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Abstract

In this paper, one-dimensional (1D) nonlinear Schrédinger equation
U — Ugy + \u|2pu:0, peN,

with periodic boundary conditions is considered. It is proved that the above equation admits
small-amplitude quasi-periodic solutions corresponding to 2-dimensional invariant tori of an
associated infinite-dimensional dynamical system. The proof is based on infinite-dimensional
KAM theory, partial normal form and scaling skills.

1 Introduction and Main Result
In this paper, we will prove that one-dimensional(1D) nonlinear Schrodinger equation

U — U+ [u*Pu=0 (1.1)
under periodic boundary conditions

u(t,x) =u(t,z+2m) (1.2)

admits small-amplitude quasi-periodic solutions corresponding to 2-dimensional invariant tori.
As usual, we study the equation (1.1) as a hamiltonian system on P = Hg (T) = H}([0,27]) with
the inner product (u,v) = Re fo% wvdz, the Sobolev space of all complex valued L?-functions on T

with an L?-derivative. Let ¢;(z) =/ 5=€"", X\; =j2, j € Z be the basic modes and their frequencies

for the linear equation iu; = u,, with periodic boundary conditions. Then every solution is the
superposition of oscillations of the basic modes, with the coefficients moving on circles,

u(t,r) = qu(t)qﬁj(x)’ q;(t) = g2
JET

Together they move on a rotational torus of finite or infinite dimension, depending on how many
modes are excited. In particular, for every choice

J={i1<j}CZ

of 2 basic modes there is an invariant linear space E; of complex dimension 2 which is completely
foliated into rotational tori:

Ey={u=aq¢;, +qd;,: ¢€C*}= | T7(I),
IepP?
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where P?={I: I, >0} and
T7(I) ={u=qd;, +q0j, : |q;|*=2I; for 1 <j <2}.

In addition, each such torus is linearly stable, and all solutions have vanishing Lyapunov exponents.
This is the linear situation.

Upon restoration of the nonlinearity |u|?Pu, we show that there exists a Cantor set C C P?, an
index set Z = {ny <na}, where ny > ,/pn; >0, and a family of 2-tori

TZ(C) = | J Tz(I) C Br
IeC

over C, and a Whitney smooth embedding
O:T7[C]— P,

such that the restriction of ® to each 7z(I) in the family is an embedding of a rotational 2-torus
for the nonlinear equation. In [14], The image &7 of 77[C] is called a Cantor manifold of rotational
2-tori given by the embedding ®: 77[C] — &7.

Theorem 1 (Main Theorem) Consider 1D nonlinear Schrédinger equation (1.1) with (1.2). Then
for any index set T={ny <na}, which satisfies ny > \/pn1 >0, there exists a positive-measure Can-
tor manifold E1 of real analytic, linearly stable, Diophantine 2—tori for the nonlinear Schrodinger
equation given by a Whitney smooth embedding ® : T7[C] — E7.

Remark 1.1 For 1D nonlinear Schrodinger equations of higher order nonlinearities such as
1V — Vg +mv+ [0]*Pv=0 (1.3)
under periodic boundary conditions

v(t,x) =v(t,x+2m), (1.4)

there exists a well-known transformation v =¢e"™*u, the above equation and boundary condition are

transformed to the equation (1.1) and (1.2).

Remark 1.2 Generally, one can’t prove that ® is a higher order perturbation of the inclusion map
D : Er — P restricted to Tr[C]. The reason lies in the symplectic transformations Uy, Wy. See
Section 2 for details.

There are some known woks about the equation (1.1). For p = 1 under Dirichlet boundary
conditions, see the well-known work of Kuksin and Poschel [14]. For p=2 under Dirichlet boundary
conditions, Liang and You(see [15]) also got the similar conclusions as [14]. But their method is
hard to be generalized to p > 3. The reason will be given in the following. Before that, we will turn
to some works about the Schrédinger equation under periodic boundary conditions. In [2, 4, 5],
Bourgain obtained the existences of quasi—periodic solutions for the Schrodinger equation including
1D and nD(n >2). His method, called Craig-Wayne-Bourgain’s scheme(see [7, 2, 3, 4, 5]) is very
powerful and different with KAM. It avoids the, sometimes, cumbersome and famous “the second
melnikov conditions” but to a high cost: the approximate linear equation are not of constant
coefficients. It results in giving no information on the linear stability of constructed quasi-periodic
solutions.

The first work using KAM to construct quasi-periodic solutions of 1D nonlinear PDEs under
periodic boundary conditions is due to Chierchia and You(see [6]). They obtain the linearly sta-
ble quasi-periodic solutions for 1D wave equation. But their method is hard to deal with the
Schrodinger equation. For the Schrédinger equation (1.3)+(1.4) when p=1, it was included in the
work of Geng and You [11]. Combing with the methods of [15] and [12], Geng and Yi(see [13])
obtained the similar result for p =2. But their methods failed in p > 3. What is the problem?

Before we turn to the problem mentioned above and explain our method, we want to give a fast
introduction in the recent development in KAM of higher dimension. In [12], Geng and You proved



a KAM type of theorem which is applicable to certain Hamiltonian partial differential equations in
higher space dimension including beam equations and Schrédinger equations with nonlocal nonlin-
earity. The important point in their proof is that they find the perturbation terms of the iterative
Hamiltonian pertain some special form. Unfortunately, they expel the most interesting cases such
as the higher dimensional Schrédinger equation with the general nonlinearities and higher dimen-
sional wave equation. Very recently, there is new important development towards two problems.
In [8, 9, 10], Eliasson and Kuksin give a KAM for higher dimensional Schrédinger equation with
the general nonlinearities. The constructed quasi-periodic solutions have all Lyapounov exponents
equal to zero. In [22], Yuan obtains a KAM theorem which can be applied to both the nonlinear
wave equations and Schrodinger equations of higher dimension. The second Melnikov’s conditions
are totally eliminated in his method.

Now, we come back to the Schrodinger equation (1.1)4(1.2). We give a short discussion and
the reason why the existent results only restricted in p < 2. In the end, we will give the sketch of
our proof and point out the main difficulties in our proof. After the standard way as [15] and [13],
we have the Hamiltonian

Hol'=A+G+G+G+K,

where

~ k k (k
_Cp Z ;Djrrl1 |qn1|2(p )|q | )

k=-1
k 2(p—k) 2k |12
+¢p(C ;D+1 E : E C ‘qm‘ |Gns "7 gn]
n#ni,ng k=0
G: cp E qil "'Qip+1Qj1 ...qu+1’
i1t A ip 1 =1+t ipta

{i1,vipy1.d1, 2 dp+1€T1}

G:Cp § Qiv Qi1 951 Dipyas
i1t Fipp1=d1+tipy1
{i1, ipa1.d1, dpr1€A3Y

K| =0(lqll,7+?),
where ny, no are the different tangent sites and the set
T ={(i1, ipt1:J15 s Jpt1) EAQ\M|Z'%+"‘+Z}2;+1 ij+"'+jf)+1}-

Please see section 2 for other relative notations. The existence of G is the trouble-maker. For
p=1, G doesn’t exist. For p =2, if choose ny —n; € 2N—1, the terms of G also don’t exist. This
is the reason why Geng and Yi(see [13]) restrict the tangent site in the case ny —ng € 2N —1(also
see Remark 2.1). For either p=2 and ny —nj € 2N or p > 3, the terms of G aren’t empty.

This similar phenomenon, as the terms of G don’t vanish, exists very popularly. It definitely
exists in 1D Schrédinger equation with the nonlinearity |u|?Pu(p > 2) under Dirichlet boundary
conditions. It is why it is difficult to generalize the conclusions of [15] to any p. We point out that
this phenomenon also exists in many other equations such as 1D wave equation and beam equation
with the nonlinearity u?"*1(7 > 3) under different boundary conditions. For example, it exists in
1D wave equation

Upt — Ugg +mu+u?" =0, m >0, 7> 3,

under Dirichlet boundary conditions. If use the same notation as [16], when 7= 3, we will find that
the nonresonant term z,,, zf’”ziinlinz Z; can’t be killed for some m > 0(depending on 4, j), where
i, j are normal sites and nq, n are tangent ones and \; =vi2+m, \j =+/j2+m, A\,, =/ni+m
satisfy
200, F A=Ay,
{ dng +i=j.



This also partly explains why existent KAM results for this equation only hold true for positive
measure of m > 0. See Bambusi [1] and Liang and You [16] for details.

In the following, we give a sketch of our proof. Firstly, we give the concrete form of é(see
(2.6), (2.9) and (2.10)). The proof is only restricted in two different tangent sites ni, ng. After
the standard way of introducing the parameters &1, £, we have the Hamiltonian

H= (&), )+ Y, Quuwnwn+T1+T2+7Ts.

n#ENL, N2

See (2.11) for details. In some sense, Yo+ T3 = h.o.t.. We absorb the term of T into the term

of > Qn(§)wnpw,. And rewrite the two terms as (G(z)w,w), where the infinite dimensional
n#EN, N2

normal matrix

ol

&Oefip(xlfsm)

GgetP(z1—22)

joll

Jo

where x1, 29 is the angle coordinates and for a;, i; and j;, see (2.12), (2.7) and (2.8). In the follow-
ing, we introduce a nonlinear symplectic transformation(see Lemma (2.5)) to the above hamiltonian
and re-scale the coordinates and parameters including ¢ and then use another symplectic transfor-
mation to diagonalize the normal infinite dimensional matrix. After all the transformations, one
gets the following Hamiltonian

H=N+P
= (W, y)+ Y Qi+ Plz,y,w,9,€,¢),

where '
B ij J ¢N7
Q=1 A, Jj=ii, teT,
>\2,t; j:jtv tGT,
and

1 1

A=, —|—§(p—t)A—5\/4at2+(p—t)2A2,
1 1

Aoy =S, +§(p7t)A+§\/4at2+(pft)QAQ.

For Q;, j#n1, n2, A and a, see (2.23), (2.14) and (2.17). In order to obtain the measure estimates
under periodic boundary conditions, an easy way is to prove that the perturbation terms always
satisfy some special properties. We remark that even though the common properties as ([12]) and
([13]) don’t pertain after the nonlinear symplectic transformation ¥;(see Lemma 2.5), a similar
property still holds, which we call generalized compact form. One easily proves that this property
holds even after infinite K AM steps. Another main difficulty is the measure estimate in the first
step, while measure estimates of the remaining steps are standard as [15] and [16]. The difficulty
lie in A; ¢ and Mgy, t€ 7. It is hard to get the inequality such as

0% f
e

|>c>0,



where f = (k,w)+Q, —Q,,. Our method is technical. See Lemma 4.12 for details.

The rest of the paper is organized as follows: In section 2 the hamiltonian function is written
in infinitely many coordinates, which is then put into partial normal form. In section 3, we give
KAM steps and Theorem 2. Measure estimates are given in section 4. In the Appendix, we explain
what is the compact form and generalized compact form. Some important lemmata are proved
there.

