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Abstract. We study the motion of the infinitesimal mass in the planar circular restricted three-body problem. The infinitesimal
mass can undergo regular or chaotic motions. It can be captured by one of the primaries, it can make transfers from one
primary to another, or it can even escape those captures. We analyze through statistical methods the time-series given by
the time intervals between successive crossings made by theinfinitesimal particle to a given Poincaré section. We apply
Takens/Yorke embedding theory to reconstruct the phase space from these time series, and we use the correlation dimension
of the reconstructed phase space as a tool to distinguish between various types of motions.
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INTRODUCTION

In this paper we propose the application of a phase space reconstruction method to analyze the dynamics in the
restricted three-body problem. We use the time series givenby the intervals between successive crossings of a given
plane of section. We reconstruct the phase space using delay-coordinate vectors formed from this series. We estimate
the embedding dimension of the reconstructed phase space asthe dimension at which the correlation dimension
saturates, as we increase the number of components in the delay coordinate vectors. We use the corresponding
correlation dimension of the embedded phase space to detectregular and chaotic trajectories. We also explore, through
this method, quasi-periodic, resonant, and resonance transition motions. It is well know that chaotic trajectories can be
trapped around a resonance for a long time; this type of behavior was observed in the motion of asteroids and comets
(see [1, 15, 20]).

As a first model, we consider the planar circular restricted three-body problem with equal masses. A motivation for
this model is the study of binary star systems (see, for example, [4, 5, 6]). The optical observation of such systems is
very difficult (see [9]).

To study resonance transitions, we consider a second model represented by the Sun-Jupiter system.
The main advantage of our approach is that it requires littleinformation about the motion of an observable object,

namely the successive times when the object assumes a certain angular coordinate with respect to the observer. There
is no need of a large number of observations; in our experiments, time series of the order of 103 data points provided
satisfactory results. Also, this method is computationally cheap and relatively robust. We speculate that due to these
advantages, our method could be of use in dynamical astronomy, where information on the motion of celestial bodies
is sometimes insufficient. On the other hand, the accuracy ofthe method can suffer as a consequence of the scarcity
of the data; estimates of correlation dimensions are not very accurate if data is not abundant. Error analysis of the
numerical computation of the correlation dimension is discussed by Sprott in [18]. Quoting from Sprott: “the literature
is devoid of credible calculations of the correlation dimension for most model chaotic systems”. However, in our
experiments we do not need an exact computation of the correlation dimension, but we need to verify whether the
estimated correlation dimension falls within a certain range of values.

We are not aware of pervious attempts of applying phase spacereconstruction based on the crossing times of a
Poincaré section to the study of the three-body problem. There have been other ways in which time series analysis has
been applied to celestial mechanics. Here we will only mention a few of them for comparison. The classical method for
detecting chaotic behavior in a dynamical system is that of the Lyapunov exponents. This may take a large amount of
computations, particularly if the chaos is weak, and may notprovide additional qualitative information, for example,
if a regular trajectory is quasi-periodic or resonant. An application of this method to the study of the dynamics of
outer-belt asteroids can be found in [14]. The same family ofasteroids is studied with the autocorrelation function of



the time series of the osculating elements in [20]. A faster and more sensitive method is the method of twist angles
proposed in [2]; this relies on computing the angles betweendeviations of the orbit and a fixed direction. Tested on
the standard map, the method of twist angles was able to differentiate between quasi-periodic and resonant trajectories
(see [3]). In [21], a method of time-frequency analysis based on wavelets was applied to the Sun-Jupiter-comet system
for values of the Jacobi constant close to Oterma’s. This method constructs a frequency map numerically, assigning
to each initial condition the computed time-varying frequency ω(t) of the corresponding trajectory integrated over a
fixed time interval. A trajectory with regular motion has a frequencyω(t) that is constant in time, while a frequency
that varies in time suggests a chaotic orbit. Another methodfor detecting quasi-periodic and chaotic motions, based
on the computation of the energy spectrum, is presented in [13].

In contrast with the approach proposed in this paper, all theabove methods require a detailed knowledge of the
motion over a long period of time. As it is often the case in numerical simulations, it is perhaps better to use the phase-
space reconstruction method described in this paper in combination with some other method from the ones mentioned
above (if there is sufficient data available), rather than this method alone.

