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Abstract. We construct the symmetric functional model for an arbitrary

closed operator with a non-empty resolvent set acting on a separable Hilbert
space. The main techniques of the study are based on the explicit form of the

Sz.-Nagy-Foiaş model for a closed dissipative operator, the Potapov-Ginzburg

transform of characteristic functions, and certain resolvent identities. All con-
siderations are carried out under minimal assumptions, and obtained results

are directly applicable to problems typically arising in mathematical physics.

Explicit formulae for all objects relevant to the model construction are pro-
vided.

1. Introduction

The functional model of non-selfadjoint dissipative operators plays a prominent
role in applications of operator theory in mathematical physics. The theory was
initiated, developed and further elaborated in numerous works, see books [10, 12,
14, 24, 32, 33, 34] and references therein. Today it is essentially complete and is
commonly known as the model associated with names of B. Sz.-Nagy and C. Foiaş,
L. de Branges and J. Rovnyak, P. Lax and R. Phillips.

An application-motivated perspective on the functional model for dissipative op-
erators was developed in (and greatly influenced by) works of B. Pavlov, see [35, 36],
whose ideas are deeply rooted in the scattering theory of P. Lax and R. Philips [24].
The hallmark of the latter theory is its renowned clearness and transparency of
underlaying ideas. As a result of this influence, B. Pavlov’s form of functional
model, later coined as the symmetric functional model, provided a convenient
and intuitively coherent framework for study of various problems in mathematical
physics associated with dissipative operators. Here we only mention the dissipa-
tive Schrödinger operator with complex potential [35, 36] and with non-selfadjoint
boundary condition [37], the Boltzmann operator [23, 30], and stochastic quantum
dynamics [39], see survey [38] for more details and examples. This orientation to-
ward practical aspects is not something accidental; the symmetric model emerged as
an extension of well-known methods of classical spectral analysis developed within
the “selfadjoint” theory commonly used in applications [40]. The model construc-
tion is based on expansions by canonical systems of eigenfunctions of the absolutely
continuous spectrum of a certain selfadjoint operator (the dilation) followed by the
mapping of the Hilbert space where the initial dissipative operator acts into the
model space. Clear physical meaning of all objects participating in the theory
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combined with its intuitive appeal inherited from the Lax-Philips theory greatly
contributed to the success of symmetric functional model as an adequate tool for
the study of various problems of mathematical physics. (See papers [1, 2, 3] for the
application of symmetric model technique in a few concrete situations and [8, 9, 17]
for recent applications in the semiconductor theory.)

After the distinct success of the functional model for dissipative operators and
contractions was realized, the question of building a model for an operator with
the dissipativity condition omitted raised naturally. Owing to the properties of
Cayley transform, this problem is formally equivalent to the model construction
for a non-contractive bounded operator. In the course of conducted research it
became clear that the contractiveness condition is an essential requirement and
can not be relaxed easily. Nevertheless, a few models of certain classes of non-
contractive and non-dissipative operators, have been offered in a series of pa-
pers [7, 11, 13, 18, 48, 49, 50, 51, 52]. Despite their significant contributions to
the abstract operator theory, a certain inconvenience of Cayley transforms for the
study of, say the nonselfadjoint Schrödinger operator with complex potential, limits
applicability of these models for non-contractions to typical non-dissipative prob-
lems arising in mathematical physics. A suitable approach to the spectral analysis
of nonselfadjoint non-dissipative operators that simultaneously offers the functional
model, was suggested and further developed by S. Naboko in [26, 27, 28]. Apart
from the model considerations realized for some class of additive perturbations of
a selfadjoint operator, his works significantly contributed to the development of
various chapters of the nonselfadjoint operator theory. The relevant results include
a highly successful definition of absolutely continuous and singular subspaces, a so-
phisticated analysis of singular spectra, the functional model for rank one singular
perturbations of nonselfadjoint operators, the scattering theory, and some others,
see [20, 21, 22, 29, 31] in addition to the papers cited above.

Two important features of the model [26, 27, 28] that distinguish it from its al-
ternatives have to be emphasized; they are its explicitness and its constructiveness.
By explicitness we mean the fact that all relevant objects involved in the theory
are given in their explicit and final form. For instance, exact formulae are provided
for the selfadjoint dilation of a dissipative operator, for the isometry that maps the
dilation to the model space, and for the dense set where this isometry is originally
defined. Secondly, all calculations and proofs are carried out constructively, with
a minimal resorting to general and abstract theorems. In fact, having in hand a
non-selfadjoint non-dissipative additive perturbation of a given selfadjoint opera-
tor and following the guidance of [26, 27, 28], one can construct the symmetric
model “from scratch”, without extensive preliminary knowledge on the theory of
non-selfadjoint operators. In addition, all the building blocks of the method are
represented straightforwardly in terms of the original problem, namely resolvents
of the participating operators and require just a few explicitly defined auxiliaries.
These factors make the model theory of [26, 27, 28] more appealing from the ap-
plications perspective than its possible alternatives mentioned earlier.

The key idea behind reasoning of [26, 27, 28] is essentially perturbative in a
sense that it relies on certain resolvent identities typically found in the perturbation
theory. The main object of study is a nonselfadjoint operator

(1.1) L := A+ iV
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acting in the Hilbert space H, where A = A∗ and V = V ∗ is A-bounded with the
relative bound smaller than 1, so that domains of A and L coincide and operator L
is closed. If V ≥ 0, then L is dissipative and the regular model technique for
dissipative operators is applicable. However, if V = V ∗ is not of a definite sign,
then an auxiliary operator is needed. It is introduced by the formula

(1.2) L || := A+ i|V | = A+ i
α2

2
where α :=

√
2|V | is defined in accordance with the functional calculus for the

selfadjoint operator |V |. Obviously, L || is dissipative and its symmetric model can
be built using the conventional technique. It has to be noted at this point that the
work [28] contains an explicit model construction for dissipative operators of the
form (1.2) that serves as a necessary preliminary step toward the model for L. The
operator L can be effectively described in terms of the symmetric model for L ||

largely owing to this explicitness. Moreover, any operator in the form

Lκ := A+
ακα

2
where the bounded mapping κ satisfies certain additional conditions on its norm,
can be represented similarly in the model space of L ||, see [28, 29]. Obviously, the
family Lκ includes operator L as a special case corresponding to the choice κ = iJ
with J = sign(V ) being an involution (J = J∗ = J−1) in the space E := αH.
There is a remarkable observation made in [26] regarding the so-called characteristic
operator-functions of L and L ||. It is shown that they are related to each other
via the Potapov-Ginbzburg transform known in the theory of spaces with indefinite
metric [6]. This circumstance does not play any particular role in argumentation
of [26] and is merely a curious by-product of the explicit model construction. In
contrast, the Potapov-Ginzburg transform is a key component in considerations
below.

Shortly after pioneering works of S. Naboko, N. Makarov and V. Vasyunin ex-
ploited the same perturbative idea in their treatment of the case of an arbitrary
bounded operator and derived formulae of its action in the model space of a cer-
tain contraction [25]. Simultaneously, the question of model construction for an
arbitrary closed operator with non-empty resolvent set was solved simply by the
virtue of Cayley transform, although on the abstract level. From the applications
perspective, the generic answer given by [25] is not quite satisfactory. In partic-
ular, it does not offer much help for the model representation in situations like
nonselfadjoint extensions of concrete symmetric operators [44], or in similar cases
where the operator is not easily representable as a sum of its real and imaginary
parts as required by (1.1). Slightly more general settings, such as operators of
typical boundary value problems recently studied on the abstract level in [45], are
not covered by arguments given in [28, 44], and the results of [25] are not easily
translatable into the problem’s terms either. The paper [48] attempts to deal with
these issues by methods of linear relations in Hilbert space. The considerations are
carried out on the foundation of Sz.Nagy-Foiaş model for contractions and their
relevance to problems of mathematical physics is not quite obvious.

These inconveniences motivate an independent model construction for an ar-
bitrary closed operator with nonempty resolvent set that would serve as a direct
generalization of the symmetric model from [28]. The paper offers such a model,
free of limitations described above. It was already successfully applied (without a
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proof) to the study of nondissipative operators from a fairly wide class in [42, 43],
where the notion of local absolutely continuous and singular subspaces was exam-
ined and utilized for the subsequent study of scattering theory for a pair of non-
selfadjoint operators. Owing to the generic form of operator under consideration,
results obtained in the current paper cover both cases of the model for nonselfad-
joint additive perturbations [28] and for extensions of symmetric operators [44].
As a direct consequence, considerations below can be used for study of selfadjoint
operators subject to a nonselfadjoint additive perturbations in combination with
nonselfadjoint boundary conditions. The model is applicable in more complicated
settings, such as the case when the “nonselfadjointness” is caused by a non-additive
perturbation of the principal symbol of a (pseudo)differential operator. This situ-
ation is found in physics of dissipative and active media and can be viewed as a
non-conservative perturbation of the metric induced by the original Hilbert space
structure. Since the assumption of dissipativity is omitted, the theory of magne-
tohydrodynamic instabilities [15] is another possible area where the model given
below can be utilized.

The construction offered in the paper is carried out in full accordance with the
approach of [28]. It is applicable for an arbitrary closed operator L with non-
empty resolvent set acting in a separable Hilbert space. As a preliminary step, we
construct the Sz.-Nagy-Foiaş model in its symmetric form for an unbounded dissi-
pative operator and then obtain explicit expressions for the isometry that maps the
original Hilbert space into the model one. The availability of explicit formulae for
the model mapping is the first key component of the schema from [28]. The next
step consists of the solution to the problem delineated above, namely the choice
of a “close” dissipative operator that would play the role of L || for L, the initial
nondissipative operator. Since the imaginary part of L is not assumed available,
we have to take a detour. The crucial role here is played by the Potapov-Ginzburg
transform applied to the characteristic function of L. Vaguely speaking, the charac-
teristic function of L is an analytic operator function that possesses certain metric
properties with regard to the indefinite metric induced by the nonselfadjoint part
of L. Its Potapov-Ginzburg transform turns out to be an analytic operator function
that coincides with the characteristic function of a certain dissipative operator that
is taken then as the “close” operator L ||. The most important ingredient of all per-
tinent calculations is the fundamental result of D. Arov [5] cited in Theorem 3.6.
On the language of system theory, this result states that the Potapov-Ginzburg
transform applied to linear passive dynamic systems maps scattering systems into
transmission ones, and in addition, the transfer functions of these systems are re-
lated to each other via the Potapov-Ginzburg transform as well. Moreover, this
mapping is fully invertible.

