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Abstract. An example of Floquet operator with purely point spectrum
and energy instability is presented. In the unperturbed energy eigenbasis
its eigenfunctions are exponentially localized.

1. Introduction

It is not immediate whether a self-adjoint operator H with purely point
spectrum implies absence of transport under the time evolution U(t) =
e−iHt; in fact, it is currently known examples of Schrödinger operators with
such kind of spectrum and transport. In case of tight-binding models on
l2(IN) the transport is usually probed by the moments of order m > 0 of the
position operator Xek = kek, that is,

Xm =
∑

k∈IN

km〈ek, ·〉ek,(1)

where ek(j) = δkj (Kronecker delta) is the canonical basis of l2(IN). Analo-
gous definition applies for l2(ZZ) and even higher dimensional spaces. Then,
by definition, transport at ψ, also called dynamical instability or dynamical
delocalization, occurs if for some m the function

t #→ 〈ψ(t), Xmψ(t)〉, ψ(t) := U(t)ψ,(2)

is unbounded. If for all m > 0 the corresponding functions are bounded,
one has dynamical stability, also called dynamical localization.

The first rigorous example of a Schrödinger operator with purely point
spectrum and dynamical instability has appeared in [7], Appendix 2, what
the authors have called “A Pathological Example;” in this case the tight
binding Schrödinger operator h on l2(IN) with a Dirichlet condition at n =
−1 was

(hu)(n) = u(n + 1) + u(n − 1) + v(n)u(n)

with potential

v(n) = 3 cos(παn + θ) + λδn0,(3)
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that is, rank one perturbations of an instance of the almost Mathieu opera-
tor. An irrational number α was constructed so that for a.e. θ ∈ [0, 2π) and
a.e. λ ∈ [0, 1] the corresponding self-adjoint operator h has purely point spec-
trum with dynamical instability at e0 (throughout, the term “a.e.” without
specification means with respect to the Lebesgue measure under considera-
tion). More precisely, it was shown that for all ε > 0

lim sup
t→∞

1
t2−ε

〈ψ(t), X2ψ(t)〉 = ∞, ψ(0) = e0.

Compare with the absence of ballistic motion for point spectrum Hamilto-
nians [16]

lim
t→∞

1
t2
〈ψ(t), X2ψ(t)〉 = 0.

Additional examples of this behavior are known, even for random po-
tentials, but with a strong local correlations [10], as for the random dimer
model in the Schrödinger case; there is also an adaptation [6] for the random
Bernoulli Dirac operator with no correlation in the potential, although for
the massless case.

The time evolution of a quantum system with time-dependent Hamilto-
nian is given by a strongly continuous family of unitary operators U(t, r)
(the propagator). For an initial condition ψ0 at t = 0, its time evolution is
given by U(t, 0)ψ0. If the Hamiltonian is time-periodic with period T , then

U(t + T, r + T ) = U(t, r), ∀t, r,

and we have the Floquet operator UF := U(T, 0) defined as the evolution
generated by the Hamiltonian over a period.

Quantum systems governed by a time periodic Hamiltonian have their
dynamical stability often characterized in terms of the spectral properties of
the corresponding Floquet operator. As in the autonomous case, the pres-
ence of continuous spectrum is a signature of unstable quantum systems;
this is a consequence of the famous RAGE theorem, firstly proved for the
autonomous case [15] and then for time-periodic Hamiltonians [8]. In princi-
ple, a Floquet operator with purely point spectrum would imply “stability,”
but one should be alerted by the above mentioned “pathological” examples
in the autonomous case.

In this work we give an example of a Floquet operator with purely point
spectrum and “energy instability,” which can be considered the partner
concept of dynamical instability in case of autonomous systems. We shall
consider a particular choice in the family of Floquet operators studied in [3];
such operators describe the quantum dynamics of certain interesting physi-
cal models (see [1, 3] and references therein), and display a band structure
with respect to an orthogonal basis {ϕk} of l2(IN) or l2(ZZ), constructed as
eigenfunctions of an unperturbed energy operator. There are some concep-
tual differences with respect to the autonomous case mentioned before, since



PURE POINT AND ENERGY INSTABILITY 3

now the momentum Xm is defined in the energy space

Xm =
∑

k≥1

km〈ϕk, ·〉ϕk,(4)

instead of the “physical space” IN. Thus, if for all m > 0 the functions

n #→ 〈ψ(n), Xmψ(n)〉, ψ(n) := Un
Fψ, n ≥ 0,(5)

are bounded we say there is energy stability or energy localization, while if at
least one of them is unbounded we say the system presents energy instability
or energy delocalization; the latter reflects a kind of “resonance.”

Our construction is a fusion of the Floquet operator studied in [3], now
under suitable additional rank one perturbations, and the arguments pre-
sented in [7] for model (3). For suitable values of parameters we shall get
the following properties:

1. The resulting unitary operator Uλ(β, θ)+ (after the rank one pertur-
bation; see Eq. (10)) still belongs to the family of Floquet operators
considered in [3].

2. Uλ(β, θ)+ has purely point spectrum with exponentially localized eigen-
functions.

3. The time evolution along the Floquet operator Uλ(β, θ)+ of the initial
condition ϕ1 presents energy instability.

Uλ(β, θ)+ will be obtained as a rank one perturbation of the almost pe-
riodic class of operators studied in the Section 7 of [3] (we describe them
ahead). In order to prove purely point spectrum, we borrow an argument
from [9] that was used to prove localization for random unitary operators,
and it combines spectral averaging and positivity of the Lyapunov exponent
with polynomial boundedness of generalized eigenfunctions. In order to get
dynamical instability, although we adapt ideas of [7], we underline that some
results needed completely different proofs and they are not entirely trivial.

