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The problem of maximizing the LP norms of chords connecting points on a closed
curve separated by arclength w arises in electrostatic and quantum—mechanical
problems. It is known that among all closed curves of fixed length, the unique
maximizing shape is the circle for 1 < p < 2, but this is not the case for sufficiently
large values of p. Here we determine the critical value p.(u) of p above which the
circle is not a local maximizer, finding that pc(%L) = % This corrects a claim

made in [3].

If I'(s) describes a planar curve of parametrized by arclength s and L is its
total length, then

%/!F(s—i—u) — T(s)|ds

describes the LP-mean of the Euclidean length of the chords connecting points
separated by arclength u. A reasonable geometric question is to determine
the shape that maximizes this quantity for any given value of p. Some phys-



ical phenomena have recently been shown to have connections to this geo-
metric question:

1. .What shape will a loop in R? carrying a uniform electric charge assume
at equilibrium? That is, what is the minimum of the potential energy
due to Coulomb repulsion? For this problem see [1, 4] and references
therein.

2. What is the shape of a loop I' of length L that maximizes the ground-
state energy of a leaky quantum graph in the plane? That is, how
can the fundamental eigenvalue of the leaky-graph Hamiltonian —A —
ad(z—T) acting in L?(R?) be maximized? This problem was considered
in [2, 3] and references therein.

In both of these problems it turns out that the solution reduces to con-
sidering the LP-means of chords, specifically to establishing the validity of

sin? —,

L

Chw: ehlw) = [ IN(s ) = Dl)Pds <

with p =1 and u € (0, %L] In other words, can it be shown that the global
maximizer is a planar circle of radius %L, which by an elementary calculation
attains the value on the right side? By a convexity argument it suffices to
prove the inequality for any larger value of p to establish it for smaller values.

The inequality C7(u) was established for the first time over forty years
ago by Liiké [5] for p = 2. The same claim was demonstrated more recently in
different ways in [1, 3]; see also a local proof in [2]. It is natural to consider the
maximal value of p for which the inequality holds. The best upper estimate
so far, p &~ 3.15, was obtained in [3] by investigating a stadium-shaped T'.

Our aim here is to improve this result. Using the method of [2] we shall
show that among all planar closed curves, cf(u) is locally maximized by a
circle if p < g, and to find a local critical value of p for “shorter” chords.
Since the inequality in question has obvious scaling properties, it is sufficient
to consider the case L = 2m. We keep a general L in the main claims for
the convenience of the reader, but otherwise we will work with the particular
value L = 2m.

Without loss of generality we may assume that the I' is a C2-smooth curve,

the validity of the result being extended to less regular loops by continuity.



Using the notation of [2, Sec. 5] the quantity ¢f(u) can be cast into the form

s+u s+u s p/2

A (u /ds /ds /ds”cos /’Y(T)dT :

s/

where v := fgfl — fle is the signed curvature of I'. Recall that the knowl-
edge of v allows us reconstruct I' up to Euclidean transformations by

[(s) = (/Os cos (3(t) dt, /Os sin 3(t) dt) , (1)

where [5(s fo t)dt is the angle between the tangent vectors at ¢t = s
and the 1n1t1al point, t = 0. We shall refer to this as the bending of the arc.

Our aim is to compute the first and second Gateaux derivatives of the
map I' — . (u) at the circle, I' = C, and to demonstrate the claim by looking
into their properties. Consequently, we shall consider gentle deformations of
a circle, which can be characterized by variations of the curvature
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1) = =+ 2g(s),

where ¢ is a continuous L-periodic function and ¢ is small in the sense that
ellglle < 1. The periodicity and continuity make it possible to express g
through its Fourier series

= 2 2
g(s) = ap + ;an sin ( 7;?8) + by, cos ( 7ans)

with {a}, {b} € (*. We are interested in closed curves I, so we ask now how
this property is reflected in Fourier series.

Proposition 1 The tangent to T' € C* corresponding to (2) is periodic with
period L if and only if ag = 0. Furthermore, T'(0) = T'(L) + O(e®) provided
that

b bn+1 + Ay Q1 - an—i—lbn - bn-l—lan
=b = d E = E =0.
@ =b =0 an n(n+1) n(n+1) 0



Proof: As mentioned above, we may henceforth set L = 27. In view of the
definition of 3(s) it is clear that the tangent vector is continuous if 5(L) = 2.
In our case the bending function is

B(s) =s+ 5/08 g(t)dt =: s + ¢b(s),

and the condition simplifies to fOZW g(t)dt = 0 which holds iff ag = 0. In view
of (1) the fact that I" is closed means

(/027r cos B(s) ds, /0% sin () ds) — (0, 0).

For the terms on the right side of the last equation we have the expansion
1
cos 3(s) = (1 — 552192(5)) cos s — eb(s)sins + O(e?),
1
sin B(s) = (1 — 552b2(s)) sin s + eb(s) coss + O(e?).

