + csE_1[hg + ha](t)
Ro[2, RN](t) = ¢_Eo[h1,o + hs](t) — ¢4 Ealhiu + hs.u(t) — csE1[ha + ha](t)
with RY = (RY RN),

t) =0, sef(t $) T°h(s) and
0

wt ), hye=ul, hy= (TRN)T*I(UJFU*

hi.=RY

)+ (T*IRf}V)T<u+u*)

( 2

RN (w+v.), haw=0v}, ha=(Tu)(T 'v).

Note that we can write (3.9) and (3.10)B$’ = F[z, R"]. If we now conside fixed, we can interprdR”™ = F[z, R"]
as an equation faR " which can be solved via a contraction mapping argument. Mamve will prove that if||z|| < Ceq,
RY — Flz, R"] defines a contraction map inside the ball

IR 2,2 e + IDRY ll5,5  + 1R [l2,2 — + IDRY |55 < C (3.11)

for e = 2=V=2, provided{gF}_, and{d:})_, are appropriately chosen.
Basically, we will choose, vy, u1 andwv; in such a way that the second and third lines of (3.9) and J3:40ish. Note
that if, for instance, we set the second, respectively tivies of (3.9) and (3.10) equal to zero, the resulting edjealare

nothing but Duhamel’s formulae for Burger’s equationsdgtandu, respectively for linearized Burger’s equations fgr
andwv; . Properties of solutions to these types of equations adéestin detail in Section 4 below.

Onceuy, vg, u1 andwv; are fixed, the time convolutions in the fourth lines of (3.84143.10) can then be viewed as the
solution of inhomogeneous heat equations with very spdaifiomogeneous terms. Properties of solutions to this type o
equations are studied in detail in Section 5 below.

Assuming all results of Section 4 and 5, we now explain howrtzeed to prove thak [z, R™V] defines a contraction map.

11



Obviously, the requirement ofy= }_, and {d;F }N_, is that the first four lines in (3.9) and (3.10) satisfy (3.1TIhis is
achieved in the following way:

1. The first line of (3.9), respectively of (3.10) satisfiesl@ for anygﬁ)E such that the total mass gf is equal to that
of ag =+ bo, providedag + by andgy satisfy|| 2 (ap = bo)|2 < oo and| z2g||2 < oc. This fixes the total mass of
g=. Note also that we need the estiméte?(ag + bo)|2 < co. There is no smallness assumption here, which is to
be expected since generically?(a(-,t) £ b(-,t))||2 will grow ast — oo. Note on the other hand that Proposition 7
shows that| z%(a(-,t) £ b(-,t))||2 remains finite for alt < oo, so requiring| 2%(ao + bo)||2 < oo is acceptable.

2. We can set the second lines in (3.9) and (3.10) equal to laemicking for vy and vy any solution of Burger’'s
equations

Orug = 02ug + ¢4 0x(ug)? and dyvg = 02 + ¢, (vp)?

(or of the corresponding heat equations if eitheror c_ happen to be zero). In Proposition 12, we will prove that
there exist unique functions, andv, of the form given in (3.8) that satisfy the conditions of itérabove (total mass
and decay properties). This uniquely determinganduvy.

3. We can also set the third lines in (3.9) and (3.10) equakto,zby picking any solutions; andwv; of linearized
Burger’'s equations

Orur = 6§u1 +2¢40;(upuy) and Oy = 851)1 + 2¢_ 0y (vov1) . (3.12)

In Proposition 12, we will also prove that there is a choicéuoictions{g }_, such that,; andv; in (3.8) satisfy
(3.12) for any choice of the coefficienfg;=}_,. Furthermore, in Proposition 12, we will prove that the cieodf
functions can be made in such a way tha{x) have Gaussian tails as— Foo and algebraic tails ags — 4oc.

This actually completely determingg (z) up to multiplicative constants (this last indeterminacyl we removed

when the coefficient§d;" } N_, are fixed).

4. We then further decompose the terms involvjiign the fourth lines in (3.9) and (3.10) 83 () = fn(Fx)+RE (z).
The definition and properties ¢f,(x) are given in Lemma 10. In particular, in Proposition 12, wé piove that
R*(z) have zero total mass and Gaussian tails:as-+ oo, which implies that?%* R* also satisfy (3.11).