It is worth mentioning that in [19] a form of dynamical stability was ob-
tained for discrete evolution along some Floquet operators (CMV matrices)
related to random Verblunsky coefficients.

This paper is organized as follows. In Section 2 we present the model of
Floquet operator we shall consider, some preliminary results and the main
result is stated in Theorem 2. In Section 3 we shall prove that our Floquet
operator is pure point. Section 4 is devoted to the proof of dynamical
instability.

2. The Floquet Operator

We briefly recall the construction of the Floquet operator introduced in [3]
based on the physical model discussed in [1]. The separable Hilbert space
is l2(ZZ) and {ϕk}k∈ZZ denote its canonical basis. Consider the set of 2 × 2
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matrices defined for any k ∈ ZZ by

Sk = e−iθk

(
re−iαk iteiγk

ite−iγk reiαk

)

parameterized by the phases αk, γk, θk in the torus T and the real pa-
rameters t, r, the reflection and transition coefficients, respectively, linked
by r2 + t2 = 1. Then, let Pj be the orthogonal projection onto the span
of ϕj , ϕj+1 in l2(ZZ), and let Ue, Uo be two 2 × 2 block diagonal unitary
operators on l2(ZZ) defined by

Ue =
∑

k∈ZZ

P2kS2kP2k and Uo =
∑

k∈ZZ

P2k+1S2k+1P2k+1.

The matrix representation of Ue in the canonical basis is

Ue =





. . .
S−2

S0

S2
. . .




,

and similarly for Uo, with S2k+1 in place of S2k. The Floquet operator U is
defined by

U = UoUe,

such that, for any k ∈ ZZ,

Uϕ2k = irte−i(θ2k+θ2k−1)e−i(α2k−γ2k−1)ϕ2k−1

+r2e−i(θ2k+θ2k−1)e−i(α2k−α2k−1)ϕ2k

+irte−i(θ2k+θ2k+1)e−i(γ2k+α2k+1)ϕ2k+1

−t2e−i(θ2k+θ2k+1)e−i(γ2k+γ2k+1)ϕ2k+2

Uϕ2k+1 = −t2e−i(θ2k+θ2k−1)ei(γ2k+γ2k−1)ϕ2k−1(6)
+irte−i(θ2k+θ2k−1)ei(γ2k+α2k−1)ϕ2k

+r2e−i(θ2k+θ2k+1)ei(α2k−α2k+1)ϕ2k+1

+irte−i(θ2k+θ2k+1)ei(α2k−γ2k+1)ϕ2k+2

The extreme cases where rt = 0 are spectrally trivial; in case t = 0,
r = 1, U is pure point and if t = 1, r = 0, U is purely absolutely continuous
(Proposition 3.1 in [3]). From now on we suppose 0 < r, t < 1.

For the eigenvalue equation

Uψ = eiEψ

ψ =
∑

k∈ZZ

ckϕk, ck, E ∈ C,



PURE POINT AND ENERGY INSTABILITY 5

one gets the following relation between coefficients
(

c2k

c2k+1

)
= Tk(E)

(
c2k−2

c2k−1

)
,

where the matrix Tk(E) has elements

Tk(E)11 = −e−i(E+γ2k−1+γ2k−2+θ2k−1+θ2k−2),

Tk(E)12 = i
r

t

(
e−i(E+γ2k−1−α2k−2+θ2k−1+θ2k−2) − e−i(γ2k−1−α2k−1)

)
,

Tk(E)21 = i
r

t

(
e−i(θ2k−2−θ2k+γ2k+γ2k−1+γ2k−2+α2k−1)

−e−i(E+θ2k−2+θ2k−1+γ2k+γ2k−1+γ2k−2+α2k)
)
,(7)

Tk(E)22 = − 1
t2

ei(E+θ2k+θ2k−1−γ2k−γ2k−1)

+
r2

t2
e−i(γ2k+γ2k−1)

(
ei(θ2k−θ2k−2+α2k−2−α2k−1) + e−i(α2k−α2k−1)

)

−r2

t2
e−i(E+θ2k−2+θ2k−1+γ2k+γ2k−1+α2k−α2k−2)

and

det Tk(E) = e−i(θ2k−2−θ2k+γ2k+2γ2k−1+γ2k−2).

Given coefficients (c0, c1), for any k ∈ IN∗ one has
(

c2k

c2k+1

)
= Tk(E) . . . T2(E)T1(E)

(
c0

c1

)
,

(
c−2k

c−2k+1

)
= T−k+1(E)−1 . . . T−1(E)−1T0(E)−1

(
c0

c1

)
.

