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Abstract

In this paper, one-dimensional (1D) nonlinear Schrödinger equation

iut−uxx + |u|2pu =0, p∈N,

with periodic boundary conditions is considered. It is proved that the above equation admits
small-amplitude quasi-periodic solutions corresponding to 2-dimensional invariant tori of an
associated infinite-dimensional dynamical system. The proof is based on infinite-dimensional
KAM theory, partial normal form and scaling skills.

1 Introduction and Main Result

In this paper, we will prove that one-dimensional(1D) nonlinear Schrödinger equation

iut−uxx + |u|2pu =0 (1.1)

under periodic boundary conditions

u(t,x)= u(t,x+2π) (1.2)

admits small-amplitude quasi-periodic solutions corresponding to 2-dimensional invariant tori.
As usual, we study the equation (1.1) as a hamiltonian system on P =H1

0 (T)= H1
0 ([0,2π]) with

the inner product (u,v)= Re
∫ 2π

0
uv̄dx, the Sobolev space of all complex valued L2-functions on T

with an L2-derivative. Let φj(x)=
√

1
2π eijx, λj = j2, j ∈Z be the basic modes and their frequencies

for the linear equation iut = uxx with periodic boundary conditions. Then every solution is the
superposition of oscillations of the basic modes, with the coefficients moving on circles,

u(t,x)=
∑

j∈Z
qj(t)φj(x), qj(t)= q0

j eiλjt.

Together they move on a rotational torus of finite or infinite dimension, depending on how many
modes are excited. In particular, for every choice

J = {j1 <j2}⊂Z
of 2 basic modes there is an invariant linear space EJ of complex dimension 2 which is completely
foliated into rotational tori:

EJ = {u = q1φj1 +q2φj2 : q ∈C2}=
⋃

I∈P 2

TJ (I),
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where P 2 = {I : Ij > 0} and

TJ (I)= {u = q1φj1 +q2φj2 : |qj |2 =2Ij for 1≤ j≤ 2}.

In addition, each such torus is linearly stable, and all solutions have vanishing Lyapunov exponents.
This is the linear situation.

Upon restoration of the nonlinearity |u|2pu, we show that there exists a Cantor set C ⊂P 2, an
index set I = {n1 <n2}, where n2 >

√
pn1 > 0, and a family of 2-tori

TI [C] =
⋃

I∈C
TI(I)⊂EI

over C, and a Whitney smooth embedding

Φ : TI [C] ↪→P,

such that the restriction of Φ to each TI(I) in the family is an embedding of a rotational 2-torus
for the nonlinear equation. In [14], The image EI of TI [C] is called a Cantor manifold of rotational
2-tori given by the embedding Φ : TI [C]→EI .

Theorem 1 (Main Theorem) Consider 1D nonlinear Schrödinger equation (1.1) with (1.2). Then
for any index set I = {n1 <n2}, which satisfies n2 >

√
pn1 > 0, there exists a positive-measure Can-

tor manifold EI of real analytic, linearly stable, Diophantine 2−tori for the nonlinear Schrödinger
equation given by a Whitney smooth embedding Φ : TI [C]→EI .

Remark 1.1 For 1D nonlinear Schrödinger equations of higher order nonlinearities such as

ivt−vxx +mv+ |v|2pv =0 (1.3)

under periodic boundary conditions

v(t,x)= v(t,x+2π), (1.4)

there exists a well-known transformation v = eimtu, the above equation and boundary condition are
transformed to the equation (1.1) and (1.2).

Remark 1.2 Generally, one can’t prove that Φ is a higher order perturbation of the inclusion map
Φ0 : EI ↪→ P restricted to TI [C]. The reason lies in the symplectic transformations Ψ1, Ψ2. See
Section 2 for details.

There are some known woks about the equation (1.1). For p = 1 under Dirichlet boundary
conditions, see the well-known work of Kuksin and Pöschel [14]. For p =2 under Dirichlet boundary
conditions, Liang and You(see [15]) also got the similar conclusions as [14]. But their method is
hard to be generalized to p≥ 3. The reason will be given in the following. Before that, we will turn
to some works about the Schrödinger equation under periodic boundary conditions. In [2, 4, 5],
Bourgain obtained the existences of quasi–periodic solutions for the Schrödinger equation including
1D and nD(n≥ 2). His method, called Craig-Wayne-Bourgain’s scheme(see [7, 2, 3, 4, 5]) is very
powerful and different with KAM. It avoids the, sometimes, cumbersome and famous “the second
melnikov conditions” but to a high cost: the approximate linear equation are not of constant
coefficients. It results in giving no information on the linear stability of constructed quasi-periodic
solutions.

The first work using KAM to construct quasi-periodic solutions of 1D nonlinear PDEs under
periodic boundary conditions is due to Chierchia and You(see [6]). They obtain the linearly sta-
ble quasi-periodic solutions for 1D wave equation. But their method is hard to deal with the
Schrödinger equation. For the Schrödinger equation (1.3)+(1.4) when p =1, it was included in the
work of Geng and You [11]. Combing with the methods of [15] and [12], Geng and Yi(see [13])
obtained the similar result for p =2. But their methods failed in p≥ 3. What is the problem?

Before we turn to the problem mentioned above and explain our method, we want to give a fast
introduction in the recent development in KAM of higher dimension. In [12], Geng and You proved
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a KAM type of theorem which is applicable to certain Hamiltonian partial differential equations in
higher space dimension including beam equations and Schrödinger equations with nonlocal nonlin-
earity. The important point in their proof is that they find the perturbation terms of the iterative
Hamiltonian pertain some special form. Unfortunately, they expel the most interesting cases such
as the higher dimensional Schrödinger equation with the general nonlinearities and higher dimen-
sional wave equation. Very recently, there is new important development towards two problems.
In [8, 9, 10], Eliasson and Kuksin give a KAM for higher dimensional Schrödinger equation with
the general nonlinearities. The constructed quasi-periodic solutions have all Lyapounov exponents
equal to zero. In [22], Yuan obtains a KAM theorem which can be applied to both the nonlinear
wave equations and Schrödinger equations of higher dimension. The second Melnikov’s conditions
are totally eliminated in his method.

Now, we come back to the Schrödinger equation (1.1)+(1.2). We give a short discussion and
the reason why the existent results only restricted in p≤ 2. In the end, we will give the sketch of
our proof and point out the main difficulties in our proof. After the standard way as [15] and [13],
we have the Hamiltonian

H ◦Γ= Λ+Ḡ+G̃+Ĝ+K,

where

Ḡ = cp

p∑

k=−1

(Ck+1
p+1 )2|qn1 |2(p−k)|qn2 |2(k+1)

+ cp(C1
p+1)

2
∑

n 6=n1,n2

p∑

k=0

(Ck
p )2|qn1 |2(p−k)|qn2 |2k|qn|2,

G̃ = cp

∑
i1+···+ip+1=j1+···+jp+1
{i1,··· ,ip+1,j1,··· ,jp+1∈T1}

qi1 · · ·qip+1 q̄j1 · · · q̄jp+1 ,

Ĝ = cp

∑
i1+···+ip+1=j1+···+jp+1
{i1,··· ,ip+1,j1,··· ,jp+1∈∆3}

qi1 · · ·qip+1 q̄j1 · · · q̄jp+1 ,

|K|=O(||q||4p+2
ρ ),

where n1, n2 are the different tangent sites and the set

T1 = {(i1, · · · , ip+1, j1, · · · , jp+1)∈∆2 \M|i21 + · · ·+ i2p+1 = j2
1 + · · ·+j2

p+1}.

Please see section 2 for other relative notations. The existence of G̃ is the trouble-maker. For
p = 1, G̃ doesn’t exist. For p = 2, if choose n2−n1 ∈ 2N−1, the terms of G̃ also don’t exist. This
is the reason why Geng and Yi(see [13]) restrict the tangent site in the case n2−n1 ∈ 2N−1(also
see Remark 2.1). For either p =2 and n2−n1 ∈ 2N or p≥ 3, the terms of G̃ aren’t empty.

This similar phenomenon, as the terms of G̃ don’t vanish, exists very popularly. It definitely
exists in 1D Schrödinger equation with the nonlinearity |u|2pu(p ≥ 2) under Dirichlet boundary
conditions. It is why it is difficult to generalize the conclusions of [15] to any p. We point out that
this phenomenon also exists in many other equations such as 1D wave equation and beam equation
with the nonlinearity u2r̄+1(r̄ ≥ 3) under different boundary conditions. For example, it exists in
1D wave equation

utt−uxx +mu+u2r̄+1 =0, m > 0, r̄≥ 3,

under Dirichlet boundary conditions. If use the same notation as [16], when r̄ =3, we will find that
the nonresonant term zn2z

3
n1

ziz̄n1 z̄n2 z̄j can’t be killed for some m > 0(depending on i, j), where
i, j are normal sites and n1, n2 are tangent ones and λi =

√
i2 +m, λj =

√
j2 +m, λn1 =

√
n2

1 +m
satisfy {

2λn1 +λi =λj ,
4n1 + i= j.
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This also partly explains why existent KAM results for this equation only hold true for positive
measure of m> 0. See Bambusi [1] and Liang and You [16] for details.

In the following, we give a sketch of our proof. Firstly, we give the concrete form of G̃(see
(2.6), (2.9) and (2.10)). The proof is only restricted in two different tangent sites n1, n2. After
the standard way of introducing the parameters ξ1, ξ2, we have the Hamiltonian

H = 〈ω(ξ),y〉+
∑

n 6=n1,n2

Ω̃n(ξ)wnw̄n +Υ1 +Υ2 +Υ3.

See (2.11) for details. In some sense, Υ2 +Υ3 = h.o.t.. We absorb the term of Υ1 into the term
of

∑
n 6=n1,n2

Ω̃n(ξ)wnw̄n. And rewrite the two terms as 〈G(x)w,w̄〉, where the infinite dimensional

normal matrix

G(x)=




. . .
Ω̃i0 ã0e

−ip(x1−x2)

. . . . . .

Ω̃ip−2 ãp−2e
−2i(x1−x2)

. . .
ãp−2e

2i(x1−x2) Ω̃jp−2

. . . . . .

ã0e
ip(x1−x2) Ω̃j0

. . .




,

where x1,x2 is the angle coordinates and for ãt, it and jt, see (2.12), (2.7) and (2.8). In the follow-
ing, we introduce a nonlinear symplectic transformation(see Lemma (2.5)) to the above hamiltonian
and re-scale the coordinates and parameters including t and then use another symplectic transfor-
mation to diagonalize the normal infinite dimensional matrix. After all the transformations, one
gets the following Hamiltonian

H = N +P

= 〈ω,y〉+
∑

j

Ω̃jwnw̄n +P (x,y,w,w̄,ξ, ε),

where

Ω̃j =





Ωj , j /∈N ,
λ1,t, j = it, t∈T ,
λ2,t, j = jt, t∈T ,

and

λ1,t = Ωit
+

1
2
(p− t)A− 1

2

√
4a2

t +(p− t)2A2,

λ2,t = Ωit
+

1
2
(p− t)A+

1
2

√
4a2

t +(p− t)2A2.

For Ωj , j 6=n1, n2, A and at, see (2.23), (2.14) and (2.17). In order to obtain the measure estimates
under periodic boundary conditions, an easy way is to prove that the perturbation terms always
satisfy some special properties. We remark that even though the common properties as ([12]) and
([13]) don’t pertain after the nonlinear symplectic transformation Ψ1(see Lemma 2.5), a similar
property still holds, which we call generalized compact form. One easily proves that this property
holds even after infinite KAM steps. Another main difficulty is the measure estimate in the first
step, while measure estimates of the remaining steps are standard as [15] and [16]. The difficulty
lie in λ1,t and λ2,t, t∈T . It is hard to get the inequality such as

|∂
2pf

∂ξ2p
| ≥ c> 0,
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where f = 〈k,ω〉+Ω̃n− Ω̃m. Our method is technical. See Lemma 4.12 for details.
The rest of the paper is organized as follows: In section 2 the hamiltonian function is written

in infinitely many coordinates, which is then put into partial normal form. In section 3, we give
KAM steps and Theorem 2. Measure estimates are given in section 4. In the Appendix, we explain
what is the compact form and generalized compact form. Some important lemmata are proved
there.

2 Normal Form

Using the Hamiltonian formulation, we rewrite the equation (1.1) with the periodic boundary
condition (1.2) as the Hamiltonian system ut = i∂H

∂ū , where

H =
∫ 2π

0

(|ux|2)dx+
1

p+1

∫ 2π

0

|u|2p+2dx.

Note that the operator A = −∂xx with the periodic boundary conditions has an orthonormal

basis {φn(x)=
√

1
2π einx} and corresponding eigenvalues µn =n2. Let u(x,t)=

∑
n∈Z

qn(t)φn(x). The

coordinates are taken from the Hilbert spaces lρ of all complex-valued sequences q =(qi)i∈Z with

‖q‖2ρ =
∑

j∈Z
|qj |2e2|j|ρ <∞.

Fix ρ> 0 later. Then associated with the sympletic structure i
∑
n∈Z

dqn∧dq̄n, {qn}n∈Z satisfies the

Hamiltonian equations

q̇n = i
∂H

∂q̄n
, n∈Z, (2.1)

where

H =Λ+G (2.2)

with

Λ=
∑

n∈Z
µn|qn|2, G =

1
p+1

∫ 2π

0

|
∑

n∈Z
qnφn|2p+2dx.

Lemma 2.1 The gradient Gq is real analytic map from a neighbourhood of the origin of lρ into
lρ, with

‖Gq‖ρ =O(‖q‖2p+1
ρ ).

The proof is similar as Lemma 3 in [14].
Note that

G =
1

p+1

∑

i1,··· ,ip+1,j1,··· ,jp+1

(
∫ 2π

0

φi1 · · ·φip+1 φ̄j1 · · · φ̄jp+1dx)qi1 · · ·qip+1 q̄ji1
· · · q̄jp+1

=
1

p+1

∑

i1,··· ,ip+1,j1,··· ,jp+1

Gi1···ip+1j1···jp+1qi1 · · ·qip+1 q̄ji1
· · · q̄jp+1 ,

where

Gi1···ip+1j1···jp+1 =
∫ 2π

0

φi1 · · ·φip+1 φ̄j1 · · · φ̄jp+1dx.