5. Finally, in Section 5, we will prove that the time convadutt part of the fourth lines in (3.9) and (3.10) can be split
into linear combinations oéafntfn(xx) withn = 1...N + 1 plus a remainder that satisfies (3.11). The coefficients
{dX}]N_, canthen be setrecursively by requiring that all the terntisawi= 1. .. N coming from the time convolution
are canceled by those coming from item 4 above. This can allwaylone because the coefficiené?fftfm(ﬂpm) in
the time convolution part of the fourth lines in (3.9) andl(®.depends only ogﬁE if m=1and oncljﬁ_1 if m > 1.

The only term that cannot be set to zero is the last term initleat combination (the one with= N + 1), which is
the one that ‘drives’ the equations and fixes 2=V 2.

The procedure outlined in 1-5 takes care of the first foursliime(3.9) and (3.10). We will then prove in Section 7 that the
termsR ..} (2] satisfy (3.11) and that

1 1
Z HDaR{u,’U}[Za RN]”Q,%-‘,—%—E < Ceo Z HDQRNHQ,% S—¢ +C, (3.13)
a=0 a=0
1 N N 1
Z ||DQ(R{U,’U}[Z7 R{v] - R{u,v}[zﬂ Rév])”Q,%-i-%—e < Ce Z HDa(R{V - Rév)”Q,%-&-%—e . (314)
a=0 a=0

This finally proves thaf [z, RV] defines a contraction map and that the solutioRf = F[z, R"] satisfies (3.11), which
completes the proof of Theorems 2 and 8.
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4 Burger’s type equations

In this section, we consider particular solutions of Buiggmpe equations

Orug = aiuo + vaxug 4.1)
6tuf = aiuf + 270, (uouf) (4.2)

of the form

) and  ulf(z,t) = L gr(2-). (4.3)

_ _1 T
uo(2,t) = i 90( i (Le)zmFr O VIFE

We will show that for fixedM (ug) = /ocix ug(x,t) = /O(ia: go(x) small enough, there is a unique choiceggfand g;-
such thay;F (z) = f.(Fz) + RE(x), where

© e
fn(2) = /de (ggezm (4.4)

andR has zero mean and Gaussian tailsas— oo. In particularg (z) decays algebraically as— +oo, as is apparent
from (4.4).
Before proceeding to our study of (4.1) and (4.2), we prowegkeperties of the functiong,.

Lemma 10 Fix 1 < n < oco. The functionf,, is the unique solution of

2 fn(2) + 520:fn(2) + (1 = 57 ) fu(2) =0, with

1 —n 1 . 4.5
£a(0) = 2 T(H2) and  lim 2~ eT £,(2) < oo (4-2)
Z— 00
It satisfies [ d= fn(z) = 0 and there exists a constafitn) such that
2
U D7 gt e (IO (2a(2) +20:u(2) ) < C)
m=0 , (4.6)
sup Z p%—l—'rn72+m—%(Z)|a7znfn(z)| < C(TL) )
ZeRm:O
where
(1+22)8eT if2>0
Ppa(2) = . )
(1+2%)32 if 2<0
Proof. We first note thaff,, can be written as
(e+2)?
o +2)e” 1 1 _ 42
fue) = [ae EEIE Ty [t e ). @.7)
0 Eam 0

This shows thaf,, solves (4.5) since, definingf = 92 f + £20.f + (1 — 525=) f, we find

L) = [ [eop(e ) Palomig e ) <o

13



Obviously, f,.(z) is finite for all finite z, so we only need to prove th#} satisfies the correct decay propertie$zas— oo
so that (4.6) holds. It is apparent from (4.4) tifatdecays like a (modified) Gaussian as— oo and algebraically as

z — —oo. Furthermore, substituting(z) = C|z|P* andf(z) = C|z|p2e*§ into £Lf = 0 shows that the only decay rates

compatible withCf = 0 arep; = —2 + 5~ andpy = 1 — .