In the physical setting [1], the natural Hilbert space is l2(IN∗), with IN∗ the
set of positive integers, and the definition according with [3] of the Floquet
operator, denoted by U+, is

U+ϕ1 = re−i(θ0+θ1)e−iα1ϕ1 + ite−i(θ0+θ1)e−iγ1ϕ2,

U+ϕk = Uϕk, k > 1(8)

with Uϕk as in (6). In this case the eigenvalue equation is

U+ψ = eiEψ

with ψ =
∑∞

k=1 ckϕk. Then starting from c2, c3, we have
(

c2k

c2k+1

)
= Tk(E) . . . T2(E)

(
c2

c3

)
, k = 2, 3, . . .

where the transfer matrices Tk(E) are given by (7), along with the additional
one (

c2

c3

)
= c1

(
a1(E)
a2(E)

)
,
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where

a1(E) =
i

t

(
e−i(E+γ1+θ1+θ0) − re−i(γ1−α1)

)

a2(E) = − 1
t2

ei(E+θ2+θ1−γ2−γ1)

+
r

t2
e−i(γ2+γ1)

(
ei(θ2−θ0−α1) + re−i(α2−α1)

)

− r

t2
e−i(E+θ0+θ1+γ2+γ1+α2)

For further details and generalizations of this class of unitary operators,
we refer the reader to [3, 11, 12, 9]. In particular, when the phases are
i.i.d. random variables, it was proved to hold in the unitary case typical re-
sults obtained for discrete one-dimensional random Schrödinger operators.
For example, the availability of a transfer matrix formalism to express gen-
eralized eigenvectors allows to introduce a Lyapunov exponent, to prove a
unitary version of Oseledec’s Theorem and of Ishii-Pastur Theorem (and get
absence of absolutely continuous spectrum in some cases).

Our main interest is on the almost periodic example

U ≡ U({θk}, {αk}, {γk}),

where the phases αk are taken as constants, αk = α ∀k ∈ ZZ, while the γk’s
are arbitrary and can be replaced by (−1)k+1α (see Lemma 3.2 in [3]). The
almost periodicity due to the phases θk defined by θk = 2πβk + θ, where
β ∈ IR, and θ ∈ [0, 2π). We denote U above by U = U(β, θ) and then for
any k ∈ ZZ (see (6))

U(β, θ)ϕ2k = irte−i(2πβ(4k−1)+2θ)ϕ2k−1

+r2e−i(2πβ(4k−1)+2θ)ϕ2k

+irte−i(2πβ(4k+1)+2θ)ϕ2k+1

−t2e−i(2πβ(4k+1)+2θ)ϕ2k+2

U(β, θ)ϕ2k+1 = −t2e−i(2πβ(4k−1)+2θ)ϕ2k−1(9)
+itre−i(2πβ(4k−1)+2θ)ϕ2k

+r2e−i(2πβ(4k+1)+2θ)ϕ2k+1

+itre−i(2πβ(4k+1)+2θ)ϕ2k+2

Let U(β, θ)+ be the corresponding operator on l2(IN∗) defined by (8). The
following result was proved in [3].

Theorem 1. (i) For β rational and each θ ∈ [0, 2π), U(β, θ) is purely abso-
lutely continuous, σsc(U(β, θ)+) = ∅, σac(U(β, θ)+) = σac(U(β, θ)) and the
point spectrum of U(β, θ)+ consists of finitely many simple eigenvalues in
the resolvent set of U(β, θ).
(ii) Let T θ

k (E) be the transfer matrices at E ∈ T corresponding to U(β, θ).
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For β irrational, the Lyapunov exponent γ(E) satisfies, for almost all θ,

γθ(E) = lim
N→∞

ln ‖
∏N

k=1 T θ
k (E)‖

N
≥ ln

1
t2

> 0,

and so σac(U(β, θ)) = ∅. The same is true for U(β, θ)+.

Finally, we introduce our study model. We consider a rank one pertur-
bation of U(β, θ)+, λ ∈ [0, 2π) (see also [4])

Uλ(β, θ)+ := U(β, θ)+eiλPϕ1 = U(β, θ)+
(
Id + (eiλ − 1)Pϕ1

)
,(10)

where Pϕ1(·) = 〈ϕ1, ·〉ϕ1. We observe that

U(β, θ)+ ≡ U+ ({θk}∞k=0, {αk}∞k=1, {γk}∞k=1)

and Uλ(β, θ)+ ≡ U+
(
{θ̃k}∞k=0, {α̃k}∞k=1, {γ̃k}∞k=1

)
where θ̃0 = θ0 − λ and

θ̃k = θk, α̃k = αk, γ̃k = γk for k ≥ 1. Hence, the perturbed operator
Uλ(β, θ)+ also belongs to the family of Floquet operators studied in [3].
Note also that the Lyapunov exponent is independent on the parameter λ.

We can now state our main result:

Theorem 2. (i) For β irrational, Uλ(β, θ)+ has only point spectrum for a.e.
θ, λ ∈ [0, 2π), and in the basis {ϕk} its eigenfunctions decay exponentially.
(ii) β can be chosen irrational so that

lim sup
n→∞

‖X (Uλ(β, θ)+)n ϕ1‖2

F (n)
= ∞,

for all θ ∈ [0, 2π) and any λ ∈ [π6 , π2 ], where F (n) = n2

ln(2+n) and X is the
moment of order m = 1 given by (4).

Remarks. 1. Joining up (i) and (ii) of the theorem above we proved that
for some β irrational, for a.e. θ ∈ [0, 2π) and λ ∈ [π6 , π2 ], Uλ(β, θ)+ has pure
point spectrum and the function

n #→
〈(

Uλ(β, θ)+
)n

ϕ1, X
2
(
Uλ(β, θ)+

)n
ϕ1

〉

is unbounded. That is, we have pure point spectrum and dynamical insta-
bility.
2. One can modify the proof to replace the logarithm function f(n) =
ln(2 + n) for any monotone sequence f with limn→∞ f(n) = ∞.

3. Pure Point Spectrum

In this section we prove part (i) of Theorem 2. We need a preliminary
lemma.
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Lemma 1. For any β and θ, the vector ϕ1 is cyclic for U(β, θ)+.