It is not difficult to verify that Gi1···ip+1j1···jp+1 =0 unless i1+· · ·+ip+1 = j1+· · ·+jp+1. Moreover,
when i1 + · · ·+ ip+1 = j1 + · · ·+jp+1, we have Gi1···ip+1j1···jp+1 =( 1

2π )p+1.
To transform the Hamiltonian (2.2) into a partial Birkhoff normal form, we fix n1,n2(n1 6=n2)

and define the index sets ∆∗, ∗= 0,1,2,3, as follows. For each ∗= 0,1,2, ∆∗ is the set of indices
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(i1, · · · , ip+1, j1, · · · , jp+1) which have exactly “∗” components not in {n1,n2}. ∆3 is the set of the
indices (i1, · · · , ip+1, j1, · · · , jp+1) which have at least three components not in {n1,n2}. We also con-
sider the resonance sets N = {i1, · · · , ip+1, i1, · · · , ip+1}

⋂
∆0, M = {i1, · · · , ip+1, i1, · · · , ip+1}

⋂
∆2.

For our convenience, denote the sets T1, T2,

T1 = {(i1, · · · , ip+1, j1, · · · , jp+1)∈∆2 \M |i21 + · · ·+ i2p+1 = j2
1 + · · ·+j2

p+1},

T2 = {(i1, · · · , ip+1, j1, · · · , jp+1)∈∆2 \M |i21 + · · ·+ i2p+1 6= j2
1 + · · ·+j2

p+1}.

Lemma 2.2 Let (i1, · · · , ip+1, j1, · · · , jp+1) ∈ (∆0 \N )
⋃

∆1

⋃T2. If i1 + · · ·+ ip+1 = j1 + · · ·+ jp+1,
then

µi1 + · · ·+µip+1−µj1−·· ·−µjp+1 = i21 + · · ·+ i2p+1−j2
1−·· ·−j2

p+1 6=0.

Proof. If (i1, · · · , ip+1, j1, · · · , jp+1)∈ (∆0\N ), without losing generality, suppose there are exactly
x’s n1 in {i1, · · · , ip+1} and y’s n1 in {j1, · · · , jp+1}. It is obvious that x 6= y. Therefore, from
i1+· · ·+ip+1 = j1+· · ·+jp+1, we have (x−y)n1 =(x−y)n2. Since n1 6=n2 and x 6= y, it is impossible.
This means that if i1 + · · ·+ ip+1 = j1 + · · ·+jp+1, there are no elements in ∆0 \N .

If (i1, · · · , ip+1, j1, · · · , jp+1)∈∆1, without losing generality, suppose x1’s n1 in {i1, · · · , ip+1} and
y1’s n1 in {j1, · · · , jp+1}. And the unique index in {j1, · · · , jp+1} different with n1, n2 is denoted
by z1. Similarly, from i1 + · · ·+ ip+1 = j1 + · · ·+jp+1, one gets

(x1−y1)n1 +(y1 +1−x1)n2 = z1. (2.3)

It is easy to see that

i21 + · · ·+ i2p+1−j2
1−·· ·−j2

p+1 = (x1−y1)n2
1 +(y1 +1−x1)n2

2−z2
1

= a1n
2
1 +(1−a1)n2

2−(a1n1 +(1−a1)n2)2

= a1(1−a1)(n1−n2)2,

where a1 =x1−y1. Since z1 6=n1,n2, this means a1 6=0, 1 from (2.3). Therefore, a1(1−a1)(n1−n2)2 6=
0.

Lemma 2.3 Given n1 < n2, n1,n2 ∈ Z, there exists a real analytic, symplectic change of coor-
dinates Γ in a neighborhood of the origin of lρ which transforms the Hamiltonian (2.24) into a
partial Birkhoff normal form

H ◦Γ= Λ+Ḡ+G̃+Ĝ+K (2.4)

such that the corresponding Hamiltonian vector fields XḠ, XG̃, X bG and XK are real analytic in a
neighborhood of the origin in lρ, where

Ḡ = cp

p∑

k=−1

(Ck+1
p+1 )2|qn1 |2(p−k)|qn2 |2(k+1)

+ cp(C1
p+1)

2
∑

n 6=n1,n2

p∑

k=0

(Ck
p )2|qn1 |2(p−k)|qn2 |2k|qn|2,

G̃ = cp

∑
i1+···+ip+1=j1+···+jp+1
{i1,··· ,ip+1,j1,··· ,jp+1∈T1}

qi1 · · ·qip+1 q̄j1 · · · q̄jp+1 ,

Ĝ = cp

∑
i1+···+ip+1=j1+···+jp+1
{i1,··· ,ip+1,j1,··· ,jp+1∈∆3}

qi1 · · ·qip+1 q̄j1 · · · q̄jp+1 ,

|K|=O(||q||4p+2
ρ ),

where cp = 1
(2π)p(p+1) . Moreover, K(q, q̄) has a special form.
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We give an explanation for which K has a special form. If K =
∑
α,β

Kαβqαq̄β , then

Kαβ 6=0 implies
∑

i∈Z
αi =

∑

j∈Z
βj ,

where α =(αi)i∈Z and β =(βj)j∈Z. The proof of Lemma 2.3 is a copy of Proposition 3.1 in [13].

The specific form for G̃ is very important for the following proof. We will give it clearly.
For our convenience, we will rewrite the coordinates by a,b, which are different with n1, n2 in
{i1, · · · , ip+1, j1, · · · , jp+1}∈T1. It is obvious that a 6= b. Otherwise, we have n1 =n2. For

G̃ = cp

∑
i1+···+ip+1=j1+···+jp+1
{i1,··· ,ip+1,j1,··· ,jp+1∈T1}

qi1 · · ·qip+1 q̄j1 · · · q̄jp+1 ,

we will suppose there exist k′1s qn1 , k′2s q̄n1 , l′1s qn2 , l′2s q̄n2 . Before we give the concrete form for
G̃, we need a preparation lemma.

Lemma 2.4 When qa(or qb)∈{qi1 , · · · , qip+1}, one must have q̄b(or q̄a)∈{q̄j1 , · · · , q̄jp+1}.

Proof. Without losing generality, assume that qa, qb ∈{qi1 , · · · , qip+1}. It is easy to get




k1 + l1 = p−1
k2 + l2 = p+1
k1n1 + l1n2 +a+b = k2n1 + l2n2.

We will prove that
a2 +b2 +k1n

2
1 + l1n

2
2 6= k2n

2
1 + l2n

2
2.

If this isn’t true, one gets
{

a+b+(k1−k2)n1 +(l1− l2)n2 =0
a2 +b2 +(k1−k2)n2

1 +(l1− l2)n2
2 =0.

Write s1 = k1−k2. It follows l1− l2 =−2−s1. Therefore,
{

a+b+s1n1 +(−2−s1)n2 =0
a2 +b2 +s1n

2
1 +(−2−s1)n2

2 =0.

Thus, it follows

2a2 + 2(s1n1−(2+s1)n2)a
+ s1(s1 +1)n2

1 +(2+s1)(1+s1)n2
2−2s1(s1 +2)n1n2 =0. (2.5)

Note ∆=−4s1(s1 +2)(n1−n2)2, one can draw the contradictions from the following three cases.
Case 1. If s1 =0 or s1 =−2.
If s1 =0, then a=n2. If s1 =−2, then a=n1. It both contradicts with the choice of a.
Case 2. If s1 > 0 or s1 <−2.
Since ∆ < 0 in this case, it is obvious (2.5) can’t hold.
Case 3. If −2 <s1 < 0.
Since s1 ∈Z, it follows s1 =−1 and ∆ = 4(n1−n2)2. From (2.5), it is easy to get a = n1,n2. It

is impossible.

Thus, from Lemma 2.4, one has




k1 + l1 = k2 + l2 = p
a+k1n1 + l1n2 = b+k2n1 + l2n2

a2 +k1n
2
1 + l1n

2
2 = b2 +k2n

2
1 + l2n

2
2,

7



where k1,k2 =0,1, · · · ,p, l1, l2 =0,1, · · · ,p. If denote k1−k2 = s, one has k1−k2 = s= l2−l1. Further,
we have 




sn1−sn2 +a−b =0

sn2
1−sn2

2 +a2−b2 =0.

From a 6= b, we get 



a= 1
2 (s+1)(n2−n1)+n1

b = 1
2 (s+1)(n1−n2)+n2.

It is clear that s 6=0,±1, s= k1−k2 = l2− l1, s∈{−p, · · · ,−1,0,1, · · · ,p} and k1 + l1 = k2 + l2 = p.
On the contrary, we could clearly write all the terms in G̃. Firstly, give all s∈{−p, · · · ,−2,2, · · · ,p}

satisfying 



a= 1
2 (s+1)(n2−n1)+n1 ∈Z

b = 1
2 (s+1)(n1−n2)+n2 ∈Z.

Denote this set of s by R1. Corresponding to every s∈R1 mentioned above, we have many integer
pair (k1,k2) satisfying k1−k2 = s, k1,k2 ∈ {0,1, · · · ,p}. Denote this set of (k1,k2) by Rs

2. From
(k1,k2) ∈Rs

2 and k1 + l1 = k2 + l2 = p, we can give the corresponding integer pairs (l1, l2). In this
way, for every s ∈ R1, we find many terms in G̃. More concretely, they are all terms made of
cpqaqk1

n1
ql1
n2

q̄bq̄
k2
n1

q̄l2
n2

, where a = 1
2 (s+1)(n2−n1)+n1, b = 1

2 (s+1)(n1−n2)+n2 and (k1,k2) ∈Rs
2.

When varying s∈R1, we have get the all terms in G̃.
In this way, suppose that n2−n1 ∈ 2N, we get

G̃ = cp

p−2∑
t=0

t∑

j=0

qjtq
p−j
n1

qj
n2

q̄it q̄
t−j
n1

q̄p−t+j
n2

++cp

p−2∑
t=0

t∑

j=0

qitq
t−j
n1

qp−t+j
n2

q̄jt q̄
p−j
n1

q̄j
n2

, (2.6)

where

it =
1
2
(p− t+1)(n1−n2)+n2, (2.7)

jt =
1
2
(p− t+1)(n2−n1)+n1, t∈T . (2.8)

When n2−n1 ∈ 2N−1 and p∈ 2N, we get

G̃ = cp

p−2∑
t=0

t∈2Z+1

t∑

j=0

qjt
qp−j
n1

qj
n2

q̄it
q̄t−j
n1

q̄p−t+j
n2

+cp

p−2∑
t=0

t∈2Z+1

t∑

j=0

qit
qt−j
n1

qp−t+j
n2

q̄jt
q̄p−j
n1

q̄j
n2

. (2.9)

When n2−n1 ∈ 2N−1 and p∈ 2N+1, we get

G̃ = cp

p−2∑
t=0
t∈2Z

t∑

j=0

qjt
qp−j
n1

qj
n2

q̄it
q̄t−j
n1

q̄p−t+j
n2

+cp

p−2∑
t=0
t∈2Z

t∑

j=0

qit
qt−j
n1

qp−t+j
n2

q̄jt
q̄p−j
n1

q̄j
n2

. (2.10)

Remark 2.1 Note the simple case p =2. When n2−n1 ∈ 2N−1, (from 2.9) we know that there is
no term in G̃. This responds to the case in [13]. When n2−n1 ∈ 2N, we have

G̃ = c2qaq2
n1

q̄bq̄
2
n2

+c2qbq
2
n2

q̄aq̄2
n1

,

where a= 3
2 (n2−n1)+n1, b = 3

2 (n1−n2)+n2.

In the following, we will restrict in the most complex case when n2−n1 ∈ 2N. When n2−n1 ∈
2N−1, the proof is parallel and the conclusion is the same. We omit it.

Note (2.6), we introduce the symplectic polar and complex coordinates to the Hamiltonian (2.4)
by setting

qj =
{√

(ξj +yj)e−ixj , j =n1,n2

wj , j 6=n1,n2

8



depending on parameters ξ ∈ [0,1]2. In order to simplify the expression, we substitute ξnj
, j =1,2

by ξj , j =1,2. Then one gets

i
∑

j∈Z
dqj ∧dq̄j =

∑

j=n1,n2

dxj ∧dyj +i
∑

j 6=n1,n2

dwj ∧dw̄j .

Now the new Hamiltonian

H = 〈ω(ξ),y〉+
∑

n 6=n1,n2

Ωn(ξ)wnw̄n +Υ1 +Υ2 +Υ3, (2.11)

where

ω1(ξ) = n2
1 +cp

p∑

k=0

(Ck
p+1)

2C1
p+1−kξp−k

1 ξk
2 ,

ω2(ξ) = n2
2 +cp

p∑

k=0

(Ck+1
p+1 )2C1

k+1ξ
p−k
1 ξk

2 ,

Ωn(ξ) = n2 +cp(C1
p+1)

2

p∑

k=0

(Ck
p )2ξp−k

1 ξk
2 , n 6=n1,n2,

Υ1 =
p−2∑
t=0

ãtwjtw̄ite
−i(p−t)(x1−x2) +

p−2∑
t=0

ãtw̄jtwite
i(p−t)(x1−x2),

ãt = cp

t∑

j=0

ξ
1
2 (p+t−2j)
1 ξ

1
2 (p−t+2j)
2 , (2.12)

Υ2 =O(|ξ|p−1|y|2)+O(|ξ|p−1|y|‖w‖2ρ),
Υ3 =O(|ξ|p− 1

2 ‖w‖3ρ)+O(|ξ|2p+1).

Denote P =Υ1 +Υ2 +Υ3. Consider the Taylor-Fourier expansion of P ,

P =
∑

k,α,β

Pkαβ(y)eikxwαw̄β .

We have
Pkαβ(y) 6=0, implies k1n1 +k2n2 +

∑

n∈Z\{n1,n2}
(−αn +βn)n =0.