THE RESTRICTED THREE-BODY PROBLEM

The restricted three-body problem refers to the dynamics oftwo bodies of massesm1≤m2 (referred to as the primaries)
that move along circles about their common center of mass, and of a third body, of infinitesimal mass, that is subject
to the gravitational attraction of the primaries. The motion of the primaries is not affected by the motion of the
infinitesimal mass.

Equations of motion

We will recall the general equations for the planar circularrestricted three-body problem. The relative masses of the
primaries areµ = m1/(m1 + m2) and 1− µ = m2/(m1 + m2). We can choose the units of mass, distance and time so
that the gravitational constant is 1, and the period of the circular orbits is 2π . We can study the dynamics relative to a
co-rotating system of coordinates(x,y), for which the positions of the primaries relative to this system are(−µ ,0) and
(1−µ ,0) respectively. The motion(x(t),y(t)) of the infinitesimal particle relative to the co-rotating frame is described
by the second order differential equations:

ẍ = 2ẏ+
∂V
∂x

, (1)

ÿ = −2ẋ+
∂V
∂y

, (2)

(3)

whereV (the effective potential) is given by

V (x,y) =
1
2
(x2 + y2)+

1− µ
r1

+
µ
r2

, (4)

with r1 = ((x + µ)2 + y2))1/2 andr2 = ((x−1+ µ)2 + y2))1/2 representing the distances from the infinitesimal mass
to the primaries. See [17]. The phase space of the system is 4-dimensional. The energy function

H(x,y, ẋ, ẏ) =
1
2
(ẋ2 + ẏ2)−V(x,y), (5)

is a first integral of the system. An equivalent first integralis the Jacobi integralC(x,y, ẋ, ẏ) = −2H(x,y, ẋ, ẏ). The
energy manifold

{(x,y, ẋ, ẏ) |H(x,y, ẋ, ẏ) = constant} (6)

is 3-dimensional, and its projection onto the configurationspace(x,y) is called a Hill’s region. Its boundary is a zero
velocity surface. The topology of Hill’s regions depends onthe energy level. Each trajectory is confined to the Hill’s
region for the corresponding energy level. See Figure 1.
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FIGURE 1. Hill’s region corresponding to an energy level slightly below that ofL1, for µ = 1/2.

There are five equilibrium points for this problem. Three of them are collinear with the primaries, and each of the
other two forms an equilateral triangles with them. In this paper, we are only interested in the equilibrium pointL1
between the primaries. The distance fromL1 to the less massive primary is given by the only positive solution to
Euler’s quintic equation (see [17]):

γ5− (3− µ)γ4+(3−2µ)γ3− µγ2 +2µγ − µ = 0.

For the case when the primaries have equal masses, we haveµ = 0.5, henceγ = 0.5, soL1 is at xL1 = 0. For the
Sun-Jupiter system, we haveµ = 0.0009573, henceγ = 0.0667583, soL1 is atxL1 = 0.0658010.

To study chaotic transfers, we will consider an energy levelslightly below that ofL1. The corresponding Hill region
consists of two lobes, one lying inx < 0 and the other one inx > 0, which are connected through a narrow dynamical
channel. The dynamics nearL1 is of saddle-center type. There exist periodic orbits (Lyapunov orbits) nearL1, located
inside the dynamical channel. These Lyapunov orbits possesstable and unstable manifolds that intersect each other at
points away fromL1. The infinitesimal particle will typically move inside one lobe or another of the Hill region, and
transfer betweenx < 0 andx > 0, through the dynamical channel, in a chaotic fashion.

Poincaré sections

One way to investigate the dynamics in the circular restricted three-body problem is by discretizing the system
through the Poincaré first return map associated to some Poincaré section. For example, we can define a Poincaré
sectionΣ1 = {(x,y, ẋ, ẏ) |x = 1−µ , y > 0, ẋ > 0} or Σ2 = {(x,y, ẋ, ẏ) |x = xL1, y > 0, ẋ > 0}. In the planar circular case
the total energy is preserved along the motion, so each trajectory (x(t),y(t), ẋ(t), ẏ(t)) lies on a fixed energy manifold.
The intersection of a trajectory with the Poincaré sectionΣ1 or Σ2 yields a fixed value for thex-coordinate, and from the
energy condition we can solve for ˙x with respect toy andẏ. Thus, the intersections of a trajectory(x(t),y(t), ẋ(t), ẏ(t))
with a Poincaré section as above is given by the coordinates(y, ẏ) corresponding to the intersection point; each such
(y, ẏ) uniquely determines the whole orbit.