2 Normal Form

Using the Hamiltonian formulation, we rewrite the equation (1.1) with the periodic boundary
condition (1.2) as the Hamiltonian system u; = i%—g, where

2m 1 27
HZ/ (|uz|?)dx + —— |u| P2 d.
0 p+1Jo
Note that the operator A = —0,, with the periodic boundary conditions has an orthonormal
basis {¢y,(r) =/ 5=€"*} and corresponding eigenvalues 11, =n?. Let u(z,t) = Y gn(t)¢y(x). The

ne”Z
coordinates are taken from the Hilbert spaces I? of all complex-valued sequences ¢ = (g;);cz with

gl =" " lg;|*e*V1? < 00.
JEZ

Fix p >0 later. Then associated with the sympletic structure i Y. dg, Addn, {qn}nez satisfies the

Hamiltonian equations "
qn:ig—;, neZz, (2.1)
where
H=A+G (2.2)
with o
A=Y, 6= [ P,

nez ne”Z

Lemma 2.1 The gradient G is real analytic map from a neighbourhood of the origin of 1”7 into
1P, with
IGqll,=OClallz"*)-

The proof is similar as Lemma 3 in [14].

Note that
1 27 _ B
G= e Z (/ Bir * Bior B B AT) i+ Ciyis T, T
B,y ip1,J1, 0 Jp+1 0
1 _ _
- ? Z Gi1"'ip+1j1'“jp+1Qi1 "'Qip+1jS1 "'ij+17
p 11,5 lp4 1,015 Jp41
where

27

Gil"'ip+1j1"~jp+1 = ®i, "'¢ip+1 ¢j1 "'¢jp+1dx'
0

It is not difficult to verify that Gi,...5, 1 5,...j,,, =0 unless iy +---+ip11 = j1 4+ +jpp1. Moreover,
when iy 4+ +ipi1 = ji+-+jpr1, we have Giyoi 1y = (5=)PT
To transform the Hamiltonian (2.2) into a partial Birkhoff normal form, we fix n1,n2(n; #ns)

and define the index sets A,, *=0,1,2,3, as follows. For each *x=0,1,2, A, is the set of indices



4( »

(41, ,ip+1,J1,-** , jp+1) Which have exactly components not in {ny,na}. Ag is the set of the
indices (i1, ,9p+1,J1, -, jp+1) Which have at 1east three components not in {ny,ns}. We also con-
sider the resonance sets N = {i1,- - ,ipt1,01, ,ip+1 [ VD0, M= {i1,  ,ipt1,01, ,ipt1 [ Ao
For our convenience, denote the sets 77, 75,

,]1 :{(Zh 7Z.p+17.j17"' 7jl)+1)€A2\M |Z%++Z?)+1:J%++Jf}+l}7

7'2:{(@17 7ip+17j17"' 7JP+I)GA2\M |Z%++Z;[2)+1 7&]%—’_4_]12;4»1}

Lemma 2.2 Let (il,--- ,ip+1,j1,~~- ,jp+1) S (AQ\N)UAlLJ'TQ [fl'1+"'+l'p+1 =j1+"'+jp+1,
then

Py e iy = gy = Wy =1 i =T =y 70

Proof. If (i1, ,ip+1,71, * » Jp+1) € (Ao \N), without losing generality, suppose there are exactly
x’s ny in {i1, -+ ,ipy1} and y’s ny in {j1,---,jp+1}- It is obvious that = # y. Therefore, from
i1+ +ipr1 =J1+ - +Jjp+1, we have (x—y)ny = (x—y)na. Since nq #ng and x #y, it is impossible.
This means that if ¢4 +---+ip41 =j1 +- -+ jpt+1, there are no elements in Ag\ V.

If (i1, yip+1.J1, s Jp+1) € A1, without losing generality, suppose x1’s n in {41, -+ ,ip+1} and
y1’s nq in {41, - ,Jp+1}. And the unique index in {j1, - ,jp+1} different with n,, ne is denoted
by z1. Similarly, from iy 444,41 =71+ -+ Jp+1, One gets

(1 —y1)n1i+ (1 +1=21)n2 = 21. (2.3)

It is easy to see that

z‘%+-~~+i§+1—jf—~~—j§+1:(ml—yl)n% +(y1+1—x1)n3—22

=an?+(1—a)na2 — (a1 + (1—ay)ng)?

:al(l—al)(nl —712) ,

where a; = x1—y;. Since z1 #ny,ng, this means a; #0, 1 from (2.3). Therefore, a1 (1—a1)(n1—n2)? #
0. [ |

Lemma 2.3 Given ny < ng, ni,ne € Z, there exists a real analytic, symplectic change of coor-
dinates T in a neighborhood of the origin of 1P which transforms the Hamiltonian (2.24) into a
partial Birkhoff normal form

Hol=A+G+G+G+K (2.4)

such that the corresponding Hamiltonian vector fields Xg, X5, X and Xk are real analytic in a
neighborhood of the origin in I?, where

~ k
G=c Z (CEED2 gy PP gy, [PHHD)

k=—1
+ ep(C p+1 Z Z Ck |qn1|2(p k)|qnz|2k|Qn|2
n#ni,ng k=0
G= Cp Z iy " Qipqq Qj1 o '(jijrlﬂ

i1t Fipp1=i1+ - Fipta1
{015 vipp1,91> dpt1 €T1Y

G:CP Z qiy "'Qip+1(jj1"'6jp+1v

i1t Fipp1=d1++ipta1
{1, ipy1sd1, 2 dpt1€A3Y

K| =O(llgll"*),

where ¢p Moreover, K(q,q) has a special form.

_ 1
T @mr+D)”



We give an explanation for which K has a special form. If K =Y K,3¢*q”, then

o,
Kop #0 implies » ;=Y f;,
i€z jez
where a = (o;);ez and 8= (08;),ez. The proof of Lemma 2.3 is a copy of Proposition 3.1 in [13].

The specific form for G is very important for the following proof. We will give it clearly.
For our convenience, we will rewrite the coordinates by a,b, which are different with ny, ns in
{i1,-- yipy1,71,- ,Jp+1} € T1. It is obvious that a #b. Otherwise, we have ny =ny. For

G:cp § iy Qip 1951 " " Djpyas
i1t Fip 1 =i1t o ip4a
{1, vipp1.d1, 2 dpy1€71}

we will suppose there exist k15 qn,, k55 Gn,, 115 Gn,, 155 Gn,. Before we give the concrete form for
G, we need a preparation lemma.

Lemma 2.4 When qa(OI' Qb) € {Qi1 P 7Qip+1}7 one must have (jb(OI' (ja) € {ljjm' o 7qu+l}'
Proof. Without losing generality, assume that qa, g» € {qs,,--*,¢i,,, }- It is easy to get

ki+li=p-1
ky+la=p+1
kini+ling+a+b=koni+Ilons.

We will prove that
a?+ b2+ kyn? +1in3 # kon? 4 loni.

If this isn’t true, one gets

{(L+b+(/€1 —kg)n1+(ll _ZQ) %) =0
a’+b? (k‘l kz)nl ( 1 —12) %:
Write s; = k1 — ko. It follows [1 — Iy = —2 —s1. Therefore,

a+b+81n1—|—( 2—51)n2=0

a?+b%+s1n?+(—2—s1)n3 =0.

Thus, it follows
2a° + 2(s1n1— (24 s1)n2)a
+51(s514+1)n2 +(2+51)(1+51)n3 —251 (51 +2)n1ng = 0. (2.5)

Note A = —4s1(s1+2)(n; —n2)?, one can draw the contradictions from the following three cases.

Case 1. If s; =0 or s =—2.

If s =0, then a=ns. If sy =—2, then a =n1. It both contradicts with the choice of a.

Case 2. If s1 >0 or s1 < —2.

Since A <0 in this case, it is obvious (2.5) can’t hold.

Case 3. If —2< 51 <0.

Since s; €Z, it follows 51 = —1 and A =4(n; —nz)%. From (2.5), it is easy to get a =n1,n. It
is impossible. ]

Thus, from Lemma 2.4, one has

ki+li=ko+la=p
a+k1n1 +117L2 = b+k2n1 —|—l2n2
a?+kin? +1in3 =02+ kon? +1an3,



where k1,ko=0,1,--+,p, l1,l5=0,1,--- ,p. If denote k1 —ky = s, one has k1 —ky = s=1[5—1I;. Further,

we have
sny—sna+a—b=0

sn? —sn3+a?—b*=0.

From a # b, we get
a=3(s+1)(no—n1)+mn

b=3(s+1)(n1 —n2)+no.

It is clear that s #0,£1, s=k; —ky =l —l1, s€{—p,---,=1,0,1,--- ,p} and k1 +1; =ka + 12 =p.
On the contrary, we could clearly write all the terms in G. Firstly, giveall s€ {—p,---,—2,2,--- ,p}
satisfying

a=3(s+1)(no—n1)+ni €Z

b= %(s-}—l)(nl —TL2)+TL2 €.

Denote this set of s by R;. Corresponding to every s € R mentioned above, we have many integer
pair (k1,ke) satisfying k1 — ko = s, k1,k2 € {0,1,---,p}. Denote this set of (ki,k2) by R5. From
(k1,ko) € RS and ky +1y = ko 412 = p, we can give the corresponding integer pairs (I1,l2). In this
way, for every s € Ri, we find many terms in G. More concretely, they are all terms made of
Cpdadht Ay Qody? 417, where a = 3(s+1)(ng —n1) +n1, b= 3(s+1)(n1 —n2) +ny and (k1,ka) € RS.
When varying s € R1, we have get the all terms in G.

In this way, suppose that no —nj € 2N, we get

p=2 t p—2 t
G=cp) > it ah G0 @™ 46 D D G d . (26)
t=0 j=0 t=0 j=0
where

. 1
thi(p—t+1)(ﬂ1—n2)+n27 (27)
. 1
jtzi(p—t—kl)(m—m)—!—nl, teT. (2.8)

When ne —n; € 2N—1 and p € 2N, we get

p—2 t p—2

5 D j o ot—jop—tt)  t—j p—t4i~ p—jj

G=cp, > > a7 6,007 8, W +e Y. D adh a8, @, (2.9)
t=0 =0 t=0 =0
teE2Z+1 tE2Z+1

When no —n; €2N—1 and p € 2N+ 1, we get

p—2 t p—2 t

. P PR

G=cy > Y 70,0, 00 3, 7 +ep > > aidh Vg8 @, (2.10)
t=0 ]:0 t=0 ]ZO
te2Z tE27

Remark 2.1 Note the simple case p=2. When nag—ny € 2N—1, (from 2.9) we know that there is
no term in G. This responds to the case in [18]. When ng —ny € 2N, we have

G = c24ah, Bln, + 20645, Talr,
where a = %(ng —ny1)+ng, b= %(nl —ng)+ns.