In order to cut our expression, write N = {i0, · · · , ip−2, j0, · · · , jp−2} and J = {j0, · · · , jp−2}. It is
easy to see that i0 <i1 < · · ·<ip−2 <jp−2 < · · ·<j1 <j0.

Now we will continue to make a symplectic coordinates transformation for the Hamiltonian
(2.11) to obtain the suitable form for the infinite KAM theorem. Our object is to transform Υ1 to
the terms which don’t include the angle variables. The following nonlinear symplectic coordinates
transformation works.

Lemma 2.5 The map Ψ1 : (x,y,w,w̄)→ (x+,y+,w+, w̄+) defined by:

x+ = x,

y+ = y+
p−2∑
t=0

kt|wjt |2,

(wi)+i∈N = E(wi)i∈N ,

w+
l = wl, l /∈N ,

is symplectic, where
kt =(−(p− t),p− t)T ,

E = diag(1, · · · ,1,ei〈kp−2,x〉,··· ,ei〈k0,x〉
),

(wi)i∈N =(wi0 , · · · ,wip−2 ,wjp−2 , · · · ,wj0)
T .
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Remark 2.2 The similar sympletic transformation as Ψ1 was used in [20].

Under the above symplectic coordinates transformation Ψ1, the Hamiltonian (2.11) is changed
into the new Hamiltonian(for simplicity, we still use the old coordinates (x,y,w,w̄))

H+ =H ◦Ψ1

=N0 +P0

=〈ω,y〉+
∑

n/∈N
〈Ωnzn, z̄n〉+

p−2∑
t=0

〈Āitzit , z̄it〉+P0,

(2.13)

where

zn = wn, n /∈N ,

zit
= (wit

,wjt
)T , z̄it

=(w̄it
, w̄jt

)T ,

Āit
=

(
Ωit

ãt

ãt Ωit
+(p− t)Ã

)
,

Ã =
p∑
0

cp[(Ck
p+1)

2C1
p+1−k−(Ck+1

p+1 )2C1
k+1]ξ

p−k
1 ξk

2 , (2.14)

and ω, Ω is the same as those in (2.11). Checking directly, we know that P0 satisfies a generalized
compact form with respect to n1, n2 and J (see the Appendix for the definition). More concretely,
consider the Taylor-Fourier expansion of P0,

P0 =
∑

k,α,β

P0,kαβ(y)eikxwαw̄β ,

we have that P0,kαβ(y) 6=0 implies

k1n1 +k2n2 +
∑

n∈Z\{n1,n2}
(−αn +βn)n =(n1−n2)

p−2∑
t=0

(αjt
−βjt

)(p− t). (2.15)

For (2.13), rescaling ξ
1
2 by ε6ξ, w, w̄ by ε4w, ε4w̄, and y by ε8y, one obtains a new Hamiltonian

given by the rescaled Hamiltonian

H̃ = ε6p+8H+(x,ε8y,ε4w,ε4w̄, ε6ξ,ε) (2.16)

= 〈ω̃,y〉+
∑

n/∈N
〈Ω̃nzn, z̄n〉+

p−2∑
t=0

〈 ˜̄Ait
zit

, z̄it
〉+εP̃0,

where

ω̃1(ξ) =
n2

1

ε6p
+cp

p∑

k=0

(Ck
p+1)

2C1
p+1−kξ2p−2k

1 ξ2k
2 ,

ω̃2(ξ) =
n2

2

ε6p
+cp

p∑

k=0

(Ck+1
p+1 )2C1

k+1ξ
2p−2k
1 ξ2k

2 ,

Ω̃n(ξ) =
n2

ε6p
+cp(C1

p+1)
2

p∑

k=0

(Ck
p )2ξ2p−2k

1 ξ2k
2 , n 6=n1, n2,

˜̄Ait
=

(
Ω̃it at

at Ω̃it
+(p− t)A

)
,

at = cp

t∑
0

ξp+t−2j
1 ξp−t+2j

2 , (2.17)

A =
p∑
0

cp[(Ck
p+1)

2C1
p+1−k−(Ck+1

p+1 )2C1
k+1]ξ

2(p−k)
1 ξ2k

2 , (2.18)
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ξ ∈O= [1,2]2. It is obvious that P̃0 also satisfies a generalized compact form with respect to n1, n2

and J . For our convenience, we rewrite H̃ by H, ω̃ by ω, Ω̃ by Ω, ˜̄A by Ā, ˜̄B by B̄ and P̃0 by P0.
Now the new Hamiltonian is

H = 〈ω,y〉+
∑

n/∈N
〈Ωnzn, z̄n〉+

p−2∑
t=0

〈Āitzit , z̄it〉+εP0. (2.19)

It is well known that there exist real orthogonal matrix Pt, t =0, · · · ,p−2, satisfying

PT
t Āit

Pt =P−1
t Āit

Pt =Ait
= diag(λ1,t,λ2,t), (2.20)

where

λ1,t =Ωit
+

1
2
(p− t)A− 1

2

√
4a2

t +(p− t)2A2 (2.21)

and

λ2,t =Ωit
+

1
2
(p− t)A+

1
2

√
4a2

t +(p− t)2A2. (2.22)

Lemma 2.6 The map Ψ2 : (x,y,z, z̄)→ (x+,y+,z+, z̄+) defined by:

x+ = x,

y+ = y,

z+
it

= P−1
t zit

, t =0, · · · ,p−2,

z+
i = zi, i /∈{i0, · · · , ip−2},

is symplectic.

Proof: It is easy to check that

dx+∧dy+ +idz+∧dz̄+ = dx∧dy+idz∧dz̄.

Under the above symplectic coordinates transformation Ψ2, the Hamiltonian (2.19) is changed
into the new Hamiltonian

H+ = H ◦Ψ2

= 〈ω,y+〉+
∑

n/∈N
〈Ωnz+

n , z̄+
n 〉+

p−2∑
t=0

〈Aitz
+
it

, z̄+
it
〉+εP+

0 ,

where

ω1(ξ) =
n2

1

ε6p
+cp

p∑

k=0

(Ck
p+1)

2C1
p+1−kξ2p−2k

1 ξ2k
2 ,

ω2(ξ) =
n2

2

ε6p
+cp

p∑

k=0

(Ck+1
p+1 )2C1

k+1ξ
2p−2k
1 ξ2k

2 ,

Ωn(ξ) =
n2

ε6p
+cp(C1

p+1)
2

p∑

k=0

(Ck
p )2ξ2p−2k

1 ξ2k
2 , n 6=n1,n2, (2.23)

Ait =
(

λ1,t 0
0 λ2,t

)
,

ξ ∈ O. For λ1,t, λ2,t, see (2.21) and (2.22). From Lemma 5.3, we know that P+
0 satisfies the

generalized compact form with respect to n1, n2 and J . For our convenience, we will rewrite H+

11



by H, y+ by y, z+
n by zn, z̄+

n by z̄n and εP+
0 by P . Therefore, the Hamiltonian is

H = N +P (2.24)

= 〈ω,y〉+
∑

n/∈N
〈Ωnzn, z̄n〉+

p−2∑
t=0

〈Aitzit , z̄it〉+P (x,y,z, z̄, ξ, ε)

= 〈ω,y〉+
∑

j

Ω̃jwnw̄n +P (x,y,w,w̄,ξ, ε),

where

Ω̃j =





Ωj , j /∈N ,
λ1,t, j = it, t∈T ,
λ2,t, j = jt, t∈T .

and P satisfies a generalized compact form (2.15) (The subscript j of Ω̃j certainly satisfies j 6=
n1, n2. We don’t mention it again in the following).

In the following, we will use the KAM iteration which involves infinite many steps of coordinate
transformations to prove the existence of the KAM tori. To make this quantitative we introduce
the following notations and spaces.

Define the phase space:
P := (C2/2πZ2)×C2× lρ× lρ.

We endow P with a symplectic structure dx∧dy+ i
∑
j∈Z

dwj ∧dw̄j , (x,y,w,w̄)∈P. Let

T 2
0 =(R2/2πZ2)×{y =0}×{w =0}×{w̄ =0}⊂P.

Then T 2
0 is a torus in P. Introducing a complex neighborhood of T 2

0 in P :

D(s,r)= {(x,y,w,w̄)∈P : |Imx|<s, |y|<r2, ||w||ρ <r, ||w̄||ρ <r},
where | · | denotes the sup-norm for complex vectors. Define a weighted phase space norms

|W |r = |W |r,ρ = |x|+ 1
r2
|y|+ 1

r
‖w‖ρ +

1
r
‖w̄‖ρ,

for W = (x,y,w,w̄) ∈ P. Let Ō ⊂ R2 be compact and of positive Lebesgue measure. For a map
W : D(s,r)×Ō→P, set

|W |r,ρ,D(s,r)×Ō := sup
(x,ξ)∈D(s,r)×Ō

|W (x,ξ)|r,ρ

and

|W |∗r,ρ,D(s,r)×Ō = max
|α|≤8p

sup
(x,ξ)∈D(s,r)×Ō

|∂
αW (x,ξ)

∂ξα
|r,ρ.

For a 8p order Whitney smooth function F (ξ), define

||F ||∗ = max
|α|≤8p

sup
ξ∈Ō

|∂
αF

∂ξα
|,

||F ||∗ = max
1≤|α|≤8p

sup
ξ∈Ō

|∂
αF

∂ξα
|.

To functions F , associate a Hamiltonian vector field defined as XF = {−Fy,Fx,−iFw̄, iFw}. Denote
the norm for XF by letting

|XF |∗r,D(s,r) = max
|α|≤8p

sup
ξ∈Ō

(x,y,w,w̄)∈D(r,s)

[|∂
αFy

∂ξα
|+ 1

r2
|∂

αFx

∂ξα
|+ 1

r
‖∂αFw

∂ξα
‖ρ +

1
r
‖∂αFw̄

∂ξα
‖ρ].

In the whole of this paper, by c a universal constant, whose size may be different in different
place. If f ≤ cg, we write this inequality as f ≤ ·g when we don’t care the size of the constant c.
Similarly, if f ≥ cg, we write f ≥ ·g.
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3 KAM Step

Theorem 1 will be proved by a KAM iteration which involves an infinite sequence of change of
variables. Each step of KAM iteration makes the perturbation smaller than the previous step at
the cost of excluding a small set of parameters. At the end, the KAM iteration will be convergent
and the measure of the total excluding set will remain to be small.

To begin with the KAM iteration, we fix r, s, ρ > 0 and restrict the Hamiltonian (2.24) to the
domain D(s,r) and restrict the parameters to the set O0 =O\R0, where

O0⊂





ξ :

|〈k,ω〉−1| ≤ c|k|8pτ+6

εβ0
, k 6=0,

|(〈k,ω〉+Ω̃n)−1| ≤ cmax{|k|8pτ+6,1}
εβ0

,

|(〈k,ω〉+Ω̃n +Ω̃m)−1| ≤ cmax{|k|8pτ+6,1}
εβ0 (||n|−|m||+1)

,

where n, m /∈N or n, m∈N ,

|(〈k,ω〉+Ω̃n +Ω̃it
)−1| ≤ cmax{|k|8pτ+6,1}

εβ0 (||it|−|n||+1)
,

where n /∈N , t∈T , |k1n1 +k2n2|= |n+ it|,
|(〈k,ω〉+Ω̃n +Ω̃jt)

−1| ≤ cmax{|k|8pτ+6,1}
εβ0 (||jt|−|n||+1)

,

where n /∈N , t∈T , |k1n1 +k2n2|= |n+jt +(n1−n2)(p− t)|,
|(〈k,ω〉+Ω̃n− Ω̃m)−1| ≤ cmax{|k|8pτ+6,1}

εβ0 (||n|−|m||+1)
,

where n, m /∈N , |k|+ ||n|−|m|| 6=0, |k1n1 +k2n2|= |n−m|,
|(〈k,ω〉+Ω̃n− Ω̃m)−1| ≤ cmax{|k|8pτ+6,1}

εβ0 (||n|−|m||+1)
,

where n, m∈N , |k|+ |n−m| 6=0,

|(〈k,ω〉+Ω̃n− Ω̃it
)−1| ≤ cmax{|k|8pτ+6,1}

εβ0 (||it|−|n||+1)
,

where n /∈N , t∈T , |k1n1 +k2n2|= |n− it|,
|(〈k,ω〉+Ω̃n− Ω̃jt)

−1| ≤ cmax{|k|8pτ+6,1}
εβ0 (||jt|−|n||+1)

,

where n /∈N , t∈T , |k1n1 +k2n2|= |n−jt−(n1−n2)(p− t)|





, (3.1)

and 0≤ |k| ≤K0 and
R0 =R0

0

⋃
(R0

1,1

⋃
R0

1,2)
⋃
R0

2.

For more concretely, please refer to section 4 and Lemma 4.12. β0 is a constant and will be chosen
later.

Suppose ‖ω‖∗ ≤M1, max
j∈Z

|Ω̃j |∗ ≤M2, M1 +M2 ≥ 1. Define M = (M1 +M2)8p. Initially, we set

ω0 =ω, Ω̃0,n =Ω̃n, N0 =N, P0 =P, r0 = r, s0 = s, M0 =M and

N0 = 〈ω0,y〉+
∑

n

Ω̃nwnw̄n,

H0 = N0 +P0.

Hence, H0 is real analytic on D(r0,s0) and also depends on ξ ∈O0 whitney smoothly. It is clear
that there is a constant c0 > 0 such that

|XP0 |∗r0,D(r0,s0),O0
≤ c0ε≡ ε0.