Proof. Fix β and θ. We indicate that any vector ϕk, k ∈ IN∗ can be writ-
ten as a linear combination of the vectors (U(β, θ)+)n ϕ1, n ∈ ZZ. Since
U(β, θ)+ϕ1 = re−i(2πβ+2θ)e−iαϕ1 + ite−i(2πβ+2θ)e−iαϕ2 then

ϕ2 = − i

t
ei(2πβ+2θ)eiαU(β, θ)+ϕ1 +

ir

t
ϕ1.(11)

Now
(
U(β, θ)+

)−1
ϕ1 = a1ϕ1 + a2ϕ2 + a3ϕ3,(12)

where a1, a2 and a3 are nonzero complex numbers. Thus, using (11) and
(12), suitable linear combination of (U(β, θ)+)−1 ϕ1, ϕ1 and U(β, θ)+ϕ1

yields ϕ3. Since U(β, θ)+ϕ2 = b1ϕ1 + b2ϕ2 + b3ϕ3 + b4ϕ4 we obtain that
ϕ4 can be written as a linear combination desired. Due to the structure of
U(β, θ)+, the process can be iterated to obtain any ϕk.

We are in conditions to prove pure point spectrum for our model.

Proof. (Theorem 2(i)) Fix β irrational and let | · | denote the Lebesgue
measure on [0, 2π). By Theorem 1(ii), for any E ∈ [0, 2π) there exists
Ω(E) ⊂ [0, 2π) with |Ω(E)| = 1 such that

γθ(E) > 0, ∀ θ ∈ Ω(E).

Thus, by Fubini’s Theorem,

1 =
∫ 2π

0
|Ω(E)|dE

2π
=

∫ 2π

0

(∫ 2π

0
χΩ(E)(θ)

dθ

2π

)
dE

2π

=
∫ 2π

0

(∫ 2π

0
χΩ(E)(θ)

dE

2π

)
dθ

2π
and for θ in a set of measure one

∫ 2π

0
χΩ(E)(θ)

dE

2π
= 1,

that is, θ ∈ Ω(E) for almost all E ∈ [0, 2π). Then we get the existence of
Ω0 ⊂ [0, 2π) with |Ω0| = 1 such that for any θ ∈ Ω0 there exists Aθ ⊂ [0, 2π)
with |Aθ| = 0 and

γθ(E) > 0, ∀ E ∈ Ac
θ := [0, 2π) \ Aθ.

Let µk
θ,λ be the spectral measures associated with

Uλ(β, θ)+ =
∫ 2π

0
eiEdFθ,λ(E)

and respectively vectors ϕk, so that for k ∈ IN∗ and all Borel sets Λ ⊂ [0, 2π)

µk
θ,λ(Λ) = 〈ϕk, Fθ,λ(Λ)ϕk〉.
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Now, for rank one perturbations of unitary operators there is a spectral
averaging formula as for rank one perturbations of self-adjoint operators
(see [17, 20] for the self-adjoint case and [2, 4] for the unitary case). Thus,
for any f ∈ L1([0, 2π)) one has

∫ 2π

0
dλ

∫ 2π

0
f(E)dµ1

θ,λ(E) =
∫ 2π

0
f(E)

dE

2π
.(13)

Then, applying (13) with f the characteristic function of Aθ we obtain

0 = |Aθ| =
∫ 2π

0
χAθ(E)

dE

2π

=
∫ 2π

0
dλ

∫ 2π

0
χAθ(E)dµ1

θ,λ(E) =
∫ 2π

0
µ1
θ,λ(Aθ)dλ,

and so µ1
θ,λ(Aθ) = 0 for almost all λ. Therefore, for each θ ∈ Ω0, there is

Jθ ⊂ [0, 2π) with |Jc
θ | = 0 such that

µ1
θ,λ(Aθ) = 0, ∀ λ ∈ Jθ.(14)

By Lemma 1 and (14), it follows that Fθ,λ(Aθ) = 0 for all θ ∈ Ω0 and λ ∈ Jθ.
Moreover, let Sθ,λ denote the set of E ∈ [0, 2π) so that the equation

Uλ(β, θ)+ψ = eiEψ

has a nontrivial polynomially bounded solution. It is known that

Fθ,λ ([0, 2π) \ Sθ,λ) = 0

(see [3, 9]). Thus we conclude that Sθ,λ ∩ Ac
θ is a support for Fθ,λ(·) (see

remark bellow) for all θ ∈ Ω0 and λ ∈ Jθ.
Now, if E ∈ Sθ,λ∩Ac

θ then Uλ(β, θ)+ψ = eiEψ has a nontrivial polynomi-
ally bounded solution ψ and γθ(E) > 0. By construction γθ,λ(E) = γθ(E)
where γθ,λ(E) is the Lyapunov exponent associated with Uλ(β, θ)+. Thus,
by Oseledec’s Theorem, every solution which is polynomially bounded nec-
essarily has to decay exponentially, so ψ is in l2(IN∗) and is an eigenfunction
of Uλ(β, θ)+. Hence, we conclude that each E ∈ Sθ,λ ∩ Ac

θ is an eigenvalue
of Uλ(β, θ)+ with corresponding eigenfunction decaying exponentially. As
l2(IN∗) is separable, it follows that Sθ,λ ∩ Ac

θ is countable and then Fθ,λ(·)
has countable support for all θ ∈ Ω0 and λ ∈ Jθ. Thus Uλ(β, θ)+ has purely
point spectrum for a.e. θ, λ ∈ [0, 2π).