Since this result plays such an important role in our argumentation, let us elab-
orate a bit more on this topic using a slightly simplified setting of a single Hilbert
space for the illustration. The exposition we are about to give is lacking proofs;
however, all the details can be recovered either by direct calculations or by referring
to the relevant literature [5, 6]. Let H, E be Hilbert spaces and the block opera-

tor A :=
(
T F
G S

)
be an unitary from E⊕H into itself. As a direct consequence

of equalities AA∗ = A∗A = I, the operator-function A(z) := T + zF (I − zS)−1G
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with values in the algebra of bounded operators on E is analytic and contrac-
tive for |z| < 1. In the system theory, where operator A is associated with the
so-called scattering linear passive dynamic system, the function A(z) is identified
with the transfer function of system A. Assume the space E is split into two
complementary subspaces E = E+ ⊕ E− and X± are two orthogonal projections
onto E± respectively. Projections X± turn the space E into the space with in-
definite metric J [·, ·] defined as J [x, y] := (Jx, y)E , where (x, y)E is the Hilbert
product of x, y ∈ E, and J := X+ − X−. Operator J possesses properties of an
involution, that is, it is unitary and selfadjoint at the same time, J = J∗ = J−1.
Spaces with indefinite metric induced by such operators called J-spaces or Krein
spaces [6]. Operator B := (X−+X+A)(X+ +X−A)−1, where X± := X±⊕ IH are
orthogonal projections in E⊕H, is a bounded map of E⊕H into itself. If we define
an involution J on the orthogonal sum E⊕H by the formula J := X+−X−, then
B is J -unitary operator. It means the simultaneous fulfillment of two equalities,
J −B∗JB = 0 and J −BJB∗ = 0. Blocks of operator B are bounded operators and
they define an operator valued function B(z) constructed in the same manner as
the function A(z) is constructed from the blocks of operator A. The function B(z)
is analytic in some neighborhood O of the origin. The important property of B(z),
z ∈ O is its contractiveness in the indefinite metric J [·, ·] on the space E. It means
the operator inequalities J −B(z)J [B(z)]∗ ≥ 0 and J − [B(z)]∗JB(z) ≥ 0 hold true
for z ∈ O. It turns out that the function B(z) for z ∈ O can be represented in the
form B(z) = (X− +X+A(z))(X+ +X−A(z))−1, which is a direct analogue of the
mappingA 7→ B introduced above. This mapping betweenA and B, or equivalently,
between A(z) and B(z), is called the Potapov-Ginsburg transform (PG-transform).
It is fully invertible, meaning that there exists an inversion formula that recovers
the operator A from its PG-transform B, provided the latter is an unitary in the in-
definite metric. As one can expect, the function A(z) is recovered from B(z) by the
same inversion formula. Speaking of systems, the function B(z) is the transfer func-
tion of the linear passive system associated with the operator B, the transmission
system. The PG-transform maps the system A into the systesm B by redistribution
of the external data of A (i. e. inputs and outputs) according to the decomposition
of the external space E into the orthogonal sum E = E+ ⊕ E−.

In application to the problem of building the symmetric model for a non-dissipa-
tive operator, the results of the previous paragraph help us to verify the uniqueness
of the dissipative operator that we take as “close” in the sense indicated above,
and make sure it satisfies our needs. Moreover, relations obtained in course of
Potapov-Ginsburg transforms calculations reveal important identities between re-
solvents of the “close” dissipative operator and operator L, which comprise the
third cornerstone of the model construction.

The paper consists of this Introduction and three more sections. Section 2 is
dedicated to the explicit procedure of passing from a closed dissipative operator
(denoted A in the text) to its symmetric functional model. First, employing results
of [19] we obtain the selfadjoint dilation A of operator A and then define the isom-
etry Φ that realizes A as a multiplication operator in its spectral representation,
the model space. Two other mappings closely related to Φ are introduced. Their
essential parts are expressed via resolvents of A and its adjoint A∗. Owing to this
very fact the resolvent of L be can be effectively described in the model space of A.
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Section 3 is a study of the nondissipative operator L from the abstract point of
view. By the Cayley transform we reduce the setting to that of bounded operators,
thereby making results of linear systems theory [5] directly applicable to our case.
With the help of Potapov-Ginzburg transform and arguments from [5] we obtain
the explicit form of a certain contractive operator. It is proven then that its Cayley
transform is some dissipative operator, which is subsequently taken as “close” to L.
The section concludes with relations for resolvents of A and L needed for the model
construction.

Finally, Section 4 is the Model Theorem and its proof.
Computations required for the paper’s purposes are quite extensive, and on a few

occasions we permit ourselves to skip some details. However, efforts were made in
order to clarify the argumentation and to provide the reader with references to the
literature where analogous calculations can be found. Two main resources in this
regard are the original work [28] and the recent paper [44] where all relevant com-
putations are supplied in full length. For properties of Potapov-Ginzburg transform
and the concise account of results from [5] we refer the reader to the book [6].

The author would like to express his gratitude to Prof. S. Naboko for his interest
to the work and continual encouragement.

Notation. Let us recall a few basic facts from the operator theory and agree upon
the notation. For two separable Hilbert spaces H1 and H2 the sign A : H1 → H2

is used to denote a bounded linear operator A defined everywhere in H1 with the
range in the space H2. Symbols R, C, Im (z) stand for the real axis, the complex
plane, and the imaginary part of a complex number z ∈ C, respectively. The
upper and lower half planes are the open sets C± := {z ∈ C | ± Im (z) > 0}.
Similarly, R± := {k ∈ R | ± k > 0} and D := {z ∈ C | |z| < 1}. If A is a closed
linear operator A on a separable Hilbert space H, the domain, range and null space
of A are denoted Dom(A), Ran(A), and Ker(A), respectively. The symbol ρ(A)
is used for the resolvent set of A. We always assume that the domain of a closed
operator A is dense in H. A sesquilinear form ΨA(·, ·) defined on the product
Dom(A)×Dom(A):

(1.3) ΨA(f, g) =
1
i
[Af, g)H − (f,Ag)H ], f, g ∈ Dom(A)

is a substitute for the imaginary part of A in the sense that 2 Im (Af, f) = ΨA(f, f),
f ∈ Dom(A).

Definition 1.1. Operator A is called dissipative if

(1.4) Im (Af, f) ≥ 0, f ∈ Dom(A),

where Im (·) denotes the imaginary part.

Definition 1.2. Operator A is called maximal dissipative if (1.4) holds and the
resolvent (A− zI)−1 : H → H exists for any z ∈ C−.

There exists a one-to-one correspondence between all closed operators A such
that −i ∈ ρ(A) and bounded operators T , defined everywhere on the space H with
the property Ran(T − I) = H. This correspondence is established by the Cayley
transform

(1.5) A 7→ T := (A− iI)(A+ iI)−1, T 7→ A := (−i)(T + I)(T − I)−1
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A brief calculation show that the dissipativity of A is equivalent to the norm esti-
mate ‖T‖ ≤ 1, that is, the Cayley transform of A is a contraction. For two separable
Hilbert spaces we denote C (H1,H2) the set of all densely defined closed operators A
with the domain DomA ⊂ H1 and the range Ran(A) ⊂ H2. The symbol C +(H) is
used for the subset of C (H,H) that consists of all maximal dissipative operators.

2. Sz.-Nagy–Foiaş model of a dissipative operator

The model construction for a dissipative operator A offered in this Section follows
the plan of [36]. It is based on the exact form of the selfadjoint dilation of A and
the subsequent passage into its spectral representation. Below we use the form
of selfadjoint dilation of a closed dissipative operator found in [19] and follow the
schema of [28] where the boundary values of resolvent are used to pass to its spectral
representation. We exposition begins with the brief recollection of properties of
dissipative operators, definition of their characteristic functions, and continues with
some results concerning a certain linear set in the dilation space. After additional
considerations regarding its density, which is equivalent to the completeness of two
canonical systems of eigenvectors of the dilation, we formulate the model theorem
and conclude the Section with a few notes regarding its proof.

2.1. Preliminaries. Let us remind basic definitions and properties of the selfad-
joint dilation and the characteristic function of a closed maximal dissipative oper-
ator A acting on the Hilbert space H.

2.1.1. Boundary operators. Let T := (A − iI)(A + iI)−1 : H → H be the Cayley
transform (1.5) of A. Then T is a contraction, ‖T‖ ≤ 1. Denote R := i(A+ iI)−1.
Following equalities for T and R are easy to verify

(2.1)
I − T ∗T = 2(R+R∗ − 2R∗R)

I − TT ∗ = 2(R+R∗ − 2RR∗)

Further, since ‖T‖ ≤ 1, operators (2.1) are non-negative and the square roots

∆T := (I − T ∗T )1/2, ∆T∗ := (I − TT ∗)1/2

are well defined by the functional calculus of selfadjoint operators. Maps (2.1) are
called defect operators and closures of their ranges in H, the subspaces

E := closRan(∆T ), E∗ := closRan(∆T∗),

are called the defect subspaces of contraction T (cf. [32]). The intertwining
property T∆T = ∆T∗T shows that T : E → E∗, T ∗ : E∗ → E . Denote Q := 1√

2
∆T ,

Q∗ := 1√
2
∆T∗ and let Γ ∈ C (H, E), Γ∗ ∈ C (H, E∗) be two closed operators defined

as closures of mappings Γ̃ : u 7→ Q(A + iI)u, Γ̃∗ : v 7→ Q∗(A∗ − iI)u, where
u ∈ Dom(A), v ∈ Dom(A∗), correspondingly. The closability of Γ̃, Γ̃∗ follows from
the closedness of A and A∗. Mappings Γ and Γ∗ are conventionally termed the
boundary operators of A and −A∗, see [47]. The essence of definition is clarified
by the following lemma.

Lemma 2.1. For any u, v ∈ Dom(A), u′, v′ ∈ Dom(A∗)

ΨA[u, v] = (Γu,Γv)E , Ψ(−A∗)[u′, v′] = (Γ∗u′,Γ∗v′)E∗ ,

where the form ΨA[·, ·] is defined in (1.3)
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Proof. Let us verify the first identity. To that end note that any vector u ∈ Dom(A)
is uniquely represented in the form u = i(A + iI)−1ϕ = Rϕ with ϕ ∈ H and
analogously v = i(A + iI)−1ψ with ψ ∈ H for v ∈ Dom(A). Therefore, we
have AR = iA(A+ iI)−1 = i(I −R), hence

ΨA[u, v] = (−i) [(Au, v)− (u,Av)] = (−i) [(ARϕ,Rψ)− (Rϕ,ARψ)]

= ((I −R)ϕ,Rψ) + (Rϕ, (I −R)ψ) = ((R+R∗ − 2R∗R)ϕ,ψ)

= (1/2) ((I − TT ∗)ϕ,ψ) = (1/2) (∆Tϕ,∆Tψ) = (Qϕ,Qψ)

= (Q(A+ iI)−1u,Q(A+ iI)−1v) = (Γ̃u, Γ̃v) = (Γu,Γv).