In the following, we will restrict in the most complex case when ny —nq € 2N. When ny —nq €
2N —1, the proof is parallel and the conclusion is the same. We omit it.
Note (2.6), we introduce the symplectic polar and complex coordinates to the Hamiltonian (2.4)

by setting
4= { V(& +y)e i, j=n1,ns
=

Wy, j#nlanQ



depending on parameters £ € [0,1]2. In order to simplify the expression, we substitute En;s J=1,2
by &;, j=1,2. Then one gets

iZdeAde: Z dxj/\dyj—&-i Z d’u}j/\dﬂ}j.
JEL Jj=ni,n2 J#ni,nz

Now the new Hamiltonian

H=w@), )+ Y. Qu(@wnbn+T1+T2+7Ts, (2.11)
n#ni,ng
where
L k
wi) =ni+cy > (Cpi1)’Cpprx&0 "5,
k=0
L k
wa(€) =n5+c, Y (Ol Cl e,
k=0
2 k
(&) =1 +6,(Cpi1)? D (Cp)PEN1ES, nna, o,
k=0
p—2 p—2
Tl - Z&twjt’wit eii(pit)(zliim) +Za‘twjt wit Ei(pit)(xlixz),
t=0 t=0
t
i =, Y g gl (2.12)
7=0

T2 =O(lgl"~ |y1*) + O(IEP~ ylllwl]7),
1
T3 = O([g]P~ 2 wlly) + O(|g[*P+).
Denote P=71+ Y5+ Y3. Consider the Taylor-Fourier expansion of P,

P= Z Piop(y)eFewa’.

k,a,3
We have
Pkozﬁ(y) 750, implies k1n1+k2n2+ Z (—Oén —&—ﬂn)n:()
n€Z\{n1i,n2}
In order to cut our expression, write N'= {ig, ++,ip—2,J0, ** ,Jp—2} and J = {jo, -+, jp—2}. It is

easy to see that ip <i1 < <ip_o <jp—2 < - <J1 <Jo.

Now we will continue to make a symplectic coordinates transformation for the Hamiltonian
(2.11) to obtain the suitable form for the infinite KAM theorem. Our object is to transform Y5 to
the terms which don’t include the angle variables. The following nonlinear symplectic coordinates
transformation works.

Lemma 2.5 The map ¥y : (z,y,w,w) — (z7,yT,w,w") defined by:

T =z,
p—2
yT=y+ ) kelwg, |,
=0
(wi)feN = E(w;)ien,
wl+ =w, I¢N,

s symplectic, where
kt: (_(p_t)ap_t)T7
F= dzag(l, Ce 71,ei<kp—27m>v“‘ »Ci(kow) )7

(wi)ien = (Wiy,- yWipy_os Wiy _os " 7wj0)T



Remark 2.2 The similar sympletic transformation as U1 was used in [20]

Under the above symplectic coordinates transformation ¥y, the Hamiltonian (2.11) is changed
into the new Hamiltonian(for simplicity, we still use the old coordinates (z,y,w,w))

H,=HoV,
=No+ Py
s (2.13)
:<w,y>+ Z <ann,2n> +Z<Aitzit’zit>+P07
ng¢gN t=0
where
Zn = Wn, nEN,

Ziy = (wit’wjt)Tﬂ Zi, = (u_}imwjt)T’
T AU ay
A= ( ay Qit+(p—t)f‘~1> ’
p
A —k
A=Y 6 (Ch )’ — (CHH*CLa e s,
0

e know that P satisfies a generalized

(2.14)

and w, Q) is the same as those in (2.11). Checking directly, w
compact form with respect to ny, ne and J (see the Appendix for the definition). More concretely,

consider the Taylor-Fourier expansion of Py,

PO = Z Po,kag(y)eikww“wﬁ7
k,a,B

we have that Py pas(y) # 0 implies

p—2
kini+kana + Z (—an+Bn)n=(n1—ns Z g, —B5,)(p—1).
n€Z\{n1,n2} t=0

(2.15)

For (2.13), rescaling E% by €%¢, w, w by e*w, ¢*w, and y by €3y, one obtains a new Hamiltonian

given by the rescaled Hamiltonian
H= P (2, 8y, e'w, €', €% ¢) (2.16)
p—2
= <Lb7y> + Z <ann72n> +Z<Aitzit72it> +€P07
ng¢N t=0
where
712 P k
- 2p—2
w1(§)=€T;+CpZ(Cp+1) Chii w7 25",
k=0
5)2(5): +sz ;;ill Ck+1f2p 2hesk,
77,2 L k
5 _ 1 k 2p 2 2k
Qn(g)f?ﬁcp(cpﬂ) ;0(0 )2 , n#ny, no,

= Q Qg
Ai = " )
(o)

t
a=cpy GHTHETY, (2.17)
0

P
A=Y [(CF)2CL,, — (CE2CL )P Vedr, (2.18)
0

10



€€ 0 =[1,2]. It is obvious that Py also satisfies a generalized compact form with respect to ni, ns
and 7. For our convenience, we rewrite H by H, @ by w, Q by Q, A by A, B by B and P, by P.
Now the new Hamiltonian is

p—2
H= <W,y> + Z <QTLZTL7 ZTL> +Z<Ait2iu2it> +eFo. (219)
ng¢N t=0
It is well known that there exist real orthogonal matrix P, t=0,---,p—2, satisfying
PIA;, P, =P A;, P, = A;, =diag(\1 4, \a.t), (2.20)
where
1 1 5
Al,t:QZt+§(p_t)A_§ 4at +(p—t)2A2 (221)
and
1 1 5
)\27t:Qit+§(p—t)A—|—§ 4at —|—(p—t)2A2. (222)

Lemma 2.6 The map Vs : (z,y,2,2) — (z7,y", 27,27 defined by:

2t =z,

y*t=y,

z:—Pt 1zit, t=0,---,p—2,
;—:Zia i¢{i07""ip—2}v

s symplectic.

Proof: Tt is easy to check that
doet ANdyt +idzt ANdZT =dx Ady +idz AdZE.

Under the above symplectic coordinates transformation Wo, the Hamiltonian (2.19) is changed
into the new Hamiltonian

H+:HO\I/2
p—2
:<w7y+>+z<ﬂnzzvgz>+z<f4h 2 zt>+6P(;r7
ngN t=0

where

n1 2p—2k +2k
= +Cp§ p+1 Cos1-ié1 2

2 p
n
wa(€) = g+ ) (Ot ?Cln g™,
k=0
n’ S 2p—2k
(&) = g +ep(Cp)” PG ", n ma,ma, (223)

k=0

(Mt O
A“—( O >\27t>’

€€ 0. For Ay, Moy, see (2.21) and (2.22). From Lemma 5.3, we know that P satisfies the
generalized compact form with respect to n;, ny and J. For our convenience, we will rewrite H+

11



by H, y* by y, 2% by 2, Z' by z, and eP;" by P. Therefore, the Hamiltonian is

H=N+P (2.24)
p—2
= (w,y) + Z (Qn2n,Zn) +Z<Aitziwzit>+P(xvya272a§a6)
ng¢N t=0

= (W, )+ Y QW+ P(,y,w,1,€,¢),

where .
B Q]7 j¢N7
QJ: >\1ta j:itat€T7
>\2ta j:jt7 tET

and P satisfies a generalized compact form (2.15) (The subscript j of Qj certainly satisfies j #
ny, ng. We don’t mention it again in the following).

In the following, we will use the KAM iteration which involves infinite many steps of coordinate
transformations to prove the existence of the KAM tori. To make this quantitative we introduce
the following notations and spaces.

Define the phase space:

P:=(C?/2rZ%) x C* x1* x I°.

We endow P with a symplectic structure deAdy+i > dw; Adw;, (z,y,w, @) €P. Let
JEZ

T2 = (R?/2n7%) x {y =0} x {w=0} x {w =0} CP.
Then 77 is a torus in P. Introducing a complex neighborhood of 7 in P:
D(s,r) ={(z,y,w,w) €P:|Imz| <s, |y| <r?, |[wl|l, <r, [|@][, <7},

where |-| denotes the sup-norm for complex vectors. Define a weighted phase space norms
1 1 1,

for W = (x,y,z_u,u’;) €P. Let O C R? be compact and of positive Lebesgue measure. For a map
W: D(s,71) x O —P, set

|W|r,p,D(s,T)><@ = sup B |W({,E7§) TP
(z,£)eD(s,r)xO

and

W (z,£)
Whppenxo=max — sup =5
| ‘ ,0,D( )xO |Ot‘§8p(x)§)€D(S,T)X©| 6€a

For a 8p order Whitney smooth function F(€), define

7.0

*F
FlI*= max sup ,
1B = max sup| 2
O“F
1=, up [———|.
\ |<8p o 0

To functions F', associate a Hamiltonian vector field defined as Xp ={—F},, F;, —iF,iF, }. Denote
the norm for X by letting

| I “3‘1 . 1 |8°‘ |+ 1”80‘ o+ 1||6a 1]

XF|; p(sry = max sup — .

e Tl e aer T lage T age T g
z,y,w,w)ED(r,s

In the whole of this paper, by ¢ a universal constant, whose size may be different in different
place. If f <cg, we write this inequality as f <-g when we don’t care the size of the constant c.
Similarly, if f > cg, we write f>-g.

12



3 KAM Step

Theorem 1 will be proved by a KAM iteration which involves an infinite sequence of change of
variables. Each step of KAM iteration makes the perturbation smaller than the previous step at
the cost of excluding a small set of parameters. At the end, the KAM iteration will be convergent
and the measure of the total excluding set will remain to be small.

To begin with the KAM iteration, we fix r, s, p> 0 and restrict the Hamiltonian (2.24) to the
domain D(s,r) and restrict the parameters to the set Og= O\ R, where

_ k8pr+6
k)<, k£0,
(k) +€2,) 7| < el

~ ~ -1 cmax{|k
(k@) + Q0+ ) ™| < im0

where n, m¢& N or n, meN,
() + €0+ €0;,) 7Y < el M)
where n ¢ N, t €T, |kiny + kana| = [n+i¢],
A A 1 cmax{|k\8pT+6,1}
(ks w) €2 +82;) ™ < s o
where n N7, LET, lam kool =i+ —m)p-0) |y

(ks 0) - §2 — ) 71| < el ) ’
where n, m& N, |k|+]||n|—|m|| #0, |kini+kana| =|n—m],
(k) 42 = Q) 71| < St
’ " m = Po(lIn]=[m[[+1)°
where n, meN, |k|+|n—m|#0,
A M. \—1 cmax{|k|®P7 16,1}
(G )+ 8 = )™ < e
where n ¢ N, t €T, |kiny + kana| = |n—i4],
A A \—1 cmax{|k|377 6 1}
(k@) + Q0 = Q) < iy '
where n ¢ N, t €T, |kiny +kana|=|n—ji — (n1 —na)(p—1t)|

I(
I(
I(

‘8p7+671}

OpC (&

and 0< |k| < Ky and
RO:R8U(R(1),1 UR?z)URg-

For more concretely, please refer to section 4 and Lemma 4.12. [ is a constant and will be chosen

later.
Suppose ||w]|« < My, maZ>(|Qj|* < My, My + Mz > 1. Define M = (M + M,)®P. Initially, we set
JjE

wo = w, Qo,n:fln, No=N, Ph=P, ro=r1, so=s, Mo=M and
NO:<w0ay>+Zannwna
Hy=Noy+Fp.

