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Abstract. We consider a dynamical system that exhibits transition chains of

invariant tori alternating with Birkhoff zones of instability in a 2-dimensional
center manifold. It is known that there exist orbits that shadow the transition
chains. It is also known that there exist orbits that cross the Birkhoff zones
of instability. We describe a topological mechanism that allows one to join
together the two types of orbits. We prove the existence of diffusing orbits
that shadow the transition chains of invariant tori and cross the Birkhoff zones
of instability. This approach is motivated by what has been called the large

gap problem in Hamiltonian systems.

1. Introduction

We present a topological mechanism for instability in normally hyperbolic dy-
namical systems. We consider a 2-dimensional normally hyperbolic manifold that
contains a Cantor family of C1-smooth invariant tori that can be grouped into
transition chains alternating with Birkhoff zones of instability. Here by transition
chains we mean finite sequences of tori such that each pair of successive tori have a
transverse heteroclinic connection. On the Birkhoff zones of instability we assume
no information whether or not there exist heteroclinic connection between their
boundary components. It has been previously proved that, under suitable condi-
tions, there exist orbits that shadow the transition chains; there also exist orbits
that cross the Birkhoff zones of instability. In this paper we present a topological
method that allows one to join together these two types of orbits. We show that
there exist orbits starting near one torus from the Cantor family and ending near
another torus, while they shadow the tori in each transition chain and alternatively
cross the Birkhoff zones of instability separating consecutive transition chains.

1.1. Set-up and main result. Below we describe a dynamical system satisfying
certain properties.

H0. We assume that F : M → M is a C1-diffeomorphism of a smooth d-
dimensional manifold M . We assume that there exists a compact invariant sub-
manifold A in M that is diffeomorphic to an annulus [0, 1] × T

1. We consider an
action-angle coordinate system (I, φ) on A, with I ∈ [0, 1] and φ ∈ T

1. We assume
that A is normally hyperbolic, and for each point p ∈ A the stable and unstable
manifolds W s(p) and Wu(p) are n-dimensional, with 2n + 2 = d. We also assume
that the restriction F |A of F to A is an area preserving monotone twist map.
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We now assume the existence of certain objects that satisfy specific properties.
The existence of those objects constitute the hypothesis of our main result, Theorem
1.2, stated below. These numbered hypotheses will be followed by some comments,
explanations, or definitions, which are not part of the hypotheses.

H1. Suppose that the annulus A contains a Cantor family of F |A-invariant,
C1-smooth, primary tori {Tι}ι∈I , with the tori varying continuously in the C1-
topology.

By a primary torus (or, equivalently, an essential invariant circle) we mean a 1-
dimensional torus in A that cannot be homotopically deformed into a point inside
the annulus. See Figure 2.

To describe the relative positions of the tori {Tι}ι, we consider an order relation
on I, given by ι ≺ ι′ provided that the action coordinate I of the intersection
between the radius φ = const. and Tι is less than the action coordinate I ′ of
the intersection between the radius φ = const. and Tι′ . This order relation is
independent of the choice of the radius φ = const., since invariant tori cannot
intersect.

Since F|A is a monotone twist map, each torus Tι is the graph of a Lipschitz

function τι(φ) (see Subsection 3.2); by H1, τι(φ) is C1-smooth. The fact that the
tori are varying continuously in the C1-topology means that τιn

→ τι in the C1-
topology provided ιn → ι as n → ∞. Within the Cantor family {Tι}ι∈I one can
distinguish two kinds of tori: ‘interior’ tori and ‘boundary’ tori. A torus Tι is an
‘interior’ torus provided that there exist two sequences of tori {Tι′n} ⊆ {Tι} with
ι′n ≺ ι, and {Tι′′n

} ⊆ {Tι} with ι ≺ ι′′n, such that both sequences approach Tι in the

C1-topology as n → ∞. A torus Tι is a ‘boundary’ torus provided that Tι can be
approximated only from above or only from below relative to the order ≺, meaning
that there exists a sequence of tori {Tι′n} ⊆ {Tι}, with ι′n ≺ ι, that approaches Tι in

the C1-topology as n → ∞, in which case there is no sequence of tori {Tι′′n
} ⊆ {Tι},

with ι ≺ ι′′n, that approaches Tι, or there exists a sequence of tori {Tι′′n} ⊆ {Tι},
with ι ≺ ι′′n, that approaches Tι in the C1 topology as n → ∞, in which case there
is no sequence of tori {Tι′n} ⊆ {Tι}, with ι′n ≺ ι, that approaches Tι.

For our main result, Theorem 1.2, we will choose and fix two tori Tι0 and Tι1

from {Tι}ι∈I , with ι0 ≺ ι1.
H2. We assume that F |A is topologically transitive on each torus from {Tι}ι∈I .
From the normal hyperbolicity assumption, it follows that each invariant torus

Tι has (n + 1)-dimensional stable and unstable manifolds W s(Tι) and Wu(Tι).
When the unstable manifold Wu(Tι) of a torus intersects transversally the stable

manifold W s(Tι) of the same torus, we say that Tι has a transverse homoclinic
connection. When the unstable manifold Wu(Tι) of a torus intersects transversally
the stable manifold W s(Tι′) of another torus Tι′ , we say that Tι and Tι′ have a
transverse heteroclinic connection.

To state the next hypotheses, we will need to recall the notions of transition
chain and of Birkhoff zone of instability.

We say that a finite sequence of tori {Tικ
}κ=0,...,l ⊆ {Tι}ι forms a (finite) tran-

sition chain if, for each κ ∈ {0, . . . , l − 1}, the unstable manifold Wu(Tικ
) of Tικ

intersects transversally the stable manifold W s(Tικ+1
) of Tικ+1

.
A region in A between two tori Tι and Tι′ is called a Birkhoff zone of instability

provided that there is no invariant primary torus in the interior of the region (see
Definition 3.2).
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Figure 1. Transition chains of tori alternating with gaps.

For the Birkhoff zones of instability that we consider in this paper, the tori Tι

and Tι′ at the boundary of a zone of instability are assumed to be from {Tι}ι; the
region in A between Tι and Tι′ contains no invariant primary torus, neither from
{Tι}ι nor in general.

H3. We assume that there exists an increasing sequence of indices in I given by
ι0 = j0 ≺ j1 ≺ . . . ≺ j2m ≺ j2m+1 = ι1 such that the following hold true:

H3.a. For each k ∈ {0, . . . ,m} and for each pair j′, j′′ ∈ I with j2k ¹ j′ ≺ j′′ ¹
j2k+1, there is a finite transition chain {Tικ

}κ=0,...,l with j′ = ι0 ≺ ι1 ≺
. . . ≺ ιl−1 ≺ ιl = j′′.

H3.b. The region in A between Tj2k+1
and Tj2k+2

is a Birkhoff zone of instability,
for k ∈ {0, . . . ,m − 1}.

The hypothesis H3 says that the family of tori {Tι}ι∈I can be grouped into
sequences of transition chains alternating with Birkhoff zones of instability. See
Figure 1.2.

Remark 1.1. We emphasize that hypothesis H3 does not prescribe whether or not
there exist heteroclinic connections between the boundaries of the Birkhoff zones of
instability specified in (H3.b). Therefore, in the future we will not assume that such
heteroclinic connections exist. We will refer to these Birkhoff of instabilities as the
‘large gaps’. We should also note there may exist other Birkhoff zones of instability
besides those specified in (H3.b), between some consecutive pairs of tori that are
part of the transition chains specified in (H3.a). However, the boundary tori of
such Birkhoff zones of instability are assumed to have heteroclinic connections, as
specified in (H3.a). Therefore, we will ignore this latter type of Birkhoff zones of
instability in our future discussions.

The main result of this paper is the following:

Theorem 1.2. Assume that the system described in H0 satisfies the conditions H1,
H2, H3. Then, for each finite sequence of invariant tori {Tit

}t=0,...,s from {Tι}ι∈I ,
with Ti0 = Tι0 , Tis

= Tι1 , and for each finite sequence {ǫt}t=0,...,s of positive real
numbers, there exist an orbit {zt}t=0,...,s and positive integers {nt}t=0,...,s−1 such
that

d(zt, Tit
) < ǫt, for all t = 0, . . . , s,

Fnt(zt) = zt+1, for all t = 0, . . . , s − 1.

The proof of this theorem is based on the topological method of correctly aligned
windows. The main idea is to construct a sequence of windows (homeomorphic
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copies of multi-dimensional rectangles) that ‘crawl across’ the Birkhoff zones insta-
bility and ‘jump along’ the transition chains. Then a ‘shadowing lemma’ type of
argument implies the existence of true orbits that shadow the given sequence of
windows.

Remark 1.3. The verification of the hypothesis of Theorem 1.2 in concrete exam-
ples can be quite challenging. The existence of transverse heteroclinic connections
is usually verified through a Melnikov method [10]. This yields the existence of
transition chains of invariant tori. Some methods to verify the existence of Birkhoff
zones of instability are discussed in [2, 22, 25, 31, 32].

However, we would like to think of Theorem 1.2 essentially as a simplified model
for the existence of diffusing orbits.

Since the method of correctly aligned windows that we engage here is purely
topological, we hope that we will be able to adapt it to the study of Arnold diffusion
under typical assumption. One of the main difficulties in applying Theorem 1.2 to
concrete systems is that the boundaries of the Birkhoff zones of instability are in
general only Lipschitz. These Lipschitz tori are in general limits of C1-smooth tori.
It would be possible to construct finite sequences of correctly aligned windows along
the transition chains such that the windows that reach these limiting C1 tori, at
the end of the transition chains, cross inside the Birkhoff zone of instability; then,
these sequences of correctly aligned windows will be joined together with windows
that cross the Birkhoff zone of instability. This strategy will be explored in a future
research.

Example 1.4. We outline an argument that provides examples of dynamical systems
that satisfy the hypotheses of Theorem 1.2. We first describe how is it possible to
construct a twist map of the annulus for which the Birkhoff zones of instability
have C1-smooth boundaries. Then we take the product of such a twist map with a
time-discretization of a pendulum and apply a small perturbation.

Sylvain Crovisier sent us a personal communication ([9]) on how to use his re-
sults with Christian Bonatti ([5]) to construct an example of a twist map with one
Birkhoff zone of instability with C1-smooth boundary components. Their version
of the connecting lemma (following Hayashi) constructs a C1 symplectic diffeomor-
phism with a dense orbit on a compact manifold without boundary. The proof
involves the construction of a finite collection of small perturbation boxes and of
a C1 perturbation with the support inside the boxes. However, we want to ap-
ply their method to an open annulus. We need to use an expanding sequence of
closed annuli whose union gives the open annulus between two invariant circles.
There is a pseudo-orbit (ǫ-chain) that is dense in each of these annuli. Applying
their perturbation boxes technique, there is a C1 symplectic diffeomorphism with a
(1/n)-dense actual orbit in the n-th annulus. Taking the limit gives a C1 symplectic
diffeomorphism that has the boundaries still the same, so smooth, and an actually
dense orbit in the open annulus.