(6+2)2

We now complete the proof of the decay estimates (4.6). gt (§,2) = 07'((§ + z)e”~ 7 ) and Gy m(&,2) =
O (2Fn(§,2) +20.F, (&, 2)).

We first consider the case> 0 and note that’, ,,, andG,, ., satisfy
[ Fom(§,2)] < [Fnm(0,2)] and |Gy m (&, 2)] < [Gnom(0, 2)]
forall ¢ > 0if 2 > 2, for somezq large enough. We thus get, e.g.

< |Fno(0,2)] [ de gzt 421730 [ dE |Fo(€,2)| < C2lm2me T,

0 z—1

Fu(2)] = ‘ A A Fy (€, )€ !

The estimates o[ (z f,.(z) + 20. f»(z))| and|d}*™ f,,(z)| whenz > 0 andm > 1 can be done in exactly the same way;
hence we omit the details.

We now consider the case< 0 and note thaf, ,, andG,, ,,, satisfy

|Fn,m(€7z)| < |Fn,m(_%72)| and |Gn,m(€az)| < |Gn,m(_%72)|

forall0 < ¢ < -3 if 2 < —», for somez, large enough. We thus find (integrating by parts in the seautiedral below)

|fn(z)| = ‘ \/ng Fn,()(gvz)gz_lnil

_% L 00 )
< Fusl-3,2)] [ dsfﬁw‘/dm,o(s,z)w1
0 -3

1
w2

<Clz

a1 _z22 1 > etn)? 1 _9
e 16 +2(1 - 5 Eem T LT (O%
z
2

Since the remaining estimates can again be done in exaetiatime way, we omit the details. It only remains to show that
fn(z) has zero total mass. This follows from

/ dz fu(2) = (% — 2”%)*1 [dz Lfn(2)=0,

— 00

sinced? f,,, 20 f,, and f,, are all integrable oveR.. m

Remark 11 Using the representation (4.7), splitting the integratioterval into [0,27%) and [2~ %, c0), integrating by
parts and letting» — oo, one can prove that

M)

lim 27" f,(2) = ze” 7

n—oo

which shows that the constafi{n) in (4.6) grows at most like".

We can now study in detail the solutions of (4.1) and (4.2) #na of the form (4.3):

Proposition 12 Fix 1 < n < oco. For all a,y € R with |ay| small enough, there exist unique functiepsand ;= of the
form (4.3) that solve (4.1) and (4.2), witly satisfying

%) 3 22
e1
dzgo(z) =, > ————0"go(2)| < Cla
/—oo = (V1 2)m
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and withg;= (2) = f,.(F2) + R (z), whereR;: satisfy

oS] 3
/dz RE(2) =0 and sup Z

z€R m=0

2

Z_

4

(\/H_—Z,Q)lerf

107 RE ()| < Clar]

Proof. The (unique) solution of (4.1) of the formy (x, t) = 11+tgo(\/f?) satisfying/ociz go(z) = ais given by
tanh(%)e*%

go(z) = &7 AT

/7 (1 + tanh (5t )erf(%))

2

In particular, we have

3 2

) %m@w < Cla . 4.8)
m=0

We next note that substituting (4.3) into (4.2) gives
0= 029 (2) + $20.97 (2) + (1 — 547)9i5 (2) + 270:(90(2) 95, (2))
= Eg,,f(z) + 278Z(u0(z)gf'f(z)) . (4.9)

We formally have (using integration by parts)
[z = (b= )t [ s L0 G) + 20 unl2)gE () = 0. (4.10)

which shows thag* have zero total masprovided the formal manipulations above are justified. provideds and its
derivatives decay fast enough so that the integrals areecgent.

As is easily seenf,,(z) and f,,(—z) are two linearly independent solutions 6f = 0, whose general solution can thus
be written asy f,(2) + c2 fn(—%). Using the variation of constants formula, we get that tHetem of (4.9) satisfies the
integral equation

: n\— 9 ’:E ) n 0 +
oE () = fﬁ(z)(cf +27/(1g ACHLAACT- (E))>+fn(z)<c§t _ 27/(15 ACLACHGE: <5>>>7
0 0

where the Wronskiafl (z) is given byW (2) = f,(2)0, fn(—2) — fu(—2)0.fn(2) andcit andcgt are free parameters.

