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Abstract

We consider the problem of performing the preliminary “symmetry
classification” of a class of quasi-linear PDE’s containing one or more
arbitrary functions: we provide an easy condition involving these func-
tions in order that nontrivial Lie point symmetries be admitted, and
a “geometrical” characterization of the relevant system of equations
determining these symmetries. Two detailed examples will elucidate
the idea and the procedure: the first one concerns a nonlinear Laplace-
type equation, the second a generalization of an equation (the Grad-
Schlüter-Shafranov equation) which is used in magnetohydrodynamics.
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1 Introduction

The analysis of symmetry properties of differential equations is a well estab-
lished and widely used tool both for studying general properties of the equa-
tions and for finding their solutions (see e.g. [1]-[7] and references therein);
actually, the determination of Lie-point symmetries (we will consider only
symmetries of this type) is by now an almost completely standard routine,
thanks also to some suitably dedicated computer packages (see e.g. [8]-[10]).

The situation is however considerably different when one deals with the
problem of performing the “symmetry classification” of an equation which
contains one or more arbitrary functions, and one wants to discover how the
symmetry properties depend on the choice of these functions: the discussion
may be far from easy, as far as the symmetries may drastically change when
the functions are changed: see e.g. [11]-[15] and references therein.

In this paper, we discuss the case of PDE’s of the form given below
(eq.(1)) containing one or more arbitrary functions F`(u) of the unknown
variable u, and we shall give an easy condition involving these functions
in order that the equation admits nontrivial symmetries. This will provide
a neat “geometrical” characterization of the relevant system of equations
determining these symmetries, and a direct way to perform the complete
symmetry classification of the given equation. Two examples will elucidate
the idea and the procedure. The first one concerns a nonlinear Laplace-type
equation; the second example deals with a generalization of an equation (the
Grad-Schlüter-Shafranov equation) which is used in magnetohydrodynamics
and plasma physics [16].

2 Preliminary results

For the sake of simplicity we consider only second order equations for the
unknown function u = u(x, y) of two independent variables x, y (but the
extension to more general cases is completely straightforward), and we will
deal with quasi-linear PDE’s of the following form

a11 uxx + a12 uxy + a22 uyy + b1 ux + b2 uy =
L∑

`=1

α` F`(u) (1)

or, in a short-hand notation,

E [u] = α` F`(u)
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where aij = aij(x, y), bi = bi(x, y), α` = α`(x, y) are given (smooth) func-
tions, and F`(u) are L arbitrary (smooth) functions of u (in the examples
below we will deal with just one or two functions F`(u)). It is understood
that no linear relations exist between α` and between F`. We will exclude
from our consideration the rather trivial case when F`(u) are linear func-
tions of u, which usually can be more simply and conveniently discussed
separately by means of direct calculations. In this paper we are looking
only for Lie-point symmetries of (1); we will denote their Lie generator by

X = ξ(x, y, u)
∂

∂x
+ η(x, y, u)

∂

∂y
+ ϕ(x, y, u)

∂

∂u
.

Assume e.g. a11 6= 0 (and put then a11 = 1).
Although essentially standard (see [1, 2, 7], and also [17] for some gen-

eralization), let us summarize for convenience and in order to fix notations,
these first basic results, which can be easily obtained imposing the usual
symmetry condition

X(2) (∆)
∣∣∣
∆=0

= 0

where ∆ = E [u]− α`F`, and X(2) is the second prolongation of X.

Lemma 1 For any choice of the functions F`, the coefficients of the Lie-
point symmetry operators admitted by a PDE of the form (1) satisfy the
conditions ξu = ηu = 0; ϕuu = 0, i.e.

ξ = ξ(x, y) , η = η(x, y) , ϕ = A(x, y) + uB(x, y) (2)

and the unique determining equation which involves the functions F`(u) takes
the form (with F ′

` = dF`/du, sum over ` = 1, . . . , L)

p`(x, y)F`(u) + pL+`(x, y)F ′
`(u) + p2L+`(x, y)uF ′

`(u)+ (3)

p3L+1(x, y) u + p3L+2(x, y) = 0

where the coefficient functions pi(x, y) (i = 1, . . . , 3L + 2) are given by

p` = Bα` − (ξx + ηy)α` − a12ξyα` − ξα`,x − η α`,y , (4)

pL+` = −α`A , p2L+1 = −α`B , p3L+1 = E [B] , p3L+2 = E [A]

with ξx = ∂ξ/∂x, α`,x = ∂α`/∂x etc. (` = 1, . . . , L).
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Considering now the determining equation (3), and observing that the pi

depend only on x, y and not on u, one immediately realizes that, if the
3L + 2 functions fi defined by

f ≡ (F`, F
′
`, uF ′

`, u, 1) (` = 1, . . . , L) (5)

are linearly independent, then (3) can be satisfied if and only if

pi = 0 (i = 1, . . . , 3L + 2) . (6)