To construct a C1 symplectic diffeomorphism with a Cantor set of invariant
circles, we need to use the above result on a sequence of open annuli. Start with a
linear twist map on an annulus. We look at the parameter space I for the invariant
tori (circles). There is a countable set of parameters that correspond to rational
rotations. Put an open interval Jk about each of parameters in I such that I \

⋃
Jk

is a Cantor set. (This is a matter of choosing the lengths in a way that does
not leave any isolated points.) Now on the sequence of annuli that correspond to
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Figure 2. Primary tori, secondary tori, and Birkhoff zones of instability.

the sequence of Jk, construct a perturbation of the type indicated in the previous
paragraph. This can be done to make a C1 symplectic diffeomorphism that leave
the map on the tori corresponding to I \

⋃
Jk the same as before, and has a dense

orbit in each of the open annuli that corresponds to one of the Jk. This constructs
an approximation that has a Cantor set of smooth invariant tori with irrational
rotations and each Jk corresponding to a Birkhoff zone of instability. This ends the
sketch of the construction of an example of a twist map that has Birkhoff zones of
instability with C1-smooth boundaries.

To construct an example of a system that satisfies the hypothesis of Theorem 1.2,
we can take the product of the twist map described above with a time-discretization
of a pendulum system. The stable and unstable manifolds of the hyperbolic fixed
point of the pendulum coincide. We can apply a perturbation that does not affect
the annulus and such that the stable and unstable manifolds have a transverse
homoclinic connection. This implies that all invariant tori that are within a certain
distance (depending on the size of the splitting of the stable and unstable manifold)
have a transverse heteroclinic connection. In this way, the Cantor family of tori
can be organized into transition chains of tori alternating with Birkhoff zones of
instability.

1.2. Motivation. The motivation for this study comes from the large gap prob-
lem of Arnold diffusion in Hamiltonian systems. One formulation of this problem
considers perturbations of a priori unstable Hamiltonian systems, of the form

Hµ(I, φ, s, u) = H0(I) + H1(s, u) + µH2(I, φ, s, u;µ),

where (I, φ) ∈ R
m+1 × T

m+1 and (s, u) ∈ R
n × R

n; for such systems, one is
interested in the existence of orbits that travel for a distance of order O(1) in the
action variable I, for each µ with 0 < µ < µ∗, where µ∗ > 0 is sufficiently small
and fixed.

The unperturbed system

H0(I) + H1(s, u),

is described in terms of action-angle variables (I, φ) and hyperbolic variables (s, u).
It is usually assumed that the Hamiltonian system

du

dt
=

∂H1

∂s
ds

dt
= −

∂H1

∂u
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has a hyperbolic fixed point that is connected to itself by a homoclinic orbit. By
restricting to an energy level and taking an appropriate Poincaré section Mµ for
each µ, one obtains a diffeomorphism Fµ acting on a (2n+2m)-dimensional manifold
Mµ. This manifold Mµ contains a (2m)-dimensional normally hyperbolic manifold,
foliated by an m-parameter family of m-dimensional tori, each having (m + n)-
dimensional stable and unstable manifolds. It is usually assumed that H0 satisfies
an isoenergetic non-degeneracy condition, that

(
∂2H0/∂I2 ∂H0/∂I
∂H0/∂I 0

)

is non-singular, which implies that the map F0, corresponding to the unperturbed
system, satisfies a twist condition in the (I, φ) variables. Then, by the KAM the-
orem, there exists a Cantor set Iµ of smooth m-dimensional tori that survive the
perturbation for each 0 < µ < µ1, for some µ1 > 0. Under certain conditions,
the KAM tori vary continuously in the C1-topology (see [36]). The motion along
the KAM tori is quasi-periodic. Besides the KAM tori, there exist in general some
other invariant primary tori, not necessarily smooth, that survive the perturbation.
(See [23]. Some interesting results on non-smooth tori at the boundary of renor-
malization can be found in [28, 39].) The surviving invariant tori are separated by
gaps. The typical size of the large gaps is of order O(µ1/2).

It is also usually assumed that the perturbation H2 satisfies a Melnikov-type of
condition. Such a condition ensures that for each 0 < µ < µ2, for some 0 < µ2 < µ1,
there exists δµ > 0, depending on the value of the perturbation parameter µ, such
that any two tori within a distance of δµ are linked by a transverse heteroclinic
connection. When µ → 0, we have δµ → 0. Typically, the splitting size of the
stable and unstable manifolds is of order O(µ). Since the size of the gaps is of
order O(µ1/2), one cannot form transition chains of primary invariant tori that
cross those gaps.

Suppose that we choose two distinct tori Tι0 and Tι1 , depending on µ, that
survive the perturbation and that lie at a distance of order O(1) in the action
direction. For any fixed, sufficiently small value of µ, the invariant tori surviving
the perturbation can be ordered in groups of tori linked by transverse heteroclinic
connections, alternating with large gaps, which contain no primary invariant tori.
The number of the large gaps is finite for any fixed perturbation size µ. The large
gap problem of Arnold diffusion is to show that there exists 0 < µ∗ < µ2 such that
for each 0 < µ < µ∗ there exists an orbit that, despite of the large gaps, travels
from near Tι0 to near Tι1 .

In this paper we consider a simplified model for Arnold diffusion. Our model as-
sumes that some of the geometric objects that occur in perturbed Hamiltonians are
already given: there exists a normally hyperbolic manifold which contains a Cantor
family of C1-smooth invariant tori, and there exist transverse heteroclinic connec-
tions between pairs of sufficiently close tori (hypothesis H3.a). The large gaps are
modelled by the Birkhoff zones of instability for which there is no information on the
existence of heteroclinic connections between the boundary components (hypothe-
sis H3.b). The simplifying assumptions are that the normally invariant manifold is
2-dimensional (rather than (2m)-dimensional), and the tori at the boundary of the
Birkhoff zones of instability modelling the large gaps are C1-smooth. The fact that
the normally invariant manifold is assumed to be a 2-dimensional annulus allows
us to make use of the existence of (Birkhoff) orbits that travel from an arbitrarily
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small neighborhood of one boundary of a Birkhoff zone of instability to an arbi-
trarily small neighborhood of the other boundary. In higher dimension, applying
similar ideas is more difficult (see, for example, [21]). The requirement that the
boundaries of the Birkhoff zones of instability are C1-smooth is drastic (in general,
they are only known to be Lipschitz). However, the condition is mainly used to
simplify the construction of windows, and to avoid more technical assumptions on
the transition chains. Therefore, we hope that this restriction can be removed from
our argument.

The general scheme of the proof of Theorem 1.2 is the following. We are given a
finite sequence of tori that we want to shadow. We augment this sequence with other
tori from the Cantor family, and with all the tori at the boundaries of the Birkhoff
zones of instability that model the large gaps. It is now the augmented sequence
of tori that we want to shadow. We construct correctly aligned windows along
the transition chains of tori from the augmented sequence and we also construct
correctly aligned windows that cross the Birkhoff zones of instability (following
Birkhoff orbits). When these two types of correctly aligned windows meet at the
boundaries of the Birkhoff zones of instability, we make them intersect in a manner
that is correctly aligned. The fact that these boundaries are assumed to be C1-
smooth simplifies considerably this construction. In the process of constructing
correctly aligned windows, an important feature of the Cantor family of tori that
we use is that the tori can be approximated by other tori from the family: thus,
the windows constructed between pairs of nearby tori can be controlled for a long
time under the twist dynamics. Once a finite sequence of correctly aligned tori is
constructed from the initial torus to the final torus, a shadowing lemma type of
result provides us with an orbit which visits all the constructed windows, and thus
shadows the augmented sequence of tori.

Remark 1.5. Recent progress in the large gap problem has been achieved through
geometric methods by Delshams, de la Llave, and Seara [12], and through varia-
tional methods by Cheng and Yan [6, 7]. See also the geometric mechanism for
Arnold diffusion developed by Treschev in [40, 41], and the announcements of other
variational methods by Z. Xia [44] and by J. Mather [34]. A topological argument
for the large gap problem, relying on some of the results in [12], was provided in [19].
An independent topological argument for the large gap problem, which also yields
an optimal estimate of the diffusion time, has been carried out in [20]. Treatments
related to ours can also be found in [26, 35].

2. Correctly aligned windows

We give a brief exposition of a topological version of Easton’s method of correctly
aligned windows [14], following the ideas from [19, 42, 43]. We will omit most of
the proofs, which can be found in the above mentioned references.

Let f : M → M be a continuous mapping on a smooth n-dimensional manifold
M .

Definition 2.1. A window W is a homeomorphic copy cW ([0, 1]u × [0, 1]s) in
M of a multi-dimensional rectangle [0, 1]u × [0, 1]s with specified expanding- and
contracting-like directions of dimensions u, s > 0 respectively, where u + s = n,
together with the underlying homeomorphism cW : dom(cW ) → im(cW ), where
dom(cW ) is an open neighborhood of [0, 1]u × [0, 1]s ⊆ R

n, and im(cW ) is an open
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neighborhood of W in M . The boundary components W− = cW (∂[0, 1]u × [0, 1]s)
and W+ = cW ([0, 1]u × ∂[0, 1]s) will be referred as the exit and the entry set,
respectively.

We will often refer to the image cW ([0, 1]u × [0, 1]s) of the rectangle [0, 1]u ×
[0, 1]s through cW as to the window W itself. The components of the mapping
c−1
W : im(cW ) → dom (cW ) will be referred to as the local coordinates of W . We

also denote (W )cW
= c−1

W (W ). When we want to specify the dimensions u, s of
the expanding- and contracting-like dimensions, we will refer to W as a (u, s)-
window. We will refer to the directions tangent to the images through c of the
sheets [0, 1]u × {y}, where y ∈ [0, 1]s, as the exit directions. We will also refer to
the entry directions of a window, which have a similar description.

Definition 2.2. Let W1 and W2 be two windows in M for which the corresponding
expanding- and contracting-like directions have the same dimensions, and such that
f(W1) ⊆ im(cW2

). Let fc : dom(cW1
) → dom(cW2

) be given by fc = c−1
W2

◦ f ◦ cW1
.

By definition, the window W1 is correctly aligned with the window W2 under f
provided that there exist 0 ≤ ai < bi ≤ 1, i = 1, . . . , u, such that:

(i) There exists a sub-rectangle of (W1)cW1
which is mapped by fc away from

the entry set of (W2)cW2
, and whose exit set is mapped by fc away from

the whole of (W2)cW2
, i.e.,

fc((Π
u
i=1[ai, bi]) × [0, 1]s) ∩ ([0, 1]u × ∂[0, 1]s) = ∅,

fc (∂ (Πu
i=1[ai, bi]) × [0, 1]s) ∩ ([0, 1]u × [0, 1]s) = ∅.