Remark. We say that a Borel set S supports the spectral projection F (·) if
F ([0, 2π) \ S) = 0.
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4. Energy Instability

In this section we present the proof of Theorem 2(ii). The initial strat-
egy is that of Appendix 2 of [7], and Lemmas 2 and 3 ahead are similar
to Lemmas B.1 and B.2 in [7]. However, some important technical issues
needed quite different arguments. To begin with we shall discuss a series
of preliminary lemmas, adapted to the unitary case from the self-adjoint
setting.

4.1. Preliminary Lemmas. Let Pn≥a denote the projection onto those
vectors supported by {n : n ≥ a}, that is, for ψ ∈ l2(IN∗)

(Pn≥aψ)(n) =
{

0, if n < a
ψ(n), if n ≥ a

,

and similarly for Pn<a. Let f(n) be a monotone increasing sequence with
f(n) → ∞ as n → ∞.

Lemma 2. If there exists Tm → ∞, Tm ∈ IN for all m, such that

1
Tm + 1

2Tm∑

j=Tm

‖Pn≥ Tm
f(Tm)

(
Uλ(β, θ)+

)j
ϕ1‖2 ≥ 1

f(Tm)2
,(15)

then

lim sup
j→∞

‖X
(
Uλ(β, θ)+

)j
ϕ1‖2 f(j)5

j2
= ∞.

Proof. By hypothesis, for each m ∈ IN, there must be some jm ∈ [Tm, 2Tm]
such that

‖Pn≥ Tm
f(Tm)

(
Uλ(β, θ)+

)jm ϕ1‖2 ≥ 1
f(Tm)2

and then

‖X
(
Uλ(β, θ)+

)jm ϕ1‖2 =
∑

n∈IN∗

n2|
(
Uλ(β, θ)+

)jm ϕ1(n)|2

≥
∑

n∈IN∗

∣∣∣
Tm

f(Tm)

(
Pn≥ Tm

f(Tm)

(
Uλ(β, θ)+

)jm ϕ1

)
(n)

∣∣∣
2

≥ T 2
m

f(Tm)4
.

Therefore
f(jm)5

j2
m

‖X
(
Uλ(β, θ)+

)jm ϕ1‖2 ≥
(

Tm

jm

)2 (
f(jm)
f(Tm)

)4

f(jm)

≥ 1
4
f(jm) → ∞

and the lemma is proved.
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In order to prove Theorem 2(ii) we want to apply the above lemma with
f(n) = (ln(n+2))1/5. By keeping this goal in mind, the estimate in relation
(15) is crucial as well as the following lemmas.

Lemma 3. Let ξ be a unit vector, P a projection, and U a unitary operator.
If ξ = η + ψ with 〈η, ψ〉 = 0, then

1
T + 1

2T∑

j=T

‖(Id − P )U jξ‖2 ≥ ‖ψ‖2 − 3



 1
T + 1

2T∑

j=T

‖PU jψ‖2




1/2

.(16)

Proof. Denote D := 1
T+1

∑2T
j=T ‖(Id − P )U jξ‖2. Then

D =
1

T + 1

2T∑

j=T

(1 − ‖PU jξ‖2)

=
1

T + 1

2T∑

j=T

(‖ψ‖2 + ‖η‖2 − ‖PU j(η + ψ)‖2)

= ‖η‖2 − 1
T + 1

2T∑

j=T

‖PU jη‖2

+‖ψ‖2 − 1
T + 1

2T∑

j=T

(‖PU jψ‖2 + 2Re (〈PU jη, PU jψ〉))

= A + B,

with A = ‖η‖2 − 1
T+1

∑2T
j=T ‖PU jη‖2 and B = ‖ψ‖2 − 1

T+1

∑2T
j=T (‖PU jψ‖2

+ 2Re (〈PU jη, PU jψ〉)).
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Clearly, 1
T+1

∑2T
j=T ‖PU jη‖2 ≤ ‖η‖2 ≤ 1, and the same is true with η

replaced by ψ. Hence A ≥ 0 and

B = ‖ψ‖2 − 1
T + 1

2T∑

j=T

‖PU jψ‖2 − 2
T + 1

2T∑

j=T

Re (〈PU jη, PU jψ〉)

≥ ‖ψ‖2 − 1
T + 1

2T∑

j=T

‖PU jψ‖2 − 2
T + 1

2T∑

j=T

‖PU jη‖‖PU jψ‖

≥ ‖ψ‖2 −
( 1

T + 1

2T∑

j=T

‖PU jψ‖2
) 1

2

−2
( 1

T + 1

2T∑

j=T

‖PU jη‖2
) 1

2
( 1

T + 1

2T∑

j=T

‖PU jψ‖2
) 1

2

≥ ‖ψ‖2 − 3
( 1

T + 1

2T∑

j=T

‖PU jψ‖2
) 1

2
.

The result follows immediately.

The following lemma is an adaptation to the discrete setup of a classical
estimate found in Lemma 4.5, page 543 of [13].

Lemma 4. Let U =
∫ 2π
0 eitdEU (t) be the spectral decomposition of a uni-

tary operator U on the Hilbert space H. Let ξ ∈ H be an absolutely con-
tinuous vector for U , i.e., the spectral measure µξ, associated to U and ξ,
is absolutely continuous with respect to Lebesgue measure, and denote by
g = dµξ

dx ∈ L1([0, 2π)) the corresponding Radon-Nikodym derivative. Define

|‖ξ‖|U = ‖g‖1/2
∞ .

Then, for any η ∈ H, one has
∑

j∈ZZ

|〈U jξ, η〉|2 ≤ 2π |‖ξ‖|2U ‖η‖2.