The second formula is proved analogously. �

2.1.2. Selfadjoint dilation and related questions.

Definition 2.2 ([32]). The selfadjoint operator A on the Hilbert space H ⊃ H is
called a selfadjoint dilation of A ∈ C +(H) if

(2.2) (A− zI)−1 = PH(A − zI)−1
∣∣
H

for any z ∈ C−,

where PH denotes the orthogonal projection in H onto the subspace H. The dila-
tion A is called minimal if

H = clos span{(A − zI)−1H | z /∈ R}

Any operator from C +(H) has the minimal selfadjoint dilation. Its form below
was pointed out in [36] and generalized in the work [19].

Let D+ := L2(R+, E), D− := L2(R−, E∗) be the Hilbert spaces of square inte-
grable E- and E∗-valued vector-functions defined on R±. The dilation space is chosen
to be the direct sum H := D− ⊕H ⊕D+ with elements in the form (h−, h0, h+),
h0 ∈ H, h± ∈ D±. Define two operators, A ′ and A ′′ in H , by formulae

(2.3)



Dom(A ′) :=
{
h = (h−, h0, h+) ∈ H

∣∣
1. h− ∈W 1

2 (R−, E∗), h+ ∈W 1
2 (R+, E)

2. ϕ := h0 +Q∗h−(0) ∈ Dom(A)

3. h+(0) = T ∗h−(0) + iΓϕ
}

A ′

h−
h0

h+

 :=

 i d
dξh−
−ih0 + (A+ iI)ϕ
i d
dξh+

 ,

h−
h0

h+

 ∈ Dom(A ′)

(2.4)



Dom(A ′′) :=
{
h = (h−, h0, h+) ∈ H

∣∣
1. h− ∈W 1

2 (R−, E∗), h+ ∈W 1
2 (R+, E)

2. ψ := h0 +Qh+(0) ∈ Dom(A∗)

3. h−(0) = Th+(0)− iΓ∗ψ
}

A ′′

h−
h0

h+

 :=

 i d
dξh−
ih0 + (A∗ − iI)ψ
i d
dξh+

 ,

h−
h0

h+

 ∈ Dom(A ′′)



FUNCTIONAL MODEL OF A CLOSED NON-SELFADJOINT OPERATOR 9

where W 1
2 (·, ·) are vector-valued Sobolev classes and ξ ∈ R± are the arguments of

functions from D±. Existence of boundary values h±(0) follows from the Sobolev
imbedding theorems.

Theorem 2.3. Operators A ′ and A ′′ coincide and A := A ′ = A ′′ is the selfad-
joint dilation of A.

Proof. Results of the paper [19] show that A ′ is the selfadjoint dilation of A. Let
us prove the equality A ′ = A ′′. Assume (h−, h0, h+) ∈ Dom(A ′). Then, using
notation introduced in (2.3) and (2.4),

ψ = h0 +Qh+(0) = h0 +Q[T ∗h−(0) + iΓϕ]

= h0 + T ∗Q∗h−(0) + iQ2(A+ iI)ϕ

= h0 + T ∗Q∗h−(0) + i(R+R∗ −R∗R)(A+ iI)ϕ

= h0 + T ∗Q∗h−(0)− [I + 2i(A∗ − iI)−1]ϕ+ (A∗ − iI)−1(A+ iI)ϕ

= h0 + T ∗(Q∗h−(0)− ϕ) + (A∗ − iI)−1(A+ iI)ϕ

= h0 − T ∗h0 + (A∗ − iI)−1(A+ iI)ϕ

= −2i(A∗ − iI)−1h0 + (A∗ − iI)−1(A+ iI)ϕ

= (A∗ − iI)−1[(A+ iI)ϕ− 2ih0].

Therefore, ψ ∈ Dom(A∗) and

(2.5) (A+ iI)ϕ− (A∗ − iI)ψ = 2ih0, (h−, h0, h+) ∈ Dom(A ′).

From (2.5) we obtain

Th+(0) = T (T ∗h−(0) + iΓϕ) = TT ∗h−(0) + iQ∗T (A+ iI)ϕ

= TT ∗h−(0) + iQ∗[(A+ iI)ϕ− 2iϕ]

= TT ∗h−(0) + iΓ∗ψ + 2Q∗(ϕ− h0)

= TT ∗h−(0) + iΓ∗ψ + 2Q2
∗h−(0) = h−(0) + iΓ∗ψ,

hence ψ ∈ Dom(A∗), so that Dom(A ′) ⊂ Dom(A ′′). We leave the proof of inverse
inclusion to the reader. The equality Dom(A ′) = Dom(A ′′) and formula (2.5) now
show that the mappings A ′ and A ′′ defined in (2.3) and (2.4) coincide on their
domain. Therefore, A ′ = A ′′. �

In order to describe the resolvent of A let us introduce closed densely defined
operators Υ± and Υ0

±:

Υ± := i
d

dξ
, Dom(Υ+) := W 1

2 (R+, E), Dom(Υ−) := W 1
2 (R−, E∗),

Υ0
± := i

d

dξ
, Dom(Υ0

+) :=
◦
W

1
2(R+, E), Dom(Υ0

−) :=
◦
W

1
2(R−, E∗),

where W 1
2 (·, ·) and

◦
W

1
2(·, ·) are the Sobolev classes. It is not difficult to show

that (Υ±)∗ = Υ0
± and ρ(Υ+) = ρ(Υ0

−) = C+, ρ(Υ−) = ρ(Υ0
+) = C−.
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Theorem 2.4. For any (h−, h0, h+) ∈ H the resolvent (A − zI)−1, z ∈ C \ R is
given by the formulae

(1) For z ∈ C− (A − zI)−1(h−, h0, h+)

=

 ψ−(ξ)
(A− zI)−1(h0 − Γ∗∗ψ−(0))

(Υ0
+ − zI)−1h+ + e−izξ

[
S∗(z̄)ψ−(0) + iΓ(A− zI)−1h0

]


(2) For z ∈ C+ (A − zI)−1(h−, h0, h+)

=

 (Υ0
− − zI)−1h− + e−izξ

[
S(z)ψ+(0)− iΓ∗(A∗ − zI)−1h0

]
(A∗ − zI)−1(h0 − Γ∗ψ+(0))

ψ+(ξ)


where ψ±(ξ) := (Υ± − zI)−1h±, z ∈ C±. Symbols (A − zI)−1Γ∗∗, (A∗ − zI)−1Γ∗

here in in the sequel denote bounded in corresponding half planes C± closures of
operators (A+iI)(A−zI)−1Q∗ and (A∗−iI)(A∗−zI)−1Q correspondingly. Bounded
analytic vector functions S and S∗ are are defined by the equalities

S(z) := T − (z − i)Γ∗(A∗ − zI)−1Q, z ∈ C+

S∗(z̄) := T ∗ − (z + i)Γ(A− zI)−1Q∗, z ∈ C−
where T = (A − iI)(A + iI)−1 is the Cayley transform of A and S∗(z̄) = [S(z̄)]∗,
z ∈ C−.

We omit the proof of Theorem 2.4. It consists in the direct verification of all
the statements. It is convenient to use representation for A in the form (2.3)
for z ∈ C− and in the form (2.4) for z ∈ C+. The interested reader is referred
to [44] Theorem 2.2, where analogous calculations were carried out for a special
case of operator A.

Statements of Theorem 2.4 show that apart from (2.2), the following identity
for A∗ holds

(2.6) (A∗ − zI)−1 = PH(A − zI)−1
∣∣
H
, z ∈ C+,

where PH = 0⊕ IH ⊕ 0 is the orthogonal projection from H onto H.
Selfadjointness of A and equalities (2.2) and (2.6) result in the following impor-

tant lemma.

Lemma 2.5 ([28, 32]). For any u ∈ H functions Γ(A−zI)−1u and Γ∗(A∗−zI)−1u
belong to the vector-valued Hardy classes H−

2 (E) and H+
2 (E∗), correspondingly, with

the norm estimates

‖Γ(A− zI)−1u‖H−
2 (E) ≤

√
2π‖u‖H , ‖Γ∗(A∗ − zI)−1u‖H+

2 (E∗) ≤
√

2π‖u‖H .

The proof is based on the relations for ΨA[·, ·] and Ψ(−A∗)[·, ·] established in
Lemma 2.1. Essentially, it repeats arguments of the work [28] (see [44] Lemma 2.4
as well) and is omitted here.

We conclude our review of results on the selfadjoint dilation of dissipative oper-
ator A with the theorem equivalent to the completeness of “incomoing” and “out-
going” systems of eigenvectors of continuous spectrum of the dilation A .

Consider two lineal manifolds in H

H± :=
{

(A − zI)−1D±
∣∣ z ∈ C±

}
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Here and below we use the same notation for subspaces D± and their imbed-
dings D− ↪→ D− ⊕ 0⊕ 0 and D+ ↪→ 0⊕ 0⊕D+ into the dilation space H .

Theorem 2.6. Let H0 ⊂ H be the maximal space that reduces A such that the
restriction A|H0 is selfadjoint. Then

clos(H− ∨H+) = H 	H0

Proof. Denote W the set of finite linear combinations from H− ∨H+:

(2.7) W :=

{
n∑

j=1

αj(A − zjI)−1fj +
m∑

s=1

βs(A − ζsI)−1gj , where

αj , βs ∈ C, zj ∈ C−, ζs ∈ C+,

fj ∈ D−, gs ∈ D+, j = 1, 2, . . . n <∞, s = 1, 2, . . .m <∞

}
We need to show that W is dense in H 	H0, or equivalently W ⊥ = H0.