(ii) The image under fc of the sub-rectangle of (W1)cW1
from (i) crosses (W2)cW2

in a topologically non-trivial way, in the sense that there exists a contin-
uous homotopy ht : dom(cW1

) → dom(cW2
), with t ∈ [0, 1], such that the

following conditions hold true:

h0 = fc,

h[0,1]((Π
u
i=1[ai, bi]) × [0, 1]s) ∩ ([0, 1]u × ∂[0, 1]s) = ∅,

h[0,1] (∂ (Πu
i=1[ai, bi]) × [0, 1]s) ∩ ([0, 1]u × [0, 1]s) = ∅,

and there exists a linear map A : R
u → R

u, such that
• h1(x, y) = (Ax, 0) for all x ∈ [0, 1]u and y ∈ [0, 1]s,
• A(∂[0, 1]u) ⊂ R

u \ [0, 1]u,
• det(A) 6= 0.

See Figure 3 (for u = s = 1).

Remark 2.3. In the above definition, the fact that a sub-rectangle of (W1)cW1
crosses

(W2)cW2
in a non-trivial way means that one can homotopically deform the image

of the sub-rectangle into a u-dimensional plane given by a non-trivial linear map
that depends only on the expanding-like variables. More generally, one can require
that the sub-rectangle can be transformed, through a homotopy deformation, into
a u-dimensional surface described by a mapping of non-zero Brouwer degree. We
will not pursue this alternative here; see [43] for details.

Also, we remark that in [43] a sightly less general situation is considered, namely
when the whole window W1 is stretched across W2 in a non-trivial way – this
corresponds to the case in Definition 2.2 when ai = 0 and bi = 1 for all i = 1, . . . , u.
However, as we will see below, the more general case discussed here can be easily
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Figure 3. Correctly aligned windows.

reduced to the special case discussed in [43]. To distinguish between the more
general case described in Definition 2.2 from the special case considered in [43], we
will use the term ‘correct alignment’ to describe the situation in Definition 2.2, and
the term ‘covering relation’ to describe the situation in [43].

For 2-dimensional windows, we have the following easy criterion to check for
correct alignment.

Proposition 2.4. Assume that W1 and W2 are 2-dimensional windows on a sur-
face, and u = s = 1. Then W1 is correctly aligned with W2 under f if f(W1) ⊆
im(cW2

) and there exist 0 ≤ a < b ≤ 1 such that the following hold true:

(i) fc([a, b] × [0, 1]) ⊆ R × (0, 1).
(ii) Either f1

c ({a} × [0, 1]) < 0 and f1
c ({b} × [0, 1]) > 1, or f1

c ({a} × [0, 1]) > 1
and f1

c ({b} × [0, 1]) < 0, where fc = (f1
c , f2

c ).

The situation described by this proposition is depicted in Figure 3.
The next result is a topological version of the shadowing lemma for hyperbolic

systems.

Theorem 2.5. Let fi : M → M be a family of continuous maps and Wi be a family
of windows for which the corresponding expanding- and contracting-like directions
have the same dimensions, where i ∈ Z. Assume that, for each i, we have Wi

correctly aligned with Wi+1 under fi. Then there exists a point x ∈ W0, such that
(fi ◦ fi−1 ◦ · · · ◦ f1)(x) ∈ Wi for all i ∈ Z.

Proof. The proof reduces to the proof of Theorem 4 in [43], once we show that
the more general case of correct alignment described by Definition 2.2 reduces to
the special case considered in [43]. The special case means that the sub-rectangle
specified in Definition 2.2 (i) is in fact the whole rectangle, that is, ai = 0 and
bi = 1, for all i = 1, . . . , u.

Assume that Wi is correctly aligned with Wi+1 under fi. Then, there exists a

sub-window W ♮
i ⊆ Wi, corresponding to a rectangle of the form (Πu

j=1[a
♮
j , b

♮
j ]) ×

[0, 1]s, such that W ♮
i satisfies a covering relation with Wi+1 under fi. By slightly

deforming the original Wi we can ensure that Wi satisfies a covering relation with

W ♮
i under the identity mapping, while all the correct alignment conditions on the
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windows preceding Wi and on the windows succeeding Wi+1 in the sequence remain
unaltered. Thus, we replaced the correct alignment of Wi with Wi+1 with a sequence

of two covering relations, from Wi to W ♮
i , and from W ♮

i to Wi+1. ¤

In the rest of this section we outline a convenient method to verify correct align-
ment of windows in higher dimensions. Given two windows and a map, if each
window can be written as a product of window components, and if the components
of the first window are correctly aligned with the corresponding components of
the second window under the appropriate components of the map, then the first
window is correctly aligned with the second window under the given map.

Suppose that u1, u2, s1, s2 > 0 and u1 + u2 + s1 + s2 = n. Let u1 + u2 = u,
s1 + s2 = s, u1 + s1 = n1, and u2 + s2 = n2. We describe points in R

n by their
coordinates (x1, x2, y1, y2) where x1 ∈ R

u1 , x2 ∈ R
u2 , y1 ∈ R

s1 , and y2 ∈ R
s2 .

We denote by π(x1,y1) the projection mapping onto the (x1, y1)-coordinates, and by
π(x2,y2) the projection mapping onto the (x2, y2)-coordinates.

Let W1 be a window in M of expanding-like direction of dimension u and
contracting-like direction of dimension s, and let cW1

be the underlying homeo-

morphism. For each (x0
2, y

0
2) ∈ [0, 1]u2 × [0, 1]s2 , the mapping c

(x0
2,y0

2)
W1

defined by

(x1, y1) ∈ [0, 1]u1 × [0, 1]s1 → c
(x0

2,y0
2)

W1
(x1, y1) := cW1

(x1, x
0
2, y1, y

0
2)

is a homeomorphism, defining a (u1, s1)-window which we denote W
(x0

2,y0
2)

1 . The
exit set of this window is defined as

(
W

(x0
2,y0

2)
1

)−

= c
(x0

2,y0
2)

W1
(∂[0, 1]u1 × [0, 1]s1).

Its entry set is defined similarly.

Also, for each (x0
1, y

0
1) ∈ [0, 1]u1 × [0, 1]s1 , the mapping c

(x0
1,y0

1)
W1

defined by

(x2, y2) ∈ [0, 1]u2 × [0, 1]s2 → c
(x0

1,y0
1)

W1
(x2, y2) := cW1

(x0
1, x2, y

0
1 , y2)

is a homeomorphism, defining a (u2, s2)-window which we denote W
(x0

1,x0
2)

1 . The
exit set of this window is defined as

(
W

(x0
1,y0

1)
1

)−

= c
(x0

1,y0
1)

W1
(∂[0, 1]u2 × [0, 1]s2).

Its entry set is defined similarly.
When we write these windows in local coordinates, we have

(
W

(x0
2,y0

2)
1

)
c

: =
(
c
(x0

2,y0
2)

W1

)−1 (
W

(x0
2,y0

2)
1

)
= [0, 1]u1 × [0, 1]s1 ,

( (
W

(x0
2,y0

2)
1

)− )
c

: =
(
c
(x0

2,y0
2)

W1

)−1 ( (
W

(x0
2,y0

2)
1

)− )
= ∂[0, 1]u1 × [0, 1]s1 ,

(
W

(x0
1,y0

1)
1

)
c

: =
(
c
(x0

1,y0
1)

W1

)−1 (
W

(x0
1,y0

1)
1

)
= [0, 1]u2 × [0, 1]s2 ,

( (
W

(x0
1,y0

1)
1

)− )
c

: =
(
c
(x0

1,y0
1)

W1

)−1 ( (
W

(x0
1,y0

1)
1

)− )
= ∂[0, 1]u2 × [0, 1]s2 .

In the above notation, the subscript c stands for the appropriate homeomorphism
associated to the window under consideration.
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(W1
(x2

0,y2
0))c (W2

(02,02))c
π(x1,y1)(fc((W1

(x2
0,y2

0))c))

(W2
(02,02))c

(W1
(x1

0,y1
0))c

(W2
(01,01))c

π(x2,y2)(fc((W1
(x1

0,y1
0))c

(W2
(01,01))c

(W1)c (W2)c

fc((W1)c)

(W2)c

Figure 4. A product of correctly aligned windows. The exit set
of each window is shown in darker color.

Thus, we can write W1 in local coordinates as

(W1)c = (W
(x0

2,y0
2)

1 )c × (W
(x0

1,y0
1)

1 )c,

(W−
1 )c =

[((
W

(x0
2,y0

2)
1

)− )
c
×

(
W

(x0
1,y0

1)
1

)
c

]

∪

[(
W

(x0
2,y0

2)
1

)
c
×

((
W

(x0
1,y0

1)
1

)− )
c

]
.

for any (x0
2, y

0
2) ∈ [0, 1]u2 × [0, 1]s2 and (x0

1, y
0
1) ∈ [0, 1]u1 × [0, 1]s1 . The entry set of

W1 can be described in a similar fashion.
Thus, in local coordinates, the window W1 is the product of its components

W
(x0

2,y0
2)

1 and W
(x0

1,y0
1)

1 . Note that the exit set of W1 is not, in local coordinates, the

product of the exit sets of W
(x0

2,y0
2)

1 and W
(x0

1,y0
1)

1 .
Let us now consider a second window W2 in M , for which the expanding- and

contracting-like directions have the same dimensions as those corresponding to
W1, and let cW2

be the underlying homeomorphism. The window W2 is, in lo-

cal coordinates, the product of the component windows W
(02,02)
2 , corresponding to

(x0
2, y

0
2) = (0, 0), and W

(01,01)
2 , corresponding to (x0

1, y
0
1) = (0, 0).

We now describe a situation in which the correct alignment of the windows

W
(x0

2,y0
2)

1 and W
(02,02)
2 , and of the windows W

(x0
1,y0

1)
1 and W

(01,01)
2 , implies the correct

alignment of the windows W1 and W2.
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Proposition 2.6. Let W1 and W2 be (u, s)-windows as above. Assume:

(i) For each (x0
2, y

0
2) ∈ [0, 1]u2 × [0, 1]s2 , the (u1, s1)-window (W

(x0
2,y0

2)
1 )c is

correctly aligned with the (u1, s1)-window (W
(02,02)
2 )c under π(x1,y1) ◦ fc.

(ii) For each (x0
1, y

0
1) ∈ [0, 1]u1 × [0, 1]s1 , the (u2, s2)-window (W

(x0
1,y0

1)
1 )c is

correctly aligned with the (u2, s2)-window (W
(01,01)
2 )c under π(x2,y2) ◦ fc.

Then W1 is correctly aligned with W2 under f .

See Figure 4.