Up to the third order in € we get thus the conditions
2 2
/ b(s) cossds = / b(s) sinsds = 0, (2)
207r 027r
/ b(s)? cossds = / b(s)? sinsds = 0. (3)
0 0

It is convenient to rewrite the Fourier series for the curvature deformation
in the complex form, g(s) = >, 40 Cn e where c_,, = ¢, and for n > 0 we
have ¢, = 2(b, — ia,). For b(s) this yields the following series:

2
iCn ins
n#0
Using orthonormality of the trigonometric basis we see that the condition
(2) requires a; = by = 0. On the other hand, the remaining condition (3)
means that the integral fOL b(s)? ™ ds must vanish; with the help of the
above series we can express it in the following way,

2

_ CnCm S __ ins ___ims — Cnén—i-l
Z o e [1 e }[1 e }ds Z —n(n+1)’

n, m#0,+1 0 n£0,+1




and taking the real and imaginary part we arrive at the claimed identities
for {a,} and {b,}. B

After this preliminary let us turn to our proper subject. The Gateaux
derivative of the functional (1) in the direction g is

stu s+u s

:_g Ll;_z sin? _r/Q 1/ds/ds /ds"sm /dt /g(T) dr (4)

8/

again for L = 27, and the second derivative is

0P (u)
D2 (u) = —&
9T oe? | __,
/2—2 27 stu stu s ’
D
_Pp (Z—j — 1) [451n2 E] /ds /dS/ / ds” sjn(s”—s')/g(T) dr
2 \2 2
2 st+u s+u s” ?

/21
—g 451112g " /ds/ds /ds”coss —s') /g(T)dT . (5)

S/

Rearranging the integrals in (4) we get

27 stu stu s’
/ / / ss1ns—s)/g(7')d7'
T s+u
/dr/ds/ds /ds"sms — s g(r)dr

L
= (4sin2u+usinu)/g(7‘)d7:0,
0

which shows that for every p > 0 the circle is either an extremal or a saddle
point. (There are no solutions to 4sinu = —u in [—m, 7].) In the next step
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we analyze the second derivative to distinguish in between these two cases.
Not surprisingly, the answer depends on the value of w. Our main result
reads

B 4 — cos (%)
pe(u) := W7 (6)

then we have the following alternative. For p > p.(u) the circle is either a

saddle point or a local minimum, while for p < p.(u) it is a local mazimum
of the map T — f(u).

Before passing to the proof let us make a pair of comments.

Remarks 3

1. It will be seen from the proof that in the critical case p = p.(u), the
higher order derivatives of ¢.(u) come into play. We shall not address
the critical case here.

2. Tt is natural to expect and easy to verify that for p > p,. circle is in fact
a saddle point of the functional.

Proof: We put again L = 27 and analyze the terms of the second derivative
(5) separately. By a straightforward computation using orthonormality of
the trigonometric basis the iterated integral in the first term equals

Z [aifsl (n7 U, p) + b??,fcl (n7 U’7 p)] I

n=2

where

16 2
fsi(n, u, p) = fci(n, u, p) = W( = = nu)

3 —2n cos — sin® — + sin u sin —
n—n 2 2 2



In the second term we rearrange the integrals before using the Fourier series,

1"

stu stu s s
/ds' / dS”/dT/dTI cos(s" — s") g(1)g(7")
stu  stu T stu
=2 / dr / dr’ / ds’ / ds” cos(s" — s') g(1)g(7")

s+u s+u

/dT/dT/g(T)g(T/)lnt<8, T, 7).

s T s !

Hence the full integral in the second term of (5) equals

2w s+u s+u

/ ds / dr / dr' g(r)g(r') Int(s, 7, 7'

0 s T
o i - 27 T+u

:/dT/drl / ds g(7)g(7') Int(s, 7, 7') ::/dT/dTllnb(Ta ™) g(1)g(7"),
0 T T'—u 0 T

where

Into(7, 7') :=2(7" — 7 — u)(cos(7’ — 7) + cosu) + 4( —sin(7' — ) + sinw).

Finally we use the Fourier series and obtain an expression for the iterated
integral in the second term

1 2

2m s+u s+u s 0o

/ds / ds’ / ds” cos(s"—s") /g(T)dT = Z lazfsa(n, u, p) + bifea(n, u, p)] |
0 s s s’ n=2

where

fsa(n, u, p) = fea(n, u, p) := 5 (—677,2 +2n* — 2(n* — 1)%cos u
n—n

+(n+1)*cos(n — L)u + (n — 1)* cos(n + 1)u) .