Since s − limt→+∞(±it)(A ± itI)−1 = IH , we have D− ⊕ D+ ⊂ clos(H− ∨
H+). Therefore, W ⊥ ⊂ H. By the Hilbert identity, the set W is invariant for the
resolvent (A − zI)−1, hence W ⊥ is invariant for A as well due to selfadjointness
of A . From the dilation equalites (2.3) and (2.6) we obtain that (A − zI)−1

∣∣
W ⊥

coincides with the restriction (A − zI)−1
∣∣
W ⊥ for z ∈ C±. Hence, W ⊥ ⊂ H0 by the

definition of H0.
Let us prove the inverse inclusion. For vector w ∈ W as in (2.7) denote ψj :=

(Υ− − zjI)−1fj , and ϕs := (Υ+ − ζsI)−1gs where j = 1, 2, . . . n, s = 1, 2, . . .m.
Then according to Theorem 2.4 for any x ∈ H we have

(w, x) =
(∑

j

αj(A − zjI)−1fj +
∑

s

βs(A − ζsI)−1gs, x
)

= −
∑

j

αj

(
(A− zjI)−1Γ∗∗ψj(0), x

)
−
∑

s

βs

(
(A∗ − ζsI)−1Γ∗ϕs(0), x

)
= −

∑
j

αj

(
Q∗ψj(0), (A∗ − iI)(A∗ − z̄jI)−1x

)
−
∑

s

βs

(
Qϕs(0), (A+ iI)(A− ζ̄sI)−1x

)
If x ∈ H0 then x ⊥ Ran(Q) and x ⊥ Ran(Q∗) by the definition of defect spaces,
and (A∗ − iI)(A∗ − z̄jI)−1x ∈ H0, (A+ iI)(A− ζ̄sI)−1x ∈ H0 since H0 reduces A
and A∗. Hence (w, x) = 0 and H0 ⊂ W ⊥. �

Corollary 2.7. In notation of Theorem 2.6 the set

(2.8) W :=

{
n∑

j=1

αj(A− zjI)−1Γ∗∗ψj +
m∑

s=1

βs(A∗ − ζsI)−1Γ∗ϕs, where

αj , βs ∈ C, zj ∈ C−, ζs ∈ C+,

ψj ∈ E∗, ϕs ∈ E , j = 1, 2, . . . n <∞, s = 1, 2, . . .m <∞

}
is dense in H 	H0.
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Proof. Sets {ϕj(0)} and {ψs(0)} in the Theorem proof coincide with E and E∗
respectively by virtue of the Sobolev imbedding theorem. Hence, the set W is the
projection of W onto H. The rest follows from the Theorem 2.6. �

2.1.3. Characteristic function. A characteristic function of the Cayley transform
of operator A, the contraction T = (A − iI)(A + iI)−1, can be introduced by the
formula (cf. [32]),

(2.9) ϑT (z) := (T − z∆T∗(I − zT ∗)−1∆T )
∣∣
E , z−1 ∈ ρ(T ∗).

Function ϑT (z) is analytic in the unit disc z ∈ D. Easily verifiable equalities

(2.10)
I − ϑ∗T (ζ̄)ϑT (z) = (1− zζ)∆T (I − ζT )−1(I − zT ∗)−1∆T

I − ϑT (ζ)ϑ∗T (z̄) = (1− zζ)∆T∗(I − ζT ∗)−1(I − zT )−1∆T∗

evaluated at z = ζ̄ ∈ D show that values of ϑT are contractive operators that map E
into E∗. According to [47] we will call characteristic function of A ∈ C+(H) the
contractive in C+ analytic operator function

(2.11) S(z) := ϑT

(
z − i

z + i

)
, T = (A− iI)(A+ iI)−1.

Direct calculations based on (2.9) and (2.11) yield the representation (cf. Theo-
rem 2.4)

S(z) =
(
T + i(z − i)Γ∗(A∗ − zI)−1Q

)∣∣
E , z ∈ ρ(A∗).

It follows from the analyticity and contractiveness that there exist non-tangential
boundary values of S in the strong operator topology almost everywhere on the real
axis

S(k) := s− lim
ε↓0

S(k − iε), almost all k ∈ R.

At that, ‖S(k)‖ ≤ 1 for almost all k ∈ R (see [32]). Moreover, it can be shown that
the characteristic function S satisfies

(2.12) S(z)Γu = Γ∗(A∗ − zI)−1(A− zI)u, z ∈ ρ(A∗), u ∈ Dom(A).

and that the equation (2.12) determines the function S uniquely ([47]).
We conclude the characteristic function discussion with the formula for S∗ ob-

tained directly from its definition

S∗(z̄) =
(
T ∗ − i(z + i)Γ(A− zI)−1Q∗

)∣∣
E∗
, z ∈ ρ(A).

Function S∗ is contractive in the lower half-plane C− and almost everywhere on
the real axis there exist its strong non-tangential boundary values S∗(k) that are
contractive operators. Moreover, S∗(k) = S(k) for almost all k ∈ R (see [32]).

2.2. Model construction. It is well known ([32, 33, 34]) that for the model con-
struction of operator A it is sufficient to pass to a spectral representation of its
dilation A so that A becomes the multiplication operator

(A − zI) ∼= (k − z)−1, z ∈ ρ(A ), k ∈ R.

If such a representation is found, then according to (2.2), A is unitarily equivalent
to its functional model

(2.13)
(A− zI) ∼= PH(k − z)−1

∣∣
H
, z ∈ C−, k ∈ R.

(A∗ − zI) ∼= PH(k − z)−1
∣∣
H
, z ∈ C+, k ∈ R.
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where PH is the projection to the image of H under the spectral mapping. Here
and in the sequel we use the same symbols for unitarily equivalent objects in hope
that it would not lead to confusion. The construction of spectral mapping for A
given below closely follows ideas of [36, 28, 26]. It is assumed everywhere that the
operator A is completely non-selfadjoint, that is, the subspace H0 introduced in the
Theorem 2.6 is trivial. Then the dilation A constructed in Theorem 2.3 is minimal,
as follows from the Theorem 2.4 and density properties of exponents.

2.2.1. Model space. Following [36], [28] we arrive at the model Hilbert space H =

L2

( I S∗
S I

)
by the factorization and subsequent completion of the linear mani-

fold {
(
g̃
g

)
: g̃ ∈ L2(E), g ∈ L2(E)} of E ⊕E∗-valued vector functions with respect to

the norm

(2.14)
∥∥∥∥(g̃g

)∥∥∥∥2

H

:=
∫

R

〈(
I S∗
S I

)(
g̃

g

)
,

(
g̃

g

)〉
E⊕E∗

dk

Note that, in general the completion operation makes it impossible to treat indi-
vidual components g̃, g of a vector

(
g̃
g

)
∈ H as regular L2-functions. However, two

equivalent forms of the H-norm∥∥∥∥(g̃g
)∥∥∥∥2

H

= ‖S g̃ + g‖2L2(E) + ‖∆∗g‖2L2(E) = ‖g̃ + S∗g‖2L2(E) + ‖∆g̃‖2L2(E) ,

where ∆ :=
√
I − S∗S and ∆∗ :=

√
I − SS∗ show that for each

(
g̃
g

)
∈ H expressions

S g̃ + g, g̃ + S∗g, ∆g̃, and ∆∗g are in fact usual square summable vector-functions
from L2(E) or L2(E∗). Moreover, these equalities show that the right hand side
of (2.14) is non-negative, therefore the norm ‖ · ‖H is definite.

Operator-function
(
g̃
g

)
7→ (k− z)−1

(
g̃
g

)
, where

(
g̃
g

)
∈ H, k ∈ R is the independent

variable, and z ∈ C \ R, is the resolvent of the multiplication operator f 7→ kf ,
f ∈ H acting in H. It is an absolutely continuous selfadjoint operator with the
spectrum covering the whole real axis (cf. [32]).

Subspaces in H

D+ :=
(
H+

2 (E)
0

)
, D− :=

(
0

H−
2 (E∗)

)
, H := H	 [D+ ⊕D−]

where H±
2 (E(∗)) are Hardy classes of E(∗)-valued vector functions analytic in C±,

are mutually orthogonal. Here and in the following analytic functions from vector-
valued Hardy classesH±

2 (E) are equated with their boundary values existing almost
everywhere on the real axis. These boundary values form two complementary or-
thogonal subspaces in L2(R, E) = H+

2 (E) ⊕ H−
2 (E). (See [41] for details.) The

subspace H can be described explicitly:

H =
{(

g̃

g

)
∈ H : g̃ + S∗g ∈ H−

2 (E), S g̃ + g ∈ H+
2 (E∗)

}
Orthogonal projection PH from H onto H is defined by the following formula

(2.15) PH

(
g̃

g

)
=
(
g̃ − P+(g̃ + S∗g)
g − P−(S g̃ + g)

)
, g̃ ∈ L2(E), g ∈ L2(E∗)

where P± are the orthogonal projections from L2 onto Hardy classes H±
2 .
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2.2.2. Spectral representation of dilation A . In accordance with [28], introduce two
linear mappings F+ : H → L2(R, E) and F− : H → L2(R, E∗)

(2.16)
F+ : h 7→ − 1√

2π
Γ(A− k + i0)−1h0 + S∗(k)ĥ−(k) + ĥ+(k)

F− : h 7→ − 1√
2π

Γ∗(A∗ − k − i0)−1h0 + ĥ−(k) + S(k)ĥ+(k)

where h := (h−, h0, h+) ∈ H and ĥ± are the Fourier transforms of h± ∈ D± ex-
tended by zero to the complementary semiaxis, ĥ± = (2π)−1/2

∫
R± h±(ξ)eikξdξ. By

virtue of Paley-Wiener theorem, ĥ± ∈ H±
2 , see [41]. Due to Lemma 2.5 boundary

values Γ(A− k+ i0)−1h0 and Γ∗(A∗− k− i0)−1h0 exists for any h0 ∈ H for almost
all k ∈ R and belong to L2(E) and L2(E∗) correspondingly. Moreover, according to
this Lemma and boundedness of operator functions S(k), S∗(k), mappings (2.16)
are bounded as operators from H to L2(E) and L2(E∗).

The distinguished role of F± is revealed in the next Theorem where A is the
minimal selfadjoint dilation of operator A.

Theorem 2.8 (Model Theorem). There exists an unique mapping Φ from the
dilation space H onto the model space H with the properties:

(1) Φ is an isometry.
(2) g̃ + S∗g = F+h, S g̃ + g = F−h, where

(
g̃
g

)
= Φh, h ∈ H

(3) Φ ◦ (A − zI)−1 = (k − z)−1 ◦ Φ, z ∈ C \ R
(4) ΦH = H, ΦD± = D±
(5) F± ◦ (A − zI)−1 = (k − zI)−1 ◦F±, z ∈ C \ R.

Property (3) means that Φ maps A into the multiplication operator on the
space H; therefore, the dissipative operator A is mapped into its model represen-
tation (2.13), as required.