Remark 2.7. The fact that, in the above proposition, we fixed the coordinates
(x0

2, y
0
2) and (x0

1, y
0
1) to (0, 0) in the components of the window W2 is a matter of

convenience; one can describe more complicated condition under which the cor-
rect alignment of windows can occur. However, the above conditions can be easier

to verify in certain situations. For example, if one knows that (W
(02,02)
1 )c is cor-

rectly aligned with (W
(02,02)
2 )c, and (W

(01,01)
1 )c is correctly aligned with (W

(01,01)
2 )c,

one can argue that, by continuity, (W
(x0

2,y0
2)

1 )c is correctly aligned with (W
(02,02)
2 )c

for all (x0
2, y

0
2) sufficiently close to (0, 0), and (W

(x0
1,y0

1)
1 )c is correctly aligned with

(W
(01,01)
2 )c for all (x0

1, y
0
1) sufficiently close to (0, 0). If the window W1 can be made

sufficiently small in size (at least in some directions), this continuity argument is
sufficient to conclude that W1 is correctly aligned with W2.

3. Preliminaries to the proof

3.1. Normal hyperbolicity. The assumption made in Section 4.2 that A in nor-
mally hyperbolic in M relative to F means that TM can be split into (DF )-invariant
sub-bundles

TM = TA ⊕ Es ⊕ Eu,

and there exist a Riemannian metric on M , a constant C > 0, and rates 0 < λ <
µ−1 < 1 such that for all x ∈ A and v ∈ TpM we have

v ∈ Es
x ⇒ ‖(DFn)p(v)‖ ≤ Cλn‖v‖, for all n ≥ 0,

v ∈ Eu
x ⇒ ‖(DFn)p(v)‖ ≤ Cλ−n‖v‖, for all n ≤ 0,

v ∈ TA ⇒ ‖(DFn)p(v)‖ ≤ Cµn‖v‖, for all n ∈ Z.

(3.1)

The stable and unstable bundles Es and Eu are uniquely integrable and tangent
to stable and unstable foliation {W s

x}x∈A and {Wu
x }x∈A, respectively, whose leaves

are C1-smooth.
There exists a C1-smooth local coordinate system (u, s, c) in some tubular neigh-

borhood of A in M such that each point x in the tubular neighborhood corresponds
uniquely to coordinates (u, s, c) where c = (I, φ) are the action-angle coordinates
in A, u ∈ Eu

c , and s ∈ Es
c . For example, we can write each point x in the neigh-

borhood as x = expc(v), where v ∈ Eu
c ⊕ Es

c . In Section 4 we will use this local
coordinate system to construct windows in a neighborhood of A.

3.2. Birkhoff zones of instability. Let A = [0, 1] × T
1 ⊆ R

2 be an annulus,
thought of as a cylinder with the radius coordinate I ∈ [0, 1], and with the angle
coordinate φ ∈ R defined modulo 2π. A C1-diffeomorphism f : A → A, of compo-
nents f(I, φ) = (f1(I, φ), f2(I, φ))), is a monotone twist map provided that is area
preserving, orientation preserving, boundary preserving, and satisfies ∂f2/∂I > 0.
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We recall that a primary torus (essential invariant circle) in the annulus A is a a
1-dimensional torus in A that cannot be homotopically deformed into a point inside
the annulus. We review some classical concepts and results regarding twist maps.

Theorem 3.1 ([3, 4, 15]). If U is an f-invariant relatively open subset of the
annulus A, is simply connected in the universal covering space of A, contains one
of the boundary circles and is disjoint from the other boundary circle, then the
boundary of U is a primary invariant torus (an essential invariant circle), and is
the graph of some Lipschitz map.

In Section 4.2 we assumed that the invariant tori {Tι}ι∈I are C1-smooth. Thus,
they are C1-smooth graphs of functions in the φ-variable. This means that the
action direction I is transverse to each of these tori. Suppose that we have such
a torus T that is the graph of a C1-smooth function I = τ(φ). We can introduce
a new system of coordinates (Ī , φ) in the neighborhood of this torus, where Ī =
I − τ(φ). Thus the given torus T is characterized by Ī = 0, and the twist condition
∂f2(Ī , φ)/∂Ī = ∂f2(I, φ)/∂I > 0 is satisfied near T in this new coordinate system.
In Section 4 we will use this local coordinate system near T to construct certain
2-dimensional windows near T in A. In essence, we will construct windows of the
type

(3.2) RI,φ =
⋃

θ∈Rφ

RI
θ ,

where Rφ denotes a closed interval in the φ-coordinate, and RI
θ represents a closed

line segment of given length and parallel to the I-direction, centered at the point
in T of φ-coordinate equal to θ. Such a window has a simple description in the
(Ī , φ)-local coordinate system, being the product of two intervals in the Ī- and
φ-coordinates

RI,φ = RĪ × Rφ.

Definition 3.2. A region in the annulus bounded by two primary invariant tori
which contains no primary invariant torus in its interior is called a (Birkhoff) zone
of instability.

Theorem 3.3 ([4, 33]). Given a zone of instability bounded by the tori T1 and T2,
for every ǫ > 0 there exist a point p and an integer n > 0 such that d(p, T1) < ǫ and
d(fn(p), T2) < ǫ. Moreover, if f is, additionally, topologically transitive on both T1

and T2, then for every point z1 ∈ T1 and every open neighborhood B1 of z1 in A,
and for every point z2 ∈ T2 and every open neighborhood B2 of z2 in A, there exists
a point p ∈ B1 and an integer K > 0 such that fK(p) ∈ B2.

Later, in Subsection 4.1.4 and in Subsection 4.2.4, we will need a stronger version
of the above result, which we state and prove below.

Lemma 3.4. Consider a zone of instability Z bounded by two invariant primary
tori T1 and T2. Assume that the restriction of f to each of these tori is topologically
transitive. Let z1 ∈ T1 and z2 ∈ T2 be a pair of points. Let c : [0, 1] → Z be a
C1-curve such that c(0) = z2 ∈ T2 and c(0, 1] ⊆ Z, let B1 be an open neighborhood
of z1 in Z, and let ǫ > 0. Then there exist K > 0 and a point p = c(tε) on the
curve c, where 0 < tǫ < ǫ, such that f−K(p) ∈ B1.
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Proof. Let

V = cl


 ⋃

K≥0

f−K(c[0, ǫ])


 .

This is a closed set that contains T2, since f is topologically transitive on T2. Hence
V is connected. We also have f−1(V ) ⊆ V . Assume that V does not intersect the
open set B1. Since f is topologically transitive on T1, it follows that V does
not intersect a whole open neighborhood of T1 in Z. The complementary set ∁V
of V in Z is an open set that contains T1 and satisfies f−1(∁V ) ⊇ ∁V . Let U
be the connected component of ∁V that contains T1. Since U is covered by the
open connected components of f−1(∁V ), and T1 ⊆ U is invariant, we must have
f−1(U) ⊇ U . Since f is area preserving, f−1(U) = U . Also, by identifying Z
with its universal covering space and collapsing T1 to a point, and applying Lemma
A.7.8 from [27], we derive that U is simply connected in the covering space of Z.
The boundary of U cannot meet T2, since otherwise it will coincide with T2, due
to f being topologically transitive on T2. By Theorem 3.1, the boundary of U is a
primary invariant torus between T1 and T2, and is the graph of a Lipschitz map.
This contradicts that Z is a zone of instability. Therefore, V must intersect the
open set B1. ¤

We also note that (df−K)p is an invertible map, therefore we can always find a
vector v at p that is transverse to a certain prescribed direction w2 at p, whose image
(df−K)p(v) under (df−K)p is a vector that is transverse to a certain prescribed
direction w1 at f−K(p).

3.3. Sequences of invariant tori. In the statement of Theorem 1.2, a finite se-
quence of invariant tori {Tit

}t from the Cantor family {Tι}ι, and a finite sequence
{ǫt}t of positive real numbers are given. We want to prove the existence of an orbit
{zt}t whose points are (ǫt)-close to {Tit

}t.
We replace the given sequence {Tit

}t with a new finite sequence of tori chosen
from {Tι}ι, as follows. To {Tit

}t=0,...,s we first add all the tori Tj0 , . . . , Tj2m+1

described in H3. We remind the reader that the tori Tj0 , Tj1 , . . . , Tj2m+1
are at the

boundaries of the Birkhoff zones of instability. Then we inspect each torus Tit
that

lies in between some Tj2k
and Tj2k+1

, for k = 0, . . . ,m: if Tit
is an ‘interior’ torus,

in the sense described in the explanatory paragraphs following hypothesis H1, we
do nothing; if Tit

is not an ‘interior’ torus, then we replace it by an ‘interior’ torus
within (ǫt/2) of the original one. Finally, we add additional tori between each pair
Tj2k

, Tj2k+1
, k = 0, . . . ,m such that transition chains connecting Tj2k+1

with Tj2k+2

can be formed; each additional torus is chosen from the ‘interior’ tori of the Cantor
family {Tι}ι∈I . This can be done due to hypotheses H1 and H3.a on the Cantor
family {Tι}ι∈I ..

With an abuse of notation, we denote the resulting finite sequence also by
{Tit

}t=0,...,s. The tori Tj0 , Tj1 , . . . , Tj2m+1
described in H3 are part of the new

sequence {Tit
}t=0,...,s. The set of indices {j0, . . . , j2m+1} is a subset of the set of

indices {i0, . . . , is}.
By construction, if an orbit (ǫ/2)-shadows this new sequence, then the same

orbit (ǫt)-shadows the original sequence from the statement of Theorem 1.2. This
new sequence {Tit

}t satisfies the properties P1, P2, P3.a, P3.b listed below. These
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properties are inherited from the properties H1, H2, H3.a, H3.b of the Cantor family
{Tι}ι.

P1. Each torus Tit
with j2k ≺ it ≺ j2k+1 is the limit in the C1-topology of a

sequence of tori {Tι′n
}n from {Tι}ι, with ι′n ≺ ι and ι′n → it as n → ∞, and is also

the limit in the C1-topology of a sequence of tori {Tι′′n}n from {Tι}ι, where ι ≺ ι′′n
and ι′′n → it as n → ∞.

The tori Tit
with j2k ≺ it ≺ j2k+1 were referred in the explanatory paragraphs

following hypothesis H1 as ‘interior’ tori; they are not at the boundary of Birkhoff
zones of instability. Note that the sequences of tori {Tι′n}n and {Tι′′n}n that ap-
proximate Tit

are from {Tι}ι and not from {Tit
}t.

P2. We assume that F |A is topologically transitive on each torus from {Tit
}t.

This condition replicates condition H2.
P3.a. For k = 0, . . . ,m, for each pair of tori Tit

, Tit+1
with j2k ¹ it ≺ it+1 ¹

j2k+1, Wu(Tit
) intersects transversally W s(Tit+1

).
This means that there exist transition chains of tori connecting the upper bound-

ary of one zone of instability to the lower boundary of the next zone of instability.
P3.b. For k = 0, . . . ,m − 1, the region in A between Tj2k+1

and Tj2k+2
is a

Birkhoff zone of instability.
This condition, which replicates condition H3.b, does not prescribe whether or

not there exist heteroclinic connections between the boundaries of the Birkhoff
zones of instability lying between Tj2k+1

and Tj2k+2
, where k = 0, . . . ,m − 1. The

conditions P3.a and P3.b together imply that the new sequence {Tit
}t consists in

transition chains of tori alternating with ‘large gaps’, which are Birkhoff zones of
instability. Each pair of tori Tj2k+1

and Tj2k+2
at the boundary of a large gap are

part of the new sequence.