The dynamics of the Poincaré map shows two basic types of motions: regular motions confined to elliptic islands,
and chaotic motions scattered around these islands. See Figure 2. In the center of each elliptic island there is a point
corresponding to exactly one periodic, stable, resonant orbit. A trajectory that is initialized on one the closed curves
that is a part of an elliptic island will remain on the same curve, provided the center of the island is a fixed point for
the Poincaré map, or it will jump from one closed curve, part of an elliptic island, to another curve, part of of another
elliptic island, in a periodic fashion, provided that the center of the island is a periodic point for the Poincaré map.
In the 3-dimensional energy manifold, these closed curves correspond to invariant 2-dimensional tori. The motion on
such a torus can be quasi-periodic, in which case it will fill up a region dense in the surface of the torus, or resonant,
in which case it will lie on a 1-dimensional torus. Ifω = (ω1,ω2) is the frequency vector of the motion on the torus,
then a quasi-periodic motion is characterized by a condition k1ω1 + k2ω2 6= 0 for all integersk1,k2, while a resonant
motion is characterized by a conditionk1ω1 + k2ω2 = 0 for some integersk1,k2.

The existence of chaotic motions has been one of the key arguments in proving the non-integrability of the three-
body problem. One way to argue rigorously the existence of chaotic motion is by showing the existence of transverse
homoclinic connections to Lyapunov orbits nearL1. This has been proved analytically in the caseµ ≃ 0 (see, for
example [12]), and numerically (see, for example [7]). ThenBirkhoff-Smale Homoclinic Orbit Theorem implies the



FIGURE 2. Poincaré sections in the planar circular restricted three-body problem corresponding to a Jacobi constantC = 3.95,
for µ = 0.5. Left – in (y, ẏ)-coordinates, corresponding tox = 0.5; right – in(x, ẋ)-coordinates, corresponding toy = 0. The small
elliptic islands in the plot surround a periodic orbit of period 12 for the Poincaré map.

existence of a subsystem that possesses symbolic dynamics.However, this argument identifies only a measure zero
set of chaotic trajectories. Nevertheless, numerical studies suggest that the phase space contains a full measure set of
chaotic trajectories.

PHASE SPACE RECONSTRUCTION AND CORRELATION DIMENSION

In this section we review briefly the method of phase space reconstruction based on delay coordinate vectors. Precise
formulations of the statements presented below have been provided by Takens [19], and Sauer, Yorke and Casdagli
[16]; a good introduction to the subject is given by Huke [10].

Suppose thatf : M → M is a discrete dynamical system, whereM is a compact,m-dimensional,Cr-differentiable
manifold (r ≥ 2), andf is aCr-diffeomorphism. Leth : M → R be aCr-differentiable function, which plays the role of
a measurement of some physical quantity for the orbits off . To each finite orbit{x, f (x), . . . , f N(x)} of a pointx ∈ M,
whereN > 0 is fixed, we can associate the time series{h( f i(x))}i=1,...,N . Let Φ : M → R

N be the mapping given by

Φ(x) = (h(x),h( f (x)), . . . ,h( f N(x)).

Takens’s Theorem states that forCr-generic mapsf andh, the mappingΦ is an embedding ofM in R
N provided

N ≥ 2m+1. Moreover, there is a natural dynamics onΦ(M), induced by the left shift map̄f : Φ(M) → Φ(M) given
by:

f̄ (h(x),h( f (x)), . . . ,h( f N(x)) = (h( f (x)), . . . ,h( f N+1(x)).

The mapΦ is a conjugacy between the dynamics onM and the dynamics onΦ(M); that is,Φ ◦ f = f̄ ◦Φ, with Φ
continuous and surjective. In summary, the mapΦ not only provides us with a copy ofM in R

N , but also with a copy
of the dynamics onM induced byf . In particular, the periodic orbits off are mapped into periodic orbits of̄f , and
dense orbits forf are mapped into dense orbits for̄f . The same method can be used to reconstruct an attractorA ⊂ M
for f from a time series associated to an orbit dense inA. It is sufficient to chose a dimensionN of the embedding
space bigger than 2d +1, whered is the box-counting dimension (fractal dimension) ofA.