If it is clear the unitary operator in question, then |‖ · ‖| will be used to
indicate |‖ · ‖|U .

Proof. If |‖ξ‖| = ∞ then the result is clear. Suppose |‖ξ‖| < ∞ and take
η ∈ H. Denote by Pac the spectral projection onto the absolutely contin-
uous subspace Hac of U , η0 = Pacη and g̃ = dµη0

dλ ; then µξ,η is absolutely
continuous and its Radon-Nikodym derivative h is estimate by

|h(x)| ≤ (gg̃)
1
2 (x) = g

1
2 (x) g̃

1
2 (x) ≤ |‖ξ‖| g̃

1
2 (x).

Hence h ∈ L2([0, 2π)) with L2 norm estimated by

‖h‖2 ≤ |‖ξ‖|
( ∫ 2π

0
g̃(x)dx

) 1
2 = |‖ξ‖|

( ∫ 2π

0
dµη0

) 1
2



PURE POINT AND ENERGY INSTABILITY 13

= |‖ξ‖| · ‖η0‖ ≤ |‖ξ‖| · ‖η‖.

Since

〈U jξ, η〉 =
∫ 2π

0
eijtdµξ,η(t) =

∫ 2π

0
eijth(t)dt =

√
2π(Fh)(j),

it follows that
∑

j∈ZZ

|〈U jξ, η〉|2 =
∑

j∈ZZ

2π|(Fh)(j)|2 = 2π‖h‖2
2 ≤ 2π|‖ξ‖|2‖η‖2,

which is precisely the stated result.

4.2. Cauchy and Borel Transforms. Given a probability measure µ on
∂D = {z ∈ C : |z| = 1}, its Cauchy Fµ(z) and Borel Rµ(z) transforms are,
respectively, for z ∈ C with |z| 2= 1,

Fµ(z) =
∫

∂D

eit + z

eit − z
dµ(t)

and

Rµ(z) =
∫

∂D

1
eit − z

dµ(t).

Rµ is related to Fµ by

Fµ(z) = 2zRµ(z) + 1.(17)

Moreover, Fµ has the following properties [18]:
• limr↑1 Fµ(reiθ) exists for a.e. θ, and if one decomposes the measure in

its absolutely continuous and singular parts

dµ(θ) = ω(θ)
dθ

2π
+ dµs(θ),

then

ω(θ) = lim
r↑1

Re Fµ(reiθ).(18)

• θ0 is a pure point of µ if and only if limr↑1(1 − r)Re Fµ(reiθ0) 2= 0.
• dµs is supported on {θ : limr↑1 Fµ(reiθ) = ∞}.

Now, let U be a unitary operator on a separable Hilbert space H and φ a
cyclic vector for U . Consider the rank one perturbation of U

Uλ = UeiλPφ = U(Id + (eiλ − 1)Pφ),

where Pφ(·) = 〈φ, ·〉φ and λ ∈ [0, 2π). Denote by dµλ the spectral measure
associated with Uλ and φ, Fλ = Fµλ and Rλ = Rµλ . We have the following
relations between Rλ and R0, Fλ and F0:
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Lemma 5. For |z| 2= 1

Rλ(z) =
R0(z)

eiλ + z(eiλ − 1)R0(z)
(19)

and

Fλ(z) =
(eiλ − 1) + (eiλ + 1)F0(z)
(eiλ + 1) + (eiλ − 1)F0(z)

(20)

In particular, for λ 2= π,

Re Fλ(z) =
(1 + y2)Re F0(z)
|1 + iyF0(z)|2 ,(21)

where y = sinλ
1+cosλ , and for λ = π

Re Fλ(z) =
Re F0(z)
|F0(z)|2 .(22)

Proof. Relation (19) was got in [4]. For checking (20) we use relations (17)
and (19). In fact,

Fλ(z) = 2zRλ(z) + 1

= 2z
R0(z)

eiλ + z(eiλ − 1)R0(z)
+ 1

=
eiλ + z(eiλ − 1)R0(z) + 2zR0(z)

eiλ + z(eiλ − 1)R0(z)

=
eiλ + z(eiλ + 1)R0(z)
eiλ + z(eiλ − 1)R0(z)

=
2eiλ + 2zeiλR0(z) + 2zR0(z)
2eiλ + 2zeiλR0(z) − 2zR0(z)

=
eiλ − 1 + eiλ + 2eiλzR0(z) + 1 + 2zR0(z)
eiλ + 1 + eiλ + 2eiλzR0(z) − 1 − 2zR0(z)

=
(eiλ − 1) + (eiλ + 1)(1 + 2zR0(z))
(eiλ + 1) + (eiλ − 1)(1 + 2zR0(z))

=
(eiλ − 1) + (eiλ + 1)F0(z)
(eiλ + 1) + (eiλ − 1)F0(z)

.

Now, for λ 2= π we have eiλ + 1 2= 0 and then

Fλ(z) =
eiλ−1
eiλ+1

+ F0(z)

1 +
(

eiλ−1
eiλ+1

)
F0(z)

=
iy + F0(z)
1 + iyF0(z)

× 1 − iyF0(z)
1 − iyF0(z)

=
iy + F0(z) − iy|F0(z)|2 + y2F0(z)

|1 + iyF0(z)|2 ,
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where eiλ−1
eiλ+1

= iy and y = sinλ
1+cosλ . So, for λ 2= π,

Re Fλ(z) =
(1 + y2)Re F0(z)
|1 + iyF0(z)|2

and (21) is obtained. For λ = π we have Fλ(z) = 1
F0(z) and (22) follows.