3.4. Heteroclinic points. Consider the sequence of invariant tori {Tit
}t obtained

in Section 3.3. If Wu(Tit
) intersects W s(Tit+1

) transversally, then the intersection
is 0-dimensional; we choose and fix a heteroclinic point qt in the intersection. If qt

is in the intersection of Wu(Tit
) with W s(Tit+1

), then, due to normal hyperbolicity
(see Section 3.1), there exist unique points p′t ∈ Tit

and pt+1 ∈ Tit+1
such that

qt ∈ Wu(p′t) ∩ W s(pt+1).

3.5. Construction of correctly aligned windows about a heteroclinic point.

We consider a pair of C1-smooth invariant tori Tit
and Tit+1

in A that have a trans-
verse heteroclinic intersection at qt. We are going to construct a pair of windows
W ′

t and Wt+1 near qt that are correctly aligned under the identity map.
Since Wu(Tit

) is transverse to W s(Tit+1
), there exists a local coordinate system

ht : Ut → R
2n+2 ≃ Tqt

M in a neighborhood Ut ⊆ M of qt, given by ht(p) = (x, y) ∈
R

n+1 × R
n+1, such that the branch of Wu(Tit

) in Ut that contains qt is given by
y = 0, and the branch of W s(Tit+1

) in Ut that contains qt is given by x = 0.
In this local coordinate system, we let W ′

t be the window in Ut given in local
coordinates by [a′

t, b
′
t]

n+1 × [c′t, d
′
t]

n+1, and Wt+1 be the window in Ut given in local
coordinates by [at+1, bt+1]

n+1 × [ct+1, dt+1]
n+1. We define the exit set of W ′

t by
(W ′

t )
− = (ht)

−1(∂([a′
t, b

′
t]

n+1)× [c′t, d
′
t]

n+1), and the exit set of Wt+1 by (Wt+1)
− =

(ht)
−1(∂([at+1, bt+1]

n+1) × [ct+1, dt+1]
n+1). We choose a′

t < at+1 < 0 < bt+1 < b′t
and ct+1 < c′t < 0 < d′t < dt+1 in order to ensure the correct alignment of W ′

t with
Wt+1 with respect to the identity map, in local coordinates. These inequalities
imply the correct alignment conditions (i) and (ii) of Definition 2.2. See Figure
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Wu(Tit
)

Ws(Tit+1
)

Wt+1

W't

qt

Figure 5. Construction of correctly aligned windows under the
identity mapping, near the transverse intersection of the invariant
manifolds.

5. (Another way to argue this correct alignment would be based on Proposition
2.4 and on Proposition 2.6.) Therefore, the windows W ′

t and Wt+1 are correctly
aligned under the identity, since their counterparts in R

2n+2 are correctly aligned
under the identity. At this point, we impose no additional requirements on the size
of the windows. In the sequel we will refine and adjust these windows according to
their behavior under dynamics.

Let us note that each window W ′
t with Wt+1 is foliated by leaves of the type

y = const. and also by leaves of the type x = const. These two types of leaves are
transverse to one another. We emphasize that these leaves, with the exception of
y = 0 and x = 0, which correspond to the unstable manifold of Tit

and to the stable
manifold of Tit+1

respectively, are not necessarily invariant under the dynamics.

3.6. Construction of correctly aligned windows by the transversality-

torsion mechanism. Let us consider a pair of correctly aligned windows W ′
t

and Wt+1 about qt, as above, where qt ∈ Wu(p′t) ∩ W s(pt+1) with p′t ∈ Tit
and

pt+1 ∈ Tit+1
. We will first describe the behavior of the exit and entry directions of

W ′
t when this window undergoes backward iterations, and then the behavior of the

exit and entry directions of Wt+1 when this window undergoes forward iterations.
We take a negative iterate F−Mt(W ′

t ) so that F−Mt(qt) is at a distance of less
than (ǫt/2) from F−Mt(p′t) ∈ Tit

, where the distance is measured along Wu(Tit
).

The exit set of the window W ′
t is made of the union of the boundaries of the

leaves {y = const.} ∩ W ′
t ; the entry set is made of the union of the boundaries of

the leaves {x = const.} ∩ W ′
t . The tangent space to Wu(Tit

) at qt is spanned by n
vectors (v′

1, . . . , v
′
n) tangent to Wu(p′t) at qt and an (n+1)-th vector v′

n+1 transverse
to the subspace spanned by these n-vectors (relative to Tqt

Wu(Tit
)). Under the

derivative of F−Mt , the subspace spanned by the vectors (v′
1, . . . , v

′
n) will go to the

tangent space of Wu(F−Mt(p′t)) at F−Mt(qt), and will approach the tangent space of
Wu(F−Mt(p′t)) at F−Mt(p′t) as Mt increases. For any finite number of iterations Mt,
the image of v′

n+1 under the derivative of F−Mt will remain tangent to Wu(Tit
) and

transverse to Wu(F−Mt(p′t)). On the other hand, the tangent space to W s(Tit+1
)

at qt is spanned by (n + 1) vectors (w′
1, . . . , w

′
n+1); we can choose these vectors

such that, under the derivative of F−Mt , the subspace spanned by (w′
1, . . . , w

′
n) will

approach the tangent space of W s(F−Mt(p′t)) at F−Mt(p′t), while the image of wn+1

will not grow exponentially in length and will remain transverse to Wu(Tit
). This
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follows from the transversality of the intersection between Wu(Tit
) and W s(Tit+1

),
and from normal hyperbolicity. The topological linearization (Hartman-Grobman
type result) of Pugh-Shub could be used to see the above statements (see [37]).

The difference between choosing (v1, . . . , vn+1) and choosing (w1, . . . , wn+1) is
that we we cannot specify whether or not the vectors w1, . . . , wn that approach
the stable directions correspond to vectors tangent to W s(pt+1) at qt. We empha-
size that we are not concerned with the behavior of these vectors in the limit, but
only after a finite number of iterations. Thus, the exit directions of the window
F−Mt(W ′

t ) at F−Mt(qt) correspond to the images of the vectors v′
1, . . . , v

′
n+1 un-

der the derivative of F−Mt , while the entry directions correspond to the images
of the vectors w′

1, . . . , w
′
n+1 under the derivative of F−Mt . When restricted to the

center directions, the exit direction is given by Dqt
(F−Mt)(v′

n+1) which is tangent

to Wu(F−Mt(p′t)), and the entry direction is given by Dqt
(F−Mt)(w′

n+1) which

is transverse to Wu(F−Mt(p′t)). Thus, the projection onto the (I, φ)-coordinates
of the 2-dimensional section in F−Mt(W ′

t ), through F−Mt(qt), corresponding to
Dqt

(F−Mt)(v′
n+1) and Dqt

(F−Mt)(w′
n+1) is a topological parallelogram R that

crosses Tit
. The exit of this topological rectangle consists of two curves trans-

verse to Tit
. We can construct a rectangle R in A, of the type RI,φ =

⋃
θ∈Rφ RI

θ

(as in (3.2)), with the exit set in the φ-direction, which is correctly aligned with the
projected topological rectangle from above under identity. See Figure 8 (right). Us-
ing continuity, by choosing the initial window W ′

t sufficiently small, choosing RI,φ

sufficiently wide in the φ-direction and sufficiently narrow in the I-direction, and
taking its product by a rectangle Ru,s in the (u, s)-coordinates, we can construct

a new window Ŵt = RI,φ × Ru,s, centered at F−Mt(p′t), whose exit directions at
F−Mt(p′t) are precisely given by the angle direction φ along Tit

and by the unstable
directions at the points on Tit

, and whose entry directions are precisely given by
the action direction I and by the stable directions at the points on Tit

, such that

Ŵt is correctly aligned with F−Mt(W ′
t ) under the identity map, or, equivalently,

Ŵt is correctly aligned with W ′
t under FMt . See Remark 2.7.

Similarly, we take a positive iterate FNt+1(Wt+1) so that FNt+1(qt) is at a dis-
tance less than (ǫt+1/2) from FNt+1(pt+1) ∈ Tit+1

, where the distance is measured
along W s(Tit+1

). In the tangent space to Wu(Tit
) at qt we can choose a basis

(v1, . . . , vn+1) such that, the image of the subspace spanned by (v1, . . . , vn) under
the derivative of FNt+1 will approach the tangent space of Wu(FNt+1(pt+1)) at
FNt+1(pt+1), while the image of the vn+1 under the derivative of FNt+1 will not
grow exponentially in length and will remain transverse to W s(Tit+1

). The tan-
gent space to W s(Tit+1

) at qt has a basis of vectors (w1, . . . , wn+1) such that, the

image of the subspace spanned by (w1, . . . , wn) under the derivative of FNt+1 will
approach the tangent space of W s(FNt+1(pt+1) at FNt+1(pt+1), while the image of
wn+1 under the derivative of FNt+1 will remain tangent to W s(Tit+1

). Thus, the

exit directions of FNt+1(Wt+1) at FNt+1(qt) correspond to the images of the vectors
v1, . . . , vn, vn+1 under the derivative of FNt+1 , while the entry directions correspond
to the images of the vectors w1, . . . , wn, wn+1 under the derivative of FNt+1 . Re-
stricted to the center directions, the exit direction is given by Dqt

(FNt+1)(vn+1),
and the entry direction is given by Dqt

(FNt+1)(wn+1). Thus, the projection in
(I, φ)-coordinates of the 2-dimensional section in FNt+1(Wt+1), through FNt+1(qt),
corresponding to Dqt

(FNt+1)(vn+1) and Dqt
(FNt+1)(wn+1) is a topological rectan-

gle that crosses Tit+1
; its exit set consist of two curves, one on each side of Tit+1

.
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Figure 6. The transversality-torsion mechanism: the exit sets of
the windows propagated near the annulus have reverse orientations
with respect to the center directions.

We can we can construct a rectangle RI,φ in A, with the exit set in the I-direction,
that is correctly aligned with the projected topological rectangle from above under
identity. See Figure 7 (right). Using continuity, by choosing Wt+1 sufficiently small,
and choosing RI,φ sufficiently narrow in the φ-direction and sufficiently wide in the

I-direction, we can construct a new window of product type W̃t+1 = RI,φ × Ru,s,
centered at FNt+1(pt+1), whose exit directions at FNt+1(pt+1) are precisely given
by the action direction I and by the unstable directions at the points on Tit+1

,
and whose entry directions are precisely given by the angle direction φ and by the
stable directions at the points on Tit+1

, such that FNt(Wt+1) is correctly aligned

with W̃t+1 under the identity map, or, equivalently, Wt+1 is correctly aligned with

W̃t+1 under FNt+1 .