In practice, this method is applied as follows. We have a dynamical systemf : M → M that we would like to
analyze. Beginning with some initial state, the evolution of the system results in a succession of states described by a
finite orbit {x, f (x), . . . , f n(x)} of a pointx ∈ M. Usually we cannot obtain complete information on the states of the
system, but we can measure some quantity associated to each state; this is performed through a measurement function
h : M → R. The measurement function defines a finite time series{xi}i=0,...,n given byxi = h( f i(x)). Assuming that



the orbit{x, f (x), . . . , f n(x)} is dense in some invariant setS of f , we want to reconstruct the setS and the dynamics
of f on S from this time series. We consider the delay coordinate vectors

vi = (xi,xi+1, . . . ,xi+(d−1)),

whered (the dimension of the phase space) is a positive integer, andi ≥ 0. We denote this set of vectors bȳS. On S̄ we
consider the map̄f given by

f̄ (xi,xi+1, . . . ,xi+(d−1)) = (xi+1,xi+1, . . . ,xi+d).

The set of vectors̄S together with the map̄f constitutes a model for the dynamics off on S. In order for this model
to be accurate, we need the dimensiond of the reconstructed phase space to be sufficiently large; otherwise the model
may exhibit some tangles or self-crossings that are not present in the original systemS. Although we do not have an
a priori knowledge of the box-counting dimension ofS, we can still find the correct embedding dimension through
the following procedure. We gradually increase the dimension d of the delay coordinate vectors and compute the box
dimension of the reconstructed set for eachd. In general, the computed box-counting dimension will be anincreasing
function of d. Beginning with some valued = de, the box-counting dimension will stabilize; this valuede is the
smallest dimension for which we obtain an embedding ofS in the reconstructed phase spaceR

d . At this point we also
have that the dynamics off on S is reproduced accurately by the dynamics off̄ on the reconstructed phase spaceS̄.

The box-counting dimension of a set is quite expensive to compute numerically. An empirical alternative to it is the
correlation dimension. The correlation dimension of the set

S̄ = {v0,v1, . . . ,vn−(d−1)}

can be computed as follows. We first compute the correlation functionC(r) which measures the proportion of pairs of
points fromS̄ that are withinr units from one another:

C(r) =
#{(w1,w2) |w1,w2 ∈ S̄ and‖w1−w2‖ < r}

#{(w1,w2) |w1,w2 ∈ S̄}
,

wherer > 0. It turns out thatC(r) is proportional tord for some fixedd > 0 and all sufficiently smallr, whered is
exactly the correlation dimension of the setS̄.

Then the correlation dimension of̄S is defined as

corrdim(S̄) = lim
r→0

lnC(r)
lnr

, (7)

provided that the limit exits. In practice, since the data set in S̄ is only finite, one cannot compute the above limit as
r → 0. Moreover, ifr is made smaller than the shortest distance between any two distinct points inS̄, thenC(r) = 0.
On the other hand, ifr is made larger than the diameter of the setS̄, thenC(r) = 1. A practical way to estimate the
correlation dimension is to plot lnC(r) versus lnr and to estimate the slope of the median portion of the plot. The
graph will usually flatten out for all sufficiently small values ofr, and also for all sufficiently large values ofr. The
remainder of the graph will contain a part that is almost linear. The least square method is applied to this linear part
of the graph. The slope of the resulting linear approximation gives the correlation dimension of̄S. In general, the
correlation dimension is smaller than the box counting dimension, but they are usually very close. For details, see [8].

The correlation dimension computed this way is reasonably accurate when the data set is rather big. If there is
insufficient data, the correlation dimension can only be used as an indicator of whether or not the invariant set is likely
to fill up a region of positive measure inRd , for some prescribedd > 0.

EXPERIMENTS

We generate numerically trajectories of the three-body problem and we record the times{ti}i at which the trajectories
cross some fixed Poicaré sectionΣ. From this data we generate the time series{∆ti}i consisting of the time intervals
∆ti = ti+1− ti between successive crossing. We are interested in two problems. The first problem is to use this time
series to distinguish between regular and chaotic orbits. The second problem is that, in the case when the infinitesimal
mass undergoes transfers between one primary and another, we want to detect whether or not these transfers occur
chaotically.



For the first problem we consider trajectories that are evolving within one of the lobes of the Hill region, say
about the primary atx = 1− µ , and we record the times at which these trajectories cross the Poincaré section
Σ1 = {x = 1− µ}. It is possible that at some point these trajectories transit to the other lobe; in this case, we continue
to record the times of crossing withΣ1 only after they go back to the original lobe.