Hence, Hy is real analytic on D(rg,so) and also depends on £ € Oy whitney smoothly. It is clear
that there is a constant ¢g > 0 such that

* —
|XPO |7‘0,D(7‘0780),OQ S Co€ = €o-

P, satisfies a general compact form (2.15).
Suppose that after a vth KAM step, we arrive at a Hamiltonian

H:Hy:Nu+Pu(xvvavw)7
N=N,=(w,(&).9)+> Qun(€wnin,

which is real analytic in (z,y,w,w) € D, = D(r,,s,) and depends on £ € O,, C O Whitney smoothly,
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where

c|k|3PTHE

(Bwn) < Fm—s k20,
(s 4 €2y ) 71 < med BT
|

ST
A ~ -1 cmax{|k|¥P7 6 1}
(<k,Wy>+Qy,n+Qy,m) | S 650(Hn\7\m|\+1)

where n, mé&N orn, meN,
Q Q =1 <cmax{\k|8’"+6,1}
|(<k‘7wl/>+ V,n"" l/,Zt) |_ efo(Hit\—\nH-‘rl)’
where n ¢ N, t €T, |kiny + kana| = [n+i¢],
A A ~1 cmax{|k|3?7+6 1}
|((k,wu) + Qo+ 5,) |§m,
0,cl¢: wheengN, teT, \k1n1+k2n2|:Lnfﬁjt+(n1—n2)(p—t)\»
[({h00) + D = Q) T < L,
where n, mé¢ N, |k|+||n|—|m |#O%’|lil6n1+k2n2|:|nfm|,
Q _Q -1 < cmax{|k[°PTT° 1}
(s w) S =) ™| < G Sy
where n, meN, |k|+|n—m|#0,
~ ~ 8pT+6
(k) + Q= ) 7Y < Sl
where n ¢ N, t €T, |kiny +kana| = |n—iy,
k v Qy _Qy' -1 <—cmax{‘k|8w—+6,1}
(€ + Qi = o)™ < 5 i
where n ¢ N, t €T, |kiny +kana|=|n—ji— (n1—na)(p—1)|

)

)

0<|k|< K/ ! for some 1, <rg, s, < sp and

! __ K07 V:O7
K”_{oo, v>1.

We also assume that
‘XPV |:,,,D(r,,,s,,) <e<eo

and P, = > P,;’aﬁ(y)e“k’z)wo‘wﬁ has a generalized compact form with respect to ny, ns and J.
k.o, 3
To simplify notations, in what follows, the quantities without subscripts refer to the ones at the

vth step, while the quantities with subscripts “+” denote the corresponding ones at the (v+1)th
step. We will construct a symplectic transformation ® = ®,,, which, in smaller frequency and phase
domains, carries the above Hamiltonian into the next KAM cycle.

3.1 Solving the Linearized Equations

Expand P into the Fourier-Taylor series

P= Z Pkla56i<k’m> ylwaﬁ)ﬁ
k,lo,B

where 2 k € Z2,1 € N2 and the multi-index «, 3 run over the set « = (- ,an, ), B= (-, B, ),
Qn, Bn € Ng with finitely many non—vanishing components. We denote by 0 the multi-index whose
components are all zeros and by e,, the multi-index whose nth components is 1 and other compo-
nents are all zeros.

Let R be the truncation of P given by

R(z,y,w,w) = Z Pklooei(k,m> yl—i— Z (Prlflown_i_PTchOlwn)ei(k,x)

|k|<K,|I[<1 |k|<K,n
k20 k02— k1L, =\ ik,
+ E (P*2%%, w0, + PEO2 40,0,y 4+ PR w0, ) R0
|k|<K,n,m

TWhere “|k| < oo” means “|k| < co”. We confuse the notation for simplicity.
2Np means NU{0}.
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where P10 = Py, g with a=e,, 8=0; PkOL — Priap with a =0, [ = ey; Pk20 — = Ppap with
a=e,+em, =0; P,’f,%f Priap with ao=e,,, S=e€n; Pk02 Ppiap with a=0, B—en—i—em
Since P has a generalized compact normal form Wlth respect to ny, ng, J, this means

PF20 =0, if king +kang —n—1i; #0, n¢N, teT,

PY2 =0, if kyny+kang —n—ji # (n1 —na)(p—1), ngN, teT,
PR =0, if king +kaene —n+m#£0, n, m¢nN,

PFL =0, if king +kono —n+i; #0, n¢./\/', teT,

n,it ’

Pfflﬁ 0, if k1ny+keng —n+ji # (n1—ng)(t—p), ng¢N,teT,

PF2 =0, if king+kono +n+ic £0,  ngN, teT,
P2 =0, if kyny+kano+n+ji # (i —n2)(t—p), n¢N, teT.

In particular, P¥ll =0 if |k| =0 and n# m, where n, m ¢ \.

Below we look for a special F, defined in a domain D = D(ry, s ) such that the time one map
® = &L, of the Hamiltonian vector field X defines a map from D, — D and transforms H into
H,.

More precisely, by second order Taylor formula, we have

Ho®L = (N+R)o®L+(P—R)odk
=N+{N,F}+R

1 1
+/ (14){{N,F},F}o<p;dt+/ {R,F}odLdt+(P—R)od, (3.3)
0 0

:N++P++{N,F}+R*P00007<w,,y>szglnlwn1I)n,

n

where

W= gpdxlw —=0,y=05
Ny =N+N=N+Pyoo+ &,y +ZR°Hwnwn, (3.4)
1
P+:/0 (1—t){{N,F},F}oq>}dt+/O {R,F}o®%dt+(P—R)od}. (3.5)
satisfying the homological equation
{N,F}+ R~ Pogoo— (w',y) = > _ R wpwy, =0. (3.6)

n

Note the term ZR%}}wnwn has not been eliminated by symplectic change, so we define FOL! =

In order to solve the homological equation (3.6), let F' has the form

F(z,y,w,w) =Fy+F1+F,
= Z Friooe' ™yt + Z (FH%,, + FFw,)elF)

|[k|<K,|lI<1 |k|<K,n
+ E FkQ(]wnmerF W W, +F v, )e‘<k’x>.
k| <K on,m
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By comparing the coefficients, it is easy to see that the homological equation (3.6) is equivalent to

(k,w) Frioo = iPrioo, k#0, [I[ <1,
(<krw>+QH)FfL€10 _iP7]flO7
((k,w) = Q) 0 =1P1,
(<k,w>+5?n79m)Ffﬂn1:inﬁ, k| +[[n| = [m][ #0,

where 0 < |k| < K'. Hence the homological equation (3.6) is uniquely solvable on O to yield the
function F' which is real analytic in (z,y,w,w) and Whitney smooth in w € O. Since P has a
generalized compact form with respect to n1, no and J, it is easy to see that F' also has the same
property. The following lemma is standard, see [17] and [18] for details.

Lemma 3.1 F satisfies a generalized compact form with respect to ni, ny and J and

|ij|:’<‘,D(S,’l‘) < |XR|:<‘,D(S,T)7
* cM *
I XFr pis—o) < mWRL»,D(S,T)a
where p=8p(8p+1)T+56p+8.

Lemma 3.2 If \XF|TD (s— UT) <o, then for any &€ € O, the flow X}(-, &) exists on D(s—20, %)
for [t| <1 and maps D(s—20, §) into D(s—o,r). Moreover, for [t| <1,

‘XF_Zd|rD (s—20,% J||DXF IdHer(s 30,7 <C|XF|’I“ ,D(s—o,r)

where D s the differentiation operator with respect to (x,y,z,%), id and Id are identity mapping
and unit matriz, and the operator norm

b

A 5777 Wi|p,r
HA(é-yn)”F,T,D(S,T‘) = sup sup M
neD(s,r) w#0 ||w‘|pﬂ“

= aX{H

jol<sp OE” ol

Al =

For the proof refer to [18].

Below we consider the new perturbation under the symplectic transformation ® = X% |;—;. Let
| XPl} p(smy <€ From the above we have

R= E kaqqyquwqel<k’w>.
k| <K
2|m|+lq+al<2

Thus ‘XR|’T',D(S,7‘) < -|Xp|:7D(S,7,) <-¢, and for n < %,
* —-K'
|XP7R|7]T,D(570',27]7’) <nmete Te. (37)
Due to the generalized compact form of P with respect to ny, ny and J, w, and w_,, are not

coupled in P for any n # 0(we check this in the appendix). This leads to the following simple new
normal form

Ny=N+(y +ZP,%lwn@n

=(wy,y)+ § Q+ nWn W,
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where wy = w+ ({Powoo}yj=1)s Q4n = Qn + P By Lemma 3.1, one has |[Xp|?
Therefore,

r,D(s,r) S €.
lwg =", 194 = Q)" < ¢, (3.8)

where ||Q* = maZ>(|Qj|*. If Cmtiﬂ <1, by Lemma 3.1 and Lemma 3.2, it follows that for
Jje

t|<1,

1 . . cMet=(Ep+1)o
;‘X%‘_ld|r,D(s—2o’,g)’ ||DXtF_Id||r,r,D(s—3a z

V1) = oht+l (39)

Under the transformation ® = X1, (N+R)o®= N, + R, where R, = fo 1—t)N+tR, F}oXL.
Thus, Ho® =N, + R+ (P—R)o®= N, + P;, where the new perturbation

P+=R++(P—R)o<1>=(P—R)o<1>+/1{R(t),F}onpdt
0

Wher R( ) = (1—t)N +tR. Hence, the Hamiltonian vector field of the new perturbation is

P— R -|- ,Xp|dt. For the estimate o p,, we need the following
X}V*X OX75 XR(t)X dt. F h fX+ d the foll
lemma

Lemma 3.3 If the Hamiltonian vector field W (-, £) on V = D(s—40, 2nr) depends on the para-
meter £ € O with W[y, < +oo, and ® = X}.:U = D(s—50, nr) —V, then &*W = DO 'Wod

Mel— (8p+1)Bg * *
and if ¢ T < 1, we have ||® W||nr U <c||W||nT’ V-
For the proof refer to [17].
Now we estimate Xp, . By Lemma 3.3, if "Mi;;%% <1,

C C
|XP+ |:’<]7",D(S—50'7T]7“) < §|XP_R|’>:]’I"7D(S—4U,ZT]T‘) + 5 /0 |[XR(t)7XF} |;k]r,D(s—4o,2m“)dt'

By Cauchy’s inequality and Lemma 3.2, one obtains

M e2—@p+1)fo
|[XR(t) XF] |17r D(s—40,2nr) < W

c
= §M ne,
1-(8p+1)5 .
where one chooses 7® = <—+—. Combining (3.7) we have

C
Xp, | < SMnete K7

nr,D(s—50,nr) =
If Choose K{j= K= |h;%| and as we know before K], =00, v>2. We get

*
‘XP-%- |7]r,D(s—5a,nr) < CM?]G.