Note thatl¥(z) satisfiesd, W (z) = —5W (z) and hencéV (z) = W(O)e—é for somel (0) # 0. We now set: andcy
in such a way that (after integration by parts), we have

9r (2) = fa(F2) + Rlg;)(2) , (4.11)
RlgE)2) = i n(2) [ A€ €= + 2060 €)@ (0

+ ity a(=2) [ A€ (€4a(9) + 206 (€D n( ©).
Using Lemma 10 and (4.8), it is then easy to show thatdet small enough, (4.11) defines a contraction map in the norm
Tl g, = sup(V/1+ 22221 (2)]
zE

Namely, we have the improved decay rates

1 22
sup C 19" RIgE](2)] < Clay] |9E ] a -
zeR St (VI + 2%)tHm—ar
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This shows that (4.11) has a (locally) unique solution amfumgtions with|f|,_ 1

L S a if |ay| is small enough. In
particular, there holds

22
e 4

=[0I Rlgy](2)] < Clan]
sup 0(\/H—Zg)wn,ﬁl l9:](2)| < Clar|

m=

from which we deduce, using again (4.11) and Lemma 10,|h@t|; 1+ < ¢; and thus

b1

22

(S 9 +
sup —————1[0;R[g; |(2)| < Clay|.
ZGR( 1+22)57T1"| z [ n]( )| | ’Y|
Iterating this procedure shows thﬁlmg?f|2+m_%n < ¢,, and that

22

w

e1
sup — |0 R[gE](2)] < Clay
R 2 (e 0 Bl = Cler]

as claimed. In turn, this proves that the formal maniputetim (4.10) are justified, so that the functigyjs(z) have zero
total mass, which shows that the remaind®fg;"](») have zero total mass as claimed siftje;r](z) = g (z) — fu.(£2)
and since botlgF (z) andf,(z) have zero total mass

5 Inhomogeneous heat equations

In this section, we consider solutions of inhomogeneousérpaations of the form
Bpu = 0%u + az<(1 + t)f(%)) ,u(z,0)=0, (5.1)
wheref is a regular function having Gaussian decay at infinity. 8ohs of (5.1) satisfy

2

Theorem 13 Letl <n < o0, 0 = +1,Z(z) = e, M(f) = /o(iz f(z)and

e . © e
n(z,t) = o 2 n( 2 with  f, :/dil. 5.2
u (x ) (1“)17W Var f (\/1—_.,_,5) f (Z) ; 5(5_2)17ﬁ ( )
The solutioru of (5.1) satisfies
2
[ = M(f) tnllg, 3+ + [D(w = M(f) un)[lg 5+ < C Y ED™ flloo , (5.3)

m=0

for all f such that the r.h.s. of (5.3) is finite.

Remark 14 Note that whilew — M(f)u,, ast — oo in the Sobolev norm (5.3), it does not do so in spatially wieidh
norms such a&?(R, z2dz), asu,, has infinite spatial moments for all times, while all momexits are bounded for finite
time.

Proof. We first define

P©) = [0 (1) M ) win e = [0 ) (5.



and note thaf’ satisfies

2 2 2
ID*Fll+ > lpD™Flli+ Y ID™Fll2 < C ) ED™ flloo (5.5)

m=0 m=1 m=0

wherep(z) = v1 + x*. Namely, we first note thap /||, < | El2+ || E”||2 andF (k) = (ik) = (f (k) — f(0)e~ ). Then,
since||2f||ls < oo implies thatf is analytic,F' is regular neak: = 0. The proof of (5.5) now follows from elementary
arguments.

We finally note that it follows from (5.4) that

(1 +t)2*’1n*% (z—20t)2

(1+t)r‘rt*%f(71_§';):1\4(f) e +(1+t)r‘flaxF(71_f;). (5.6)
=A(z,t) =0.B(x,t)

The proof of (5.3) is then completed by considering sepgréite solutions of heat equations with inhomogeneous terms
given byd, A(z, t) andd? B(z,t). This is done in Propositions 15 and 16 belaav.