If we focus on the center components of the exit directions of Ŵt and of W̃t+1, we

notice that the exit direction of Ŵt points in the φ-direction and the entry direction

points in the I-direction, while the exit direction of W̃t+1 points in the I-direction
and the entry direction points in the φ-direction. We will refer to this mechanism of
swapping the exit and entry directions between these two windows by the term of
transversality-torsion, inspired from [8]. With respect to the hyperbolic directions,

the exit sets of both Ŵt and W̃t+1 point in the unstable directions. See Figure 6.

4. Proof of the main theorem

Given a sequence {Tit
}t=0,...,s as described in Subsection 3.3, we construct in-

ductively a sequence of windows {W̃t}t=0,...,s with W̃t near the torus Tit
, such that

W̃t and W̃t+1 are linked by a sequence of correctly aligned windows for each t. The
strategy is to begin with a pair of correctly aligned windows about the first hetero-
clinic connection, and to propagate the construction of correctly aligned windows
forward, along transition chains and across zones of instability. Whenever we will
cross a zone of instability, we will need to go back and adjust some of the correctly
aligned windows constructed prior to that step. The inductive process through
which the windows are constructed and adjusted is described below.
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4.1. Initial step. Starting with the first heteroclinic connection, we construct a
finite sequence of correctly aligned windows along the first transition chain and
across the first large gap.

4.1.1. Construction of correctly aligned windows about a heteroclinic point. We first
consider the heteroclinic intersection of Wu(Ti0) with W s(Ti1) at q0 (see Subsection
3.4). About q0, we construct a pair of windows W ′

0 and W1 that are correctly aligned
under the identity mapping, following the procedure described in Subsection 3.5.

4.1.2. Construction of correctly aligned windows by the transversality-torsion mech-
anism. We choose the sizes of the windows W ′

0 and W1 such that the behavior of
the positive iterates of W1 and of the negative iterates of W ′

0 is as prescribed below.
We take a positive iterate FN1(W1) so that the distance from any point in

FN1(W1) to Ti1 , measured with respect to the (I, s)-coordinates, is less than (ǫ1/2).

Hence FN1(q0) is (ǫ1/2)-close to FN1(p1) ∈ Ti1 . We construct a window W̃1 cen-

tered at the point FN1(p1) in Ti1 such that W1 is correctly aligned with W̃1 under

FN1 , and the distance from any point in W̃1 to Ti1 , measured with respect to the
(u, s, I)-coordinates, is less than (ǫ1/2). To describe this window more precisely,
let (Ī , φ) be a local coordinate system near Ti1 , as described in Subsection 3.2.

We construct the window W̃1 as a product of 4 topological rectangles (i.e., homeo-
morphic copies of cartesian rectangles), corresponding to the u, s, φ, Ī coordinates,
respectively:

W̃1 = R̃u
1 × R̃s

1 × R̃φ
1 × R̃Ī

1,

with the rectangles R̃u
1 and R̃s

1 centered at 0, and the exit set given by

W̃−
1 =

[
∂(R̃u

1 ) × R̃s
1 × R̃φ

1 × R̃Ī
1

]
∪

[
R̃u

1 × R̃s
1 × R̃φ

1 × ∂(R̃Ī
1)

]
.

The exit set of W̃1 is in the (u, Ī)-direction, in accordance with the transversality-
torsion mechanism (Subsection 3.6). Moreover, we require that the rectangle

{0}×{0}×R̃φ
1 ×R̃Ī

1, corresponding to the intersection between W̃1 and the annulus
A, falls in between some invariant tori Tι′

1
, Tι′′

1
from the Cantor family {Tι}ι∈I , with

ι′1 < i1 < ι′′1 , and ι′′1 − i1 < ǫ1/2 and i1 − ι′1 < ǫ1/2. Such a choice is possible due

to condition P1. The exit set corresponding to the rectangle {0} × {0} × R̃φ
1 × R̃Ī

1,

which is given by {0}× {0}× R̃φ
1 × ∂(R̃Ī

1), is required to have its components lying
on the tori Tι′

1
and Tι′′

1
. See Figure 7, for the case t = 1.

The condition on W̃1 implies that size the of W̃1 measured with respect to the
Ī-coordinate is sufficiently small. Hence, in order to have W1 correctly aligned with

W̃1 under FN1 , we need the window W1 be sufficiently small in the exit direction,
thus we need to adjust the window W ′

0 such that it is sufficiently small in the exit
direction. This completes for now the construction of the pair of windows W ′

0 and

W1 about q0, and of the window W̃1 about T̃i1 .
We then take a negative iterate F−M0(W ′

0) so that the distance from any point
in F−M0(W ′

0) to Ti0 , measured with respect to the (I, u)-coordinates, is less than
(ǫ0/2). Hence F−M0(q0) is (ǫ0/2)-close to F−M0(p′0) ∈ Ti0 . We construct a window

Ŵ0 about Ti0 , centered at F−M0(p′0), such that Ŵ0 is correctly aligned with W ′
0

under FM0 , and the distance from any point in Ŵ0 to Ti0 , measured with respect
to the (u, s, I)-coordinates, is less than (ǫ0/2). Again, we let (Ī , φ) be a local

coordinate system near Ti0 , as described in Subsection 3.2. The window Ŵ0 is also
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Figure 7. Construction of correctly aligned windows near Tit
, in

the case of no gap – sections along the (u, s)-coordinates (left),
and sections along the (φ, I)-coordinates (right); the exit sets of
the sections are marked by thicker lines.

defined as a a product of 4 topological rectangles, corresponding to the u, s, φ, Ī
coordinates, respectively:

Ŵ0 = R̂u
0 × R̂s

0 × R̂φ
0 × R̂Ī

0,

with the rectangles R̂u
0 and R̂s

0 centered at 0, and the exit set given by

Ŵ−
0 =

[
∂(R̂u

0 ) × R̂s
0 × R̂φ

0 × R̂Ī
0

]
∪

[
R̂u

0 × R̂s
0 × ∂(R̂φ

0 ) × R̂Ī
0

]
.

Since this is the very first step of the construction, we de not require additional

conditions on Ŵ0. For this initial step we let W̃0 := Ŵ0, but we note that in the

further steps we will construct windows W̃t and Ŵt about Tit
which will be different

from one another. This completes the construction of the first window W̃0 about
Ti0 .

4.1.3. Construction of correctly aligned windows along the first transition chain. We
propagate the construction of correctly aligned windows along the first transition
chain that starts at Tι0 = Ti0 = Tj0 and ends at Tj1 , the lower boundary of the first
large gap. Recall from Subsection 3.3 that Tj1 is a part of the sequence of tori that
we want to shadow.

We start with the already constructed window W̃1 about Ti1 . We have that

W̃1 ∩A is a rectangle, in the (φ, Ī)-coordinates about Ti1 , that falls in between two
invariant tori Tι′

1
, Tι′′

1
with ι′1 < i1 < ι′′1 .

Consider the next heteroclinic intersection of Wu(Ti1) with W s(Ti2) at q1. We
construct a pair of windows W ′

1 and W2 about q1 that are correctly aligned under
the identity mapping, as described in Subsection 3.6. We construct the windows

Ŵ1 about Ti1 , and W̃2 about Ti2 such that Ŵ1 is correctly aligned with W ′
1 under

some power FM1 of the map F , and W2 is correctly aligned with W̃2 under some
power FN2 of F .

Similarly to the construction of Ŵ0 in Subsection 4.1.2, the window Ŵ1 is cen-
tered at the point F−M1(p′1) in Ti1 , and the (u, s, I)-distance from any point in

Ŵ1 to Ti1 is less than (ǫ1/2). The window Ŵ1 is also defined as a a product of 4
topological rectangles, corresponding to the u, s, φ, Ī coordinates near Ti1 :

Ŵ1 = R̂u
1 × R̂s

1 × R̂φ
1 × R̂Ī

1,
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Figure 8. Construction of correctly aligned windows near Tit
, in

the case of no gap – sections along the (u, s)-coordinates (left),
and sections along the (φ, I)-coordinates (right); the exit sets of
the sections are marked by thicker lines.

with the rectangles R̂u
1 and R̂s

1 centered at 0, and the exit set given by

Ŵ−
1 =

[
∂(R̂u

1 ) × R̂s
1 × R̂φ

1 × R̂Ī
1

]
∪

[
R̂u

1 × R̂s
1 × ∂(R̂φ

1 ) × R̂Ī
1

]
.

The exit set of Ŵ1 is in the (u, φ)-directions, in accordance with the transversality-
torsion mechanism (Subsection 3.6). Moreover, we require that the rectangle

{0} × {0} × R̂φ
1 × R̂Ī

1, which corresponds to Ŵ1 ∩ A, falls in between some in-
variant tori Tι′′′

1
, Tιiv

1
from the Cantor family {Tι}ι∈I , with ι′′′1 < ι′1 < i1 < ι′′1 < ιiv1 ,

and ιiv1 − i1 < ǫ1/2 and i1 − ι′′′1 < ǫ1/2, where ι′1 and ι′′1 are those from Sub-
section 4.1.2. We require that the entry set of this rectangle, which is given by

{0} × {0} × R̂φ
1 × ∂(R̂Ī

1) has its components lying on the tori Tι′′′
1

and Tιiv
1

. Such a
choice of tori is possible due to condition P1. See Figure 8, for the case t = 1.

Now we would like to align the windows W̃1, described in the previous step,

to the window Ŵ1. We will first align the rectangles {0} × {0} × R̃φ
1 × R̃Ī

1 with

{0}×{0}× R̂φ
1 × R̂Ī

1. Both rectangles have their centers on Ti1 . The first rectangle
has its exit set lying on Tι′

1
and Tι′′

1
, while the second rectangle has its entry set

lying on Tι′′′
1

and Tιiv
1

; the last two tori are contained within the strip bounded by

the first two tori. The exit direction of the first rectangle is in the Ī-direction, while
the exit direction of the second rectangle is in the φ-direction. Since the torus Ti1

is topologically transitive (condition P2), and since the restriction of F to A is a

twist map, there exists a power FKt of F which shears {0}× {0}× R̃φ
1 × R̃Ī

1 across

{0} × {0} × R̂φ
1 × R̂Ī

1 in a manner that is correctly aligned. We note that we need

to have the center FK1(FN1(p1)) of W̃1 ∩ A at most (ǫ1/2)-apart from the center

F−M1(p′1) of Ŵ1 ∩ A. See Figure 9, for the case t = 1. We emphasize that this
correct alignment argument is strictly a 2-dimensional one, since it is based on the
fact that the invariant tori separate the annulus in disconnected parts. After this

correct alignment of the sections W̃1∩A and Ŵ1∩A is ensured, we adjust the sizes of

the windows W̃1 and Ŵ1 to be small enough in the hyperbolic directions such that

for each pair of (u, s)-coordinates, the corresponding slices through W̃1 and Ŵ1 are

correctly aligned under FK1 . This way, by Proposition 2.6, we obtain that W̃1 and

Ŵ1 are correctly aligned under FK1 . Adjustments in size in the (u, s)-directions of
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Figure 9. Construction of correctly aligned windows along Tit
,

in the case of no gap – sections along the (I, φ)-coordinates; the
exit sets of the sections are marked by thicker lines.