Recalling now the definition of kernel of the full (or principal) symmetry
groups [1] of eq. (1), i.e. the intersection of all symmetry groups admitted
by (1) for any arbitrary choice of F`(u), we can then state the following
property.

Lemma 2 Conditions (6) characterize the kernel of the symmetry groups
of equation (1).

Indeed, conditions (6), together with the other determining equations (not
involving F`), determine the functions ξ, η, A,B (i.e. the symmetries ad-
mitted by equation (1)), which are independent of the the choice of the
functions F`. These symmetries may be considered “trivial” in this context:
for instance, if all coefficients a, b, α in (1) are independent of y, then such
a symmetry operator is ∂/∂y. Some not so obvious examples of symmetries
of this type will be presented later.

Therefore, a first conclusion is that, in order to have “nontrivial” sym-
metries (i.e. really dependent on the choice of the functions F`), a necessary
condition is the existence of some linear dependence among the functions (5).

Another relevant remark which will emerge from our discussion is the
important role played also by the coefficient functions α`(x, y) in the deter-
mination of the admitted symmetries.

3 Conditions for the existence of symmetries.

Consider the linear space generated by the 3L+2 functions fi defined in (5),
and, according to our above remarks, now assume that there are some linear
relations among these functions. Then the fi span a space with dimension
k < D = 3L + 2; if this is the case, the D coefficients pi are forced, accord-
ing to (3), to belong to the orthogonal (D − k)-dimensional subspace (with
respect to the standard scalar product in RD), and the functions pi(x, y)
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turn out to be subjected to k linear conditions. For instance, if there is just
one linear relationship between the fi, say

D∑
i=1

λi fi = 0 (7)

where not all the constants λi vanish, then k = D − 1 and the functions pi

span a 1-dimensional subspace and must satisfy D−1 equations of the form
(assuming that, e.g., λD 6= 0)

p1λD = λ1pD , p2λD = λ2pD , . . . , pD−1λD = λD−1pD . (8)

We can then state our main conclusion, which characterizes the crucial de-
termining equation which contains the functions F` in the following “geo-
metrical” form.

Proposition 1 Eq. (1) admits nontrivial symmetries only if the D = 3L+2
functions (5) are linearly dependent. If this is the case, the D functions
pi(x, y) given by (4) appearing in the determining equation (3) span the
subspace orthogonal (with respect to the standard scalar product in RD) to
the k−dimensional (k < D) subspace spanned by the functions (5). The
admitted symmetries are completely determined by imposing this orthogo-
nality condition to the coefficient functions pi(x, y), together with the other
determining equations not involving the functions F`(u).

Before considering explicit examples, let us remark that the complete
symmetry classification must be accompanied by the determination of the
equivalence group [1], i.e. the group of the transformations which leave
invariant the differential structure of the PDE. Standard calculations show
easily that, for any fixed choice of the functions aij , bi, α` in equation (1),
the equivalence group includes in particular, expectedly, the scalings u →
c u, F` → c F` and the translation u → u + c0 (c, c0 = const.). Other
transformations involving also the variables x, y can appear for particular
choices of the functions aij , bi, α`. The transformations belonging to the
equivalence group will play an important role in performing the complete
symmetry classification of our equations.

4 First example: a generalized Laplace equation

To illustrate the main idea and the procedure, and also to clarify some
details, we are now going to examine some examples, which can be notewor-
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thy also for their different and interesting peculiarities. We start considering
the simplest case, where the r.h.s. of (1) contains only one term α(x, y)F (u)
(then D = 5).