Proposition 15 Leto = +1,1 < n < oo, and letu,, be defined as in (5.2). The solutiarof

Oru = 0*u+ 0, A, u(z,0)=0, (5.7)
with A defined in (5.6) satisfies
lu — tunlly, s + [ID(w — ws)]l55 < C . (5.8)
Proof. The solution of (5.7) is given by
_(@—y)? _ (y—205)2
A(t—s) e A(1+s)
u(z,t) = 0 (5.9)

ds d .
0 y\/47rt—s ) Vdn( 1+s —om

To motivate our result, we note that performing thategration and changing variables fremno £ = 25 9% in (5.9) leads

to
A=tz &2
1 1- nl T _ _ 1 02717ﬁ +t e 4 o
Jim (1+¢)7 2 u(—02v1+t,¢) = lim &0 /Z A r— s 2z > h(2).

More formally, taking the Fourier transform of (5.9) gives
5 t eQikas
a(k,t) = ike " (140 /ds EELE—
0o (L+s)tmem

We now use that

t e2ikos t e2ikos

ds ————— — [ds —

11—k 1— 55

o (14s)t72r o s

t eQLkaa [
/ds = k177 (0ck) Ju(1k12) + 0(—ak) T (IR )
0

S 2”

<C(n),

whered(k) is the Heaviside step function and we defined

2is

In(z) = /Ods Sle——%n
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for z > 0. This function satisfies

it;%zk?_l" In(2) = Jneo] < % for Jp oo = Zlirgo Jn(2) .
Now define
an(k,t) = ike—k2<1+t>|k|—ﬁ(e(ak)Jn,oo + e(—ak)m) . (5.10)
We have
[k, £) — @ (k, )] < (C(n)[| +171F 2 )™ 4D < (C(n)[k] + ¢ 2)e K (1) (5.12)

from which (5.8) follows by direct integration. We compléite proof by showing that the inverse Fourier transform ef th
function,, (k, t) defined in (5.10) satisfies

- 91— - oz > fe_%
un(x,t) = S fn(= +) for fn(z):/df(gil. (5.12)

(14)' " 2nFT —z)tmm

This follows easily from the fact that

in(k,t) = (1 4+ )2+ a1 0, (VI +1,0)
and that, since

z+6)?

o = [ae e

g a7
we get
1 0 gikof oo 2isign(ko)€
o2 ' am T e k2| gk €
an(fak) =277 ke /d{ P =ike " |k| "2 /d{ P
- z‘ke’k2|k|’ﬁ<9(ko)Jnm +0(—ko) T, oo), @n(k,0)
as claimed.m

Proposition 16 Leto = 1,1 < n < co andp(x) = v/1 + z2. The solution. of

ou = *u+9*B, wu(x,0)=0, (5.13)
with B defined in (5.6) satisfies
2 2
ully.3+ + [Dully 5 < C (||D5F|1 3 D E Y |DmF||2> (5.14)
m=0 m=1

for all F' for which the r.h.s. of (5.14) is finite.

Proof. We first note that the Fourier transformofs given by

a(k,ﬁ):_kQ/ds —k?(t—s)— 2LkaaF(km)(1+s)% %7

0

which implies

b ds
1— 1-Q)D < C(|bF D*F / :
1= Quly g + 111 = @Duly g < C(IDFlz +[D2Fl) sup [~

18



HereQ is again defined as the characteristic functiontfor 1. Next, integrating by parts, we find

ikE(k)e k't z’k;F(k:\/ 1+ t)e2ikot

u(k,t) = — 4 Nkt
; t
where N(k,t) = ﬁ/ds 21k05< )< (kv1+s 1)>
20 J 1—|—s) L

We then note that
lu= N3 + D@ = N)llo.3 < C(IIF 1 + [DF2 + [D*F2)

and that, definingi(k) = 10, F'(k), we haveN (k,t) = No(k,t) + Ny (k,t) + Na(k,t), where

\ F(ky/1
NO(k;t) ~ /dS e_k (t—s)—2ikos (%) ,
Ny (ks t) = i s ok (t—s)-2ikos [ CEVITS)
, o Jo (14 s)t=20 )’