W̃1 and Ŵ1 dictate corresponding adjustments in size for all previously constructed
windows, and also for W ′

1 and W2.
From this point on, we continue, in a similar fashion, the construction of windows

W̃0,W
′
0,W1, W̃1, Ŵ1, . . . , W̃t1−1, Ŵt1−1,W

′
t1−1,Wt1 , W̃t1 ,

where Wt1 is about the torus Tit1
= Tj1 , the lower boundary of the first large

gap, such that any two consecutive windows in the sequence are correctly aligned
under identity or under some power FNt , FKt , FMt of F . Each new step of the
construction will require the uniform revision of size in the (u, s)-directions of the
windows constructed up to that point, but neither the revision of the location of the
centers of the windows and of the sections with the annulus A, nor the revision of the
number of iterates of F that it takes to achieve each particular correct alignment.
It is quite important to remark that these revisions do not involve the sections of
the windows by the annulus A, nor their particular positioning between invariant
tori from the Cantor family; thus the number of iterates Kt that it takes to achieve
correct alignment of the sections of the windows by A at each step is not affected by
the revisions. Also, the number of iterates Mt and Nt+1 that it takes to bring the
heteroclinic point qt sufficiently close to the corresponding tori only depends on the
distances from qt to the corresponding tori, and not on the sizes of the associated
windows.

If it happens that the first transition chain reaches Tι1 , the target torus from the
statement of Theorem 1.2, i.e., {Tit

}t has no large gaps, the proof is already being
completed. If not, we proceed by crossing the first large gap.

4.1.4. Construction of correctly aligned windows across the first large gap. This is
the most delicate step of the argument.

In the previous step we have obtained a window W̃t1 centered at a point FNt1 (pt1)
on the torus Tit1

= Tj1 , which is the lower bound of the first large gap. Thus,
by P3.b, the region between Tit1

and Tit1+1
that lies ahead is a Birkhoff zone of

instability. By Theorem 3.3, there exists a point p close to Tit1
which lands near

Tit1+1
under some iterate FKt1 . We want to construct windows W̃t1 about Tit1

and Ŵt1+1 about Tit1+1
, such that the former is correctly aligned with the latter

under some iterate FKt1 . We would also want that W̃t1 is correctly aligned with
the windows constructed at the previous step.
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Figure 10. Construction of correctly aligned windows along Tit
,

at the border of a gap – sections along the (u, s)-coordinates (left),
and sections along the (φ, I)-coordinates (right); the exit sets of
the sections are marked by thicker lines.

First, note that due to the correct alignment of the windows W̃0,W
′
0, . . . ,Wt1 , W̃t1

at the end of Subsection 4.1.4, the intersection

W̃t1 ∩ FNt1 (Wt1) ∩ FNt1 (W ′
t1−1) ∩ . . . ∩ FNt1

+...+N0+M0(Ŵ0)

has a component C̃t1 that is a topological rectangle in W̃t1 . This is not, in general, a

rectangle in the local coordinate system (u, s, φ, Ī) near Tit1
. To C̃t1 it corresponds

in A a topological rectangle, which we denote by B̃t1 , such that

C̃t1 =
⋃

x∈B̃t1

∆̃t1(x),

where ∆̃t1(x) is a rectangle in the (u, s)-coordinates, depending on x ∈ B̃t1 . This

topological rectangle C̃t1 intersects the window W̃t1 only across its exit set, in a
manner that is correctly aligned. See Figure 10. This intersection defines an exit

set of C̃t1 , and, implicitly, an exit direction of B̃t1 .
Then note that, by P3.a, there exists a heteroclinic connection at qt1+1 between

Tit1+1
and Tit1+2

, on the other side of first large gap. We will now construct windows
about Tit1+1

, about qt1+1, and about Tit1+2
, with arbitrarily small diameters in the

exit directions.
By Subsection 4.1.2, we can choose a pair of windows (W ′

t1+1)
k and (Wt1+2)

k at
qt1+1 that are correctly aligned under the identity map, for k ≥ 0; we require that
the diameters of (W ′

t1+1)
k and (Wt1+2)

k, measured in the exit directions, approach

0 as k → ∞. As in Subsection 3.6, we can construct (W̃t1+2)
k by Tit1+2

such

that (Wt1+2)
k is correctly aligned with W̃t1+2 under some iterate FNt1+2 that does

not depend on k; moreover, we can choose (W̃t1+2)
k such that its exit set has the

center components lying on a pair of tori Tι′
k

and Tι′′
k

from {Tι}ι∈I , such that

ι′k ≺ it1+2 ≺ ι′′k and ι′k, ι′′k → it1+2 as k → ∞. Also, about F−Mt1+1(p′t1+1) ∈ Tt1+1

we construct (Ŵt1+1)
k such that is correctly aligned with (W ′

t1+1)
k under FMt1+2 ,

where the iterate F−Mt1+1 is chosen and fixed such that the distance between
any point in F−Mt1+1((W ′

t1+1)
0) and Tit1+1

, measured with respect to the (I, u)-

coordinates, is less than (ǫt1+1/2). The center component of the exit set of (Ŵt1+1)
k

consists of a pair of C1-curves transverse to Tit1+1
in A, with the C1-distance
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Figure 11. Construction of correctly rectangles that cross the
instability zone in a correctly aligned manner.

between the curves approaching 0 as k → ∞. The limiting position of this pair of
curves as k → ∞ is a C1-curve c(t) in A emanating from F−Mt1+1(p′t1+1). For each

k, (Ŵt1+1)
k ∩ A is a thin strip in A containing c(t), whose width approaches 0 as

k → ∞. The exit direction of (Ŵt1+1)
k ∩ A is transverse to the tangent direction

to c(t).
By Lemma 3.4, there exists a point r′t1+1 on the curve c(t), as close as we wish

to F−Mt1+1(p′t1+1), and a power FKt1 of F such that rt1 = F−Kt1 (r′t1+1) is in B̃t1 .
Moreover, we can find a vector v at rt1 , transverse to the φ-direction, which is
mapped by (dFKt1 )rt1

into the vector (dFKt1 )rt1
(v) at r′t1+1, that is transverse to

the tangent direction to c at r′t1+1.

Then, inside the topological rectangle B̃t1 , we can construct a thin strip D̃t1 in
A that contains rt1 , such that the direction of the thin strip at rt1 is given by v. We

also require that the exit set of D̃t1 is contained in the exit set of B̃t1 . The entry

direction of D̃t1 points in the φ-direction. If we choose the strip D̃t1 thin enough

in the φ-direction, we can ensure that the curve c(t) crosses FKt1 (D̃t1) all the
way through about the point r′t1+1, by entering through one entry component and
exiting right away through the other entry component. Of course, the curve may

enter and exit FKt1 (D̃t1) many other times away from the point r′t1+1. Nevertheless,

using Definition 2.2, we can construct a thin strip D̂t1+1 in A around c(t), with

exit direction near r′t1+1 pointing in the direction of v, such that D̃t1 is correctly

aligned with D̂t1+1 under FKt1 . See Figure 11.

We now choose and fix k sufficiently small such that (Ŵt1+1)
k intersects A in a

topological rectangle about c(t) that is contained in the strip D̂t1+1.

This window (Ŵt1+1)
k is, by definition, our new window Ŵt1+1 that we will

propagate further. To this window it corresponds a pair of windows W ′
t1+1 and

Wt1+2 about qt1+1 that are correctly aligned under the identity map, and another

window W̃t1+2 about the next torus Tt1+2. These windows correspond to the pre-

viously constructed (W ′
t1+1)

k, (Wt1+2)
k, and (W̃t1+2)

k, for our chosen k. Through

our construction, we have ensured that the exit set corresponding to W̃t1+2 ∩A lies
on tori nearby Tt1+2, from the family {Tι}ι∈I . This property is required to carry
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Figure 12. Construction of correctly aligned windows across
a large gap between Tit

and Tit+1
– sections along the (φ, I)-

coordinates; the exit sets of the sections are marked by thicker
lines.

on the construction of correctly aligned windows in a manner similar to Subsection
4.1.3. This will be done explicitly in Subsection 4.2.3.

Now we need to redefine the window W̃t1 . We construct W̃t1 as a topological

rectangle that crosses C̃t1 in a manner that is correctly aligned, and that intersects

A along a 2-dimensional window contained in B̃t1 and which contains rt1 . In this

way, we can ensure that W̃t1∩A is correctly aligned with Ŵt1+1∩A under FKt1 . We

adjust the size of the windows W̃t1 ∩A and Ŵt1+1 ∩A in the hyperbolic directions

such that W̃t1 is correctly aligned with Ŵt1+1 under FKt1 . In conclusion we obtain

W̃t1 correctly aligned with Ŵt1+1 under FKt1 .

The fact that we redefined W̃t1 destroys the previous correct alignments in

the sequence W̃0,W
′
0,W1, W̃1, Ŵ1, . . . , W̃t1−1, Ŵt1−1,W

′
t1−1,Wt1 , W̃t1 constructed

in Subsection 4.1.3. This will require a backwards avalanche of adjustments of
the windows constructed along the first transition chain, that will be described in
Subsection 4.1.5.

On the other hand, Ŵt1+1 ∩ A has to be sufficiently thin in the φ-direction in

order for W̃t1 ∩ A to be correctly aligned with Ŵt1+1 ∩ A under FKt1 . See Figure
12. Consequently, W ′

t1+1 has to be sufficiently thin in the exit direction. This will
impose forward restrictions, in terms of the smallness in size of the exit directions,
for all windows that will be constructed along the second transition chain. Similarly
to what we have seen in Subsections 4.1.1 and 4.1.3, if we start with a smallness
condition on the size of the exit direction of the window W ′

t1+1, this condition will
be inherited by all the correctly aligned windows that will be constructed along
the next transition chain. However, when the next large gap will be encountered,
this will require backwards adjustments on the size of the entry direction. There
is no reason at this point why these two types of adjustment can be performed
without affecting one another. We will describe a procedure to perform this double
adjustment coherently in the induction step in Section 4.2.

4.1.5. Revision of the sequence of correctly aligned windows along the first transition
chain. We revise the construction of

W̃0,W
′
0,W1, W̃1, Ŵ1, . . . , W̃t1−1, Ŵt1−1,W

′
t1−1,Wt1 , W̃t1 ,



26 MARIAN GIDEA AND CLARK ROBINSON

with W̃t1 redefined as in the previous section, in order to ensure that each window
in the sequence is correctly aligned with the next window under the appropriate

power of F . By the previous paragraph, the window of W̃t1 had to be redefined

so that it is correctly aligned with C̃t1 , which is a component of the intersection

W̃t1 ∩ FNt1 (Wt1) ∩ FNt1 (W ′
t1−1) ∩ . . . ∩ FNt1

+...+N0+M0(Ŵ0). Consequently, going
backwards in the chain of correctly aligned windows one step at a time, we can select

topological rectangles inside all windows constructed up to W̃t1 such that that each
window in the sequence is correctly aligned with the successive window under the
appropriate power of F . For example, the redefined Wt1 will be a component of

F−Nt1 (W̃t1) ∩ Wt1 , slightly enlarged in the exit direction and slightly diminished
in the entry direction in order to ensure correct alignment. Since the redefined
windows are just selections of topological rectangles inside the original ones, the
number of iterates of F that ensures the correct alignment at each stage is the same
as in the original sequence.