Lemma 3.4 P, has a generalized compact form with respect to ny, ny and J.
Proof. Note that
1 1

1 1
+...+i{...{N7F}...7F}_~_i{...{P7F}...7F}_~_...
n’s F n’s F

Since P has a generalized compact form with respect to ny, ns and J, so do P—R and {N,F} =
Poooo + (W', y) —|—ZP011wnwn — R. The lemma then follows from Lemma 5.2.

nn
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3.2 Iteration Lemma

To iterate the KAM step infinitely we must choose suitable sequences. For v >0 set

4_1 —
CM(V)ES 3(8p+1)50 Jy 3 611/ (8p+1)60

eyJ,»l == 1 bl O—l/+1:77 771/:77
1+ 14+p
0,3( W) 2 oy

where Gy = 5 Furthermore,

1
8p+1)
Syp1 =5, =50y, Tyy1 =11y, M(v)=(My+My+2c(eg+--+€,-1))%,

and D, = D(s,, r,). As initial value fix o9 = 33 < % Assume

1 c
6(u+1 : 0\8pr
GOS’VOJO(# ), VOSHHH{W7 (@)81) 13, (3.10)

where ¢y = %cp(Qp)!(p+ 1). Finally, let K, 11 = K¢2”. We must emphasize that the readers must
notice the difference between K, and K.

Lemma 3.5 Suppose H, =N, + P, (v >0), is given on D, x O,, where N, = {(w,(§),y)+ (Ql,,zé}
is a normal form satisfying

B Ck8p7+6
|<kawu> 1|§||T7 k#ov

cmax{|k|®P7+6 1}
ebo
cmax{|k|37+6 1}

& (|ln] —[ml|+1)’

where n, m&N or n, meN,

cmax{|k[®P7+6 1}

e (Ilis| =l +1)

where n ¢ N, t €T, |kiny+kana| =|n+1,
cmax{|k|37+6 1}

e (Iljel =Inll+1)°

where n ¢ N, t €7, |kiny+kena|=|n+j:+(n1—n2)(p—1)|,
cmax{|k[®P7+6 1}

& (|ln] —[ml|+1)’

where n, m &N, |k|+||n|—|m||#0, |kin1+kana|=|n—m],
cmax{|k|37+6 1}

& (|ln] —[ml|+1)’

where n, meN, |k|+|n—m|#0,

|((Bywp) +n) T <

i

|((K,wy) +Qv,nﬂLQV,M)71| <

((Byw) + Qu + Q) M <

|((k,wy) +Qu,n+Ql«jt)_1| <

|(<k3;wu> +Qy,n _Qu,m)71| S

|(<k7wu> +Qu,n _Qu,m)_1| S

~ - 8pT+6
() + Ry~ 01 < S R
& (i~ nll+1)

where n ¢ N, t €T, |kiny +kana|=|n—1i4,
cmax{|k|®P7+6 1}

& (Lol — Il +1)

where n ¢ N, t €T, |kini+kana|=|n—j:—(n1 —n2)(p—1)|,

|(<kku>+ﬂv,n _Qv,jt)_l| <

for above all k satisfying 0 < |k| < K|, P, has a generalized compact form with respect to ny, ns
and J, and
|XPu |;k‘,,7DV <€
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Then there exists a Whitney smooth family of real analytic symplectic coordinate transformations
®,11:D,41x0, — D, and a closed subset

Oqul - OV \ (Ry+1 (€V+1))

of O,, where
R ev1) = Reg  URIT URs R
Rt =Reg 1 [ URbe s U Rsd s
1 v+1 1 1 1
le = Rlil Ulefz URlﬁ% URTIm
and
1 663—1
Roo ' = U {¢€0,: ‘<k7wV+1>|<W7 k#0},
K 2|k|>K,
+1 A eﬁil
v _ . v
RlO - U {EGOV'|<k?wV+1>+QV+L’ﬂ|< cmax{|k|8p7+6,l}}’
K{/+1Z|k‘>KV)n
Bo
vl _ , 5 5 € qa([ln[—|m[[+1)
7?’2071 - U {gEOV ‘<k7wy+1>+QV+17n+Q’/+1ym|< cmax{|k|8p‘r+6,1} 9
K{,+1Z|k‘>Kuyn’m
where n, m &N or n, meN},
Bo :
v+1 _ . ® A ) 61/+1(||Zt|_|n||—’_]—)
7?’2072 - U {6 S(e ‘<k7w”+1> +QV+1an+QV+1”Lt| < cmax{|k[8P7+6 1} ’
K 2|k[>Ky,nt
where n¢ N, t €T, |kiny +kano|=|n+il},
Bo .
vl _ _ 5 S &, %1 (|7t = Inl[+1)
RZO,S - U {5 € OV . ‘<k7wl’+1>+QV+1,TL+QV+1J’;| < cmax{\k|8p7'+6,l} )
K 2|k[>Kynt
where n¢ N, t €T, |kini+kona|=|n+ji+(n1 —n2)(p—1)|},
Bo
vl _ , 5 5 6,41 ([n=[m[[+1)
7?’11,1 - U {6 € OV . ‘<k‘l7wl/+1> +QV+1JZ _QV+1,m| < cmax{|k|8p7+6, 1} )
K 2|k[>Ky,n,m
where n, m ¢ N, [k|+ln|—[m|| 0, [kin; +kanz| = [n—ml},
Bo
vl _ , S 5 &1 (lInl=[m[[+1)
7?’11,2 - U {5 € OV . ‘<k7wl/+1> +QV+1;7Z _QV+1’m| < Cmax{|k|8PT+6, 1} )
K 2|k[>K,,nm
where n, meN, |k|+|n—m|#0},
Bo .
+1_ . 3 5 €yq1 ([[ie] = [nl[+1)
Rlljl,?;_ U {5601/'|<k7wv+1>+QV+17n_QV-‘rl,itl< cmax{|k\8p7+6,1} )
K 2|k[>Ky,nt
where n ¢ N, t €T, |kiny +kana| =|n—1i},
Bo .
vl _ , 5 - &, 41 (|7t = Inl[+1)
73’1174_ U {5601/'|<k7wl/+1>+QV+17n_QV+1,jt|< cmax{|k|81"f+6,1} )

K 2|k[>Ky,nt
where n ¢ N, t€T, |kini +kons|=|n—ji— (n1 —n2)(p—1)|},

such that for H,11 = H,o®,11 = Ny,41+ Pyy1 the same assumptions are satisfied with v+1 in
place of v.
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Proof: Note (3.10), by induction one verifies that

1— 1
cey (8p+1)Bo

<1
ETR
ngoy "
ceVKpr+7 < 650 — efﬂ_l.

It is easy to check that (5.5) holds. From Lemma 3.4, we know P,1; has a generalized compact
form with respect to n1, ng and J. For the remained proof, see Iterative Lemma in [17].
With (3.8) and (3.9), we also obtain the following estimate.

Lemma 3.6

CM(I/)Ell,_(Sp+1)ﬁ0

1 - "
;V‘¢V+177’d|ry,Du+17||D(pu+17]||rl,,7'y,Du+1 < 0_54_1 (311)
w1 —will, 1201 = lls,, < ceo (3.12)
3.3 Convergence and Proof of the Existences of Tori
Let ¥ =®;0P50---0P,,, v=1,2,---,---. Inductively, we have that ®: D, x O, _1 — Dy and

Hyo® =H,=N,+P,

for all v > 1.

Let O, = () O,. We apply Lemma 3.5, Lemma 3.6 and standard arguments (see [17]) to
v=0
conclude that H,, N,, P,, ®’, D®", w,, Q,, converge uniformly on D(%So,O) x O, say to,

Hy, Noo, Pso, @, DP*°, weo, (oo, respectively. It is clear that

Noo = <w007y> +Zﬂoo,nwnwn
n

Further, we have

|XPao |D(%so,0)><@ =0.

Let ®%; denote the flow of any Hamiltonian vector field X . Since Hyo®" = H,,, we have that
Pl 0’ =PV o Pl .

The uniform convergence of ®”, D®”, Xy imply that one can pass the limit in the above to
conclude that
Pl 0P =® 0P}

on D(450,0) x O.. Tt follows that
By, ((T* x {€})) = 2= ®ly_ (T* x {¢}) = 2>(T* x {¢})

for all £ € O.. Hence ®>°(T? x {¢}) is an embedded invariant torus of the original perturbed

Hamiltonian system at £ € O.. We remark that the frequencies w., (£) associated with ®>°(T?x{¢})
are slightly deformed from the unperturbed ones w(¢). The normal behaviors of the invariant tori
(T2 x {£}) are governed by their respective normal frequencies Qoo ().

In fact, Combining with section 3 and section 4 below, we have the following theorem.

Theorem 2 For the Hamiltonian (2.24)

H=N+P

=(w.y)+ > Quwni,+ P(a,y,w,w,&,€),
J
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and P satisfies a generalized compact form with respect to ny, no and J. Suppose that
|XP|:,D(S,T) :€§786(1+#)3 (313)

where v depends on p,7 and M. Then there exists a Cantor set O.cO= [1,2]% with the measure
satisfying
|0\ O,| < €T,

a Whitney smooth family of torus embeddings ® : T2 x O, — P, and a Whitney smooth map
: O, — R2, such that for each & € O., the map ® restricted to T2 x {&} is a real analytic
embeddzng of a rotational torus with frequenczes Woo (&) for the hamiltonian H at &.
Each embedding is real analytic on |Imz| < 5, and

19— ®olly < ces,

||lws —w[|” < ce,
uniformly on that domain and O, where ®q is the trivial embedding T2 x O — 3.
Remark 3.1 For the estimates of O, see section 4 for details.
Remark 3.2 Theorem 1 is a direct result of Theorem 2. For more specific, please refer to the

standard proof of [14].