First of all, let us remark that, independent of the form of the equation
(1), not all linear combinations among the fi defined in (5) can be chosen
arbitrarily. For instance, no relation exists between u and 1, and also,
having excluded the trivial case of linear F (u), between F, u, 1. On the
other hand, the necessary linear dependence between the functions fi implies
immediately that the presence of some symmetry is possible only if F (u) is
an exponential or a power of u. It can also happen that more than one linear
relation holds: e.g., if F = u2/2 + u, then both relations

F ′ − u− 1 = 0 and 2F − u F ′ − u = 0 (9)

hold simultaneously, i.e. k = 3. In this case, the orthogonality condition
expressed by Proposition 1 becomes

p1 + 2p4 − 2p5 = 0 , p2 + p5 = 0 , p3 − p4 + p5 = 0 . (10)

As an explicit example, let us consider the following generalization of
the classical nonlinear Laplace equation

∆ ≡ ∇2u− α(x, y)F (u) = 0 (11)

where α(x, y) is a given function. In this case, the determining equations
not containing F imply in particular

ξx = ηy , ξy = −ηx , B = const (12)

whereas the crucial determining equation (3) involving F is

p1F + p2F
′ + p3uF ′ + p4u + p5 = 0 (13)

with the coefficient functions pi(x, y) given by

p1 = Bα− (ξx + ηy)α− (ξαx + ηαy) , p2 = −αA , (14)

p3 = −αB , p4 = ∇2B = 0 , p5 = ∇2A .

Let us first discuss the kernel group. The conditions pi = 0 (i = 1, . . . , 5)
characterizing the transformations in the kernel group (see Lemma 2) give
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now A = B = ϕ = 0 and the condition p1 = 0, which now reads α(ξx +ηy)+
(ξαx + ηαy) = 0. Introducing a harmonic function Φ = Φ(x, y) such that

Φx = ξ Φy = −η

this condition can be more conveniently transformed into an equation for
the single unknown Φ:

α(Φxx − Φyy) + αxΦx − αyΦy = 0 . (15)

Solutions of this equation clearly depend on the choice of the function
α(x, y). For instance, if α =const., it gives ξx + ηy = 0, which, together
with (12), implies that the symmetries in the kernel group are, as expected,
only translations and rotations of the variables x, y. If α = exp(2x) then
Φ = exp(−x)

(
c1 cos y + c2 sin y

)
+ c3y + c4 and the kernel contains, apart

from the translation generated by ∂/∂y, the transformations generated by

X1 = exp(−x)
(

cos y
∂

∂x
−sin y

∂

∂y

)
, X2 = exp(−x)

(
sin y

∂

∂x
+cos y

∂

∂y

)
.

With α = xr, one has that if r 6= −2 then the kernel contains only the trans-
lation generator ∂/∂y, whereas if r = −2 it also contains the transformations
generated by the two operators

X1 = 2xy
∂

∂x
− (x2 − y2)

∂

∂y
and X2 = x

∂

∂x
+ y

∂

∂y
.

The first transformation describes the kernel group even if α = x−2β
(
y/(x2+

y2)
)
, where β is an arbitrary function.
It can be remarked, incidentally, that if we reverse the argument for a

moment, one has that: given any harmonic function Φ (and then any couple
of harmonic conjugate functions ξ, η), there are some α(x, y) which solve
equation (15), and then, with these functions α, the kernel group contains
precisely the symmetry generated by the operator X = ξ(∂/∂x) + η(∂/∂y).

Let us now finally perform the symmetry classification of eq. (11). As
already remarked, its equivalence group may contain, in addition to the
transformations listed at the end of Section 3, and depending on the spe-
cific choice of the function α, other transformations possibly involving also
x, y. As we shall see, however, these are not relevant for the symmetry
classification of equation (11).

According to our procedure, it is immediately seen that just one linear
relation between the five fi can exist. For instance, in the case F = u2/2+u
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mentioned above, admitting the two linear relations (9), conditions (10)
would lead to pi = 0, i.e. only the kernel symmetries. We then assume the
existence of a single linear relation:

λ1F + λ2F
′ + λ3uF ′ + λ4u + λ5 = 0 (16)

with not all λi equal to zero. Observing that p4 = 0, one has from (8) that
λ4 = 0. We now distinguish the cases λ3 6= 0 and λ3 = 0.

Let λ3 6= 0. It is not restrictive to put λ3 = 1, and (up to a translation
of u) λ2 = 0, which implies λ5 p2 = 0. If λ5 6= 0, then p2 = 0 would imply
A = 0 and also p5 = 0 = p3λ5; now, if p3 = 0 it remains only p1 6= 0,
and from λ5p1 = λ1p5 = 0 one concludes that λ5 = 0. Therefore, we get
λ1F + uF ′ = 0, i.e.