Rk £) = ik (_ B _)/Ods ok (t—5)—2ikos <@> ,

20\ 2 (14s)2-2r

The procedure is now similar to that outlined in the proof b&®rem 6: split the integration intervals irith £] and[Z£, ]
and distribute the derivatives-factors) either on the functiors andG, or on the Gaussian. Introducing the notation

Bl[pl,ql](t)EAfiS (14s)™ +/}8M7 (5.15)

P2,92 (t— s)zn (t — §)p2

we then find that

+

QD Nyl 5 < CUIFI + D Fll)sup 4% B[

=

+ vl

R
A
—
~
=

FNITINR

+

”QD@NIHQ,%JF% <C(|GllL + |\D1+O‘G||1)§1>uftz+7 Bl[

=

+ vl

NI) ol
[
—
~
=

N[N

tits
—— B
P )

—

QD N335+ < C(|[F[l1 + [[D*F1) sup

H
—
W] oo
-+
—+ e
wlp
[
—~
~
N2

for « = 0,1. The proof is completed by a straightforward applicatiohefmma 18 below, where we consider generaliza-
tions of the functionB; in (5.15) (see Definition 17 below), since those will occuetaon in Sections 6 and 7

6 Proof of Theorem 6, continued

In view of the estimates (2.6) and (2.8) &rf andh, respectively, the estimates needed to conclude the pfddfemrem 6
will naturally involve the functions3y and B which are defined as follows:

Definition 17 We define

B S—F/——
ola /0 Vt—s(1+s)
: (1+s) Lo(1+s) 22+ s)"
B P1,91,7T1 / / ) 1
[pz,qz,rz,u Ods 3)171 t — 1+ ) T %ds (t — 5)172 (t — 1+ S)Tz (6.1)
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These functions satisfy the following estimates:
Lemma 18 Let0 < py; < 1,0 <719 <1 —pa,p1,q1,492,71 > 0andrs € {0,1}. There exists a constart such that for
all t > 0 there holds

Bolgh](t) < C(1+t)™*

1
B[Pl#hﬂ“l }(t) <C ln(2+t)o‘{ (1+t)#

P2,92,72,73 W

if 0<p <1

it opy>1 (6.2)

whereg = min(p; +min(g1 —1,0) +r1,p2 + g2 +r2 — 1), & = max(dg, 1, Opo+r,,1 +73) @NdJ; ; is the Kronecker delta.
Furthermore, since

Bl[PhCh ] (t) _ B[;Dl,th,() }(t) 7

P2,q2 p2,92,0,0

the estimate in (6.2) applies fd@#; as well.

Proof. The proof follows immediately from
t 2 d 1 b -
Bo[q1](t) Sefﬁ/2 i + /02152

t
B P1,91,71 1) < /
braara )OS Ty T oy + <g+1>q

and straightforward integrations

/ ds
2 JosP2 (14 s)r

We can now complete the proof of Theorem 6.
Proof of Theorem 6, continued.

First, we recall that our goal is to prove that the rmidmlefined by

Nz|(t) = A ds o-9) (81 h((; (s))) (6.3)

satisfies|\V[z]|| < C for all z € B with ||z|| = 1. We have already proved th#PDA[z]||, s < C. The other necessary
estimates are done as follows:

IV loo0 < CsupBl[

t>0

é}(t><c,

[SIENNIE

INTella g < Csup(1 + )%y

= Nf=

w:lo. w:lo.
[E—
—
~
~
AN

[

[PDN[z]||5,2 < Csup(l +t)4Bl[

o R
J—
—
~
N~—
AN

N

IN
Q

)

(1 = P)DNz]ll,3 < igg(l +1)% Bo[3](t) <

(1 = Q)PD*N[zl2[l5,5+ < C[[(1 — Q)PDN[zl2]|5,s < C|[PDN[z]2]l5s < C, (6.4)
2 (1+6)T pr2.3.0
HQPD N[Z]QHZ%* < Ci;lp In(2+t) B[%,%,%,O} (t) < 07 (65)
(1= BYDN a5+ < sup(1 + 1) BlZ](8) < C (©.6)
>0
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In (6.4), we used the obvious estimaf@D f || < |Pf||2 and||[(1-Q) fll2,p < 277 9|(1—-Q) f]l2,¢ If ¢ < p, whilein (6.5),

we made use of sup |k|v/1 + e+t < 1, and finally in (6.6) we useship, g |k|(1+ k%)~ 2 = 1. Incidentally, (6.6) is
|k|<1,t>0

the only place in the above estimates where the (cruciatgmee of the extra factét + kQ)*% in the second component
of the r.h.s. of (2.6) is used. This concludes the proof ofofem 6. m