For the second problem we consider trajectories that execute transitions from one lobe of the Hill region to the other,
and we record the times at which these trajectories cross thePoincaré sectionΣ2 = {x = 0}.

In each case, we reconstruct the phase space from the time series{∆ti}i. We compute the correlation dimensions
for the phase spaces reconstructed in dimensionsd = 1,2, . . . , and we find a dimensiond from which the correlation
dimension stabilizes. We will not seek the minimal embedding dimensionde, but some dimensiond for which the
embedding inRd is guaranteed. We use the correlation dimension corresponding to the dimensiond to distinguish
the type of trajectory that we have. To test the validity of our predictions, we compare the results of the time series
analysis with the plot of the intersections between the trajectory and the corresponding Poincaré section.

Periodic motions

In our experiments, we found that periodic motions are characterized by correlation dimensions close to 0, within
a margin of error of 0.2. This agrees with the theory, since a periodic orbit corresponds to a finite set of points in the
Poincaré section, whose dimension is 0.

As an example, we consider a symmetric periodic orbit of initial conditionx = 0,y = 0, ẋ = 0.35, ẏ = 0, correspond-
ing to a Jacobi constant approximately equal toC = 3.8775, as shown in Figure 3. The winding number of this orbit is
5. This equals the number of points in the Poincaré section.

We will discuss the numerical experiments for this periodicorbit in full details, to illustrate the implementation of
the method, and also to serve us as a guide in the sequel. We have generated the time series{∆ti}i of 1280 data points,
where{ti}i are the intersection times with the plane of sectionΣ1. For this data set, the Jacobi constant is preserved
up to the 4-th decimal place during integration. We disregard the first 100 data points, to avoid errors due to temporal
correlation. Hence, only 1180 terms are used. We first use 2-dimensional coordinate vectors of the type{(∆ti,∆ti−1)}i
to reconstruct the phase spaceS̄(2) in 2-dimensions. The reconstructed phase-space consists of 5 points; the number
of points matches the winding number of the orbit. See Figure3.

Using the formula (7), we evaluate the correlation integralC(r) for successive values ofr = 2−1, . . . ,2−10 and we
compute directly the corresponding values of the ratio log(C(r))/ log(r). We obtain

r 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 2−9 2−10

log(C(r))/ log(r) 1.8379 .9189 .7747 .5810 .4648 .3873 .4326 .4570 .4523 .4240

It is not reliable to estimate limr→0(log(C(r))/ log(r)) as the tail value of the above sequence. As described in the
previous section, a better method is to plot the data log(C(r)) versus log(r) and to apply the linear regression to the
middle portion of this plot.

x -.6931 -1.3862 -2.0794 -2.7725 -3.4657 -4.1588 -4.8520 -5.5451 -6.2383 -6.9314

y -1.2739 -1.2739 -1.6111 -1.6111 -1.6111 -1.6111 -2.0990 -2.5345 -2.8222 -2.9390

We identify in the plot the regions at the ends of plot where the graph starts to approach horizontal asymptotes, and
we apply linear regression to the remainder of the plot. We identify the linear part of the middle section of the plot
by successive trials, enlarging or diminishing the middle range and applying the least square method until the linear
approximation stabilizes. See Figure 3. The equation of thelinear approximation that we found isy = −1.6111. The
slope of this line gives us the correlation dimension of the reconstructed phase space, i.e., cordimS̄(2) = 0.

If we repeat the experiment for 1-dimensional delay coordinate vectors{∆ti}i, the linear regressions comes out
y = −1.5936+0.005x, so cordim(S̄(1)) ≈ 0.005. Although this is quite close to 0, we have a small error since the 1-
dimensional phase space reconstruction does not guaranteethe elimination of all possible self-crossings. On the other
hand, when we repeat the experiment for 3-dimensional delaycoordinate vectors{(∆ti,∆ti−1,∆ti−2)}i we find out that
y =−1.6111 and so cordim(S̄(3))= 0. Higher dimensional phase space reconstructions confirm that cordim(S̄(d))= 0,
for d ≥ 2. Thus, we conclude that the correlation dimension for the reconstructed phase space is cordim(S̄) = 0. This
remarkably coincides with the theoretical value.



Left – periodic orbit in the co-rotating frame; right – periodic orbit in the inertial frame.
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FIGURE 3. Periodic orbit.