F (u) = um with m = −λ1 (m 6= 0, 1) .

Using now (8), which become p1 + mp3 = 0 , p2 = p4 = p5 = 0, we get

A = 0 and αB(m− 1) + (ξx + ηy)α + (ξαx + ηαy) = 0 .

The last equation relates the symmetry coefficients ξ, η, B with the specific
form of the function α(x, y). If for instance α = xr, then B(m − 1) + ξx +
ηy = 0, but B must be 6= 0, otherwise also p3 = p1 = 0, i.e. the kernel
group. Therefore, ξ must be proportional to x and equation (11) admits the
symmetry operator

X = (m− 1)
(
x

∂

∂x
+ y

∂

∂y

)
− (r + 2) u

∂

∂u

(and obviously the translation of the variable y, and also the translation of
x and the rotations of x, y in the case r = 0, i.e. if α = const.).

Let now λ3 = 0. Then necessarily λ2 6= 0, and one can put λ2 = 1 and
also λ1 = 1 (possibly up to a scaling of u). Assume first λ5 = 0; therefore,
from (16),

F (u) = exp(−u)

and the conditions (8),(14) for the functions pi become now

p3 = −αB = 0 , p5 = ∇2A = 0 , and p1 = p2 i.e.

(ξx + ηy)α + (ξαx + ηαy) = αA .
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As before, we can consider some examples. If α = const., the last equation
shows A = ξx + ηy and then the most general symmetry of the equation
∇2u = exp(−u) is

X = ξ
∂

∂x
+ η

∂

∂y
+ (ξx + ηy)

∂

∂u

where ξ, η are arbitrary harmonic conjugate functions: this is the well
known case of the classical Liouville equation (in its “elliptic” form; for
a full discussion of the symmetry properties and other related features of
the Liouville-type equations, see [18]-[23]). If instead for instance α = yr

then the admitted symmetry operators are

X1 = x
∂

∂x
+y

∂

∂y
+(2+r)

∂

∂u
, X2 = (x2−y2)

∂

∂x
+2xy

∂

∂y
+(2r+4)x

∂

∂u

and the translation ∂/∂x. Assume now λ5 6= 0, then

F (u) = exp(−u)− λ5 .

Introducing the transformation u → u + ũ, where ũ = ũ(x, y) satisfies the
equation ∇2ũ + λ5α = 0, one obtains the new equation

∇2u− α̃ exp(−u) = 0

where α̃(x, y) := α exp(−ũ), which has precisely the same form as the equa-
tion considered before. Without repeating details, it can be interesting to
provide just one illustrative example. Let

∇2u− k x−2
(
exp(−u) + 1

)
= 0

where k = const. It is easy to see that if k = 2 this equation admits the
symmetries

X = ξ
∂

∂x
+ η

∂

∂y
+

(
ξx + ηy −

2
x

ξ
) ∂

∂u

where ξ, η are arbitrary harmonic conjugate functions; if instead k 6= 2, the
admitted symmetries are only those in the kernel group.

The above results concerning eq. (11) can be stated in a complete form
as follows.

Proposition 2 Given a function α = α(x, y), consider this equation for the
harmonic function Φ = Φ(x, y)

α(Φxx − Φyy) + αxΦx − αyΦy − αC = 0 . (17)
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Let ξ = Φx, η = −Φy. Assume first C = 0: for any solution Φ of (17),
the kernel group of the generalized Laplace equation (11) is generated by the
symmetry operator

X = ξ
∂

∂x
+ η

∂

∂y
.

If F (u) = um, for any solution Φ of (17) with C = const. 6= 0, eq. (11)
admits the symmetry operator

X = (m− 1)
(
ξ

∂

∂x
+ η

∂

∂y

)
− Cu

∂

∂u
.

If F (u) = exp(−u), for any solution Φ of (17) with C = C(x, y) any har-
monic function, eq. (11) admits the symmetry operator

X = ξ
∂

∂x
+ η

∂

∂y
+ C(x, y)

∂

∂u
.

In particular, if α =const. then C = ξx + ηy where ξ, η are arbitrary har-
monic conjugate functions, and the case of the standard “elliptic” Liouville
equation is recovered. If finally F (u) = exp(−u) + c (c = const.), the above
case is recovered by means of the transformation u→ u+ũ, where ũ = ũ(x, y)
satisfies the equation ∇2ũ − c α = 0. This completes the symmetry classifi-
cation of the PDE (11), apart from the transformations in the equivalence
group.