4 Measure estimates

4.1 Measure estimates in the first step

For simplicity, in this section we will denote

Ao = (n%’n%)

2p—2k
fi= Zcp +1 KL gkv
- k
k+1 2p—2 2k
f2=Y ep(ChH*CL &P,
k=0
k 2p—2k 2k
f3= Zcp 1) (C) S
k=0

At the first KAM step, we have to exclude the following resonant set

RO=RGJRS L URY ) URS,

where
o

Ry= U {e€O:lkw©ll < grr) (4.1)

0<|k|<Ko
= (K Ol < ———5 4.2
11 ng/ {560 ‘ W( )>+ |<max{1,|k|2pT}}’ ( )

|kI<Kqg

Rlz— U {56(9:|gl|<W}7 (4.3)

teT,|k| <Ko

21



and

where

and

where

and

where

and

g1 = detM{,

M/:(k1f1+k2f2+f3 ag )
! ay kifi+kafo+ fa+(p—t)A)"

Bo
e (|[n]=|m[|+1)

RgO,lz U {€€O|<kaw(£)>+§2n+§2m|< max{l ‘k|2p7} }a

n,mgN
|k|<Kq

Bo

0o _ ) €
RQO,Q_ U {geo'|g2|<max{l,\k|41’7}}’

teT
D
g2 = det My,
M — kifi+kafa+2fs ay
2 ay kifi+kofo+2fs+(p—t)A)"
Bo

0o _ . €
Raos= U {§€O-|g3|<W}’

t1,t2€7T,|k|<Kg
<k,/\o>+z‘§1+i32:0,

g3 =detM5, Ay=kifi+kafo+2fs,

Ay at, at, 0
M, _ at2 A4+(p_t2)A 0 atl
3 at, 0 As+(p—t1)A ar,
0 Aty Aty A4+(2p—t2—t1)A
e (|In| — |m]|+1)
Ryoa= |J {€€O:[(kw(@)+0—Qml<

max{1, |k|?P7}
[El+[[n]—|m]||#0
n,mgN | k| <Ko

Ba

€2
Rgo;): U {5601|94|<W}7
teT k ’
g4 =detMy,
M- (k‘1f1+k2f2 —ay >
4 —a;  kifitkafo—(p—t)A)"

o
max{1,|k|®7}

R30.6= U {£€0:]gs| < %,

[k|+]t1 —t2]#0,|k|<Kq
<k,x0>+i§1 _71%2 =0, t1,tg€T

22
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where

gs =detM;, Ay =k f1+Fkafo,

and
A5 — Aty Ay 0
M= —at, As—(p—1t2)A 0 at,
Aty 0 AE, + (p—tl)A —Qt,
0 Aty — A, A5+(t2—t1)A

The following lemma is used many times in this section. We won’t point out it clearly.

Lemma 4.1 Suppose that g(x) is an mth differentiable function on the closure I of I, where I CR
is an interval. Let Iy ={x||g(x)| <h},h>0. If for some constant d>0, |¢™(z)| >d for any x €I,
then |I| < chw , where |I,| denotes the Lebesque measure of I, and c=2(2+3+---+m-+d1).

For the proof see [18]. The similar method can be found in [19].
Lemma 4.2 If 7> 2,
RY| <€,
Lemma 4.3 If 7> 3,
|R(1J,1| < '6%?
Lemma 4.4 If 7> 2,

B
RS 5| < €5

Proof. If k#0, it is easy to check that

91(&) = c(k1 +ka(p+1) + (p+1)) (k1 + ko (p+ 1)+ (p+1) —p(p—1)) &7
+ (ki (p+1) +ho+ (p+1)) (k1 (p+1) + ko + (p+1) +p(p—1)&37 + O1(£7P),

where O (%) mean other 4pth order terms in &, & which are different with £/” and &, (the similar
notations will appear many times in following and be in the similar sense). It follows that

o
agfpl =c(ki+ka(p+1)+(p+1)) (k1 +k2(p+1)+ (p+1) —p(p—1t))
1
" g1
e =c(ki(p+1)+k2+(p+1))(kr(p+ 1)+ k2 + (p+1) +p(p—1)).
2
If 8;;491,‘ =0 and 8;;45{} =0 hold for the same k # 0, then at least one of the following four cases is
true.1 ’
Case 1.
k1+ka(p+1)+(p+1)=0
ki(p+1)+ko+(p+1)=0.

It is easy to get kq ¢ Z. It is impossible.

Case 2.
{kl +ha(p+1)+(p+1)=pp—1)
Ei(p+1)+ko4(p+1)=—p(p—1t).

It is easy to get ki + ko ¢ Z. It is impossible.
Case 3.

{k:1+k2(p+1)+(p+1) p(p—1)
ki(p+1)+ka+ (p+1)=0.
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It is easy to get either k1 + ko ¢ Z or ki ¢ Z. Tt is impossible.
Case 4.
ki +ka(p+1)+(p+1)=0
ki(p+1)+ka+(p+1)=—p(p—1t).

It is easy to obtain ki +ky =p—t+2LE2. From ki +ky € Z, one has t =15. It follows ky = —3 + 2.
From kg € Z, we have p=4, k; =4, ky =—1,t=2. For this special case, we compute the coeflicients
of 51"’*253 of g; denoted by g‘fpﬁ’z, In fact

- 3 3
917752 = e{(p =)k (1= 5p) + (G +1=p") (G +1= 50%)

p
+2(ky ke (p+1) + (p+1)) (k1 + k25 +p) -
It is easy to check that gi?~ %2 #0.
In fact from the above discussions, we have proved that there exists || =4p so that |8821<f{1 [ >

¢ >0 for k#0. For k=0, it is more easy to get the same conclusion. The following proof is
standard. Please refer to [15] and [16] for details. [

Lemma 4.5 If 7 >5,

3
|R(2Jo,1| < €5
For the proof, refer to Lemma 4.8.

Lemma 4.6 If 7> 2,

B
|R(2)0,2| < ‘€£ .

Proof.  We only give a sketch. As Lemma 4.4, one can prove g3?° or ¢3* is not equal to

zero except one case which is ¢t =0, k; = —1 —p, ks = —1. For the remaining case, compute
937 2% = ¢(p—2) # 0 when p > 2. For p =2, we turn to compute go?~** = g3* £ 0. Now the

conclusion is clear.

Lemma 4.7 If 7> 2,

o
|R(2)0,3| <ees,

Proof.  The difficult point in this proof lies in whether there exist nonzero coefficients in g3
for any k, t1,t; € T and (k,Ao) +1if, +i7, = 0. We will show this in the following. Write Z; =
ki + (ke +2)(p+1), Ex=ki(p+1)+ka+2, E3=k1+ (k2 +2)5, Es=k1 5+ (k2 +2). It is easy to
check that
9570 = 21 {23 —p(4p—2t, —2t2) =2
+P[(p—t2)(3p— 2t —t2) + (p—11) (2p— 1 —12)|=:
—p(p—t1)(p—t2)(2p—t1 —12)}, (4.10)
99 = =2 {3 +p(dp — 2t1 — 2t2)=3
+ P [(p—t2)(Bp—2t1 —t2) + (p—t1)(2p—t1 — t2)|Z2
+p3(p—1)(p—12)(2p—t1 —12)}, (4.11)
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3

_ —3 —9— 1
P22 = c{4E353 — 3p=E2E3 (dp — 2t; — 2t) + (dp — 2t —2t) (1 — ip):‘;’

+(p—11)(2p—t1 — t2) + (p—t2) (3p— 21 — £2)] (2 Z1 5 — 2p(1 - £)=3)

2,8p—2 _ =3
g3 =c{4

E524+3p

9 1

+ (p—t) (p—t2)(2p—t1 —12)[3p* (1= ) =1 —p*Z]}, (4.12)
E5Z4(4p —2t1 —2t5) — (dp— 2t —2t2) (1 — %p)Eg

+[(p—t1)(2p—t1—t2) + (p— t2) (3p— 201 —12)) (2p°Z2Z4 — 2p(1 — £)=3)

+ (p—t) (p—t2)(2p—t1 —12)[3p*(5 — )Za+p*Z4)}. (4.13)

If g5"° = 0 and ¢3'% =0 for some k, t1,t2 € T and (k, \o) +147 +i7, =0, one has the following 16

—
[1] [1]

(S
I

cases.
Case 1.
One has k1 =0 in this case.
ko=—-2
Case 2.

= =0
52:7p(2p7t17t2).
One has k2 ¢ Z or Fi=-p-1
ko=—1.
Case 3.
{51:0
E2=—p(p—t1).
It is easy to get ko ¢ Z.
Case 4.
{51:0
Ex=—p(p—t2).

It is easy to get ko ¢ Z.
Case 5.

ky=-1
One has ki ¢ Z or {k‘g:p—l.
Case 6.

ki=t1+ta—2p
One has {kg 9ty —ty+2p.
contradiction.

Case 7.

It is easy to get ki ¢ Z.
Case 8.

It is easy to get kq ¢ Z.
Case 9.

E1=p(2p—t1—t2)
EQ = —p(Qp—tl —tg).

Note ng > /pny, this leads to (k,Ao) +i7, +1i7, # 0. It is a

{
{

p(2p—t1 —t2)
—p(p—1t1).

1
2

(1] [1]

p(2p—t1 —t2)
—p(p—ta).

(1] [1]

1
2

=pp—t1)
0.

—N
(1] [1]

N
|
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It is easy to get ki ¢ Z.

Case 10.
{51 =p(p—t1)
Eo=—p(2p—t1—t2).
It is easy to get ki ¢ Z.
Case 11.
{51 =p(p—t1)
Ep=—p(p—t1).
One has {kl =h-p As case 6, it is impossible.
ko=—-2—t1+p. ’
Case 12.

{El :p(2p—t1 —tg)
Ep=—p(p—t2).
ki=ta—p=t1—p

ko=—2—to+p=—2—1,+p. As Case 6, it is impossible.

One has ki ¢ Z or {
Case 13.

It is easy to get ky ¢ Z.
Case 14.

It is easy to get ky ¢ Z.
Case 15.

ky=to—p=ti—p
k2:—2—t2—|—p=—2—t1—|—p.

{51 =p(p—t2)

Eo=—p(p—ta).

One has k1 ¢ Z or { As case 6, it is impossible.

Case 16.

ki=ta—p
One has ki ¢ Z or {kQ:—Q—tz—H&

The above proof shows that except the following 3 cases we have

(g57°°)% + (g57%)% #0,

nJk1=0 n)ki==1=p , [ki=-1
(1){/@2:—27(2){1«2:—1, G\ ky=p-1,

Checking directly, it is easy to know for Case 2’ and 3’, we have

(95" 2% + (5™ %)* #0.

As case 6, it is impossible.

which are

0 . .
ky = —2. In this case, it is clear

The only remaining case is {kl -
93(6) = (ag, —at,) — (p—t1) (2p—t1 — t2) A,

In fact, it is €asy to Check that
6p+2t2,2p—2ty
93 # 0.
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Lemma 4.8 If 7> 5,
8
|Rgo,4| < 'fﬁ-

Proof. Suppose k #0. Without losing generality, also suppose |n| <|m/|. If |n| <|m|, we have the
following discussion.
If |m| > c|k| and c is large enough, we have

2

mz—n C
T S Sk > [k Ao).

This means

Bo
ES — 1
(b} 40— 5 E Ul = lmll 1)

|k [2rm
Therefore, |n| <|m|<cl|k|. It follows that
¢ (|n| —|m||+1) a
| U {€: (R, w) +Qn = Q| < T H< Z T—3"
G " o<z
If |n| =|m|, it is obvious to obtain
€ (nl = || +1) e
U {6k w) + Q= Q| < o HEDY i
tsier ocluisx
If k=0, it is easy to get |m|#|n|. It follows that
Bo
| U & 1(kw) + Q0 = Q| < €% ([In| = [ml][ + 1)} = 0.
Il
Now the conclusion is clear. [ |

Lemma 4.9 If 7> 2,

B
|R(2)0,5| < '€£~

Proof. We only give a sketch. Firstly, k =0, g4(¢) = —a?. The conclusion is clear. If k # 0, we
will compute g;”" and g} as Lemma 4.4. It is easy to show that (g37°)2+ (93*")% # 0 except
when k; =p—t and ky =t —p. In fact, it is easy to check that g4(¢) = —a? when k; = p—t and

ko =t—p. |
Lemma 4.10 If 7> 2,

B
|R(2)0,6| < 'Eﬁ-

Proof. ~ We will show there exist nonzero coefficients in g5 for any k, |k|+ |t; —t2| # 0 and
(k,No)+i7, —i7, =0, where tq,ty € T. If ty #t, since (k,\o)+i7, —iz, =0, one gets k#0. If t; =t3,
from |k|+|t; —t2| #0, we also have k #0.