These experiments emphasize the effectiveness of using linear regression to estimate limr→0(log(C(r))/ log(r))
as opposed to successive approximations. Also, we learn that the theoretically lowest possible embedding dimension
does not guarantee a good numerical estimate on the correlation dimension of the reconstructed phase space. However,
finding the optimal embedding dimension is beyond the scope of this paper.

Quasi-periodic motions

In our experiments, we found that quasi-periodic orbits arecharacterized by a correlation dimension close to 1. This
is in agreement with the theory: a quasi-periodic orbit willfill up a 2-dimensional torus, whose intersection with a
Poincaré section will be a 1-dimensional curve. We toleratea range of values of±0.2 about 1.

As an example, we consider a quasi-periodic orbit of initialconditionsx = 0.5,y =−0.28, ẋ = 0.9554017961, ẏ= 0,
corresponding to the Jacobi constantC = 3.95. We have generated the time series{∆ti}i of 700 data points, where{ti}i
are the intersection times with the plane of sectionΣ1. For this data set, the Jacobi constant is preserved up to the4-th
decimal place during integration. The orbit and the corresponding time series are shown in Figure 4. The Poincaré plot
and reconstructed phase space in 2- and 3-dimensions are also shown in Figure 4. When we compute the correlations
dimension, we find that cordim(S̄) ≈ 1.08 and it stabilizes beginning a dimensiond = 3; see Figure 4.

There are some technical problems when too many data points are numerically generated for a quasi-periodic orbit.
Such an orbit is usually unstable, and the accumulation of error during integration will result in many points leaving
the corresponding torus and ending up in the chaotic sea or onother elliptic islands. The reconstructed phase space will
show a closed curve and scattered points around it. These extra points will affect the computation of the correlation
dimension. To fix the problem, the time series should be restricted to its quasi-periodic regime.

Resonant motions

In our experiments, we found that resonant orbits are characterized by a correlation dimension greater than but close
to 0. This is in agreement with the theory: a resonant orbit will fill up a 1-dimensional torus (closed curve) lying on
the surface of some 2-dimensional torus. The 1-dimensionaltorus will cut the Poincaré section in a finite set of points.
However, resonant orbits are quite unstable; in practice, one will usually see only orbits close to resonance. In this
case, the Poincaré plot will consists in clusters of points accumulated around a finite number of locations. The farther
the motion is from a resonance, the more spread out those clusters are, and the closer to 1 the correlation dimension
is. We will not provide a range of values for the correlation dimensions that is associated to resonant motions; such
a range would unavoidably be artificial. In our experiments,we found trajectories that follow a resonant regime for
about 1000 revolutions about the mass and whose correlationdimension is between 0.2 and 0.5.

As an example, we consider a resonant orbit of initial conditionsx = 0.3, y = 0, u = 0, v = −0.08, corresponding to
the Jacobi constantC = 6.3336. This orbit is in a resonance of 22 : 1 with respect to the motion of the nearby primary.
We have generated the time series{∆ti}i of 2000 data points, where{ti}i are the intersection times with the plane of
sectionΣ1. For this data set, the Jacobi constant is preserved up to the4-th decimal place during integration. The orbit,
the corresponding time series, the Poincaré plot and reconstructed phase space in 2-and 3-dimensions are shown in
Figure 5. For the correlations dimension, we found that cordim(S̄)≈ 0.3 and it stabilizes beginning a dimensiond = 4;
see Figure 4.

Chaotic motions

In our experiments, we found that chaotic orbits are characterized by a correlation dimension less than but close
to 2. This is in agreement with the theory: a resonant orbit will fill up a 2-dimensional region corresponding to the
chaotic sea in the Poincaré section. Empirically, we will tolerate a range of values of±0.2 about 2.

As an example, we consider a chaotic orbit corresponding toC = 3.95. We have generated the(y, ẏ)-coordinate
Poincaré plots corresponding to the sectionsx = 0.5 andx = 0; they are shown in Figure 6. The plot corresponding to
x = 0.5 reveals a reacher structure than the one corresponding tox = 0. We are interested to classify the transfers of the
infinitesimal mass betweenx > 0 andx < 0; therefore, we use the time series corresponding tox = 0 to reconstruct the
phase space. We have generated a time series{∆ti}i of 1400 data points; the Jacobi constant is preserved up to the 4-th



Quasi-periodic orbit around a primary, in a co-rotating frame.
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FIGURE 4. Quasi-periodic orbit



Resonant orbit about a primary, in a co-rotating frame.
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FIGURE 5. Resonant orbit, of 22 : 1 resonance.
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FIGURE 6. Chaotic transfers between primaries.

decimal place during integration. The reconstructed phasespace inR2 is shown in Figure 6; it looks like a scattered set
of points. For the correlations dimension, we found that cordim(S̄) ≈ 2.0 and it stabilizes beginning dimensiond = 4;
see Figure 6. This agrees with our expected range of values for the correlation dimension, which characterizes chaotic
motions.