P0 satisfies a general compact form (2.15).
Suppose that after a νth KAM step, we arrive at a Hamiltonian

H = Hν =Nν +Pν(x,y,w,w̄),

N = Nν = 〈ων(ξ),y〉+
∑

n

Ω̃ν,n(ξ)wnw̄n,

which is real analytic in (x,y,w,w̄)∈Dν =D(rν ,sν) and depends on ξ ∈Oν ⊂O Whitney smoothly,
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where

Oν ⊂





ξ :

|〈k,ων〉−1| ≤ c|k|8pτ+6

ε
β0
ν

, k 6=0,

|(〈k,ων〉+Ω̃ν,n)−1| ≤ cmax{|k|8pτ+6,1}
ε

β0
ν

,

|(〈k,ων〉+Ω̃ν,n +Ω̃ν,m)−1| ≤ cmax{|k|8pτ+6,1}
ε

β0
ν (||n|−|m||+1)

,

where n, m /∈N or n, m∈N ,

|(〈k,ων〉+Ω̃ν,n +Ω̃ν,it)
−1| ≤ cmax{|k|8pτ+6,1}

ε
β0
ν (||it|−|n||+1)

,

where n /∈N , t∈T , |k1n1 +k2n2|= |n+ it|,
|(〈k,ων〉+Ω̃ν,n +Ω̃ν,jt

)−1| ≤ cmax{|k|8pτ+6,1}
ε

β0
ν (||jt|−|n||+1)

,

where n /∈N , t∈T , |k1n1 +k2n2|= |n+jt +(n1−n2)(p− t)|,
|(〈k,ων〉+Ω̃ν,n− Ω̃ν,m)−1| ≤ cmax{|k|8pτ+6,1}

ε
β0
ν (||n|−|m||+1)

,

where n, m /∈N , |k|+ ||n|−|m|| 6=0, |k1n1 +k2n2|= |n−m|,
|(〈k,ων〉+Ω̃ν,n− Ω̃ν,m)−1| ≤ cmax{|k|8pτ+6,1}

ε
β0
ν (||n|−|m||+1)

,

where n, m∈N , |k|+ |n−m| 6=0,

|(〈k,ων〉+Ω̃ν,n− Ω̃ν,it)
−1| ≤ cmax{|k|8pτ+6,1}

ε
β0
ν (||it|−|n||+1)

,

where n /∈N , t∈T , |k1n1 +k2n2|= |n− it|,
|(〈k,ων〉+Ω̃ν,n− Ω̃ν,jt

)−1| ≤ cmax{|k|8pτ+6,1}
ε

β0
ν (||jt|−|n||+1)

,

where n /∈N , t∈T , |k1n1 +k2n2|= |n−jt−(n1−n2)(p− t)|





, (3.2)

0≤ |k| ≤K ′
ν

1 for some rν ≤ r0, sν ≤ s0 and

K ′
ν =

{
K0, ν =0,
∞, ν≥ 1.

We also assume that
|XPν |∗rν ,D(rν ,sν)≤ εν ≤ ε0

and Pν =
∑

k,α,β

P ν
kαβ(y)ei〈k,x〉wαw̄β has a generalized compact form with respect to n1, n2 and J .

To simplify notations, in what follows, the quantities without subscripts refer to the ones at the
νth step, while the quantities with subscripts “+” denote the corresponding ones at the (ν +1)th
step. We will construct a symplectic transformation Φ =Φν , which, in smaller frequency and phase
domains, carries the above Hamiltonian into the next KAM cycle.

3.1 Solving the Linearized Equations

Expand P into the Fourier-Taylor series

P =
∑

k,l,α,β

Pklαβei〈k,x〉 ylwαw̄β

where 2 k∈Z2, l∈N2
0 and the multi–index α, β run over the set α≡ (· · · ,αn, · · ·), β≡ (· · · ,βn, · · ·),

αn,βn ∈N0 with finitely many non–vanishing components. We denote by 0 the multi-index whose
components are all zeros and by en the multi-index whose nth components is 1 and other compo-
nents are all zeros.

Let R be the truncation of P given by

R(x,y,w,w̄) =
∑

|k|≤K,|l|≤1

Pkl00e
i〈k,x〉 yl +

∑

|k|≤K,n

(P k10
n wn +P k01

n w̄n)ei〈k,x〉

+
∑

|k|≤K,n,m

(P k20
nm wnwm +P k02

nm w̄nw̄m +P k11
nm wnw̄m)ei〈k,x〉

1Where “|k| ≤∞” means “|k|<∞”. We confuse the notation for simplicity.
2N0 means N∪{0}.
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where P k10
n = Pklαβ with α = en, β = 0; P k01

n = Pklαβ with α = 0, β = en; P k20
nm = Pklαβ with

α = en +em, β =0; P k11
nm =Pklαβ with α = en, β = em; P k02

nm =Pklαβ with α =0, β = en +em.
Since P has a generalized compact normal form with respect to n1, n2, J , this means

P k20
n,it

= 0, if k1n1 +k2n2−n− it 6=0, n /∈N , t∈T ,

P k20
n,jt

= 0, if k1n1 +k2n2−n−jt 6=(n1−n2)(p− t), n /∈N , t∈T ,

P k11
nm = 0, if k1n1 +k2n2−n+m 6=0, n, m /∈N ,

P k11
n,it

= 0, if k1n1 +k2n2−n+ it 6=0, n /∈N , t∈T ,

P k11
n,jt

= 0, if k1n1 +k2n2−n+jt 6=(n1−n2)(t−p), n /∈N , t∈T ,

P k02
n,it

= 0, if k1n1 +k2n2 +n+ it 6=0, n /∈N , t∈T ,

P k02
n,jt

= 0, if k1n1 +k2n2 +n+jt 6=(n1−n2)(t−p), n /∈N , t∈T .

In particular, P k11
nm =0 if |k|=0 and n 6=m, where n, m /∈N .

Below we look for a special F , defined in a domain D+ =D(r+,s+) such that the time one map
Φ = Φ1

F of the Hamiltonian vector field XF defines a map from D+ →D and transforms H into
H+.

More precisely, by second order Taylor formula, we have

H ◦Φ1
F = (N +R)◦Φ1

F +(P −R)◦Φ1
F

= N +{N,F}+R

+
∫ 1

0

(1− t){{N,F},F}◦Φt
F dt+

∫ 1

0

{R,F}◦Φt
F dt+(P −R)◦Φ1

F (3.3)

= N+ +P+ +{N,F}+R−P0000−〈ω′,y〉−
∑

n

R011
nn wnw̄n,

where
ω′=

∫
∂P

∂y
dx|w=w̄=0,y=0,

N+ =N +N̂ =N +P0000 +〈ω′,y〉+
∑

n

R011
nn wnw̄n, (3.4)

P+ =
∫ 1

0

(1− t){{N,F},F}◦Φt
F dt+

∫ 1

0

{R,F}◦Φt
F dt+(P −R)◦Φ1

F . (3.5)

satisfying the homological equation

{N,F}+R−P0000−〈ω′,y〉−
∑

n

R011
nn wnw̄n =0. (3.6)

Note the term
∑
n

R011
nn wnw̄n has not been eliminated by symplectic change, so we define F 011

nn =

0.
In order to solve the homological equation (3.6), let F has the form

F (x,y,w,w̄) = F0 +F1 +F2

=
∑

|k|≤K,|l|≤1

Fkl00e
i〈k,x〉 yl +

∑

|k|≤K,n

(F k10
n wn +F k01

n w̄n)ei〈k,x〉

+
∑

|k|≤K,n,m

(F k20
nm wnwm +F k02

nm w̄nw̄m +F k11
nm wnw̄m)ei〈k,x〉 .
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By comparing the coefficients, it is easy to see that the homological equation (3.6) is equivalent to

〈k,ω〉Fkl00 = iPkl00, k 6=0, |l| ≤ 1,

(〈k,ω〉+Ω̃n)F k10
n = iP k10

n ,

(〈k,ω〉− Ω̃n)F k01
n = iP k01

n ,

(〈k,ω〉+Ω̃n +Ω̃m)F k20
nm = iP k20

nm ,

(〈k,ω〉+Ω̃n− Ω̃m)F k11
nm = iP k11

nm , |k|+ ||n|−|m|| 6=0,

(〈k,ω〉− Ω̃n− Ω̃m)F k02
nm = iP k02

nm ,

where 0 ≤ |k| ≤K ′. Hence the homological equation (3.6) is uniquely solvable on O to yield the
function F which is real analytic in (x,y,w,w̄) and Whitney smooth in ω ∈ O. Since P has a
generalized compact form with respect to n1, n2 and J , it is easy to see that F also has the same
property. The following lemma is standard, see [17] and [18] for details.

Lemma 3.1 F satisfies a generalized compact form with respect to n1, n2 and J and

|X bN |∗r,D(s,r) ≤ |XR|∗r,D(s,r),

|XF |∗r,D(s−σ,r) ≤
cM

ε(8p+1)β0σµ
|XR|∗r,D(s,r),

where µ=8p(8p+1)τ +56p+8.

Lemma 3.2 If |XF |∗r,D(s−σ,r) ≤ σ, then for any ξ ∈ O, the flow Xt
F (·, ξ) exists on D(s−2σ, r

2 )
for |t| ≤ 1 and maps D(s−2σ, r

2 ) into D(s−σ,r). Moreover, for |t| ≤ 1,

|Xt
F − id|∗r,D(s−2σ, r

2 ),σ||DXt
F −Id||∗r,r,D(s−3σ, r

4 )≤ c|XF |∗r,D(s−σ,r),

where D is the differentiation operator with respect to (x,y,z, z̄), id and Id are identity mapping
and unit matrix, and the operator norm

||A(ξ,η)||r̄,r,D(s,r) = sup
η∈D(s,r)

sup
w 6=0

||A(ξ,η)w||ρ,r̄

||w||ρ,r
,

||A||∗r,r = max
|α|≤8p

{||∂
αA

∂ξα
||r,r}.

For the proof refer to [18].

Below we consider the new perturbation under the symplectic transformation Φ =Xt
F |t=1. Let

|XP |∗r,D(s,r)≤ ε. From the above we have

R =
∑
|k|≤K

2|m|+|q+q̄|≤2

Rkmqq̄y
mwqw̄q̄ei〈k,x〉.

Thus |XR|∗r,D(s,r)≤ ·|XP |∗r,D(s,r)≤ ·ε, and for η≤ 1
8 ,

|XP−R|∗ηr,D(s−σ,2ηr)≤ ·ηε+e−K′σε. (3.7)

Due to the generalized compact form of P with respect to n1, n2 and J , wn and w̄−n are not
coupled in P for any n 6=0(we check this in the appendix). This leads to the following simple new
normal form

N+ = N +〈ω′,y〉+
∑

n

P 011
nn wnw̄n

= 〈ω+,y〉+
∑

n

Ω̃+,nwnw̄n,
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where ω+ = ω + ({P0l00}|l|=1), Ω̃+,n = Ω̃n + P 011
nn . By Lemma 3.1, one has |X bN |∗r,D(s,r) ≤ ·ε.

Therefore,

‖ω+−ω‖∗,‖Ω̃+− Ω̃‖∗≤ ·ε, (3.8)

where ‖Ω̃‖∗ = max
j∈Z

|Ω̃j |∗. If cMε1−(8p+1)β0

σµ+1 ≤ 1, by Lemma 3.1 and Lemma 3.2, it follows that for

|t| ≤ 1,

1
σ
|Xt

F − id|∗r,D(s−2σ, r
2 ),‖DXt

F −Id‖∗r,r,D(s−3σ, r
4 )≤

cMε1−(8p+1)β0

σµ+1
. (3.9)

Under the transformation Φ=X1
F , (N +R)◦Φ= N++R+, where R+ =

∫ 1

0
{(1−t)N̂ +tR,F}◦Xt

F .
Thus, H ◦Φ= N+ +R+ +(P −R)◦Φ= N+ +P+, where the new perturbation

P+ =R+ +(P −R)◦Φ= (P −R)◦Φ+
∫ 1

0

{R̄(t),F}◦Xt
F dt

where R̄(t) = (1− t)N̂ + tR. Hence, the Hamiltonian vector field of the new perturbation is
XP+ = (X1

F )∗(XP−R) +
∫ 1

0
(Xt

F )∗[XR̄(t),XF ]dt. For the estimate of XP+ , we need the following
lemma.

Lemma 3.3 If the Hamiltonian vector field W (·, ξ) on V = D(s−4σ, 2ηr) depends on the para-
meter ξ ∈O with ‖W‖∗r, V < +∞, and Φ = Xt

F : U = D(s−5σ, ηr)→ V , then Φ∗W = DΦ−1W ◦Φ

and if cMε1−(8p+1)β0

η2σµ+1 ≤ 1, we have ‖Φ∗W‖∗ηr, U ≤ c‖W‖∗ηr, V .

For the proof refer to [17].
Now we estimate XP+ . By Lemma 3.3, if cMε1−(8p+1)β0

η2σµ+1 ≤ 1,

|XP+ |∗ηr,D(s−5σ,ηr)≤
c

2
|XP−R|∗ηr,D(s−4σ,2ηr) +

c

2

∫ 1

0

|[XR̄(t),XF ]|∗ηr,D(s−4σ,2ηr)dt.

By Cauchy’s inequality and Lemma 3.2, one obtains

|[XR̄(t),XF ]|∗ηr,D(s−4σ,2ηr) ≤
cMε2−(8p+1)β0

2η2σµ+1

=
c

2
Mηε,

where one chooses η3 = ε1−(8p+1)β0

σµ+1 . Combining (3.7) we have

|XP+ |∗ηr,D(s−5σ,ηr)≤
c

2
Mηε+e−K′σε.

If Choose K ′
0 =K0 = | lnη0

σ0
| and as we know before K ′

ν =∞, ν≥ 2. We get

|XP+ |∗ηr,D(s−5σ,ηr)≤ cMηε.

Lemma 3.4 P+ has a generalized compact form with respect to n1, n2 and J .

Proof. Note that

P+ = P −R+{P,F}+
1
2!
{{N,F},F}+

1
2!
{{P,F},F}

+ · · ·+ 1
n!
{· · ·{N,F}· · · ,F︸ ︷︷ ︸

n′s F

}+
1
n!
{· · ·{P,F}· · · ,F︸ ︷︷ ︸

n′s F

}+ · · · .