5 An example with two arbitrary functions.

We now consider the case of a PDE of the form (1) with two arbitrary
functions F`(u), i.e. L = 2, D = 8. To avoid excessive generality, let us
restrict our study to a PDE of the following form

uxx + uyy +
a

x
ux = α(x, y)F1(u) + F2(u) (18)

here b1 = a/x, a 6= 0 is a constant, α1 = α(x, y) a given function and α2 = 1.
The choice of this equation is motivated and suggested by the theory of
plasma physics: it is indeed a generalization of the Grad-Schlüter-Shafranov
equation (see [16]), which is obtained putting in (18) a = −1, α = x2,
and describes the magnetohydrodynamic force balance in a magnetically
confined toroidal plasma. In this context, u is the so-called magnetic flux
variable, x is a radial variable (then x ≥ 0), while the two arbitrary functions
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F1(u), F2(u) are flux functions related to the plasma pressure and current
density profiles.

The determining equations not involving F`(u) give in this case

ξx = ηy, ξy = −ηx, and B =
−aξ

2x
+ b, b = const .

First of all, the kernel group is immediately seen to be trivial (apart obvi-
ously from the translation generated by ∂/∂y, in the case where α depends
only on x; the possible presence of this symmetry will be tacitly understood
in the following). Indeed, from pi = 0 (see Lemma 2), one has A = B = 0,
then the above equation implies ξ = (2b/a) x, and the condition p2 = 0 with
α2 = 1 gives finally ξ = 0.

Let us now start assuming that there are exactly two linear relations
involving the functions F1 and F2 separately:

λ1F1 + λ3F
′
1 + λ5uF ′

1 + λ7u + λ8 = 0 (19)

λ2F2 + λ4F
′
2 + λ6uF ′

2 + µ7u + µ8 = 0

with not all λi, µi equal to zero.
Let λ5λ6 6= 0, and put λ5 = λ6 = 1. According to Proposition 1, the

symmetry coefficients pi, given by (4), satisfy then the six linear conditions

p1 = λ1p5 , p2 = λ2p6 , p3 = λ3p5 , p4 = λ4p6 , (20)

p7 = λ7p5 + µ7p6 , p8 = λ8p5 + µ8p6

With λ5 6= 0, we can put λ3 = 0, up to a translation of u. Conditions (20)
and the expression of the coefficients pi give p3 = 0, A = 0, then p4 = p8 = 0
and therefore also λ4 = λ8 = µ8 = 0 (indeed, p5p6 6= 0, otherwise all pi = 0);
condition p2 = λ2p6 implies that ξ(x, y) must satisfy an equation of the form

ξx = k0
ξ

x
+ k1 (k0, k1 = const)

which admits harmonic solution only of the form ξ = c x, c = const. On
the other hand, λ1 = p1/p5, λ2 = p2/p6 imply that α is forced to satisfy

xαx + yαy

α
= r = const . (21)

This means that if α does not satisfy this condition, no symmetry is allowed;
we then assume for α the form

α(x, y) = xr β(y/x)
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where β is arbitrary. Notice that, with α of this form, a new transformation
is included in the equivalence group, namely the scaling x → cx, y →
cy, F1 → c2−rF1, F2 → c−2F2. We also deduce B = const. 6= 0 , p7 = 0,
which implies in turn λ7 = µ7 = 0. Then we are left with

λ1F1 + uF ′
1 = 0 , λ2F2 + uF ′

2 = 0

giving (thanks to some scalings – all these transformations belong indeed to
the equivalence group) F1 = u−λ1 , F2 = u−λ2 where

−λ1 = 1− c

B
(2 + r) = 1 +

2 + r

q
, −λ2 = 1 +

2
q

with B = −c q

with admitted symmetry generated by

X = x
∂

∂x
+ y

∂

∂y
− q u

∂

∂u
.

Let now λ5 = λ6 = 0. Then necessarily λ3λ4 6= 0. According to Propo-
sition 1, the orthogonality condition now reads (with λ3 = λ4 = 1)

p1 = λ1p3 , p2 = λ2p4 , p5 = p6 = 0 , p7 = λ7p3+µ7p4 , p8 = λ8p3+µ8p4 .