Resonance trapping

An example of resonance trapping is provided by the dynamicsof Jupiter’s comet Oterma. We model Oterma’s
dynamics as a planar circular restricted three-body problem, where the primaries correspond to Jupiter and the Sun,
and the mass ratio isµ = 0.0009537. This comet makes rapid transitions back and forth between heliocentric orbits
outside the orbit of Jupiter and heliocentric orbits insidethe orbit of Jupiter. The interior heliocentric orbit is close to a
3 : 2 resonance, while the exterior heliocentric orbit is close to a 2 : 3 resonance. In the Poincaré section corresponding
to x = 1− µ , these orbits correspond to resonance islands (see Figure 7). The trajectory is temporarily trapped by
one resonant island, where the dynamics is almost regular, then is released and is eventually captured by the other
resonant island, while it can visit some other resonant island in between, such as a 1 : 2 resonance. The Jacobi constant
corresponding to the orbit of Oterma is approximatelyC = 3.03.

As an example of possible dynamics for Oterma, we started with the initial conditionsx0 = 0.88,y0 = 0, ẋ0 =
0.092, ẏ0 = 0.14163. For the time series, we use the Poincaré sectionΣ3 := {(x,y, ẋ, ẏ) |y = 0, x <−µ , ẏ > 0}. However,
in Figure 7 we show the Poincaré section corresponding toΣ1, since it seems to provide a better evidence of the
resonant islands: they look like the wings and the body of themosquito. We have generated a time series of 1000
points. We estimated the correlation dimension of the reconstructed phase space being cordim(S̄) = 1.8, saturating in
dimension 4. See Figure 7. This agrees with our expectationsthat an orbit that is successively captured by resonances



Left – orbit in an inertial frame; right – orbit in a co-rotating frame.
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FIGURE 7. Resonance trapping.



and wander chaotically from one resonance to another will have a correlation dimension larger than 1 – corresponding
to the resonances – and less than 2 – corresponding to chaotictransfers.

FINAL REMARKS AND CONCLUSIONS

We performed the numerical computation of the trajectorieswith the program Dynamic Solver (author Juan M.
Aguirregabiria). We used the integrator Dormand-Prince 8(5,3) with variable step-size. This is not a symplectic
integrator; the energy is not conserved during integration. To compensate for this, we restricted the size of the data
collected so that the variations in the energy are kept reasonably small. Since the accuracy in computing the correlation
dimension is low anyway, we opted for a margin of error in the Jacobi constant∆C ≤ 10−4. It is worth noting that the
variation of the Jacobi constant during numerical integration depends on type of the orbit that are generated: stable
orbits result in smaller∆C in the long run when compared to irregular or chaotic orbits.The code for computing the
correlation dimension was written in Maple.

The correlation dimension is just one way to measure the fractal dimension of a reconstructed set. It is perhaps the
simplest way to formulate theoretically, but it is somewhatsubjective and does not indicate the penalty paid for too
low an embedding dimension. A more accurate and less computationally intensive procedure is the method of ‘false
nearest neighbors’, which identifies the number of points that appear to be the nearest neighbors because the dimension
of the reconstructed phase space is too small. When the number of false nearest neighbors drops to zero, it means that
self-crossings were eliminated and the proper embedding dimension has been reached. See [11].

The conclusion of these investigations is that, given a time-series consisting in the crossing times of some Poincaré
sections, by using phase space reconstruction techniques we can distinguish reasonably well between regular and
chaotic motions, and between regular and chaotic transfers, even though the observed data is neither very large nor
very accurate. The shortcomings of the method are that the correlation dimension estimator is not very precise, and it
leaves ‘gray’ ranges of values for which the type of trajectories cannot be properly determined. In the future, we hope
to be able to improve the methods outlined in this paper by using other estimators such as the ‘false nearest neighbors’
method described above.
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