Since P has a generalized compact form with respect to n1, n2 and J , so do P −R and {N,F}=
P0000 +〈ω′,y〉+∑

n
P 011

nn wnw̄n−R. The lemma then follows from Lemma 5.2.
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3.2 Iteration Lemma

To iterate the KAM step infinitely we must choose suitable sequences. For ν≥ 0 set

εν+1 =
cM(ν)ε

4
3− 1

3 (8p+1)β0
ν

σ
1
3 (1+µ)
ν

, σν+1 =
σν

2
, η3

ν =
ε
1−(8p+1)β0
ν

σ1+µ
ν

,

where β0 = 1
2(8p+1) . Furthermore,

sν+1 = sν−5σν , rν+1 = ηνrν , M(ν)= (M1 +M2 +2c(ε0 + · · ·+εν−1))8p,

and Dν =D(sν , rν). As initial value fix σ0 = s0
20 ≤ 1

2 . Assume

ε0≤ γ0σ
6(µ+1)
0 , γ0≤min{ 1

c6213(1+µ)M42
, (

c0

8c
)8pτ+7}, (3.10)

where c0 = 3
2cp(2p)!(p+1). Finally, let Kν+1 = K02ν . We must emphasize that the readers must

notice the difference between Kν and K ′
ν .

Lemma 3.5 Suppose Hν = Nν +Pν(ν ≥ 0), is given on Dν×Oν , where Nν = 〈ων(ξ),y〉+ 〈Ω̃ν ,zz̄〉
is a normal form satisfying

|〈k,ων〉−1| ≤ c|k|8pτ+6

εβ0
ν

, k 6=0,

|(〈k,ων〉+Ω̃ν,n)−1| ≤ cmax{|k|8pτ+6,1}
εβ0
ν

,

|(〈k,ων〉+Ω̃ν,n +Ω̃ν,m)−1| ≤ cmax{|k|8pτ+6,1}
εβ0
ν (||n|−|m||+1)

,

where n, m /∈N or n, m∈N ,

|(〈k,ων〉+Ω̃ν,n +Ω̃ν,it)
−1| ≤ cmax{|k|8pτ+6,1}

εβ0
ν (||it|−|n||+1)

,

where n /∈N , t∈T , |k1n1 +k2n2|= |n+ it|,

|(〈k,ων〉+Ω̃ν,n +Ω̃ν,jt
)−1| ≤ cmax{|k|8pτ+6,1}

εβ0
ν (||jt|−|n||+1)

,

where n /∈N , t∈T , |k1n1 +k2n2|= |n+jt +(n1−n2)(p− t)|,

|(〈k,ων〉+Ω̃ν,n− Ω̃ν,m)−1| ≤ cmax{|k|8pτ+6,1}
εβ0
ν (||n|−|m||+1)

,

where n, m /∈N , |k|+ ||n|−|m|| 6=0, |k1n1 +k2n2|= |n−m|,

|(〈k,ων〉+Ω̃ν,n− Ω̃ν,m)−1| ≤ cmax{|k|8pτ+6,1}
εβ0
ν (||n|−|m||+1)

,

where n, m∈N , |k|+ |n−m| 6=0,

|(〈k,ων〉+Ω̃ν,n− Ω̃ν,it
)−1| ≤ cmax{|k|8pτ+6,1}

εβ0
ν (||it|−|n||+1)

,

where n /∈N , t∈T , |k1n1 +k2n2|= |n− it|,

|(〈k,ων〉+Ω̃ν,n− Ω̃ν,jt)
−1| ≤ cmax{|k|8pτ+6,1}

εβ0
ν (||jt|−|n||+1)

,

where n /∈N , t∈T , |k1n1 +k2n2|= |n−jt−(n1−n2)(p− t)|,

for above all k satisfying 0≤ |k| ≤K ′
ν , Pν has a generalized compact form with respect to n1, n2

and J , and
|XPν

|∗rν ,Dν
≤ εν .
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Then there exists a Whitney smooth family of real analytic symplectic coordinate transformations
Φν+1 :Dν+1×Oν →Dν and a closed subset

Oν+1 =Oν \(Rν+1(εν+1))

of Oν , where

Rν+1(εν+1) =Rν+1
00

⋃
Rν+1

10

⋃
Rν+1

20

⋃
Rν+1

11 ,

Rν+1
20 =Rν+1

20,1

⋃
Rν+1

20,2

⋃
Rν+1

20,3,

Rν+1
11 =Rν+1

11,1

⋃
Rν+1

11,2

⋃
Rν+1

11,3

⋃
Rν+1

11,4,

and

Rν+1
00 =

⋃

K′
ν+1≥|k|>Kν

{ξ ∈Oν : |〈k,ων+1〉|<
εβ0
ν+1

c|k|8pτ+6
, k 6=0},

Rν+1
10 =

⋃

K′
ν+1≥|k|>Kν ,n

{ξ ∈Oν : |〈k,ων+1〉+Ω̃ν+1,n|<
εβ0
ν+1

cmax{|k|8pτ+6,1}},

Rν+1
20,1 =

⋃

K′
ν+1≥|k|>Kν ,n,m

{ξ ∈Oν : |〈k,ων+1〉+Ω̃ν+1,n +Ω̃ν+1,m|<
εβ0
ν+1(||n|−|m||+1)
cmax{|k|8pτ+6,1} ,

where n, m /∈N or n, m∈N},

Rν+1
20,2 =

⋃

K′
ν+1≥|k|>Kν ,n,t

{ξ ∈Oν : |〈k,ων+1〉+Ω̃ν+1,n +Ω̃ν+1,it |<
εβ0
ν+1(||it|−|n||+1)
cmax{|k|8pτ+6,1} ,

where n /∈N , t∈T , |k1n1 +k2n2|= |n+ it|},

Rν+1
20,3 =

⋃

K′
ν+1≥|k|>Kν ,n,t

{ξ ∈Oν : |〈k,ων+1〉+Ω̃ν+1,n +Ω̃ν+1,jt |<
εβ0
ν+1(||jt|−|n||+1)
cmax{|k|8pτ+6,1} ,

where n /∈N , t∈T , |k1n1 +k2n2|= |n+jt +(n1−n2)(p− t)|},

Rν+1
11,1 =

⋃

K′
ν+1≥|k|>Kν ,n,m

{ξ ∈Oν : |〈k,ων+1〉+Ω̃ν+1,n− Ω̃ν+1,m|<
εβ0
ν+1(||n|−|m||+1)
cmax{|k|8pτ+6,1} ,

where n, m /∈N , |k|+ ||n|−|m|| 6=0, |k1n1 +k2n2|= |n−m|},

Rν+1
11,2 =

⋃

K′
ν+1≥|k|>Kν ,n,m

{ξ ∈Oν : |〈k,ων+1〉+Ω̃ν+1,n− Ω̃ν+1,m|<
εβ0
ν+1(||n|−|m||+1)
cmax{|k|8pτ+6,1} ,

where n, m∈N , |k|+ |n−m| 6=0},

Rν+1
11,3 =

⋃

K′
ν+1≥|k|>Kν ,n,t

{ξ ∈Oν : |〈k,ων+1〉+Ω̃ν+1,n− Ω̃ν+1,it |<
εβ0
ν+1(||it|−|n||+1)
cmax{|k|8pτ+6,1} ,

where n /∈N , t∈T , |k1n1 +k2n2|= |n− it|},

Rν+1
11,4 =

⋃

K′
ν+1≥|k|>Kν ,n,t

{ξ ∈Oν : |〈k,ων+1〉+Ω̃ν+1,n− Ω̃ν+1,jt |<
εβ0
ν+1(||jt|−|n||+1)
cmax{|k|8pτ+6,1} ,

where n /∈N , t∈T , |k1n1 +k2n2|= |n−jt−(n1−n2)(p− t)|},

such that for Hν+1 = Hν ◦Φν+1 = Nν+1 +Pν+1 the same assumptions are satisfied with ν +1 in
place of ν.
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Proof: Note (3.10), by induction one verifies that

cε
1−(8p+1)β0
ν

η2
νσ1+µ

ν

≤ 1

cενK8pτ+7
ν ≤ εβ0

ν −εβ0
ν+1.

It is easy to check that (5.5) holds. From Lemma 3.4, we know Pν+1 has a generalized compact
form with respect to n1, n2 and J . For the remained proof, see Iterative Lemma in [17].

With (3.8) and (3.9), we also obtain the following estimate.

Lemma 3.6

1
σν
|Φν+1− id|∗rν ,Dν+1

,‖DΦν+1−I‖∗rν ,rν ,Dν+1
≤ cM(ν)ε1−(8p+1)β0

ν

σµ+1
ν

(3.11)

‖ων+1−ων‖∗Oν
,‖Ω̃ν+1− Ω̃ν‖∗Oν+1

≤ cεν . (3.12)

3.3 Convergence and Proof of the Existences of Tori

Let Φν =Φ1 ◦Φ2 ◦· · ·◦Φν , ν =1,2, · · · , · · · . Inductively, we have that Φν :Dν×Oν−1→D0 and

H0 ◦Φν =Hν =Nν +Pν

for all ν≥ 1.

Let Õε =
∞⋂

ν=0
Oν . We apply Lemma 3.5, Lemma 3.6 and standard arguments (see [17]) to

conclude that Hν , Nν , Pν , Φν , DΦν , ων , Ω̃ν,n converge uniformly on D( 1
2s0,0)× Õε, say to,

H∞, N∞, P∞, Φ∞, DΦ∞, ω∞, Ω̃∞,n respectively. It is clear that

N∞= 〈ω∞,y〉+
∑

n

Ω̃∞,nwnw̄n.

Further, we have
|XP∞ |D( 1

2 s0,0)×Õ ≡ 0.

Let Φt
H denote the flow of any Hamiltonian vector field XH . Since H0◦Φν =Hν , we have that

Φt
H0
◦Φν =Φν ◦Φt

Hν
.

The uniform convergence of Φν , DΦν , XHν imply that one can pass the limit in the above to
conclude that

Φt
H0
◦Φ∞=Φ∞ ◦Φt

H∞

on D( 1
2s0,0)×Õε. It follows that

Φt
H0

(Φ∞(T2×{ξ}))= Φ∞Φt
N∞(T2×{ξ})= Φ∞(T2×{ξ})

for all ξ ∈ Õε. Hence Φ∞(T2 × {ξ}) is an embedded invariant torus of the original perturbed
Hamiltonian system at ξ ∈ Õε. We remark that the frequencies ω∞(ξ) associated with Φ∞(T2×{ξ})
are slightly deformed from the unperturbed ones ω(ξ). The normal behaviors of the invariant tori
Φ∞(T2×{ξ}) are governed by their respective normal frequencies Ω̃∞,n(ξ).

In fact, Combining with section 3 and section 4 below, we have the following theorem.

Theorem 2 For the Hamiltonian (2.24)

H = N +P

= 〈ω,y〉+
∑

j

Ω̃jwnw̄n +P (x,y,w,w̄,ξ, ε),
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and P satisfies a generalized compact form with respect to n1, n2 and J . Suppose that

|XP |∗r,D(s,r) = ε≤ γs6(1+µ), (3.13)

where γ depends on p,τ and M . Then there exists a Cantor set Õε⊂O= [1,2]2 with the measure
satisfying

|O\Õε| ≤ ·ε
1

4p(8p+1) ,

a Whitney smooth family of torus embeddings Φ : T2 × Õε → P, and a Whitney smooth map
ω∞ : Õε → R2, such that for each ξ ∈ Õε, the map Φ restricted to T2 ×{ξ} is a real analytic
embedding of a rotational torus with frequencies ω∞(ξ) for the hamiltonian H at ξ.

Each embedding is real analytic on |Imx|< s
2 , and

‖Φ−Φ0‖∗r ≤ cε
1
3 ,

||ω∗−ω||∗ ≤ cε,

uniformly on that domain and Õε, where Φ0 is the trivial embedding T2×O→T 2
0 .

Remark 3.1 For the estimates of Õε, see section 4 for details.

Remark 3.2 Theorem 1 is a direct result of Theorem 2. For more specific, please refer to the
standard proof of [14].

4 Measure estimates

4.1 Measure estimates in the first step

For simplicity, in this section we will denote

λ0 = (n2
1,n

2
2),

f1 =
p∑

k=0

cp(Ck
p+1)

2C1
p+1−kξ2p−2k

1 ξ2k
2 ,

f2 =
p∑

k=0

cp(Ck+1
p+1 )2C1

k+1ξ
2p−2k
1 ξ2k

2 ,

f3 =
p∑

k=0

cp(C1
p+1)

2(Ck
p )2ξ2p−2k

1 ξ2k
2 .

At the first KAM step, we have to exclude the following resonant set

R0 =R0
0

⋃
(R0

1,1

⋃
R0

1,2)
⋃
R0

2,

where

R0
0 =

⋃

0<|k|≤K0

{ξ ∈O : |〈k,ω(ξ)〉|< ε
β0
4

|k|2pτ
}, (4.1)

R0
1,1 =

⋃
n/∈N
|k|≤K0

{ξ ∈O : |〈k,ω(ξ)〉+Ω̃n|< ε
β0
4

max{1, |k|2pτ}}, (4.2)

R0
1,2 =

⋃

t∈T ,|k|≤K0

{ξ ∈O : |g1|< ε
β0
2

max{1, |k|4pτ}}, (4.3)
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g1 = detM ′
1,

and

M ′
1 =

(
k1f1 +k2f2 +f3 at

at k1f1 +k2f2 +f3 +(p− t)A

)
.

R0
20,1 =

⋃
n,m/∈N
|k|≤K0

{ξ ∈O : |〈k,ω(ξ)〉+Ω̃n +Ω̃m|< ε
β0
4 (||n|−|m||+1)
max{1, |k|2pτ} }, (4.4)

R0
20,2 =

⋃
t∈T

|k|≤K0

{ξ ∈O : |g2|< ε
β0
2

max{1, |k|4pτ}}, (4.5)

where

g2 = detM ′
2,

and

M ′
2 =

(
k1f1 +k2f2 +2f3 at

at k1f1 +k2f2 +2f3 +(p− t)A

)
.