2.3. Notes on the Proof of Model Theorem. The proof of Theorem 2.8 is
based on direct verification of all its statements for the spectral isometry Φ that
maps A into the multiplication operator acting on H. Following [28], we define
Φ : H → H initially on the set (D−,W,D+) dense in H . In notation of (2.8) let
(h−, h0, h+) ∈ (D−,W,D+), where

h0 =
n∑

j=1

αj(A− zjI)−1Γ∗∗ψj +
m∑

s=1

βs(A∗ − ζsI)−1Γ∗ϕs

We define the map Φ by

Φ :

h−h0

h+

 7→

(
ĥ+ + i√

2π

[∑
j

αj

k−zj
[S(z̄j)]∗ψj +

∑
s

βs

k−ζs
ϕs

]
ĥ− − i√

2π

[∑
j

αj

k−zj
ψj +

∑
s

βs

k−ζs
S(ζs)ϕs

] )

Here ĥ± are Fourier transforms of functions h± ∈ L2(R±, E(∗)). Uniqueness of the
map Φ that satisfies (2) follows directly from the definition of norm in H. Secondly,
equalities ΦD± = D± for Φ hold true by virtue of Paley-Wiener theorem. Moreover,
since Fourier transforms h± 7→ ĥ± are isometric, restrictions Φ|D± are isometries
onto D±. Property (3) follows from (2), (5), and the isometric property of of Φ.
The full proof of the Theorem goes beyond the scope of this paper. We refer the
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reader to works [28] and [44], where analogous calculations were carried out for
special cases of dissipative operator A.

3. Non-dissipative operator

3.1. Closed operators and J-spaces. Let L ∈ C (H) be a closed nonselfadjoint
operator on the Hilbert space H with the dense domain Dom(L) and non-empty
resolvent set. Without any loss of generality we assume that −i ∈ ρ(L). Then the
Cayley transform of L

V := (L− iI)(L+ iI)−1 = I − 2i(L+ iI)−1

is the bounded operator on H. In what follows we assume that L is not dissipa-
tive, or equivalently, V is not a contraction, and that L does not have nontrivial
selfadjoint parts, which is equivalent to the triviality of the unitary part of V .

3.1.1. Characteristic function of operator L. The characteristic function of V is
analytic operator-valued function defined by

(3.1) ϑV := (V − ζJ∗∆V ∗(I − ζV ∗)−1∆V )
∣∣
E
, ζ−1 ∈ ρ(V ∗)

where operators

∆V := |I − V ∗V |1/2, ∆V ∗ := |I − V V ∗|1/2, J∗ := sign(I − V V ∗)

are defined as functions of selfadjoint operators I − V ∗V and I − V V ∗, cf. [7, 47].
Analogously to the case of dissipative operator A, the function ϑV acts between
defect spaces E := closRan(∆V ) and E∗ := closRan(∆V ∗), ϑV : E → E∗. In-
troduce one more operator J := sign(I − V ∗V ). Note that both J and J∗ are
involutions, that is, J = J−1 = J∗, J∗ = J−1

∗ = J∗∗ as mappings on E and E∗.
Moreover, J∆V = ∆V J and J∗∆V ∗ = ∆V ∗J∗. Direct calculations yield

J − [ϑV (z)]∗J∗ϑV (ζ)=(1−z̄ζ)∆V (I−z̄V )−1(I−ζV ∗)−1∆V

J∗ − ϑV (z)J [ϑV (ζ)]∗=(1−zζ̄)J∗∆V ∗(I−zV ∗)−1(I−ζ̄V )−1J∗∆V ∗

where z−1, ζ−1 ∈ ρ(V ∗). For z = ζ we have

(3.2)
J − [ϑV (ζ)]∗J∗ϑV (ζ)=(1−|ζ|2)∆V (I−ζ̄V )−1(I−ζV ∗)−1∆V

J∗ − ϑV (ζ)J [ϑV (ζ)]∗=(1−|ζ|2)J∗∆V ∗(I−ζV ∗)−1(I−ζ̄V )−1J∗∆V∗

Similar to the definition of S(·) via ϑT (·) given in (2.11), the characteristic function
of L is defined as the function Θ(z) := ϑV ((z − i)(z + i)−1), z ∈ ρ(L∗). We will
not require its expression in terms of L, even though it is not difficult to obtain by
analogy with the case of dissipative operators explained earlier.

3.1.2. Potapov-Ginzburg transform. Introduce four orthogonal projections on the
spaces E and E∗ respectively, X± := (IE±J)/2 andX±

∗ := (IE∗±J∗)/2. Obviously,
IE = X+ +X−, J := X+ −X− and the same relations are valid for X±

∗ and E∗.
Involutions J , J∗ define indefinite products J [·, ·] and J∗[·, ·] on spaces E, E∗ by
formulae

J [x, x] := (Jx, x)E = ‖X+x‖2 − ‖X−x‖2, x ∈ E
J∗[y, y] := (J∗y, y)E∗ = ‖X+

∗ y‖2 − ‖X−
∗ y‖2, y ∈ E∗

where (·, ·)E , (·, ·)E∗ are Hilbert scalar products in E and E∗. With indefinite
metrics induced by these products spaces E and E∗ become so called Krein spaces
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(or J-spaces). For more detail on the theory of Krein spaces required in the sequel
we refer the reader to [6] where further refrernces can be found.

Definition 3.1. Let M : E → E∗ be a bounded operator. Suppose the equality
Ker(X−

∗ MX−
∣∣
X−E

) = {0} holds. The mapping ω(M) defined by the formula

ω(M) := (X− +X+
∗ M)(X+ +X−

∗ M)−1

is called Potapov-Ginzburg transform (PG-transform) of M .

The PG-transform ω(M) is a bounded operator from E+ := X+E ⊕ X−
∗ E∗ to

the space E− := X−E ⊕X+
∗ E∗. It is assumed that E± are endowed with Hilbert

metrics, that is, IE+ := X+ +X−
∗ and IE− := X− +X+

∗ .

Definition 3.2. Operator M : E → E∗ is called (JJ∗)-bi-non-expansive (respec-
tively, (JJ∗)-bi-non-contractive) if for any x ∈ E, y ∈ E∗

J∗[Mx,Mx] ≤ J [x, x], J [M∗y,M∗y] ≤ J∗[y, y](
J∗[Mx,Mx] ≥ J [x, x], J [M∗y,M∗y] ≥ J∗[y, y]

)
Here M∗ is the adjoint of M in the Hilbert metric of spaces E, E∗.

Let M be (JJ∗)-bi-non-expansive and x ∈ X−E is such that X−
∗ Mx = 0. Then

0 ≤ ‖X+
∗ Mx‖2 = J∗[Mx,Mx] ≤ J [x, x] = −‖X−x‖2 ≤ 0 ⇒ x = 0

This simple observation shows that any (JJ∗)-bi-non-expansive operator satisfies
the condition of the PG-transform applicability from Definition 3.1 .

Theorem 3.3. The PG-transform M 7→ ω(M) establishes a one-to-one corre-
spondence between bounded (JJ∗)-bi-non-expansive operators M : E → E∗ and
non-expansive operators (contractions) W := ω(M) : E+ → E− satisfying condi-
tion Ker(X−WX−

∗
∣∣
X−
∗ E

) = {0}. Moreover, Ran(X−WX−
∗ ) = X−E.

Theorem 3.4. For any bounded (JJ∗)-bi-non-expansive operator M formulae

(3.3)
ω(M) := (X− +X+

∗ M)(X+ +X−
∗ M)−1

ω(M) := −(X+
∗ −MX−)−1(X−

∗ −MX+)

define the same operator. At that, the inversion formulae are valid

(3.4)
M = (X−

∗ +X+
∗ W )(X+ +X−W )−1

M = −(X+
∗ −WX−

∗ )−1(X− −WX+)

Proof of Theorem 3.3 can be found in [6], Chapter 5. Theorem 3.4 was proven
in [16] for the case E = E∗. The general case is considered quite similarly by
methods of linear relation theory [46]. Moreover, all factors in (3.3) and (3.4) are
bounded operators and the formal passage to adjoint operators in these formulae
yields correct results.

In notation of Theorem 3.4 following identities are verified directly

(X+ +X−
∗ M)−1 = X+ + (X−

∗ MX−)−1(X−
∗ −X−

∗ MX+)

(X−WX−
∗ )−1

∣∣
X−E

= X−
∗ MX−∣∣

X−E

and

(3.5)
(X+ +X−

∗ M)−1 = X+ +X−W

(X+
∗ −MX−)−1 = X+

∗ −WX−
∗
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Furthermore, for Wj := ω(Mj), j = 1, 2

(3.6)

I −W ∗
kWj = (X+ +M∗

kX
−
∗ )−1(J −M∗

kJ∗Mj)(X+ +X−
∗ Mj)−1

I −WkW
∗
j = (X+

∗ −MkX
−)−1(J∗ −MkJM

∗
j )(X+

∗ −X−M∗
j )−1

J −M∗
kJ∗Mj = (X+ +W ∗

kX
−)−1(I −W ∗

kWj)(X+ +X−Wj)−1

J∗ −MkJM
∗
j = (X+

∗ −WkX
−
∗ )−1(I −WkW

∗
j )(X+

∗ −X−
∗ W

∗
j )−1

where k, j = 1, 2. Equations (3.6) illustrate the correspondence between metric
properties of (JJ∗)-bi-non-expansive operators M1, M2 and their PG-transforms,
contractions Wj = ω(Mj), j = 1, 2.

There exist a parallel version of PG-transform For (JJ∗)-bi-non-contractive op-
erators which formally can be obtained from statements of Theorem 3.3 and The-
orem 3.4. In order to get correct results, one merely needs to exchange roles that
the “negative” and “positive” projections play, X− ↔ X+, X−

∗ ↔ X+
∗ . Let us

formulate a version of Theorem 3.4 for (JJ∗)-bi-non-contractions.

Theorem 3.5. For any bounded (JJ∗)-bi-non-contractive operator M formulae

(3.7)
ω+(M) := (X+ +X−

∗ M)(X− +X+
∗ M)−1

ω+(M) := −(X−
∗ −MX+)−1(X+

∗ −MX−)

define the same operator. At that, the inversion formulae are valid

M = (X+
∗ +X−

∗ W )(X− +X+W )−1

M = −(X−
∗ −WX+

∗ )−1(X+ −WX−)

where W = ω+(M).

Despite of expectations one may have, the PG-transform ω+(M) defined in The-
orem 3.5 is a contractive operator ω+(M) : E− → E+. This fact can be easily
derived from definitions (3.7).

3.2. PG-transform of function ϑV . Relations (3.2) show that values of the char-
acteristic function ϑV (z) are (JJ∗)-bi-non-expansive operators for z−1 ∈ ρ(V ∗),
|z| < 1. Therefore, for these z ∈ D the PG-transforms τ(z) := ω(ϑV (z)) is the
analytic operator-function whose values are contractions from E+ to E−.