At the end of this procedure, we have obtained a new sequence of windows along
the first transition chain, for which we use the same notation as before,

W̃0,W
′
0,W1, W̃1, Ŵ1, . . . , W̃t1−1, Ŵt1−1,W

′
t1−1,Wt1 , W̃t1 ,

where the number of iterations Nt, Kt, Mt required to perform correct alignment
between successive windows does not change from before. The fact that we do
not revise the number of iterates as we revise the construction of windows is quite
critical for our argument.

We have also obtained W̃t1 correctly aligned with Ŵt1+1 under FKt1 . This latter
pair of windows crosses the first large gap.

This completes the initial step of the induction process.

4.2. Induction step. We assume that we have already constructed correctly aligned
windows along the first m transition chains alternating with the first m large gaps,

and we have arrived with the construction at a window Ŵtm+1 around the torus
Titm+1

, which is the upper bound of the m-th large gap. As in Subsection 4.1.4, the

section Ŵtm+1 ∩ A of Ŵtm+1 contains a point r′tm+1 which is the image of a point
rtm

that travels across the Birkhoff zone of instability between Titm
and Titm+1

.

There is a window W̃tm
already constructed around rtm

. The exit direction of W̃tm

corresponds to the unstable directions and to some direction in A that is transverse

to the φ-direction. The exit direction of Ŵtm+1 corresponds to the unstable direc-
tions and to some direction in A that is transverse to the Ī-direction. The section
Ŵtm+1 ∩ A has to be of some prescribed width in the Ī-direction (imposed by the

correct alignment of Ŵtm+1 with W ′
tm+1), and sufficiently thin in the φ-direction

so that FKtm (W̃tm
) ∩ A crosses Ŵtm+1 ∩ A in a manner that is correctly aligned.

See Figure 12. We are now going to continue the construction of correctly aligned
windows along the next transition chain and across the next large gap. Since most
steps of the construction will be similar to the steps in Subsections 4.1.1, 4.1.2,
4.1.3, 4.1.4, and 4.1.5, we will focus mainly on the differences.

4.2.1. Construction of correctly aligned windows about a heteroclinic point. We con-
struct a pair of windows W ′

tm+1 and Wtm+2 near qtm+1 that are correctly aligned

under the identity mapping, as described in Subsection 3.6, and such that Ŵtm+1
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is correctly aligned with W ′
tm+1 under Fmt . The windows W ′

tm+1 and Wtm+2 need
to be sufficiently small in the exit direction.

4.2.2. Construction of correctly aligned windows by the transversality-torsion mech-
anism. By the transversality-torsion mechanism, the smallness in the size of the
exit direction of W ′

tm+1 imposes a restriction on the smallness in the size of the
exit direction of Wtm+2. These smallness condition will propagate forward to the
subsequent windows.

4.2.3. Construction of correctly aligned windows along the (m + 1)-th transition
chain. We propagate the construction of correctly aligned windows along the (m+
1)-th transition chain that starts at Titm+1

and ends at Ttm+1
, the lower boundary

of the next large gap, and obtain

Ŵtm+1,W
′
tm+1,Wtm+2, W̃tm+2, . . . , W̃tm+1−1, Ŵtm+1−1,W

′
tm+1−1,Witm+1

, W̃tm+1
,

with Wtm+1
about the torus Ttm+1

at the lower boundary of the next large gap,
such that any two consecutive windows in the sequence are correctly aligned under
identity or under some power FNt , FKt , FMt of F . Whenever we want to correctly

align two windows Ŵt and W̃t about the same torus Tt, we use the fact that the

exit set components of Ŵt ∩A and the entry set components of W̃t lie on invariant
tori neighboring Tt to achieve correct alignment of the center components of the
windows under some power FKt ; see Subsection 4.1.3.

4.2.4. Construction of correctly aligned windows across the (m + 1)-th large gap.
The region between Titm+1

and Titm+1+1
is a Birkhoff zone of instability.

The intersection

W̃tm+1
∩ FNtm+1 (Wtm+1

) ∩ . . . ∩ FNtm+1
+...+Ntm+1

+Mtm+1 (Ŵtm+1
),

following all the windows in the preceding transition chain, has a component C̃tm+1

that is a topological rectangle in W̃tm+1
, of the form

C̃tm+1
=

⋃

x∈B̃tm+1

∆̃tm+1
(x),

where ∆̃tm+1
(x) is a rectangle in the (u, s)-coordinates, and B̃tm+1

is a rectangle in

A. The intersection between C̃tm+1
and the exit set of W̃tm+1

defines the exit set

of C̃tm+1
, and, implicitly, the exit set of B̃tm+1

.
The heteroclinic connection between Titm+1+1

and Titm+1+2
yields a sequence of

pairs of windows (W ′
tm+1+1)

k and (Wtm+1+2)
k, located by the heteroclinic point

qtm+1+1, that are correctly aligned under the identity, and for which the widths
in the exit directions approach 0 as k → ∞. Then, there exits a curve c(t)

in A emerging from the point F−Mtm+1+2(p′tm+1+2), and a sequence of windows

(W̃tm+1+1)
k by F−Mtm+1+2(p′tm+1+2), such that (W̃tm+1+1)

k ∩A contains the curve

c(t) and (W̃tm+1+1)
k is correctly aligned with (W ′

tm+1+1)
k for each k. By Lemma

3.4, there exists a point rtm+1
∈ B̃tm+1

and a power FKtm+1 of F such that

r′tm+1+1 = FKtm+1 (rtm+1
) is in c(t). There exists a window W̃tm+1

about rtm+1
, with

W̃tm+1
∩A ⊆ B̃tm+1

, and a window (Ŵtm+1+1)
k about r′tm+1+1, such that W̃tm+1

is

correctly aligned with (Ŵtm+1+1)
k under FKtm+1 . In order to have FNtm+1 (Wtm+1

)
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Figure 13. Readjustment of the correctly aligned windows across
a large gap between Titm

and Titm+1
– sections along the (φ, I)-

coordinates; the exit sets of the sections are marked by thicker
(continuous or dotted) lines.

crossing (W̃tm+1
)k in a manner that is correctly aligned, and (Ŵtm+1+1)

k crossing

F−Mtm+1 ((W ′
tm+1+1)

k) in a manner that is correctly aligned, we need to choose k

sufficiently large so that (W̃tm+1
)k ∩ A is sufficiently thin in the φ-direction.

4.2.5. Revision of the sequence of correctly aligned windows along the previous tran-

sition chain. In the previous step, we have modified the window W̃tm+1
at the tail

of the sequence

W ′
tm+1,Wtm+2, W̃tm+2, Ŵtm+2, . . . , W̃tm+1−1, Ŵt1−1,W

′
tm+1−1,Wtm+1

, W̃tm+1
.

Thus, we need to redefine all the preceding windows in the chain, in order to
ensure that each window crosses the successive window in a manner that is correctly

aligned, under the appropriate iterate of F . The new window of W̃tm+1
is required

to be sufficiently thin in the φ-component of the entry direction. Since W̃tm+1
was

constructed inside the intersection C̃tm+1
, we can propagate it backwards, one step

at the time, all the way through, obtaining a new sequence of correctly aligned
windows, still denoted by

W ′
tm+1,Wtm+2, W̃tm+2, Ŵtm+2, . . . , W̃tm+1−1, Ŵt1−1,W

′
tm+1−1,Wtm+1

, W̃tm+1
.

The number of iterates it takes to correctly align one window to the next window in
the sequence is the same as in the previously constructed sequence, at the beginning
of the paragraph.

When this avalanche of backwards adjustments reaches Titm+1
, the window

Ŵtm+1 needs to be made even thinner in the center component of its exit direction.

However, making Ŵtm+1 ∩ A thinner in the φ-direction does not affect at all the

crossing of FKtm (W̃tm
)∩A. This is a crucial part of the argument: the sequence of

the backwards adjustments stops at the upper bound of the previous large gap, and
it does not affect the constructions on the previous transition chains and previous
gaps. This completes the induction step.

This type of argument, that if a window is correctly aligned with another window,
then it is correctly aligned with any sub-window of the latter, was also used in the
proof of Theorem 2.5. See Figure 13.

In summary, each crossing of a large gap determines two series of refinements:
a backward series of adjustments in the center component of the entry directions
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of the sequence of windows that arrives at the lower bound of the large gap, and a
forward series of adjustments in the center component of the exit directions of the
sequence of windows that departs from the upper bound of the large gap. Each
backward series of adjustments only goes back to the upper bound of the previous
large gap, and not any further. One essential ingredient that allows to perform the
two kinds of adjustments without harming one another is the existence of ‘interior’
invariant tori that are limits from above and from below of other transition tori.

5. Final remarks

Remark 5.1. A classical geometric argument for Arnold diffusion is the obstruction
argument (see [1, 11, 12]). However, the obstruction argument can only be applied
for transition chains of tori – primary or secondary – and relies heavily on the
Lambda Lemma. In the situation with large gaps that we consider, there are no
transition chains that cross the gaps. We are not able to use the standard Lambda
Lemma to traverse these large gaps, so the classical obstruction argument does not
immediately apply to this situation. It appears possible though ([16, 29]) to adapt
the Lambda Lemma in order to use it to cross zones of instability. The method of
correctly aligned windows that we employ here can be viewed as an adaptation of
the obstruction argument to a situation that combines transition chains and zones
of instability. This is quite different from the usual type of application of correctly
aligned windows to detect periodic orbits and symbolic dynamics, as, for example,
in [17, 18, 38, 42, 43]; also compare with [30].

Remark 5.2. The method of correctly aligned windows can be implemented nu-
merically to detect orbits with prescribed itineraries, periodic orbits and chaos in
concrete system (see, for example [43] and the references listed there). Another
technique that is used in proving Arnold diffusion is the scattering map [12]. The
scattering map was implemented numerically in the study of the spatial Hill’s prob-
lem in [13]. It seems possible that the windowing technique can be combined with
the scattering map technique for numerical verifications of Arnold diffusion in con-
crete systems.

Remark 5.3. The result of Birkhoff mentioned in Subsection 3.2 remain valid for
positive-tilt maps (see [32]). Consequently, Theorem 1.2 remains true even if the
restriction of F to the annulus A is only a positive-tilt map.
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[42] P. Zgliczyński, Sharkovskii’s Theorem for Multidimensional Perturbations of One-

Dimensional Maps, Ergod. Th. & Dyn. Sys., 19 (1999), 1655–1684.
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