R0
20,3 =

⋃
t1,t2∈T ,|k|≤K0

〈k,λ0〉+i2t1
+i2t2

=0,

{ξ ∈O : |g3|< εβ0

max{1, |k|8pτ}}, (4.6)

where

g3 = detM ′
3, ∆4 = k1f1 +k2f2 +2f3,

and

M ′
3 =




∆4 at2 at1 0
at2 ∆4 +(p− t2)A 0 at1

at1 0 ∆4 +(p− t1)A at2

0 at1 at2 ∆4 +(2p− t2− t1)A


 .

R0
20,4 =

⋃
|k|+||n|−|m||6=0
n,m/∈N ,|k|≤K0

{ξ ∈O : |〈k,ω(ξ)〉+Ω̃n− Ω̃m|< ε
β0
4 (||n|−|m||+1)
max{1, |k|2pτ} }, (4.7)

R0
20,5 =

⋃

t∈T ,k

{ξ ∈O : |g4|< ε
β0
2

max{1, |k|4pτ}}, (4.8)

where

g4 = detM ′
4,

and

M ′
4 =

(
k1f1 +k2f2 −at

−at k1f1 +k2f2−(p− t)A

)
.

R0
20,6 =

⋃
|k|+|t1−t2|6=0,|k|≤K0

〈k,λ0〉+i2t1
−i2t2

=0, t1,t2∈T

{ξ ∈O : |g5|< εβ0

max{1, |k|8pτ}}, (4.9)
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where

g5 = detM ′
5, ∆5 = k1f1 +k2f2,

and

M ′
5 =




∆5 −at2 at1 0
−at2 ∆5−(p− t2)A 0 at1

at1 0 ∆5 +(p− t1)A −at2

0 at1 −at2 ∆5 +(t2− t1)A


 .

The following lemma is used many times in this section. We won’t point out it clearly.

Lemma 4.1 Suppose that g(x) is an mth differentiable function on the closure Ī of I, where I ⊂R
is an interval. Let Ih = {x||g(x)|< h},h > 0. If for some constant d > 0, |gm(x)| ≥ d for any x∈ I,
then |Ih| ≤ ch

1
m , where |Ih| denotes the Lebesgue measure of Ih and c=2(2+3+ · · ·+m+d−1).

For the proof see [18]. The similar method can be found in [19].

Lemma 4.2 If τ > 2,

|R0
0| ≤ ·ε

β0
8p .

Lemma 4.3 If τ > 3,

|R0
1,1| ≤ ·ε

β0
8p .

Lemma 4.4 If τ > 2,

|R0
1,2| ≤ ·ε

β0
8p .

Proof. If k 6=0, it is easy to check that

g1(ξ) = c(k1 +k2(p+1)+(p+1))(k1 +k2(p+1)+(p+1)−p(p− t))ξ4p
1

+ c(k1(p+1)+k2 +(p+1))(k1(p+1)+k2 +(p+1)+p(p− t))ξ4p
2 +O1(ξ4p),

where O1(ξ4p) mean other 4pth order terms in ξ, ξ2 which are different with ξ4p
1 and ξ4p

2 (the similar
notations will appear many times in following and be in the similar sense). It follows that

∂4pg1

∂ξ4p
1

= c(k1 +k2(p+1)+(p+1))(k1 +k2(p+1)+(p+1)−p(p− t))

∂4pg1

∂ξ4p
2

= c(k1(p+1)+k2 +(p+1))(k1(p+1)+k2 +(p+1)+p(p− t)).

If ∂4pg1

∂ξ4p
1

= 0 and ∂4pg1

∂ξ4p
2

= 0 hold for the same k 6= 0, then at least one of the following four cases is
true.

Case 1. {
k1 +k2(p+1)+(p+1)= 0
k1(p+1)+k2 +(p+1)= 0.

It is easy to get k1 /∈Z. It is impossible.
Case 2. {

k1 +k2(p+1)+(p+1)= p(p− t)
k1(p+1)+k2 +(p+1)=−p(p− t).

It is easy to get k1 +k2 /∈Z. It is impossible.
Case 3. {

k1 +k2(p+1)+(p+1)= p(p− t)
k1(p+1)+k2 +(p+1)= 0.
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It is easy to get either k1 +k2 /∈Z or k1 /∈Z. It is impossible.
Case 4. {

k1 +k2(p+1)+(p+1)= 0
k1(p+1)+k2 +(p+1)=−p(p− t).

It is easy to obtain k1 +k2 = p− t+ 2t+2
p+2 . From k1 +k2 ∈Z, one has t = p

2 . It follows k2 =− 3
2 + 2

p .
From k2 ∈Z, we have p =4, k1 =4, k2 =−1, t =2. For this special case, we compute the coefficients
of ξ4p−2

1 ξ2
2 of g1 denoted by g4p−2,2

1 . In fact

g4p−2,2
1 = c{(p− t)(k1(1− 3

2
p)+k2(

p

2
+1−p2)+(

p

2
+1− 3

2
p2))

+ 2(k1 +k2(p+1)+(p+1))(k1 +k2
p

2
+p)}.

It is easy to check that g4p−2,2
1 6=0.

In fact from the above discussions, we have proved that there exists |α1|=4p so that |∂α1g1
∂ξα1 | ≥

c > 0 for k 6= 0. For k = 0, it is more easy to get the same conclusion. The following proof is
standard. Please refer to [15] and [16] for details.

Lemma 4.5 If τ > 5,
|R0

20,1| ≤ ·ε
β0
8p .

For the proof, refer to Lemma 4.8.

Lemma 4.6 If τ > 2,

|R0
20,2| ≤ ·ε

β0
8p .

Proof. We only give a sketch. As Lemma 4.4, one can prove g4p,0
2 or g0,4p

2 is not equal to
zero except one case which is t = 0, k1 = −1− p, k2 = −1. For the remaining case, compute
g4p−2,2
2 = c(p− 2) 6= 0 when p > 2. For p = 2, we turn to compute g4p−4,4

2 = g4,4
2 6= 0. Now the

conclusion is clear.

Lemma 4.7 If τ > 2,

|R0
20,3| ≤ ·ε

β0
8p .

Proof. The difficult point in this proof lies in whether there exist nonzero coefficients in g3

for any k, t1, t2 ∈ T and 〈k,λ0〉+ i2t1 + i2t2 = 0. We will show this in the following. Write Ξ1 =
k1 +(k2 +2)(p+1), Ξ2 = k1(p+1)+k2 +2, Ξ3 = k1 +(k2 +2)p

2 , Ξ4 = k1
p
2 +(k2 +2). It is easy to

check that

g8p,0
3 = cΞ1{Ξ3

1−p(4p−2t1−2t2)Ξ2
1

+ p2[(p− t2)(3p−2t1− t2)+(p− t1)(2p− t1− t2)]Ξ1

− p3(p− t1)(p− t2)(2p− t1− t2)}, (4.10)
g0,8p
3 = cΞ2{Ξ3

2 +p(4p−2t1−2t2)Ξ2
2

+ p2[(p− t2)(3p−2t1− t2)+(p− t1)(2p− t1− t2)]Ξ2

+ p3(p− t1)(p− t2)(2p− t1− t2)}, (4.11)
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g8p−2,2
3 = c{4Ξ3

1Ξ3−3pΞ2
1Ξ3(4p−2t1−2t2)+(4p−2t1−2t2)(1− 1

2
p)Ξ3

1

+ [(p− t1)(2p− t1− t2)+(p− t2)(3p−2t1− t2)](2p2Ξ1Ξ3−2p(1− p

2
)Ξ2

1)

+ (p− t1)(p− t2)(2p− t1− t2)[3p2(1− p

2
)Ξ1−p3Ξ3]}, (4.12)

g2,8p−2
3 = c{4Ξ3

2Ξ4 +3pΞ2
2Ξ4(4p−2t1−2t2)−(4p−2t1−2t2)(1− 1

2
p)Ξ3

2

+ [(p− t1)(2p− t1− t2)+(p− t2)(3p−2t1− t2)](2p2Ξ2Ξ4−2p(1− p

2
)Ξ2

2)

+ (p− t1)(p− t2)(2p− t1− t2)[3p2(
p

2
−1)Ξ2 +p3Ξ4]}. (4.13)

If g8p,0
3 = 0 and g0,8p

3 = 0 for some k, t1, t2 ∈ T and 〈k,λ0〉+ i2t1 + i2t2 = 0, one has the following 16
cases.

Case 1. {
Ξ1 =0
Ξ2 =0.

One has
{

k1 =0
k2 =−2 in this case.

Case 2. {
Ξ1 =0
Ξ2 =−p(2p− t1− t2).

One has k2 /∈Z or
{

k1 =−p−1
k2 =−1.

Case 3. {
Ξ1 =0
Ξ2 =−p(p− t1).

It is easy to get k2 /∈Z.
Case 4. {

Ξ1 =0
Ξ2 =−p(p− t2).

It is easy to get k2 /∈Z.
Case 5. {

Ξ1 = p(2p− t1− t2)
Ξ2 =0.

One has k1 /∈Z or
{

k1 =−1
k2 = p−1.

Case 6. {
Ξ1 = p(2p− t1− t2)
Ξ2 =−p(2p− t1− t2).

One has
{

k1 = t1 + t2−2p
k2 =−2− t1− t2 +2p.

Note n2 >
√

pn1, this leads to 〈k,λ0〉+ i2t1 + i2t2 6= 0. It is a

contradiction.
Case 7. {

Ξ1 = p(2p− t1− t2)
Ξ2 =−p(p− t1).

It is easy to get k1 /∈Z.
Case 8. {

Ξ1 = p(2p− t1− t2)
Ξ2 =−p(p− t2).

It is easy to get k1 /∈Z.
Case 9. {

Ξ1 = p(p− t1)
Ξ2 =0.
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It is easy to get k1 /∈Z.
Case 10. {

Ξ1 = p(p− t1)
Ξ2 =−p(2p− t1− t2).

It is easy to get k1 /∈Z.
Case 11. {

Ξ1 = p(p− t1)
Ξ2 =−p(p− t1).

One has
{

k1 = t1−p
k2 =−2− t1 +p.

As case 6, it is impossible.

Case 12. {
Ξ1 = p(2p− t1− t2)
Ξ2 =−p(p− t2).

One has k1 /∈Z or
{

k1 = t2−p = t1−p
k2 =−2− t2 +p =−2− t1 +p.

As Case 6, it is impossible.

Case 13. {
Ξ1 = p(p− t2)
Ξ2 =0.

It is easy to get k1 /∈Z.
Case 14. {

Ξ1 = p(p− t2)
Ξ2 =−p(2p− t1− t2).

It is easy to get k1 /∈Z.
Case 15. {

Ξ1 = p(p− t2)
Ξ2 =−p(p− t1).

One has k1 /∈Z or
{

k1 = t2−p = t1−p
k2 =−2− t2 +p =−2− t1 +p.

As case 6, it is impossible.

Case 16. {
Ξ1 = p(p− t2)
Ξ2 =−p(p− t2).

One has k1 /∈Z or
{

k1 = t2−p
k2 =−2− t2 +p.

As case 6, it is impossible.

The above proof shows that except the following 3 cases we have

(g8p,0
3 )2 +(g0,8p

3 )2 6=0,

which are

(1′)
{

k1 =0
k2 =−2,

(2′)
{

k1 =−1−p
k2 =−1,

(3′)
{

k1 =−1
k2 = p−1,

Checking directly, it is easy to know for Case 2′ and 3′, we have

(g8p−2,2
3 )2 +(g2,8p−2

3 )2 6=0.

The only remaining case is
{

k1 =0
k2 =−2.

In this case, it is clear

g3(ξ)= (a4
t2−a4

t1)−(p− t1)(2p− t1− t2)A2a2
t2 .

In fact, it is easy to check that
g6p+2t2,2p−2t2
3 6=0.
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Lemma 4.8 If τ > 5,
|R0

20,4| ≤ ·ε
β0
8p .

Proof. Suppose k 6=0. Without losing generality, also suppose |n| ≤ |m|. If |n|< |m|, we have the
following discussion.

If |m|>c|k| and c is large enough, we have

m2−n2

|m|−|n|+1
≥ c

2
|k|> |〈k,λ0〉|.

This means

|〈k,ω〉+Ωn−Ωm|> ε
β0
4 (||n|−|m||+1)

|k|2pτ
.

Therefore, |n|< |m| ≤ c|k|. It follows that

|
⋃

0<|k|≤K
|n|6=|m|

{ξ : |〈k,ω〉+Ωn−Ωm|< ε
β0
4 (||n|−|m||+1)

|k|2pτ
}|≤

∑

0<|k|≤K

cε
β0
8p

|k|τ−3
.

If |n|= |m|, it is obvious to obtain

|
⋃

0<|k|≤K
|n|=|m|

{ξ : |〈k,ω〉+Ωn−Ωm|< ε
β0
4 (||n|−|m||+1)

|k|2pτ
}|≤

∑

0<|k|≤K

cε
β0
8p

|k|τ .

If k =0, it is easy to get |m| 6= |n|. It follows that

|
⋃
k=0

|n|6=|m|

{ξ : |〈k,ω〉+Ωn−Ωm|<ε
β0
4 (||n|−|m||+1)}|=0.

Now the conclusion is clear.

Lemma 4.9 If τ > 2,

|R0
20,5| ≤ ·ε

β0
8p .

Proof. We only give a sketch. Firstly, k = 0, g4(ξ) =−a2
t . The conclusion is clear. If k 6= 0, we

will compute g4p,0
4 and g0,4p

4 as Lemma 4.4. It is easy to show that (g4p,0
4 )2 +(g0,4p

4 )2 6= 0 except
when k1 = p− t and k2 = t−p. In fact, it is easy to check that g4(ξ) = −a2

t when k1 = p− t and
k2 = t−p.

Lemma 4.10 If τ > 2,

|R0
20,6| ≤ ·ε

β0
8p .

Proof. We will show there exist nonzero coefficients in g5 for any k, |k|+ |t1 − t2| 6= 0 and
〈k,λ0〉+i2t1−i2t2 =0, where t1, t2 ∈T . If t1 6= t2, since 〈k,λ0〉+i2t1−i2t2 =0, one gets k 6=0. If t1 = t2,
from |k|+ |t1− t2| 6=0, we also have k 6=0.