Write @ =ki +ka(p+1), y=k1(p+1)+ko,2’ =ki + 1kop, y' = 2kip+ko. Denote

x1=@—t1)(ta—t1)+(p—2t1 +t2)(t2—p), x2=(t2—p)(p—t1)(t2—1t1).
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It is easy to check that

ggp,o = c{x4 +p(2t; — 2t2)ac3 +x1pPa® — X2p3a:}, (4.14)
9% = e{y* —p(2t1 — 2t2)y° + x10%y + x20°y ), (4.15)

95722 = {42’ + (2 — 2t1)[—3pa’ + (1 — g)x]ﬁ
+x1p(2pe’ + (p—2)a)a+ xap?[—pr’ +3(1 - D)al}, (4.16)
p
)[=3py' + (1= 3)yly®

+xnp@py+%p—2hﬂy—xnpﬁ—py44ﬂl—g)m}~ (4.17)

g7 = {4y — (2t 2t

From g&7° =0 and g2 =0 for some k, t1,ty € T and (k, o) +i7 —iz, =0, one has the following

16 cases.
z=0
y=0.

Case 1.
One has k=0. It contradicts with k 0.
Case 2.

=0
y=(t1—t2)p.
One has k=0 or to > p. It is impossible.
Case 3.

{sz
y=p(t1—p).
It is easy to get ko ¢ Z.

Case 4.

It is easy to get ko ¢ Z.

Case 5.
{Qﬁz(tz—tl)p
y=0.
One has k1 ¢ Z or k=0.
Case 6.
{£U=P(t2—t1)29
y=(t1 —t2)p.
k1=t~
One has {k2 —
Case 7.
{l‘—(tQ—tl)p
y=p(t1—p)

It is easy to get ko ¢ Z.
Case 8.

It is easy to get ko ¢ Z.

Case 9.
{x=p@—h)
y=0.
It is easy to get kq ¢ Z.
Case 10.
{xzp@—t)
y=(ti—t2)p



It is easy to get ki ¢ Z.

Case 11.
{l‘:p(p—tl)
y=p(p—t2).
ki=t;+1 _
One has ks ¢ Z or {k2:t2+1 and ¢+t =p—2.
Case 12.
{l‘:p(p—tl)
y=p(t1—p).
ki=ti—p
One h
ne has {k2:p_t1.
Case 13.

{ r=p(t2—p)
y=0.
It is easy to get ki ¢ Z.
Case 14.
{ r=p(t2—p)
y=p(t1 —t2).
It is easy to get ko ¢ Z.
Case 15.
{»’8 =p(ta—p)
y=p(t1—p).

ki=—tp—1 and t1 +to =p—2.

One has k2 ¢ Z or {k2:_t1_1

Case 16.
{x =p(t2—p)
y=p(p—ta).

ki=p—ta
One h
ne nas {k‘Q :tz—p

The above proof shows that except the following 5 cases we have

(957°)2 + (95%")* #0

ki=ti—ty ,Jki=ti—p ., Jki=p—t2
1 2 3
( ){k2=t2—t1,( ) k2:P—t1,( ) ko =t2 —p.

if p> 2, which are

ki=t1+1 ki=—ta—1
(4,) ko=ta+1 (5/) ko=—1t1—1
t1+to=p—2, t1+to=p—2.

Checking directly, it is easy to know for Case 1, 2’ and 3, we have g§p72’2 # 0(note p > 2). For
the remaining Case 4’ and 5’, we clearly prove Case 4’ since the latter case is totally similar. In
fact, a simple transformation can turn Case 5’ into Case 4’. The following, we will prove gg’SP -2 #£0
under Case 4'.

First, we must have t; >t under Case 4’. If not, one can easily prove
kln% + kz’n% #+ 7;%2 — ’L?l

from the direct computation.
For simplicity, we write x1 =p—t1, y1 =p—t2, 2<z1 <y; <p. It follows that

1
Y = (z —1)+§(y1 —1)p, x1 =274y —3z1y1, X2 =z1y1(y1 —21).
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Under the above notations, one has
g2 = cfA(ky +1)%y + (ta — t1) (k1 +1)%(p—2) + 6y (ta —t1) (k1 +1)
3
+xal(p=2)(ki + 1) +2y 1+ 5 =2)x2 + (p—t1)(t —t2)y'}
=c(I-1I1I),

Where

I'=dyi[(z1-1)+ %(yl —Dpl+ g(p—2)$1y1(y1 —21)+x1(y1 — 1) (21— 1) +%(y1 —1)p]

+ (o2 (e +40) 420~ 1)+ 5~ DBl +47)

and
IT=(p—2)(y1 —21)yi +6[(z1 —1)+ %(yl —1)pl(y1 —z1)y1 +3z1y7 (p—2)

+6z191[(z1 — 1)+ %(yl —1)p].

It is easy to check that
I-1I= §($1y1 —a?)+2(2} —23) 4+ 2311 > 0.

This shows that g2*" > #0.

If p=2, we have t = 0 and a; = £2£2 in this case. We only need discuss Case 2’ and Case
3/(Case 1’ doesn’t exist and Case 4’ and 5" are the same). Computing directly in the two cases,
we both have

g5 =—2886165 (&1 —€3)%

The conclusion is obvious. [ |

Combined with above lemmata, we have the following lemma.
Lemma 4.11 If7>5,
|R0‘ < _65—2
In the following, we will give a description lemma about the remaining set Oy = O\ R°.

Lemma 4.12 For |k| < Ko and all the parameters £ € O, which belong to the set Oy = O\ R,
satisfy 2 the following conditions

_ kaT
oy <P e,
€4
k4p’r+2 1
() + )1 < 2T gy, (418)

€2
cmax{|k|*7+2 1}

Bo ’
€2

I((k,w) T2+ A,) 71 < teT,

3 The tensor product (or direct product) of two m xn, kx 1 matrices A= (a;;), B is a (mk) x (nl) matrix defined
by o 1
a11B -+ ainB
A®B=(a;;B)=@
am1B - amnB
|| ]| for matrix denotes the operator norm, i.e., || M| = sup |Myl|.
ly|=1
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cmax{ k|76 1}
e (||n] —|m|[+1)’
cmax{|k|37+6 1}
e (|[ig, | = In|[+1)’
where |kyni +kons| = [n+1i| or |king + kons|=|n+ji+(n1—n2)(p—1t)|, n¢N, teT,
cmax{|k|37+6 1}
P ([lig | = lir |[+1)

| (k@) +Qn + Q) 71 < n,m¢N,

1(((k,w) +Qn) T2+ A, ) 7| < (4.19)

||(I2®(<k;w>12+Ait2)+Aitl ®.[2)71|| < t1,to €T, (420)

cmax{|k|37+6 1}
ePo([ln] —|m||+1)
where |k1ny + kane| =|n—m)|,

cmax{ k|76 1}

|((Byw) +Qp — Q) 7Y < n,m¢N, |k|+|[n]—|m||#0,

L ((k,w)la—A;, )+ A;, @)Y < : , ) 4.21
A (Y W Y 2
where t1, 12 GT, |k| + ‘tl —t2| 740,
_ cmax{|k|37+6 1}
E,w)+ Q)L —A;,) 7Y < , , 4.22
||((< > ) 2 ) H EBO(HZt‘—‘nH—Fl) ( )
where |kiny +kang| = |n—it| or |king + keng|=|n—j: — (n1 —n2)(p—1t)|, n¢ N, teT.
The proof is given in the Appendix.
Remark 4.1 We must point out that Lemma /.12 omits one inequality of (3.1), which is
~ ~ ¢
Q- | < - - ,teT. 4.23
e [ Y 2
But, from
~ ~ 1
‘Qitfgjt|:| |§C7

Wt (0P
it is easy to know that (4.23) holds naturally.

Remark 4.2 From (/.22) to the corresponding inequalities in (3.1), one inequality is needed. We
need the simple inequality as the following:
1 1
- <= .
[léel = [nll+1 7 [lje] = Inl[+1

(4.24)

(4.24) can be easily proved by discussing two cases. One is |iz| # |n| and the other is |is| =|n|.

Remark 4.3 (3.1) is a direct result from Lemma 4.12 and above two remarks.

4.2 Measure estimates for remaining steps

From Lemma 3.5, we have to exclude the following resonant set
v+1 _ v+1 v+1 v+1 v+1
R™™ =Roo URlo UR20 URH )
v+l v+1 v+1 v+1
Rag ™ =TRag1 URQO,Q UR20,37
v+1l v+1 v+1 v+1 v+1
Rii =Rii: URH,Z UR11,3 UR11,4

(where v > 0) at remaining KAM steps. We have the following lemmata which give the corre-
sponding measure estimates. The proofs of the following lemmata are similar, we only give one
and omit the others.
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Bo

Lemma 4.13 If7>1 and K, > 8¢ |R5+1\ <-€)h 4.

M

Bo
Lemma 4.14 If 7> 1 and Kl,>§—g Ry <€,

m

Bo

Lemma 4.15 If7>2 and K, > 8¢ |Rg(ﬁ €01
B0
Lemma 4.16 If 7>2 and K, > 5 [R5 <-€J7,.

Lemma 4.17 If 7>2 and K, > i—g, |Rga'?1,\ <-€)h 4.

Lemma 4.18 If 7>2 and K, > E—;’, lefi < e

Proof. Define vy = (2p,0)”, and vy = (0,2p)T. It is easy to get

k ky ko ) ky ko
(o w) =const.+ (- (p+1) + T2 (P 1D)DE ++ 4 (0 (p+ 1)+ 2 (p+1))E57
|| k] [k] ' " k| k|
Denote f= m(%,@ and F = (k,w,4+1) +S~2y+1,n _Quﬂ,m- It follows that
oL f _ ki kg
w w1+ e+, (4.25)
DEv2 (p‘i‘l)f"'f
Write 8= (8,01) = (?1 f) Obviously, |31 =1. Denote
_( 1 p+l
b= <p+1 1 )
Computing directly, it is easy to obtain | DS It follows that for any k # 0, there exists
Vi, G0 =1 or 2 so that \gguoi({ 3. This means that
0% (k,w)
|W| > col k.
Note
9vio <k7wv+1 7w>
| 8§vi0 |SC€0|]€|,
0 ),
| 851;70 |— 7
Vio (1.0 —
‘a 0( 1, ) | < C€q,
5"
0,
vl
€Yo
a’uio (Qqul,m - Qm)
| 85”0 | S C€Q,

it follows that ~ R
\<k7w,,+1 —w) +Qy+1’n _Qu+1,m| S 26+ ]. +C€0‘k|.