The next Theorem plays the principal role in the model construction for opera-
tor L.

Theorem 3.6. In the notation introduced above:

(1) Contractive analytic operator function τ(z) := ω(ϑV (z)), z−1 ∈ ρ(V ∗),
|z| < 1 can be written in the form

τ(z) = T11 + zT12(I − zT22)−1T21,

where T11 : E+ → E−, T12 : H → E−, T21 : E+ → H, T22 : H → H.
(2) Operator T22 is a contraction, ‖T22‖ ≤ 1. Consequently, function τ(z) is

analytic for z ∈ D.
(3) Denote T := T ∗22. Unitary parts of operators V and T coincide, and under

assumptions of the paper, are trivial.
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(4) Let ϑT (z) : E → E∗, z ∈ D be the characteristic function of the contractive
operator T := T ∗22 defined by (2.9). Then there exist two linear isome-
tries p : E → E+ and p′ : E∗ → E− with the property

τ(z) = p′ϑT (z)p∗, z−1 ∈ ρ(V ∗), |z| < 1.

Therefore, the operator function τ(z) is analytically extendable to the unit
disc and its values are contractive operators from E+ to E− for all z ∈ D.

Proof. Proof of Theorem 3.6 is based on the results of D. Arov from [5] (see [6] for
a concise account) and direct calulations.

(1) The claimed representation for τ(z) is valid for any bounded operator-
function analytic in a neighborhood of the origin ([5]).

(2) Characteristic function ϑV (z) from (3.1) defines a bounded operator-matrix

V :=
(
V |E −J∗∆V ∗

∆V V ∗

)
: E ⊕H → E∗ ⊕H.

Introduce involutions J, J∗ in Hilbert spaces E ⊕ H and E∗ ⊕ H respectively by
formulae J := J⊕IH , J∗ := J∗⊕IH . These involutions induce the structure of Krein
spaces in E ⊕H and E∗ ⊕H. Direct calculations show that operator V is (JJ∗)-
unitary with respect to indefinite metrics generated by J and J∗. In other words,
J−V∗J∗V = 0 and J∗−VJV∗ = 0. Since (JJ∗)-unitary operators are the special
case of (JJ∗)-bi-non-expansive operators, Theorem 3.3 is applicable to V and V∗.
It follows from equalities (3.6) that the PG-transform of V denoted T := ω(V) is
an isometry between E+ ⊕H and E− ⊕H. Calculations yield its precise form:

(3.8) T =
(

ω(V0) −(X+
∗ − V0X

−)−1J∗∆V ∗

∆V (X+ +X−
∗ V0)−1 V ∗ + ∆V (X−

∗ V0X
−)−1X−

∗ J∗∆V ∗

)
where we used notation V0 := ϑV (0) = V |E .

A fundamental result from [5] says that blocks of the PG-transform T of the op-
erator V are exactly blocks in the representation for ω(ϑV (z)) in the statement (1)
of Theorem. In other words, operators T11, T12, T21, and T22 from statement (1)
are given by (3.8):

(3.9)
T11 = ω(V0), T12 = −(X+

∗ − V0X
−)−1J∗∆V ∗ ,

T21 = ∆V (X+ +X−
∗ V0)−1, T22 = V ∗ + ∆V (X−

∗ V0X
−)−1X−

∗ J∗∆V ∗

According to properties of PG-transform, operators T and T∗ are isometries in
Hilbert norms, T∗T = IE+⊕H , TT∗ = IE−⊕H . Detailed form of these identities is

(3.10)

(
IE+ 0
0 IH

)
=
(
T ∗11T11 + T ∗21T21 T ∗11T12 + T ∗21T22

T ∗12T11 + T ∗22T21 T ∗12T12 + T ∗22T22

)
(
IE− 0
0 IH

)
=
(
T11T

∗
11 + T12T

∗
12 T11T

∗
21 + T12T

∗
22

T21T
∗
11 + T22T

∗
12 T21T

∗
21 + T22T

∗
22

)
An immediate consequence of (3.10)

(3.11) I − T ∗22T22 = T ∗12T12 ≥ 0, I − T22T
∗
22 = T21T

∗
21 ≥ 0

shows that both operator T22 and its adjoint T ∗22 are contractions.
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(3) Denote T := T ∗22. It is a contractive operator on H. Due to (3.11) and (3.9)
the defect operators (2.1) of T are

∆2
T = I − T22T

∗
22 = ∆V (X+ +X−

∗ V0)−1(X+ + V ∗0 X
−
∗ )−1∆V

∆2
T∗ = I − T ∗22T22 = J∗∆V ∗(X+

∗ −X−V ∗0 )−1(X+
∗ − V0X

−)−1J∗∆V ∗

Therefore, there exist two isometries p : E → E and p′ : E∗ → E∗, where E , E∗ are
defect subspaces of T , such that

(3.12)
p∆T = T ∗21 = (X+ + V ∗0 X

−
∗ )−1∆V ,

p′∆T∗ = −T12 = (X+
∗ − V0X

−)−1J∗∆V ∗

Further, due to (3.9) operator T has the form

(3.13) T := V + J∗∆V ∗(X−V ∗0 X
−
∗ )−1X−∆V

Now, if H0 ⊂ H is the space that reduces V and the part V |H0 is unitary, then
∆V |H0 = 0 and ∆V ∗ |H0 = 0. It follows from (3.12) that ∆T |H0 = ∆T∗ |H0 =
0. Moreover, according to (3.13) operator T |H0 coincides with V |H0 , therefore is
unitary. Obviously, operators T and V in this argument can be swapped, and that
completes the proof of statement (3).

(4) Characteristic function ϑT (z), |z| < 1 of the contraction T is defined
in (2.9). Its values are contractive operators acting between defect subspaces E , E∗
of T . Passing to adjoint operators in (3.12) and taking into consideration invert-
ibility of terms in (3.12) we have Ran(∆T ) = Ran(∆V ), Ran(∆T∗) = Ran(∆V ∗).
Therefore, the defect subspaces of T and V coincide: E = E , E∗ = E∗. Next,
for |z| < 1 we obtain in accordance with (3.12),

p′ϑT (z)p∗ = p′ (T |E) p∗ − zp′∆T∗(I − zT ∗)−1∆T p
∗

= p′ (T |E) p∗ + zT12(I − zT22)−1T21

and we only need to show that p′ (T |E) p∗ = T11. Let use one of the identities (3.10)
again. Due to (3.12) and interwining property T∆T = ∆T∗T ,

0 = T11T
∗
21 + T12T

∗
22 = T11p∆T − p′∆T∗T = (T11p− p′T )∆T .

Therefore, T11p x = p′Tx for any x ∈ Ran(∆T ). Since the range Ran(∆T ) is dense
in E = E , all operators here are bounded, and p is an isometry, we finally obtain
T11 = p′(T |E)p∗.

The proof is complete. �

Analogous theory can be developed for values of characteristic function ϑV (z),
z−1 ∈ ρ(V ∗) outside of the unit disc, |z| > 1. As equalities (3.2) show, opera-
tors ϑV (z) in this case are (JJ∗)-bi-non-contractive according to Definition 3.2.
Therefore, Theorem 3.5 is applicable and analytic operator-function ω+(ϑV (z)),
z−1 ∈ ρ(V ∗), |z| > 1 is contractive. Next result establishes a close relationship
between this function and τ(·) defined in Theorem 3.6.

Theorem 3.7. For any z ∈ ρ(V ) ∩ D

(3.14)

ϑV (1/z̄) = (X+
∗ +X−

∗ τ
∗(z))(X− +X+τ∗(z))−1

ϑV (1/z̄) = −(X−
∗ − τ∗(z)X+

∗ )−1(X+ − τ∗(z)X−)

τ∗(z) = (X+ +X−
∗ ϑV (1/z̄))(X− +X+

∗ ϑV (1/z̄))−1

τ∗(z) = −(X−
∗ − ϑV (1/z̄)X+)−1(X+

∗ − ϑV (1/z̄)X−)
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or equivalently,
ω+(ϑV (1/z̄)) = τ∗(z), z ∈ ρ(V ) ∩ D.

It is convenient to postpone the proof of Theorem 3.7 until more results on
resolvents of V and T become available. At this moment we only note that
equalities (3.14) are equivalent to one another due to properties of transform ω+

explained in Theorem 3.5. Furthermore, any of them yield the claimed iden-
tity ω+(ϑV (1/z̄)) = τ∗(z) due to uniqueness of the PG-transform.

3.3. Resolvent identities. Resolvents of operators V and T are related via usual
Hilbert identities. We need their variant

(3.15) (I − zT )−1 − (I − zV )−1 = z(I − zV )−1(T − V )(I − zT )−1

where z ∈ D in some neighborhood of the origin. According to (3.12) the dif-
ference T − V = J∗∆V ∗(X−V ∗0 X

−
∗ )−1X−∆V from (3.13) can be recast into the

form

T − V = J∗∆V ∗(X−V ∗0 X
−
∗ )−1X−(X+ + V ∗0 X

−
∗ )p∆T = J∗∆V ∗X−

∗ p∆T

Therefore, from (3.15) we obtain

p∆T (I − zV )−1 =
[
I − zp∆T (I − zV )−1J∗∆V ∗X−

∗
]
p∆T (I − zT )−1

and with help of (3.12),

(3.16)

∆V (I − zV )−1 = (X+ + V ∗0 X
−
∗ )p∆T (I − zV )−1

=
[
X+ + V ∗0 X

−
∗ − z∆V (I − zV )−1J∗∆V ∗X−

∗
]
p∆T (I − zT )−1

=
[
X+ + [ϑV (z̄)]∗X−

∗
]
p∆T (I − zT )−1.

Quite analogously, since

(I − zT ∗)−1 − (I − zV ∗)−1 = z(I − zV ∗)−1(T ∗ − V ∗)(I − zT ∗)−1

and
T ∗ − V ∗ = ∆V (X−

∗ V0X
−)−1X−

∗ J∗∆V ∗ = −∆V X
−p′∆T∗

we have

p′∆T∗(I − zV ∗)−1 =
[
I + zp′∆T∗(I − zV ∗)−1∆V X

−] p′∆T∗(I − zT ∗)−1.

Therefore,

(3.17)

J∗∆V ∗(I − zV ∗)−1 = (X+
∗ − V0X

−)p′∆T∗(I − zV ∗)−1

=
[
X+
∗ − V0X

− + zJ∗∆V ∗(I − zV ∗)−1∆V X
−] p′∆T∗(I − zT ∗)−1

=
[
X+
∗ − ϑV (z)X−] p′∆T∗(I − zT ∗)−1.