Write x= k1 +k2(p+1), y = k1(p+1)+k2,x
′= k1 + 1

2k2p, y′= 1
2k1p+k2. Denote

χ1 =(p− t1)(t2− t1)+(p−2t1 + t2)(t2−p), χ2 =(t2−p)(p− t1)(t2− t1).
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It is easy to check that

g8p,0
5 = c{x4 +p(2t1−2t2)x3 +χ1p

2x2−χ2p
3x}, (4.14)

g0,8p
5 = c{y4−p(2t1−2t2)y3 +χ1p

2y2 +χ2p
3y}, (4.15)

g8p−2,2
5 = c{4x3x′+(2t2−2t1)[−3px′+(1− p

2
)x]x2

+ χ1p(2px′+(p−2)x)x+χ2p
2[−px′+3(1− p

2
)x]}, (4.16)

g2,8p−2
5 = c{4y3y′−(2t2−2t1)[−3py′+(1− p

2
)y]y2

+ χ1p(2py′+(p−2)y)y−χ2p
2[−py′+3(1− p

2
)y]}. (4.17)

From g8p,0
5 = 0 and g0,8p

5 = 0 for some k, t1, t2 ∈ T and 〈k,λ0〉+ i2t1− i2t2 = 0, one has the following
16 cases.

Case 1. {
x=0
y =0.

One has k =0. It contradicts with k 6=0.
Case 2. {

x=0
y =(t1− t2)p.

One has k =0 or t2≥ p. It is impossible.
Case 3. {

x=0
y = p(t1−p).

It is easy to get k2 /∈Z.
Case 4. {

x=0
y = p(p− t2).

It is easy to get k2 /∈Z.
Case 5. {

x=(t2− t1)p
y =0.

One has k1 /∈Z or k =0.
Case 6. {

x= p(t2− t1)p
y =(t1− t2)p.

One has
{

k1 = t1− t2
k2 = t2− t1.

Case 7. {
x=(t2− t1)p
y = p(t1−p).

It is easy to get k2 /∈Z.
Case 8. {

x=(t2− t1)p
y =−p(p− t2).

It is easy to get k2 /∈Z.
Case 9. {

x= p(p− t1)
y =0.

It is easy to get k1 /∈Z.
Case 10. {

x= p(p− t1)
y =(t1− t2)p.
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It is easy to get k1 /∈Z.
Case 11. {

x= p(p− t1)
y = p(p− t2).

One has k2 /∈Z or
{

k1 = t1 +1
k2 = t2 +1 and t1 + t2 = p−2.

Case 12. {
x= p(p− t1)
y = p(t1−p).

One has
{

k1 = t1−p
k2 = p− t1.

Case 13. {
x= p(t2−p)
y =0.

It is easy to get k1 /∈Z.
Case 14. {

x= p(t2−p)
y = p(t1− t2).

It is easy to get k2 /∈Z.
Case 15. {

x= p(t2−p)
y = p(t1−p).

One has k2 /∈Z or
{

k1 =−t2−1
k2 =−t1−1 and t1 + t2 = p−2.

Case 16. {
x= p(t2−p)
y = p(p− t2).

One has
{

k1 = p− t2
k2 = t2−p.

The above proof shows that except the following 5 cases we have

(g8p,0
3 )2 +(g0,8p

3 )2 6=0

if p> 2, which are

(1′)
{

k1 = t1− t2
k2 = t2− t1,

(2′)
{

k1 = t1−p
k2 = p− t1,

(3′)
{

k1 = p− t2
k2 = t2−p.

(4′)





k1 = t1 +1
k2 = t2 +1
t1 + t2 = p−2,

(5′)





k1 =−t2−1
k2 =−t1−1
t1 + t2 = p−2.

Checking directly, it is easy to know for Case 1′, 2′ and 3′, we have g8p−2,2
5 6=0(note p> 2). For

the remaining Case 4′ and 5′, we clearly prove Case 4′ since the latter case is totally similar. In
fact, a simple transformation can turn Case 5′ into Case 4′. The following, we will prove g2,8p−2

5 6=0
under Case 4′.

First, we must have t1≥ t2 under Case 4′. If not, one can easily prove

k1n
2
1 +k2n

2
2 6= i2t2− i2t1

from the direct computation.
For simplicity, we write x1 = p− t1, y1 = p− t2, 2≤x1≤ y1≤ p. It follows that

y′=(x1−1)+
1
2
(y1−1)p, χ1 =x2

1 +y2
1−3x1y1, χ2 =x1y1(y1−x1).
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Under the above notations, one has

g2,8p−2
5 = c{4(k1 +1)2y′+(t2− t1)(k1 +1)2(p−2)+6y′(t2− t1)(k1 +1)

+ χ1[(p−2)(k1 +1)+2y′]+
3
2
(p−2)χ2 +(p− t1)(t1− t2)y′}

= c(I−II),

Where

I = 4y1[(x1−1)+
1
2
(y1−1)p]+

3
2
(p−2)x1y1(y1−x1)+x1(y1−x1)[(x1−1)+

1
2
(y1−1)p]

+ (p−2)y1(x2
1 +y2

1)+2[(x1−1)+
1
2
(y1−1)p](x2

1 +y2
1),

and

II = (p−2)(y1−x1)y2
1 +6[(x1−1)+

1
2
(y1−1)p](y1−x1)y1 +3x1y

2
1(p−2)

+ 6x1y1[(x1−1)+
1
2
(y1−1)p].

It is easy to check that

I−II =
p

2
(x1y1−x2

1)+2(x3
1−x2

1)+2x1y1 > 0.

This shows that g2,8p−2
5 6=0.

If p = 2, we have t = 0 and at = ξ2
1ξ2

2 in this case. We only need discuss Case 2′ and Case
3′(Case 1′ doesn’t exist and Case 4′ and 5′ are the same). Computing directly in the two cases,
we both have

g5 =−288ξ4
1ξ4

2(ξ4
1−ξ4

2)2.

The conclusion is obvious.

Combined with above lemmata, we have the following lemma.

Lemma 4.11 If τ > 5,
|R0| ≤ ·ε β0

8p

In the following, we will give a description lemma about the remaining set O0 =O\R0.

Lemma 4.12 For |k| ≤ K0 and all the parameters ξ ∈ O, which belong to the set O0 = O\R0,
satisfy 3 the following conditions

|〈k,ω〉−1| ≤|k|
2pτ

ε
β0
4

, k 6=0,

|(〈k,ω〉+Ωn)−1| ≤cmax{|k|4pτ+2,1}
ε

β0
2

, n /∈N ,

‖(〈k,ω〉I2 +Ait
)−1‖≤cmax{|k|4pτ+2,1}

ε
β0
2

, t∈T ,

(4.18)

3 The tensor product (or direct product) of two m×n, k×l matrices A =(aij),B is a (mk)×(nl) matrix defined
by

A⊗B =(aijB)=

0
@

a11B · · · a1nB
· · · · · · · · ·

am1B · · · amnB

1
A

‖·‖ for matrix denotes the operator norm, i.e., ‖M‖= sup
|y|=1

|My|.
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|(〈k,ω〉+Ωn +Ωm)−1| ≤ cmax{|k|8pτ+6,1}
εβ0(||n|−|m||+1)

, n,m /∈N ,

‖((〈k,ω〉+Ωn)I2 +Ait)
−1‖ ≤ cmax{|k|8pτ+6,1}

εβ0(||it1 |−|n||+1)
, (4.19)

where |k1n1 +k2n2|= |n+ it| or |k1n1 + k2n2|= |n+jt +(n1−n2)(p− t)|, n /∈N , t∈T ,

‖(I2⊗(〈k,ω〉I2 +Ait2
)+Ait1

⊗I2)−1‖ ≤ cmax{|k|8pτ+6,1}
εβ0(||it1 |−|it2 ||+1)

, t1, t2 ∈T , (4.20)

|(〈k,ω〉+Ωn−Ωm)−1| ≤ cmax{|k|8pτ+6,1}
εβ0(||n|−|m||+1)

, n,m /∈N , |k|+ ||n|−|m|| 6=0,

where |k1n1 + k2n2|= |n−m|,

‖(I2⊗(〈k,ω〉I2−Ait2
)+Ait1

⊗I2)−1‖ ≤ cmax{|k|8pτ+6,1}
εβ0(||it1 |−|it2 ||+1)

, (4.21)

where t1, t2 ∈T , |k|+ |t1− t2| 6=0,

‖((〈k,ω〉+Ωn)I2−Ait
)−1‖ ≤ cmax{|k|8pτ+6,1}

εβ0(||it|−|n||+1)
, (4.22)

where |k1n1 +k2n2|= |n− it| or |k1n1 + k2n2|= |n−jt−(n1−n2)(p− t)|, n /∈N , t∈T .

The proof is given in the Appendix.

Remark 4.1 We must point out that Lemma 4.12 omits one inequality of (3.1), which is

|Ω̃it
− Ω̃jt

| ≤ c

εβ0(||it|−|jt||+1)
, t∈T . (4.23)

But, from

|Ω̃it− Ω̃jt |= |
1√

4a2
t +(p− t)2A2

| ≤ c,

it is easy to know that (4.23) holds naturally.

Remark 4.2 From (4.22) to the corresponding inequalities in (3.1), one inequality is needed. We
need the simple inequality as the following:

1
||it|−|n||+1

≤ · 1
||jt|−|n||+1

. (4.24)

(4.24) can be easily proved by discussing two cases. One is |it| 6= |n| and the other is |it|= |n|.

Remark 4.3 (3.1) is a direct result from Lemma 4.12 and above two remarks.

4.2 Measure estimates for remaining steps

From Lemma 3.5, we have to exclude the following resonant set

Rν+1 =Rν+1
00

⋃
Rν+1

10

⋃
Rν+1

20

⋃
Rν+1

11 ,

Rν+1
20 =Rν+1

20,1

⋃
Rν+1

20,2

⋃
Rν+1

20,3,

Rν+1
11 =Rν+1

11,1

⋃
Rν+1

11,2

⋃
Rν+1

11,3

⋃
Rν+1

11,4

(where ν ≥ 0) at remaining KAM steps. We have the following lemmata which give the corre-
sponding measure estimates. The proofs of the following lemmata are similar, we only give one
and omit the others.
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Lemma 4.13 If τ > 1 and Kν > 8c
c0

, |Rν+1
00 | ≤ ·ε

β0
2p

ν+1.

Lemma 4.14 If τ > 1 and Kν > 8c
c0

, |Rν+1
10 | ≤ ·ε

β0
2p

ν+1.

Lemma 4.15 If τ > 2 and Kν > 8c
c0

, |Rν+1
20,1| ≤ ·ε

β0
2p

ν+1.

Lemma 4.16 If τ > 2 and Kν > 8c
c0

, |Rν+1
20,2| ≤ ·ε

β0
2p

ν+1.

Lemma 4.17 If τ > 2 and Kν > 8c
c0

, |Rν+1
20,3| ≤ ·ε

β0
2p

ν+1.

Lemma 4.18 If τ > 2 and Kν > 8c
c0

, |Rν+1
11,1| ≤ ·ε

β0
2p

ν+1.

Proof. Define v1 =(2p,0)T , and v2 =(0,2p)T . It is easy to get

〈 k

|k| ,ω〉= const.+cp(
k1

|k| (p+1)+
k2

|k| (p+1)2)ξ2p
1 + · · ·+cp(

k1

|k| (p+1)2 +
k2

|k| (p+1))ξ2p
2 .

Denote f = 1
cp(2p)!(p+1) 〈 k

|k| ,ω〉 and F = 〈k,ων+1〉+Ω̃ν+1,n− Ω̃ν+1,m. It follows that

{
∂v1f
∂ξv1 = k1

|k| +(p+1) k2
|k| ,

∂v2f
∂ξv2 =(p+1) k1

|k| +
k2
|k| .

(4.25)

Write β =(β0,β1)= ( k1
|k| ,

k2
|k| ). Obviously, |β|1 =1. Denote

D =
(

1 p+1
p+1 1

)
.

Computing directly, it is easy to obtain |Dβ|1 ≥ 3. It follows that for any k 6= 0, there exists
vi0 , i0 =1 or 2 so that |∂vi0 f

∂ξ
vi0
| ≥ 3

2 . This means that

|∂
vi0 〈k,ω〉
∂ξvi0

| ≥ c0|k|.

Note

|∂
vi0 〈k,ων+1−ω〉

∂ξvi0
| ≤ cε0|k|,

|∂
vi0 Ω̃n

∂ξvi0
| ≤ c,

|∂
vi0 (Ω̃ν+1,n− Ω̃n)

∂ξvi0
| ≤ cε0,

|∂
vi0 Ω̃m

∂ξvi0
| ≤ c,

|∂
vi0 (Ω̃ν+1,m− Ω̃m)

∂ξvi0
| ≤ cε0,

it follows that
|〈k,ων+1−ω〉+Ω̃ν+1,n− Ω̃ν+1,m| ≤ 2c+1+cε0|k|.

Therefore, for |k|> 8c
c0

,

|∂
vi0 F

∂ξvi0
| ≥ 1.
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The following we estimate Rν+1
11,1. Write Rν+1

11,1 = R+ +R−, where R+ = Rν+1
11,1 ∩{|n| 6= |m|} and

R−=Rν+1
11,1∩{|n|= |m|}. For the measure of R+, it is standard(See [15]). It is easy to get

|R+| ≤ ·ε
β0
2p

ν+1

when τ > 2 and |k|> 8c
c0

. Write R−=R1
−∪R2

−, where R1
−=Rν+1

11,1∩{n =m} and R1
−=Rν+1

11,1∩{n =

−m}. It is obvious that |R+| ≤ ·ε
β0
2p

ν+1 when τ > 2 and |k| > 8c
c0

. When n = −m, we know that
|k1n1 +k2n2|= |2n|. This means |n| ≤ c|k|. Therefore, when τ > 2 and |k|> 8c

c0
we have

|R1
−| ≤

∑

|k|>Kν ,|n|≤c|k|
·( εβ0

ν+1

|k|8pτ+6
)

1
2p

≤ ·ε
β0
2p

ν+1.