In this case, one has immediately B = 0, then p7 = 0 and λ7 = µ7 = 0,
and again ξ = c x. From p2 = p4 one has 2ξx = A = const., which gives
p8 = λ8 = µ8 = 0. Up to a scaling of u, one can choose λ2 = 1, the equations
for F1, F2 are then

λ1F1 + F ′
1 = 0 , F2 + F ′

2 = 0

giving F1 = exp
(
− λ1u

)
, F2 = exp

(
− u

)
, and finally from λ1 = p1/p3

one deduces the same condition (21) as before for the function α(x, y), and
λ1 = 1 + (r/2).

The conclusion will be stated in complete form in the following Proposi-
tion 3. Indeed, with the same, and even simpler, arguments used in the two
above cases, it is an easy task to see that no other possibilities are left to
the PDE (18) of admitting symmetries.

Proposition 3 The kernel group of equation (18) is trivial (apart from the
translation y → y + c if α depends only on x). Except for this, a necessary
condition in order that equation (18) may admit symmetries is that the func-
tion α has the form α(x, y) = xrβ(y/x), where β is an arbitrary function.
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With α of this form, equation (18) admits a symmetry only with the fol-
lowing choices for the functions F1(u), F2(u) (up to transition to equivalent
functions via equivalence group):

a) F1(u) = u1+(r+2)/q , F2(u) = u1+(2/q)

for all q 6= 0, with admitted symmetry operator

X = x
∂

∂x
+ y

∂

∂y
− q u

∂

∂u

and
b) F1(u) = exp

(
− (1 +

r

2
) u

)
, F2(u) = exp(−u)

with symmetry operator

X = x
∂

∂x
+ y

∂

∂y
+ 2

∂

∂u
.

As stated at the beginning of Section 2, we have excluded from our analysis
the case where the functions F1 and F2 are linear functions of u. This case
indeed, in general of minor interest, can be more conveniently considered
by means of a separate and direct calculation. Specifically, if the r.h.s. of
equation (18) has the form α̃(x, y)u + β̃(x, y), the admitted symmetry is,
not surprisingly, generated by

X =
(
c x + Ψ(x, y)

) ∂

∂u

where c is a constant and Ψ(x, y) is any solution of the PDE

E [Ψ] = α̃Ψ− c β̃ .

In the particular case of the Grad-Schlüter-Shafranov equation of plasma
physics [16], the above results were already presented in Ref. [24], but with-
out any details in the calculations and without any reference to the proce-
dure, which is instead one of the main purposes of the present paper. In
the same reference [24] one can also find some physical comment on the
symmetry properties of the above equation.
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[13] Güngör, F., Lahno, V.I., Zhdanov, R. Z.: Symmetry classification of KdV-type
nonlinear evolution equations. J. Math. Phys 45, 2280–2313 (2004)

[14] Popovych, R.O., Ivanova, N. M.: New results on group classification of non-
linear diffusion-convection equations. J. Phys. A: Math. Gen. 37, 7547–7565
(2004)

[15] Zhdanov, R.Z., Lahno V.I.: Group classification of the general evolution equa-
tion: local and quasilocal symmetries. Symmetry, Integrability and Geometry:
Methods and Applications (SIGMA) 1 (2005), paper 009

14



[16] Wesson, J.: Tokamaks, The Oxford Engineering Series 48, Oxford, Clarendon,
1997, 2nd Edition

[17] Ibragimov, N.H.: On the group classification of differential equations of the
second order. Sov. Math. Dokl. 9, 1365–1368 (1968)

[18] Fushchych, W.I., Serov, N.I.: The symmetry and some exact solutions of the
nonlinear many-dimensional Liouville, d’Alembert and eikonal equations. J.
Phys. A: Math. Gen. 16, 3645–3658 (1983)

[19] Pucci, E, Salvatori, M.C.: Group properties of a class of semilinear hyperbolic
equations. Int. J. Nonlinear Mech. 21, 147–155 (1986)

[20] Gusyatnikova, V.N., Samokhin, A.V., Titov, S.V., Vinogradov, A.M., Ya-
maguzhin, V.A.: Symmetries and conservation laws of Kadomtsev-Pogutse
equations. Acta Appl. Math. 15, 23–64 (1989)

[21] Crowdy, D.G.: General solutions to the 2D Liouville equation. Int. J. Engn.
Sci. 35, 141–149 (1997)

[22] Kiselev, A.V.: On the geometry of the Liouville equation: Symmetries, con-
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