Now we put it together and get the second derivative in the form

=S @) e s, @

where
T(n, u, p):= —(2n4 —6n* —2(n* — 1)?cosu+ (n+ 1)?cos(n — 1)u

+(n—1)? cos(n+1)u> +2(p—2) (—Zn cos (%) sin (g) + 2cos (g) sin (%))2 :
(8)

Since sin(u/2) is positive for u € (0, 7), the sign of each term in the second
derivative series (7) is determined by that of T'(n, u, p). The equation

T(2, u, p) = —16(4 —p+ (p — 1) cos u) sin* <g)

gives T'(2, u, p) > 0 for p > p.(u), proving the easier part of the alternative,
namely that for p > p.(u) the circle fails to be a local maximum of the map

It is easy to check that T'(n, u, p) is strictly increasing as a function of
p. Hence to prove the other part of the theorem it is sufficient to show that
T(n, u, p.(u)) is negative for n > 3. To this aim we define

S(n, u) = —(1—cosu) T(n, u, p.(u));

we next prove that this function is positive for n > 3.
Inserting the critical exponent p.(u) into (8) we obtain

S(n, u) = —4 —10n* + 2n* 4+ 2(n* — 1)( — 2(n”* — 2) cosu + n* cos” u)
+ 4 cos(nu) (1 — n* + (2 + n®) cosu) + 12nsinusin(nu),

and using the inequality (asinz + bcosxz)? < a® + b* we get the bound

S(n, u) > —4 — 100" + 2n* 4+ 2(n* — 1)( — 2(n® — 2) cosu + n” cos® u)

- 4\/(1 —n?+ (24 n?)cos u)2 + 9n?sin’ u.
Hence S(n, u) is positive whenever

—4—10n" +2n* +2(n* — 1)( — 2(n® — 2) cosu + n’cos®u) >0  (9)
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and

2
( —4—10n" +2n* + 2(n* — 1)( — 2(n® — 2) cosu + n” cos u))
> 16((1 —n?+(2 +n2)cosu)2 + 9n? sin’ > (10)

The first condition (9) is a quadratic equation in cosu, and a calculation
shows that it is satisfied for cosu < 1 — %. Using the notation cosu = z,

the second condition (10) simplifies to
4n*(n® —1)*(8 +n*(z — 1))(z — 1)* > 0,

which provides us with a slightly stronger condition,

8
cosu<1—ﬁ. (11)
The vicinity of zero has to be regarded separately to prove the positivity
of S(n, u) on the interval complementary to (11) . By a straightforward

computation the Taylor expansion of S(n, u) around zero equals

2,,8 1 2 4 6 10
amm:”“(@nﬁi—%+”)+lﬂm (12)

40 9 36 10!

where for n > 3 and u in the complement of (11) the O(u'?) term is bounded
from below by
Rip > —136n".

Comparing the reminder with the first term on the right-side of (12), we
observe that S(n, u) is positive for

1 1 n? n* n 10!
2
By (P L L L . 13
“ < 0" 1 6+36>136n8 (13)

Now we use the inequality cosu <1 —7/16u? for u € (0, ) to compare the
intervals (11) and (13). By simple analysis we find out that for n > 4,

1_§<1_1i _1_|_n_2_n_4_|_n_6 1_0‘
n? — 16 40 9 4 6 36) 136n8’

and hence in this case the union of the intervals covers (0, 7), which proves
that S(n, u) > 0 holds for n > 4.



Figure 1: The relation between the critical exponent p. and the arc length
u. The mean-chord inequalities hold locally in the region I.

In the case n = 3 the positivity of S(n, u) is easily established, as the
function S(3, u) simplifies now to

S(3,u) =2 (2sin g)s .

Since T'(2, u, p) < 0 holds for p < p.(u) the theorem is proven. B

To visualize the result, in Figure 1 we plot the relation between the critical
exponent p. given by (6) and the arc length w.

A comment is due on the closure of the curve I'. In [2] the local validity
of the inequality for p = 2 was proved without this hypothesis. Here we used
closure, but not to the full power of Proposition 1. We relied simply on the
fact that the Fourier coefficients vanish for |n| < 1, which meant that the
endpoints I'(0) and T'(27) meet within an error of O(¢?), not O(e?).

Let us finally make one more remark, namely on a claim made in Thm. 5.4
of [3]. It was stated there that for a particular class of deformations the circle
remains a local maximizer for all p, namely for those which, in the complex
notation, have the form (1 — ¢)e* + O(e, s), with the assumption that for
each g, O(g, s) is orthogonal to € and O(e, s) is C* smooth. In fact, the
C? assumption in the variable ¢ cannot occur. To see that, notice that the
condition [ |T'(s)[>ds = 27 together with orthogonality imply

/ 10,(e, 5)|*ds = 4me — 2me?,

where O, := 00/0s. Since O is C? by assumption, we may differentiate under
the integral sign to get
2Re/@s(e, S)M ds = 47 — 4rwe;
Oe

using the observation from [3] that ©(0, s) = 0 we see that the left-hand
side would tent to zero as ¢ — 0 given the assumption that © is jointly
C?, while the right-hand one has the nonzero limit 47. To obtain smooth
perturbations one should suppose, e.g., I'(g, s) = (1 — &2)e®* + O(e, s), and
this would necessitate an analysis to second order in ¢, as has been done in
this article.
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