Formulae (3.16) and (3.17) comprise first two statements of the next Theorem

Theorem 3.8. For any z ∈ D the “resolvent identities” hold

p∆T (I − zT )−1 =
[
X+ + ϑ∗V (z̄)X−

∗
]−1 ∆V (I − zV )−1

p′∆T∗(I − zT ∗)−1 =
[
X+
∗ − ϑV (z)X−]−1

J∗∆V ∗(I − zV ∗)−1

p′∆T∗(I − zT ∗)−1(V − zI) = [X− + τ(z)X+]∆V

p∆T (I − zT )−1(V ∗ − zI) = [−X−
∗ + τ∗(z̄)X+

∗ ]J∗∆V ∗
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Proof. The right hand side of first two equalities are analytic functions for all z ∈ D
since the left hand sides are analytic in the whole of unit disc. Their correctness in
a neighborhood of the origin is proven by (3.16) and (3.17). The rest follows from
the analyticity.

In order to verify two last statements we need the following relation for the
characteristic function ϑV (·),

ϑV (z)J∆V = J∗∆V ∗(I − zV ∗)−1(V − zI), z−1 ∈ ρ(V ∗), |z| < 1

Its proof is a straightforward exercise and we omit it here. Let us now consider the
third formula in the Theorem’s statement. We have

p′∆T∗(I − zT ∗)−1(V − zI)

=
(
X+
∗ − ϑV (z)X−)−1

J∗∆V ∗(I − zV ∗)−1(V − zI)

=
(
X+
∗ − ϑV (z)X−)−1

ϑV (z)J∆V

From the other side, according to the definition of PG-transform (3.3)

(X− + τ(z)X+)∆V

=
[
X− − (X+

∗ − ϑV (z)X−)−1(X−
∗ − ϑV (z)X+)X+

]
∆V

= (X+
∗ − ϑV (z)X−)−1

[
−ϑV (z)X− + ϑV (z)X+

]
∆V

= (X+
∗ − ϑV (z)X−)−1ϑV (z)J∆V ,

as required. The last equality in the Theorem claim is verified analogously.
The proof is complete. �

Now we are in position to prove Theorem 3.7.

Proof of Theorem 3.7. Let us check the first equality (3.14) rewritten in the form

(3.18) ϑV (1/z̄)(X− +X+τ∗(z)) = X+
∗ +X−

∗ τ
∗(z), z ∈ ρ(V ) ∩ D.

We start with the expression for ϑV (1/z̄) resulting from (3.12)

ϑV (1/z̄) = V0 − (1/z̄)J∗∆V ∗ (I − (1/z̄)V ∗)−1 ∆V

= V0 + J∗∆V ∗(V ∗ − z̄I)−1∆V

= V0 + (X+
∗ − V0X

−)p′∆T∗(V ∗ − z̄I)−1∆V

Next, by passing to adjoint operators in the third formula of Theorem 3.8 we obtain

∆V (X− +X+τ∗(z)) = (V ∗ − z̄I)(I − z̄T )−1∆T∗(p′)∗

The last ingredient of the proof is the second identity (2.10) for ζ = 0

I − T0ϑ
∗(z̄) = ∆T∗(I − zT )−1∆T∗

and its consequence due to statement (4) of Theorem 3.6

I − τ(0)τ∗(z) = I − ω(V0)τ∗(z) = p′∆T∗(I − z̄T )−1∆T∗(p′)∗.
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where V0 := V |E . Now we have for the left hand side of (3.18)

ϑV (1/z̄)(X− +X+τ∗(z))

=
[
V0 + (X+

∗ − V0X
−)p′∆T∗(V ∗ − z̄I)−1∆V

]
(X− +X+τ∗(z))

= V0(X− +X+τ∗(z)) + (X+
∗ − V0X

−)p′∆T∗(I − z̄T )−1∆T∗(p′)∗

= V0(X− +X+τ∗(z)) + (X+
∗ − V0X

−)(I − τ(0)τ∗(z))

= X+
∗ + [V0X

+ − (X+
∗ − V0X

−)τ(0)]τ∗(z)

= X+
∗ + [V0X

+ + (X−
∗ − V0X

+)]τ∗(z) = X+
∗ +X−

∗ τ
∗(z),

where on the last step we used the second definition (3.3) for τ(0) = ω(V0). Equal-
ity (3.18) is obtained, which completes the proof. �

Corollary 3.9. Theorem 3.7 shows that operator functions on the right hand side
of two last resolvent identities of Theorem 3.8 are boundedly invertible for suitable
values of z ∈ D. More precisely,

p′∆T∗(I − zT ∗)−1 = [X− + ϑ∗V (1/z̄)X+
∗ ]−1∆V (V − zI)−1, z ∈ ρ(V ) ∩ D

p∆T (I − zT )−1 = [−X−
∗ + ϑV (1/z)]−1J∗∆V ∗(V ∗ − zI)−1, z ∈ ρ(V ∗) ∩ D

where (
X− + ϑ∗V (1/z̄)X+

∗
)−1 = X− + τ(z)X+, z ∈ ρ(V ) ∩ D(

−X−
∗ + ϑV (1/z)X+

)−1 = −X−
∗ + τ∗(z̄)X+

∗ , z ∈ ρ(V ∗) ∩ D

according to analogs of properties (3.6) for PG-transform ω+.

3.4. Dissipative operator and factorizations of characteristic function.
Now we return to the initial setting of non-bounded operators. Recall that L
is completely non-selfadjoint non-dissipative operator with the characteristic oper-
ator function Θ(z) := ϑV ((z − i)(z + i)−1) analytic in some neighborhood of z = i.
Let us show that the operator T introduced in (3.13) is a Cayley transform of
some completely non-selfadjoint operator A ∈ C +(H). To that end we only have
to show that (T − I) is invertible. Then A := (−i)(T + I)(T − I)−1 defined
on Ran(A) := Ran(T − I) satisfies all conditions listed above. Theorem 3.6 ensures
that T is completely non-unitary. By duality, so is the adjoint T ∗. Therefore, z = 1
does not belong to the point spectrum of T and T ∗. Otherwise, the part of T
in corresponding eigenspace would be an unitary. Since Ker(T ∗ − I) = {0}, the
range Ran(T − I) is dense in H. On the other hand, Ker(T − I) = {0} means that
there exists an unbounded inverse (T − I)−1 defined on the dense set Ran(T − I).
This inverse is a closed operator because T is defined everywhere in H.

Let S(z), z ∈ C+ be the characteristic function of A := (−i)(T + I)(T − I)−1.
Due to the definition (2.11) and Theorem 3.6, τ((z − i)/(z + i)) = p′S(z)p∗ for
z ∈ C+. Introduce bounded analytic function

S(z) = τ((z − i)/(z + i)) = p′S(z)p∗, z ∈ C+

According to [47], S(·) is called characteristic function of A as well. Obviously,
function S(·) can be used to construct the Sz.-Nagy-Foiaş model for A in the same
manner as the function S(·) was used in Section 2. The only difference is the choice
of defect spaces. In place of E , E∗ one should use E+ and E−, respectively.
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Let us rewrite relationships between characteristic functions Θ and S stated in
Theorems 3.4, 3.5, and 3.7. For ζ ∈ ρ(L∗) ∩ C−

(3.19)

Θ(ζ) = (X+
∗ +X−

∗ S
∗(ζ̄))(X− +X+S∗(ζ̄))−1

Θ(ζ) = −(X−
∗ − S∗(ζ̄)X+

∗ )(X+ − S∗(ζ̄)X−)−1

S∗(ζ̄) = (X+ +X−
∗ Θ(ζ))(X− +X+

∗ Θ(ζ))−1

S∗(ζ̄) = −(X−
∗ −Θ(ζ)X+)−1(X+

∗ −Θ(ζ)X−)

and for z ∈ ρ(L∗) ∩ C+

(3.20)

Θ(z) = (X−
∗ +X+

∗ S(z))(X+ +X−S(z))−1

Θ(z) = −(X+
∗ − S(z)X−

∗ )(X− − S(z)X+)−1

S(z) = (X− +X+
∗ Θ(z))(X+ +X−

∗ Θ(z))−1

S(z) = −(X+
∗ −Θ(z)X−)−1(X−

∗ −Θ(z)X+)

These relations represent characteristic functions Θ, S in form of factorizations by
two bounded analytic operator functions in corresponding domains of the complex
plane.

The next set of equalities follows from properties of PG-transforms ω and ω+

(cf. Corollary 3.9). For z ∈ ρ(L∗) ∩ C+ and ζ ∈ ρ(L∗) ∩ C−,

(3.21)

(X+ +X−
∗ Θ(z))−1 = X+ +X−S(z),

(X+
∗ −Θ(z)X−)−1 = X+

∗ − S(z)X−
∗ ,

(X− +X+
∗ Θ(ζ))−1 = X− +X+S∗(ζ̄),

(X−
∗ −Θ(ζ)X+)−1 = X−

∗ − S∗(ζ̄)X+
∗

Remark that relations obtained from (3.19), (3.20), and (3.21) by the formal passage
to adjoint operators hold true. We will use the special notation for the bounded
analytic operator functions defined on the right hand side of (3.21)

(3.22)

Θ1(z) := X− + S(z)X+ : E → E−, z ∈ C+

Θ2(z) := −X−
∗ + S∗(z̄)X+

∗ : E∗ → E+, z ∈ C−
Θ3(z) := X+ + S∗(z̄)X− : E → E+, z ∈ C−
Θ4(z) := X+

∗ − S(z)X−
∗ : E∗ → E−, z ∈ C+

By virtue of (3.21) functions Θj , j = 1, 2, 3, 4 are invertible for suitable values
of z ∈ C± and

(3.23)

[Θ1(z)]
−1 = X− + Θ∗(z̄)X+

∗ , z ∈ ρ(L) ∩ C+

[Θ2(z)]
−1 = −X−

∗ + Θ(z)X+, z ∈ ρ(L∗) ∩ C−
[Θ3(z)]

−1 = X+ + Θ∗(z̄)X−
∗ , z ∈ ρ(L) ∩ C−

[Θ4(z)]
−1 = X+

∗ −Θ(z)X−, z ∈ ρ(L∗) ∩ C+
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Note as well that properties of projections X±, X±
∗ yield

X+ [Θ1(z)]
−1 = X+Θ∗(z̄)X+

∗ = [Θ∗2(z̄)]
−1X+

∗ , z ∈ ρ(L) ∩ C+

X+
∗ [Θ2(z)]

−1 = X+
∗ Θ(z)X+ = [Θ∗1(z̄)]