Combining with all the estimates before, one has |Rν+1
11,1| ≤ ·ε

β0
2p

ν+1.

Remark 4.4 In fact, there is a standard proof of Lemma 4.18(see Lemma 5.7 in [15]). Here we
give a minor different proof.

Lemma 4.19 If τ > 2 and Kν > 8c
c0

, |Rν+1
11,2| ≤ ·ε

β0
2p

ν+1.

Lemma 4.20 If τ > 2 and Kν > 8c
c0

, |Rν+1
11,3| ≤ ·ε

β0
2p

ν+1.

Lemma 4.21 If τ > 2 and Kν > 8c
c0

, |Rν+1
11,4| ≤ ·ε

β0
2p

ν+1.

Combining with all the lemmata before, we have

Lemma 4.22 If τ > 2 and Kν > 8c
c0

, |Rν+1| ≤ ·ε
β0
2p

ν+1(ν≥ 0).

Note (3.10), this means K0 > 8c
c0

. Fix τ > 5. Now we compute the total measure of the
parameter sets Rε which be thrown in all the steps.

|Rε| ≤ ·ε
β0
2p

0 + ·ε
β0
2p

1 + · · ·
≤ ·ε

β0
2p

0 = ·ε
1

4p(8p+1)
0 .

5 Appendix

5.1 Compact form and generalized compact form

Given n1, n2 ∈Z, n1 6=n2. A real analytic function

F =F (x,y,z, z̄)=
∑

k,α,β

Fkαβ(y)ei〈k,x〉zαz̄β

on D(r,s) = {(x,y,z, z̄) : |Imx|< s, |y|< r2, ‖z‖ρ < r, ‖z̄‖ρ < r} is said to admit a compact form
with respect to n1, n2, if

Fkαβ 6=0, implies k1n1 +k2n2 +
∑

n

(−αn +βn)n =0 for any k, α, β,

where k = (k1,k2) ∈ Z2 and α ≡ (· · · ,αn, · · ·), β ≡ (· · · ,βn, · · ·), α, β ∈ N∞0 with finitely many
non-vanishing components.
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Lemma 5.1 Given n1, n2 ∈Z and n1 6=n2, consider two real analytic functions

F (x,y,z, z̄), G(x,y,z, z̄)

on D(r,s). If both F and G have compact forms with respect to n1,n2, then so does {F,G}.
For the proof, refer to Lemma 2.4 in [13].
Given n1, n2 and specially chosen subscripts set J = {j0, · · · , jp−2} and jt /∈{n1, n2}, t∈T . A

real analytic function
F =F (x,y,z, z̄)=

∑

k,α,β

Fkαβ(y)ei〈k,x〉zαz̄β

on D(r,s) is said to admit a generalized compact form with respect to n1, n2 and J if

Fkαβ(y) 6=0

imply

k1n1 +k2n2 +
∑

n∈Z\{n1,n2}
(−αn +βn)n =(n1−n2)

p−2∑
t=0

(αjt−βjt)(p− t) (5.1)

for any k, α, β, where k = (k1,k2) ∈ Z2 and α ≡ (· · · ,αn, · · ·), β ≡ (· · · ,βn, · · ·), α, β ∈ N∞0 with
finitely many non-vanishing components.

Similar as Lemma 5.1, we have the following lemma.

Lemma 5.2 Given n1,n2 ∈ Z and specially chosen subscripts set J = {j0, · · · , jp−2} and jt /∈
{n1, n2}, t∈ T . Consider two real analytic functions F (x,y,z, z̄), G(x,y,z, z̄) on D(r,s). If both
F and G have generalized compact forms with respect to n1,n2 and J , then so does {F,G}.

For the proof, refer to Lemma 2.4 in [13].

The following lemma is needed in Section 2.

Lemma 5.3 P+
0 satisfies a generalized compact form with respect to n1, n2 and J .

Proof. Write

Pt =
(

p11,t p12,t

p21,t p22,t

)
,

where t∈T . As we know,

P+
0 =

∑

k,α,β

P0,kαβ(y+)ei〈k,x+〉(Πi/∈Nwαi
i w̄βi

i )(p11,0w
+
i0

+p12,0w
+
j0

)αi0 (p21,0w
+
i0

+p22,0w
+
j0

)αj0

· · · (p11,p−2w
+
ip−2

+p12,p−2w
+
jp−2

)αip−2 (p21,p−2w
+
ip−2

+p22,p−2w
+
jp−2

)αjp−2

(p11,0w̄
+
i0

+p12,0w̄
+
j0

)βi0 (p21,0w̄
+
i0

+p22,0w̄
+
j0

)βj0

· · · (p11,p−2w̄
+
ip−2

+p12,p−2w̄
+
jp−2

)βip−2 (p21,p−2w̄
+
ip−2

+p22,p−2w̄
+
jp−2

)βjp−2 . (5.2)

If P0,kαβ(y+)= P0,kαβ(y) 6=0, then

k1n1 +k2n2 +
∑

i∈Z
(−αi +βi)i=(n1−n2)

p−2∑
t=0

(αjt
−βjt

)(p− t). (5.3)
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We write every term of which its coefficient might be nonzero in (5.2). It is

P0,kαβ(y+)ei〈k,x+〉(Πi/∈N (w+
i )αi(w̄+

i )βi)(w+
i0

)k1
0 (w+

j0
)αi0−k1

0 (w+
i0

)k2
0 (w+

j0
)αj0−k2

0

· · ·(w+
ip−2

)k1
p−2(w+

jp−2
)αip−2−k1

p−2(w+
ip−2

)k2
p−2(w+

jp−2
)αjp−2−k2

p−2

(w̄+
i0

)l10(w̄+
j0

)βi0−l10(w̄+
i0

)l20(w̄+
j0

)βj0−l20 · · ·
(w̄+

ip−2
)l1p−2(w̄+

jp−2
)βip−2−l1p−2(w̄+

ip−2
)l2p−2(w̄+

jp−2
)βjp−2−l2p−2

=P0,kαβ(y+)ei〈k,x+〉(Πi/∈N (w+
i )αi(w̄+

i )βi)(w+
i0

)k1
0+k2

0(w+
j0

)αi0+αj0−k1
0−k2

0

· · ·(w+
ip−2

)k1
p−2+k2

p−2(w+
jp−2

)αip−2+αjp−2−k1
p−2−k2

p−2

(w̄+
i0

)l10+l20(w̄+
j0

)βi0+βj0−l10−l20 · · ·(w̄+
ip−2

)l1p−2+l2p−2(w̄+
jp−2

)βip−2+βjp−2−l1p−2−l2p−2 ,

where k, α, β satisfy (5.3) and

0≤ k1
t ≤αit

, 0≤ k2
t ≤αjt

,

0≤ l1t ≤βit
, 0≤ l2t ≤βjt

, t∈T .

Then from (5.3), one gets

k1n1 +k2n2 +
∑

i/∈N
i(βi−αi)

+
p−2∑
t=0

[it(l1t + l2t −k1
t −k2

t )+jt(βit
+βjt

−αit
−αjt

−(l1t + l2t −k1
t −k2

t ))]

= k1n1 +k2n2 +
∑

i/∈N
i(βi−αi)+

p−2∑
t=0

[it(−αit
+βit

)+jt(−αjt
+βjt

)]

+
p−2∑
t=0

[−it(βit−αit +k1
t +k2

t − l1t − l2t )+jt(βit−αit +k1
t +k2

t − l1t − l2t )]

= (n1−n2)
p−2∑
t=0

(αjt−βjt)(p− t)+
p−2∑
t=0

(βit−αit +k1
t +k2

t − l1t − l2t )(jt− it)

= (n1−n2)
p−2∑
t=0

(αjt−βjt)(p− t)+
p−2∑
t=0

(βit−αit +k1
t +k2

t − l1t − l2t )(n2−n1)(p− t)

=
p−2∑
t=0

(n1−n2)(p− t)[(αit +αjt−k1
t −k2

t )−(βit +βjt− l1t − l2t )].

From the generalized compact form of P , we can prove that the coefficients of wnw̄−n is zero
unless n =0(see subsection 3.1 for details).

Proof.
Case 1.

−jt 6= jt′ , for any t, t′ ∈T .

Subcase 1. n /∈{±j0, · · · ,±jp−2}. It is easy.
Subcase 2. n∈{j0, · · · , jp−2}. From n1+n2 6=0, one gets −2jt 6=(n1−n2)(p−t). The conclusion

is easy.
Subcase 3. n∈{−j0, · · · ,−jp−2}. This is similar as Subcase 2.

Case 2. For some t, t′ ∈T , we have n = jt 6=0, −n = jt′ . In this case, since −jt+jt′ =−2jt 6=0,
the conclusion is obvious.

Case 3. For some t, t′ ∈T , we have n =−jt = jt′ 6=0, −n = jt. This is similar as Case 2.
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5.2 Proof of Lemma 4.12.

Proof. We will prove parts of the inequalities in Lemma 4.12. The unproved are similar as the
following or obvious.

First, we prove (4.19). Write

M1 =(〈k,ω〉+Ωn)I2 +Ait
, t∈T , n /∈N .

Obviously,

M1 =PT
t M ′

1Pt =PT
t ((〈k,ω〉+Ωn)I2 +Āit

)Pt

The following we will prove

‖(M ′
1)
−1‖≤ cmax{|k|4pτ+4,1}

ε
β0
2 (||it|−|n||+1)

. (5.4)

For our convenience, write g1 = det(M ′
1). We will discuss in two cases.

Case 1.
〈k,λ0〉+n2 + i2t 6=0.

It is obvious that k 6=0. Note the choose of K0, one has

cK0≤ 1
ε6p

. (5.5)

Therefore,

| 〈k,λ0〉+n2 + i2t
ε6p

+k1f1 +k2f2 +2f3| ≥ c

ε6p
,

| 〈k,λ0〉+n2 + i2t
ε6p

+k1f1 +k2f2 +2f3 +(p− t2)A| ≥ c

ε6p
.

It follows
‖(M ′

1)
−1‖≤ cε6p.

Note |k1n1 +k2n2|= |n+ it| or |k1n1 +k2n2|= |n+jt +(n1−n2)(p− t), we have

|n| ≤ c|k|. (5.6)

Therefore
c|k|4pτ+2

||it|−|n||+1
≥ c|k|4pτ+1.

Thus, it is easy to get (5.4).
Case 2.

〈k,λ0〉+n2 + i2t =0.

Note we have thrown all the parameters in R0
20,2, this means

| 1
g1
| ≤ max{1, |k|4pτ}

ε
β0
2

.

From

(M ′
1)
−1 =

1
g1

(
k1f1 +k2f2 +2f3 +(p− t)A −at

−at k1f1 +k2f2 +2f3

)

and (5.6), it follows

‖(M ′
1)
−1‖≤ cmax{|k|4pτ+3,1}

ε
β0
2

≤ cmax{|k|4pτ+4,1}
ε

β0
2 (||it|−|n||+1)

.
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Combined with above two cases, the conclusion is clear.
In the following we will prove (4.20). Write

M2 = I2⊗(〈k,ω〉I2 +Ait2
)+Ait1

⊗I2.

Note
M ′

2 = I2⊗(〈k,ω〉I2 +Āit2
)+Āit1

⊗I2

has the same eigenvalues as M2(see Lemma 5.3 in [21]), this means that there exists an orthogonal
matrix Pt1,t2 so that

PT
t1,t2M

′
2Pt1,t2 =M2.

Denote g2 = det(M ′
2). (4.20) is clear from the equality

‖(M ′
2)
−1‖≤ cmax{1, |k|8pτ+6}

εβ0
. (5.7)

We will obtain (5.7) in the following two cases.
Case 1.

〈k,λ0〉+ i2t1 + i2t2 6=0.

As before, we discuss when cK0≤ 1
ε6p . It is easy to get

‖(M ′
2)
−1‖≤ cε6p.

Case 2.
〈k,λ0〉+ i2t1 + i2t2 =0.

Note we have thrown out all the parameters in R0
20,3, it follows that

|g2| ≥ εβ0

max{1, |k|8pτ} . (5.8)

Let (M ′
2)
∗ denote the adjoint matrix of M ′

2.

(M ′
2)
∗=




m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44


 .

Obviously, we have

|mij | ≤ c|k|6. (5.9)

Therefore,

‖(M ′
2)
−1‖≤ cmax{1, |k|8pτ+6}

εβ0
.

Acknowledgements

The author thanks Professor Xiaoping Yuan and Jun Yan for their help. The author would also
like to thank Professor Jiangong You for his encouragement. Part of this paper was discussed with
Huawei Niu.

37



References

[1] Bambusi, D., On long time stability in Hamiltonian perturbations of non-resonant linear
PDEs, Nonlinearity 12(1999), 823-850.

[2] Bourgain, J., Construction of quasi-periodic solutions for Hamiltonian perturbations of linear
equations and applications to nonlinear PDE, International Mathematics Research Notices,
1994, 475-497.

[3] Bourgain, J., Construction of periodic solutions of nonlinear wave equations in higher dimen-
sion, Geom. Funct. Anal., 5(1995), 629-639.

[4] Bourgain, J., Quasiperiodic solutions of Hamiltonian perturbations of 2D linear Schrödinger
equations, Annals of Mathematics, 148(1998), 363-439.

[5] Bourgain, J., Green’s function estimates for lattice Schrödinger operators and applications,
Annals of Mathematics Studies, 158, Princeton University Press, Princeton, NJ, 2005.

[6] Chierchia, L. and You, J., KAM tori for 1D nonlinear wave equations with periodic boundary
conditions, Comm. Math. Phys., 211(2000), 498-525.

[7] Craig, W. and Wayne, C.E., Newton’s method and periodic solutions of nonlinear wave equa-
tions, Comm. Pure. Appl. Math., 46(1993), 1409-1498.

[8] H.L. Eliasson and S.B. Kuksin, Homological equations for the non-linear Schrödinger equation,
Preprint(2005).

[9] H.L. Eliasson and S.B. Kuksin, Infinite Töplitz-Lipschitz matrices and operators,
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