Therefore, for |k| > %7

QVio F'
—|>1.

O&Vio
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The following we estimate R’l’ﬂ Write R’l’ﬂ =Ry +R_, where R} = R’fﬁ N{|n| # |m|} and
R_ :R’l’ﬁ N{|n|=|m|}. For the measure of R, it is standard(See [15]). It is easy to get

30
|R+| < 61/+1

when 7>2 and |k| > . Write R_ =RLUR?Z, where RL =RY{iN{n=m}and RL =RV 1n{n=
°0 5o s 5
—m}. It is obvious that |R| < -eJ%7; when 7 > 2 and |k| > 80. When n = —m, we know that

1n1 +kons| =12n|. is means |n| <c erefore, when 7> 2 an >— we have
k k 2n|. Thi < cl|k|. Theref h 2 d [k|> 3 h

6?&-1 .

1 v L

R-[< Z ( \k|8p7+6)2"

[k|> K., |n|<c|k|
Ba
<641

Combining with all the estimates before, one has |R‘1’1+ﬂ <. 5u+1

Remark 4.4 In fact, there is a standard proof of Lemma 4.18(see Lemma 5.7 in [15]). Here we
give a minor different proof.

s
Lemma 4.19 If7>2 and K, > 5, |RYf3[ <-¢)7,.

20
Lemma 4.20 If 7>2 and Kl,>§—§, IRy sl <.

/-;
Lemma 4.21 If7>2 and K, > 8¢ |R’ff‘}l\< €01

Combining with all the lemmata before, we have

Lemma 4.22 If 7>2 and K, > %¢, |[RV*!| <. €V+1(V20).
Note (3.10), this means K, > %. Fix 7 > 5. Now we compute the total measure of the
parameter sets R, which be thrown in all the steps.

f’o
|RE|§€ +oeF -

o ﬁ
L2p _ . Ap(Bptl
<6y =-€, .

5 Appendix

5.1 Compact form and generalized compact form

Given ni, ny €Z, ny #no. A real analytic function

F=F(xz,y,2,%) Z Frap(y <k’m>za2ﬁ
k,a,3

on D(r,s)={(z,y,2,2): |[Imz|<s, |y|<r? ||z||, <7 ||Z|l, <r} is said to admit a compact form
with respect to ny, ng, if

Frap #0, implies king +k2n2+2(—an+ﬂn)n20 for any k, «a, £,

where k = (ki,k2) € Z* and a = (- ,ap, ), 3
non-vanishing components.

(-+-,Bn, ), o, B € NP with finitely many
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Lemma 5.1 Given ny, no € Z and ny # ns, consider two real analytic functions
F(x,y7z7z)’ G($7y727 2)
on D(r,s). If both F and G have compact forms with respect to ny,ns, then so does {F,G}.

For the proof, refer to Lemma 2.4 in [13].
Given n1, ne and specially chosen subscripts set J = {jo, -+ ,jp—2} and j; & {n1, na}, t€7. A
real analytic function
F=F(z,y,2,%2) Z Frop(y)etbe) 2220
k,a,3

on D(r,s) is said to admit a generalized compact form with respect to nq, no and J if

Frap(y) #0
imply
p—2
kiny +kang + Z (—an+Bn)n=(n1—ns Z aj, —B,)(p—t) (5.1)
TLEZ\{TLl,’rLQ} t=0

for any k, «, 3, where k= (ki,ks) €Z? and a = (-+,apn, +), B=("",Bn, ), @, B €NF with
finitely many non-vanishing components.
Similar as Lemma 5.1, we have the following lemma.

Lemma 5.2 Given ni,ny € Z and specially chosen subscripts set J = {jo, -+ ,jp—2} and j; ¢
{n1, na}, t€T. Consider two real analytic functions F(x,y,z,z), G(x,y,2,Z) on D(r,s). If both
F and G have generalized compact forms with respect to n1,ne and J, then so does {F,G}.

For the proof, refer to Lemma 2.4 in [13].

The following lemma is needed in Section 2.

Lemma 5.3 PJ satisfies a generalized compact form with respect to ny, no and J .

_ [ Prie P12,
D21, P22t )

Proof. Write

where t € 7. As we know,

. + . .
= Z Pokap(y™)e ™ >(H1¢Nw w Dp11,0wy, +p1a, 0w+) 0 (pa1 0w +P22,0”w}z)am
k,a,B
- (p11,p— 2w , Th12p— 2w+ 2) =2 (pa1p 2w , TP22p— 2’UJ+ z)ajl’*Q
(p11,0w; +P120wjo)ﬁ‘°(p21 0} + P22,0W; )5]0
- (p11,p— 2w _,tPi2p- 2w+ 2)6”’ 2 (p21,p— 2w _,tP22p 2w+ 2)Bj"*2- (5.2)
If P() kaﬁ( ) PO kaﬂ( )750, then
p—2
kg +hang+ Y (—ai+B:)i=(n1—n2) > (e, —B;,)(p—1). (5.3)
i€Z t=0
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We write every term of which its coefficient might be nonzero in (5.2). It is

ilk,zt () A 1 Qi — 1 2 s — k2
Pogap(y™)er ™) (Migpr (w;h)* (@)% (wyf) ) o (wif )00 =R (wf )Ro (wf )40 ~Ho

20

- (wi z)k;’*2(wj+p 2)0"'?—2"“‘}’*2(10272)% 2wy )2 hr

(7)o (@},
(w7, )2

Bio =6 (ap; )t (w;g)ﬁjo*l% ..

ll

_ _ 2 _ ) 12
A N N L
= Poap(yt)e 5" >(Hi¢N(wi ) (@) 5) (i Kotk (i yrso+eso ko ks
(wf ) p—2+k12)—2(wj Yip—2tpo2 —kp_o—hy_s
p—2 p—2
(m;;)l(lﬂrlg (@jt)ﬁerﬁjo*l(l)*lg e (@;:)72)“ 2t z(wj; Z)Bip—z""ﬁjp—fz_lzl>—2_lz%—27
where k, «, (8 satisfy (5.3) and
0<k{ <a,, 0<kf <ay,
0<l <Biy, 0SEE <Py, teT.
Then from (5.3), one gets
kiny +kana + Z i(Bi — i)
igN
p—2
+ ) i+ 1 =k} = k7)) + e (Bi, + By, — iy — g, = (U 1 = kg = k)]
t=0
p—2
= kini+kang + Z i(Bi — ) +Z[it(—0¢it +Bi,) +e(—aj, + B;,)]
igN =0
p—2
+ > [=ir(Bi, — i,k + k] =1 —17) +5u (B, — i, +Ef K — 1 —17)]
t=0
p—2 p—2
=(n1—n2) Y (0, = B;,)(p—t)+ > (B, — i, + ki + k7 1 —17) (G — i)
t=0 t=0
p—2 -
:(77,17712) (an 5%) +Z /811 a11+k1+k2 l 71?)(7127711)(])*75)
t=0 t=0

anan p— t)[(alﬂr%t*kl kQ) (ﬂiﬁrﬂjf,*lg*l?)]-
t=0
|

From the generalized compact form of P, we can prove that the coefficients of w,w_,, is zero
unless n = 0(see subsection 3.1 for details).

Proof.

Case 1.

—ji #jy, for any t, t' €7T.

Subcase 1. n¢ {xjo, -+, Ejp—2}. It is easy.

Subcase 2. n € {jo, -~ ,jp—2}. From ny+ng #0, one gets —2j; # (n1—n2)(p—t). The conclusion
is easy.

Subcase 3. n€{—jo, .-+, —jp—2}. This is similar as Subcase 2.

Case 2. For some t, t' € T, we have n=j; #0, —n = jy. In this case, since —j; +jy = —27j; #0,
the conclusion is obvious.

Case 3. For some t, t' € T, we have n=—j; = jy #0, —n = j;. This is similar as Case 2.
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5.2 Proof of Lemma 4.12.

Proof. We will prove parts of the inequalities in Lemma 4.12. The unproved are similar as the
following or obvious.
First, we prove (4.19). Write

My =((k,w)+ Q)b+ A;,, teT, n¢gN.
Obviously,
My =PI M{P, =Pl (((k,w)+Q,) o+ A;,) P,
The following we will prove

cmax{|k|*P7+4 1}

1)~ < = : (5.4)
e (|lig] = In]| +1)
For our convenience, write g! = det(M]). We will discuss in two cases.
Case 1.
(k,No) +n?+i2 #0.
It is obvious that k# 0. Note the choose of Ky, one has
1
Therefore,
ko) +n2+i? c
|<>€Tt +hifitkafo+2f3> T
k, o) +n?+i? c
|<>6Tt +hifitkafot+2fs+(p—t2)Al > s
It follows
(M)~ < e
Note |k1ny +kang| =|n+i:| or |king +kana| = n+ji + (n1 —n2)(p—t), we have
In] < el (5.6)
Therefore 2
C|k‘ P ZC|]€|4PT+1.
[lie| = |nl[+1

Thus, it is easy to get (5.4).
Case 2.
(k,Xo) +n?*+i7 =0.

Note we have thrown all the parameters in RgO,Q, this means

1 max{L |k}

|gl| 61370
From
(M/)_1:i Eifit+kefot2fs+(p—1)A —ay
1 gl —ay kifi+kafo+2f3

and (5.6), it follows
||(M/)71|| < cmax{|k\4p7+3,1} < CIIlaX{|k|4pT+4,1}
1 = Bo = Bo . '
€2 €2 (|[i¢| — |n||+1)
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Combined with above two cases, the conclusion is clear.
In the following we will prove (4.20). Write

M :IQ®(<k7w>IQ +Ait2)+Ait1 ®Is.
Note - -
My=L&((kw)+A;,)+A4;, @I

has the same eigenvalues as M (see Lemma 5.3 in [21]), this means that there exists an orthogonal
matrix P, ¢, so that
Pl MyPy, 4, =M.

Denote g2 = det(M}). (4.20) is clear from the equality

cmax{1,|k[8P7+6}

(M)~ < o (5.7)
We will obtain (5.7) in the following two cases.
Case 1.
(k,Xo)+1i; +1i7, #0.
As before, we discuss when cKy < e%p It is easy to get
[(M3)7H] < e
Case 2.
(k,Xo)+1i;, +i7, =0.
Note we have thrown out all the parameters in RS 3, it follows that
9 ePo .
> .
971> max{1, k|87 } (58)
Let (M4)* denote the adjoint matrix of MJ.
M1y M12M13 M14
(ML)* = Ma21 M2 M23 M4
? M31 M3z N33 N34
TIg1 M42 1043 Mygq
Obviously, we have
Im;| < clk|°. (5.9)
Therefore,
_ cmax{1, |k[5P7+6}
L
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