−1X+, z ∈ ρ(L∗) ∩ C−
X− [Θ3(z)]

−1 = X−Θ∗(z̄)X−
∗ = −[Θ∗4(z̄)]

−1X−
∗ , z ∈ ρ(L) ∩ C−

X−
∗ [Θ4(z)]

−1 = −X−
∗ Θ(z)X− = −[Θ∗3(z̄)]

−1X−, z ∈ ρ(L∗) ∩ C+

Finally, we need to reformulate identities from Theorem 3.8 and Corollary 3.9
in terms of operators A and L. To that end let us recall the definition of opera-
tors Γ, Γ∗ given in Section 2. Using the same arguments applied to the operator L
introduce two operators G, G∗ as closures of mappings u 7→ 1√

2
J∆V (L + iI)u,

v 7→ 1√
2
J∗∆V ∗(L∗ − iI)v initially defined on u ∈ Dom(L), v ∈ Dom(L∗), respec-

tively. Results of Theorem 3.8 and Corollary 3.9 now can be rewritten as identities

(3.24)

p′Γ∗(A∗ − zI)−1(L− zI)u = Θ1(z)JGu, u ∈ Dom(L), z ∈ C+

pΓ(A− zI)−1(L∗ − zI)u = Θ2(z)G∗u, u ∈ Dom(L∗), z ∈ C−
pΓ(A− zI)−1(L− zI)u = Θ3(z)JGu, u ∈ Dom(L), z ∈ C−
p′Γ∗(A∗ − zI)−1(L− zI)u = Θ4(z)G∗u, u ∈ Dom(L∗), z ∈ C+

Operator functions Θj , j = 1, 2, 3, 4 on the right hand side of these formulae are
boundedly invertible in accordance with (3.23).

4. Functional model of a non-dissipative operator

This Section is dedicated to the functional model of operator L based on the
symmetric form of Sz.-Nagy-Foiaş model for dissipative operator A constructed
in Section 2. To simplify considerations below, introduce the Hilbert space HL

obtained from the model space H = L2

(
I S∗
S I

)
by an isometry Π : H → HL

defined as the diagonal matrix diag(p, p′) acting on elements of H. Here p and p′

are isometries p : E → E+, p : E∗ → E− from (3.12). Obviously, the space HL is
the model space for operator A as well. The norm in HL is analogous to (2.14)∥∥∥∥(g̃g

)∥∥∥∥2

HL

:=
∫

R

〈(
I S∗

S I

)(
g̃

g

)
,

(
g̃

g

)〉
E+⊕E−

dk

Model Theorem 2.8 holds true for mappings (2.16) replaced by pF+, p′F−, re-
spectively, characteristic function S replaced by S, and the new spectral isome-
try ΠΦ : H → HL that maps the dilation A into the multiplication operator
on HL. In particular,

(4.1) g̃ + S∗g = pF+h, Sg̃ + g = p′F−h,

where h ∈ H, (g̃, g) := ΠΦh. Below the space HL serves as the model space for the
non-dissipative operator L. We denoteD± := ΠD±,H := ΠH,H = HL	[D−⊕D+].
Finally, let PH be the orthogonal projection from HL onto H.
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4.1. Model theorem.

Theorem 4.1. In the model space HL of dissipative operator A the action of
resolvents (L − zI)−1, (L∗ − zI)−1 are described by the following formulae with
(g̃, g) ∈ H, z ∈ ρ(L) ∩ C−, ζ ∈ ρ(L) ∩ C+

(L− zI)−1

(
g̃

g

)
= PH(k − z)−1

(
g̃

g −X−[Θ3(z)]−1(g̃ + S∗g)(z)

)
,

(L− ζI)−1

(
g̃

g

)
= PH(k − ζ)−1

(
g̃ −X+[Θ1(ζ)]−1(Sg̃ + g)(ζ)

g

)
,

(L∗ − ζ̄I)−1

(
g̃

g

)
= PH(k − ζ̄)−1

(
g̃

g −X+
∗ [Θ2(ζ̄)]−1(g̃ + S∗g)(ζ̄)

)
,

(L∗ − z̄I)−1

(
g̃

g

)
= PH(k − z̄)−1

(
g̃ +X−

∗ [Θ4(z̄)]−1(Sg̃ + g)(z̄)
g

)
Here symbol (g̃ + S∗g)(z) denotes the value of analytic continuation of the vector-
function g̃+S∗g ∈ H−

2 (E+) to the non-real point z ∈ C−. The symbol (Sg̃+ g)(z),
z ∈ C+ has an analogous meaning.

Note that the model equalities (2.13) for dissipative operator A are the special
case of Theorem 4.1. They are recovered if one assumes J = I, J∗ = I, to so that
projections X− and X−

∗ are the null operators. In this case, of course, L and A
coincide.

4.2. Proof of Model theorem. In order to prove Theorem 4.1 we need two Lem-
mas.

Lemma 4.2. For z ∈ C+, ζ ∈ C− and z0 ∈ ρ(L)

p′Γ∗(A∗ − zI)−1(L− z0I)−1

= (z − z0)−1
[
p′Γ∗(A∗ − zI)−1 −Θ1(z)JG(L− z0I)−1

]
,

pΓ(A− ζI)−1(L∗ − z̄0I)−1

= (ζ − z̄0)−1
[
pΓ(A− ζI)−1 −Θ2(ζ)G∗(L∗ − z̄0I)−1

]
,

pΓ(A− ζI)−1(L− z0I)−1

= (ζ − z0)−1
[
pΓ(A− ζI)−1 −Θ3(ζ)JG(L− z0I)−1

]
,

p′Γ∗(A∗ − zI)−1(L∗ − z̄0I)−1

= (z − z̄0)−1
[
p′Γ∗(A∗ − zI)−1 −Θ4(z)G∗(L∗ − z̄0I)−1

]
Proof. Let u = (L − z0I)−1h, h ∈ H in the first and third formulae of (3.24)
and u = (L∗ − z̄0I)−1h, h ∈ H in the second and fourth. The desired result is
obtained by the equality (L− zI)(L− z0I)−1 = I + (z − z0)(L− z0I)−1.

The proof is complete. �
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Lemma 4.3. For h ∈ H, (g̃, g) := ΠΦ and for almost all k ∈ R the identities hold:

For z0 ∈ ρ(L) ∩ C−
pF+(L−z0I)−1h=(k−z0)−1

[
(g̃+S∗g)(k)−Θ3(k)[Θ3(z0)]−1(g̃+S∗g)(z0)

]
p′F−(L−z0I)−1h=(k−z0)−1

[
(Sg̃+g)(k)−Θ1(k)[Θ3(z0)]−1(g̃+S∗g)(z0)

]
pF+(L∗−z̄0I)−1h=(k−z̄0)−1

[
(g̃+S∗g)(k)−Θ2(k)[Θ4(z̄0)]−1(Sg̃+g)(z̄0)

]
pF−(L∗−z̄0I)−1h=(k−z̄0)−1

[
(Sg̃+g)(k)−Θ4(k)[Θ4(z̄0)]−1(Sg̃+g)(z̄0)

]
For z0 ∈ ρ(L) ∩ C+

pF+(L−z0I)−1h=(k−z0)−1
[
(g̃+S∗g)(k)−Θ3(k)[Θ1(z0)]−1(Sg̃+g)(z0)

]
p′F−(L−z0I)−1h=(k−z0)−1

[
(Sg̃+g)(k)−Θ1(k)[Θ1(z0)]−1(Sg̃+g)(z0)

]
pF+(L∗−z̄0I)−1h=(k−z̄0)−1

[
(g̃+S∗g)(k)−Θ2(k)[Θ2(z̄0)]−1(g̃+S∗g)(z̄0)

]
pF−(L∗−z̄0I)−1h = (k−z̄0)−1

[
(Sg̃+g)(k)−Θ4(k)[Θ2(z̄0)]−1(g̃+S∗g)(z̄0)

]
Here the symbols like Θ1(k), k ∈ R stand for strong boundary values of the bounded
analytic operator function Θ1 expressed via S(k) and S∗(k) according to (3.22).
Vectors (Sg̃+g)(·) and (g̃+S∗g)(·) are values of analytical continuations of respec-
tive vector-functions of Hardy classes to non-real points.

Proof. We only show how to verify the first equality. Others are proven similarly.
Let z0 ∈ ρ(L) ∩ C−. Lemma 4.2 and third identity in (3.24) yield for h ∈ H

pΓ(A− ζI)−1(L− z0I)−1h

= (ζ − z0)−1
[
pΓ(A− ζI)−1h−Θ3(ζ) [Θ3(z0)]

−1
pΓ(A− z0I)−1h

]
Put ζ = k − iε, k ∈ R, ε > 0. Then as ε ↓ 0 we obtain the required identity for
almost all k ∈ R by virtue of (4.1) and definitions (2.16). �

Now we are ready to prove Theorem 4.1.

Proof of Model Theorem 4.1. Let us consider the first equality. Denote (f̃z, fz) the
vector on the right hand side. It is suffice to verify that for z ∈ ρ(L)∩C− and h ∈ H
almost everywhere on the real axis

(4.2) f̃z + S∗fz = pF+(L− zI)−1h, S̃fz + fz = p′F−(L− zI)−1h,

where h ∈ H is related to the vector (g̃, g) as (g̃, g) = ΠΦh. Direct computation
according to (2.15) yields(

f̃z

fz

)
=

1
k − z

(
g̃ −X+[Θ3(z)]−1(g̃ + S∗g)(z)
g −X−[Θ3(z)]−1(g̃ + S∗g)(z)

)
,

therefore

f̃z + S∗fz = (k − z)−1
[
g̃ + S∗g − (X+ + S∗X−)[Θ3(z)]−1(g̃ + S∗g)(z)

]
= (k − z)−1

[
(g̃ + S∗g)(k)−Θ3(k)[Θ3(z)]−1(g̃ + S∗g)(z)

]
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which coincides with
(
pF+(L− zI)−1h

)
(k) by Lemma 4.3. Thus, first equal-

ity (4.2) is obtained. Analogously, for almost all k ∈ R

Sf̃z + fz = (k − z)−1
[
Sg̃ + S∗g − (SX+ +X−)[Θ3(z)]−1(g̃ + S∗g)(z)

]
= (k − z)−1

[
(Sg̃ + S∗g)(k)−Θ1(k)[Θ3(z)]−1(g̃ + S∗g)(z)

]
=
(
p′F−(L− zI)−1h

)
(k).

Hence, equalities (4.2) are validated. Other statements of Theorem are proven
similarly.

The proof is complete. �
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