7 Remainder estimates

We now make precise the sense in which the semigebus closeto that of (2.3), whose Fourier transform is given by

—k2t+ikt
Lot (€ 0
elo :( 0 ethikt). (7.1)

Lemma 19 LetP be the Fourier multiplier with the characteristic functiom [—1, 1], and lete™* resp.e* be as in (2.2),
resp. (7.1) andS be as in (2.4). Then one has the estimates

2
sup V1+ te%

t>0,keR

<C, (7.2)

(PSeLt — eL0t8>

4,J

where(PSelt — elotS); ; denotes th¢i, j)-entry in the matriPSelt — elotS.
Proof. The proof follows by considering separatéty < 1 and|k| > 1. We first rewrite
PSelt — oot = P(Selt — eltS)+ (1 - P)elots

We then have

2
< sup \/1+te*% <C.

£>0,[k|>1

2
sup V14 te'?"

t>0,k€ER

((1 - P)eL“tS) y

For |k| < 1, we first compute

ikt ikt
Lotc _ —k*t[ € e
€ S=e (ezkt ezkt> )
cos(ktA) + 15 i sin(ktA)  cos(ktA) + 1EE i sin(ktA)

Selt — oKt
cos(ktA) — L sin(ktA)  —(cos(ktA) — 52 i sin(ktA))

where we recall thah = /1 — k2. We next note that
P|sin(ktA) — sin(kt)| + P| cos(ktA) — cos(kt)| < P| cos(kt(A — 1)) — 1] + P| sin(kt(A — 1))
<PWV1— k2 —1| |kt <Pkt
P|(% — 1)sin(ktA)| <P|V1— k2 — 1| [k|t < Plk[*t.

The proof is completed noting that

m 2
sup t7|k|”e*% < C(n)
k|<1,6>0

for any (finite)0 <m <n. m
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We are now in a position to prove that the remainder

t
_(QuLt _ Lot L(t—s) 0  TLo(t—s) 0
Rz (t) (Se e S)zoJrAds {Se (axh(z(s))) e S (@go(z(s)))]
satisfies improved estimates as stated in (3.5):

Theorem 20 Lete, be again the (small) constant provided by Theorem 6. Thealfay € By with |z| < €, the solution
z of (1.1) satisfies

[R[zlll2,5+ + [[DR[z]]l,5+ < Ceo . (7.3)

Proof. We first note that
(56Lt - eLOtS)Zo :<S]P’6Lt - eLOtS)Zo +S(1 —P)e™zo = Li[20](t) + La[zo](t) ,
and then use the fact that by Lemma 19, we have

1D Lalzo] o345 < Csup(L+ 05 min(Dz0]lz , ¢4 % |Z]|oc ) < C1z0l
t>0

for a = 0,1 and finally

[ L2[2o]|l2,2 + [[DLa[zo][|2,3 < C(||zofl2 + ||DZ0H2)S§P(1 +t)ie 3 < Clzo| .
>0

This proves
H(SeLt - eLots)ZOHQ,% n HD(SeLt - eLots)ZOHQ,% < Clao|
for all zg € By. We then show that
IR[z)(t) —(Se" — 'S )aolly 3+ + ID(RI2] (1) —(Se™ = 'S Jzo )15+ < Clz?
for all z € B. We only need to prove the estimates ffafl = 1. We first decompose
Rlz)(t) —(SeLt - eLUtS)zo = SNi[z)(t) + SNalz)(t) + N3[z)(t) | (7.4)

where

Nl = - | ds cH=9 (a,haioy)

0

Nalz](t) =P A ds eHt7) (&Ch(z(s)) —Oaxgo(z(s))) ’

Ns[z](t) = /0:18 (PSGL(FS) - eLO(tiS)S) (39590?2(5))) '

We then recall thak(z) satisfies
1h(z)]l5,2 + [IDA(2)]l5,5 < Cllz]*
which implies

IMifzls < Csup(L+HTB3I0 <O Dl < Csup(1+ 0T Bof3)(0) < C
t>0

>0 o
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Moreoverhg(a,b) = f(a,b)0:b+ g(a,b) — go(a, b) satisfies
Iho(2)][11 + [Dho(2)]1 3+ < Cllzll* .