Lemma 6. Fix a rational number β. Then there exist C1 > 0 and C2 < ∞,
and for each θ ∈ [0, 2π) and λ ∈ [π6 , π2 ] a decomposition

ϕ1 = ηθ,λ + ψθ,λ

so that

〈ηθ,λ, ψθ,λ〉 = 0,(23)

‖ψθ,λ‖ ≥ C1,(24)

|‖ψθ,λ‖|Uλ(β,θ)+ ≤ C2(25)

(the notation |‖ · ‖|U was introduced in Lemma 4).

Proof. We break the proof in some steps.
Step 1. By Theorem 1, since β is rational,

σsc(U(β, θ)+) = ∅, σac(U(β, θ)+) = σac(U(β, θ))

and the point spectrum of U(β, θ)+ consists of finitely many simple eigen-
values in the resolvent set of U(β, θ). Denote by µθ,λ the spectral measure
associated to Uλ(β, θ)+ and (the cyclic vector) ϕ1, and by µθ the spectral
measure associated to U(β, θ)+ and ϕ1 (i.e., the case λ = 0). Write

dµθ,λ(E) = fθ,λ(E)
dE

2π
+ dµθ,λs (E),

dµθ(E) = fθ(E)
dE

2π
+ dµθp(E).

Step 2. Relation between fθ,λ and fθ: By Lemma 5, for λ 2= π one has

Re Fµθ,λ(z) =
(1 + y2)Re Fµθ(z)
|1 + iyFµθ(z)|2

,

where y = sinλ
1+cosλ and then

fθ,λ(E) =
(1 + y2)fθ(E)

|1 + iy limr↑1 Fµθ(reiE)|2
,

for almost all E.

Step 3. Relation between fθ and f0: By (9) and (8) one gets

U(β, θ)+ = e−i2θU(β, 0)+(26)
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and using this relation it found that
(
U(β, θ)+

)j = e−ij2θ
(
U(β, 0)+

)j

for all j ∈ ZZ. Thus, by the spectral theorem, for any j ∈ ZZ,
∫ 2π

0
e−ijEfθ(E)

dE

2π
=

∫ 2π

0
e−ijEf0(E − 2θ)

dE

2π
.

Hence

fθ(E) = f0(E − 2θ)(27)

for almost all E.

Step 4. Lower and upper bounds for fθ,λ: We have

lim
r↑1

Fµθ(re
iE) = fθ(E) + i lim

r↑1
Im Fµθ(re

iE)

and

lim
r↑1

Im Fµθ(re
iE) = lim

r↑1

∫ 2π

0
Im

(
eit + reiE

eit − reiE

)
fθ(t)

dt

2π

+ lim
r↑1

∫ 2π

0
Im

(
eit + reiE

eit − reiE

)
dµθp(t).

If we denote

gθ(E) = lim
r↑1

∫ 2π

0
Im

(
eit + reiE

eit − reiE

)
fθ(t)

dt

2π
,

then by (27) we obtain gθ(E) = g0(E − 2θ) for almost all E. On the other
hand, by (26) we have that E is an eigenvalue of U(β, θ)+ if and only if
E − 2θ is an eigenvalue of U(β, 0)+. Let {Eθ

j }n
j=1 be the set of eigenvalues

of U(β, θ)+ (recall that n < ∞) and dµθp =
∑n

j=1 κ
θ
jδEθ

j
(δE is the Dirac

measure at E). Then

lim
r↑1

∫ 2π

0
Im

(
eit + reiE

eit − reiE

)
dµθp(t) = lim

r↑1

∫ 2π

0

2r sin(E − t)
1 + r2 − 2r cos(E − t)

dµθp(t)

= lim
r↑1

n∑

j=1

2r sin(E − Eθ
j )κθj

1 + r2 − 2r cos(E − Eθ
j )

=
n∑

j=1

2 sin(E − 2θ − E0
j )κθj∣∣∣eiE0

j − ei(E−2θ)
∣∣∣
2 .

Since f0 ∈ L1([0, 2π)), by a result of [14] (Theorem 1.6 in Chapter III),
the function g0 is of weak L1 type, i.e., g0 is measurable and there exits a
constant C > 0 such that for all T > 0 the Lebesgue measure

|{E : |g0(E)| ≤ T}| ≥ 1 − C

T
.(28)
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Pick S > 0 such that ΩS :=
{

E : 1
S ≤ f0(E) ≤ S

}
satisfies |ΩS | > 0 and

dist (ΩS , {E0
j }n

j=1) = L > 0. Then choose T sufficiently large such that

A := ΩS ∩ {E : |g0(E)| ≤ T}

satisfies |A| > 0; by (28) this is possible. For θ ∈ [0, 2π) put

Iθ := {E ∈ [0, 2π) : E − 2θ ∈ A};

thus |Iθ| = |A| > 0. Then, for all θ ∈ [0, 2π), λ ∈ [0, π2 ] (equivalently
y ∈ [0, 1]) and almost all E ∈ Iθ one has

∣∣∣∣1 + iy lim
r↑1

Fµθ(re
iE)

∣∣∣∣ ≤ 1 + |y|
(

fθ(E) + |gθ(E)|

+

∣∣∣∣∣∣

n∑

j=1

2 sin(E − 2θ − E0
j )κθj

|eiE0
j − ei(E−2θ)|2

∣∣∣∣∣∣

)

≤ 1 + f0(E − 2θ) + |g0(E − 2θ)| +
n∑

j=1

2|κθj |
L2

≤ 1 + S + T +
2
L2

.