Here, we need to consider separately [0,1] and¢ > 1 when estimating[PDN>([z]||, z+. Writing againQ for the
characteristic function for > 1, we find

IPA2fzlllz 3+ < Csup f;gzt)B i ]m<cC,

LN )
[SSENI [
[E—
—~
~
~
AN

|1~ QDN [zl 2 < C sup (1+6)F By[ 1"

0<t<1
IQPDN:fells 3+ < Csup B0 B, 160) < €
We finally note that
l90(2) (2)]l2,5 < Cllzl*
and so, using Lemma 19, we find
szl 3 < sup Gt Bl 11w =c.

A+ rld.i
||DN3[Z]||2,§* < igfo’ In(2+t) B[%éé,o](t) <C.
This completes the proom

It now only remains to prove the estimates (3.13) and (3.h4je mapﬁ{w}, where we recall that

ﬁu[Z, RN|(t) = ¢ Eolhiu + h3u)(t) — c-E_a[h1p + hap)(t) + c3E_1[ha + ha](t)
R, [z, RV](t) = c_Eolh1,p + ha|(t) — c4Ba[hiu + hau)(t) — c3Ei[he + ha)(t)

with

=9, [dse®% (=) Toh(s) and
(

o

u+u*)

hiw=RN(u+u), hsyu=u2, hy= (TR;V)T*(LQU*F (T*lR{}V)T( >
RN(w4wy), hay=v7, ha= (Tu)(T 'v).

Here, we will only prove that

1
S D Ry 2 BN 55 < S IDURY, el (7.5)

a=0 a=0
It is then straightforward to show (3.14), namely that thepeﬂi{u,v} are Lipschitz in their second argument; we omit the
details.

To prove (7.5), we first need estimateslon= (1 4, k1), h2, hs = (h3 4, h3,») @andhs. We note thaing = (ug, vo) and
u; = (ug,vy) satisfy

sup(1 -+ )8 (uo (4, )] + [ (2, 6)])+ (1 + £)2(|Dug (¢, )] + D (£, )] ) < €

t>0
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for some constant’; see Proposition 12. We thus find that

1
Li-e+ DAl 3 < Ceo Y IDRN||p 5 0.,

a=0

1,2 + llhally 2 + [[Dhafl22 < C.

[

11—+ [[Dhully s + (||

(7.6)
[[hs|

1,1 + ||Dhg|

The proof of (7.5) then follows from Proposition 21, whichglies that

1 1
S Dol sy g+ ID°Eglholls s, 5. < Ceo 3 [DRY|

a=0 a=0

2,3+%—c>
1
S ID Ea sl sy s+ + ID°Eolhi]lgs 4 5. < C

a=0

foranyo € {—2,—1,0, 1,2} if the estimates in (7.6) are satisfied.

Proposition 21 Lete > 0 ando € {—2,—1,0, 1, 2}. Then there holds

1 1
Y D" Eo[m]llz545-c <C Y DAl

1L,1+5—€ >
a=0 a=0
1 1
Y IDEq[holllzs i g <C D ID h2]114g -
a=0 a=0

Proof. Letu; = E,[h;]. Taking the Fourier transform, we find
t R ) .
@k, ) = ik / ds e—RA(=s)+icks o)
0

We can restrict ourselves 16, _ [|[D%h1|1,14a - = 1andy . _, [D%ha|1,14+5 = 1. Then, it follows that

310 2481
ID%u1llz,34 8- < CSL”SO OB e JO=C,
3, a 3L
(1+t)1t2 151
[D%uzll5 315 < Csup Sy Bi 3,75 [() <C

fora = 0,1 as claimed.m
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