So, for all θ ∈ [0, 2π), λ ∈ [0, π2 ] and almost all E ∈ Iθ

fθ,λ(E) =
(1 + y2)fθ(E)

|1 + iy limr↑1 Fµθ(reiE))|2

≥ f0(E − 2θ)
(1 + S + T + 2/L2)2

≥ 1
S(1 + S + T + 2/L2)2

.

In order to get un upper bound, note that
∣∣∣∣1 + iy lim

r↑1
Fµθ(re

iE)
∣∣∣∣ ≥ yfθ(E) ≥ 0,

and so, for all θ ∈ [0, 2π), λ ∈ [π6 , π2 ] (equivalently y ∈
[

1
2+

√
3
, 1

]
) and almost

all E ∈ Iθ

fθ,λ(E) =
(1 + y2)fθ(E)

|1 + iy limr↑1 Fµθ(reiE)|2

≤ (1 + y2)fθ(E)
y2fθ(E)2

=
(1 + y2)

y2f0(E − 2θ)
≤ 2(2 +

√
3)2S.
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Summing up, for all θ ∈ [0, 2π), λ ∈ [π6 , π2 ] and almost all E ∈ Iθ, we have
proved that

1
S(1 + S + T + 2/L2)2

≤ fθ,λ(E) ≤ 2(2 +
√

3)2S.(29)

Step 5. Conclusion: For λ ∈ [π6 , π2 ] and θ ∈ [0, 2π) let

ψθ,λ = P θ,λ
Iθ

ϕ1, ηθ,λ = (Id − P θ,λ
Iθ

)ϕ1,

where P θ,λ
Iθ

is the spectral projection (of Uλ(β, θ)+) onto Iθ. Then for each
θ ∈ [0, 2π) and λ ∈ [π6 , π2 ] we have the decomposition ϕ1 = ψθ,λ + ηθ,λ that
satisfies (23).

By the construction in Step 4, we have that A = I0 is in the absolutely
continuous spectrum of U(β, 0)+, so by (26) and the definition of Iθ it fol-
lows that Iθ is in the absolutely continuous spectrum of U(β, θ)+; thus
using Birman-Krein’s theorem on invariance of absolutely continuous spec-
trum under trace class perturbations, we conclude that Iθ belongs to the
absolutely continuous spectrum of Uλ(β, θ)+ for all λ. Therefore by (29)

‖ψθ,λ‖2 = 〈ψθ,λ, ψθ,λ〉 = 〈P θ,λ
Iθ

ϕ1, P
θ,λ
Iθ

ϕ1〉

= 〈ϕ1, P
θ,λ
Iθ

ϕ1〉 =
∫ 2π

0
χIθ(E)dµθ,λ

=
∫

Iθ

fθ,λ(E)
dE

2π
≥ |A|

2πS(1 + S + T + 2/L2)2

and (24) holds with

C1 =
( |A|

2πS(1 + S + T + 2/L2)2
)1/2

> 0;

also

|‖ψθ,λ‖|2Uλ(β,θ)+ = |‖P θ,λ
Iθ

ϕ1‖|
2

Uλ(β,θ)+
= ‖χIθfθ,λ‖∞ ≤ 2(2 +

√
3)2S

and (25) holds with C2 = (2(2 +
√

3)2S)1/2 < ∞. The lemma is proved.

4.3. Variation of β. The next lemma gives an estimate of the dependence
of the dynamics on β. Its proof strongly uses the structure of Uλ(β, θ)+.

Lemma 7. Let β, β′ ∈ IR. Then, for n ≥ 1,
∥∥(

Uλ(β, θ)+
)n

ϕ1 −
(
Uλ(β′, θ)+

)n
ϕ1

∥∥ ≤ 2 × 4n(2n2 − n)2π
∣∣β − β′∣∣ .
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Proof. It is an induction. We have

Uλ(β, θ)+ϕj = U(β, θ)+(Id + (eiλ − 1)Pϕ1)ϕj

=
{

U(β, θ)+ϕj if j > 1
U(β, θ)+ϕ1 + (eiλ − 1)U(β, θ)+ϕ1 if j = 1

=
{

U(β, θ)+ϕj if j > 1
eiλU(β, θ)+ϕ1 if j = 1

Thus

Uλ(β, θ)+ϕ1 = eiλU(β, θ)+ϕ1 = a1e
−i(2πβ)ϕ1 + a2e

−i(2πβ)ϕ2

where a1 = reiλe−i(α+2θ) and a2 = iteiλe−i(α+2θ). Since

|e−ix − e−ix′ | ≤ 2|x − x′|(30)

and |aj | ≤ 1, j = 1, 2, then

∥∥Uλ(β, θ)+ϕ1 − Uλ(β′, θ)+ϕ1

∥∥ ≤ 2
∣∣∣e−i(2πβ) − e−i(2πβ′)

∣∣∣

≤ 4 × 2|2πβ − 2πβ′| = 2 × 4 × 2π
∣∣β − β′∣∣

and the lemma is proved for n = 1.
Now
(
Uλ(β, θ)+

)2
ϕ1 = Uλ(β, θ)+Uλ(β, θ)+ϕ1

= Uλ(β, θ)+(a1e
−i(2πβ)ϕ1 + a2e

−i(2πβ)ϕ2)
= eiλa1e

−i(2πβ)U(β, θ)+ϕ1 + a2e
−i(2πβ)U(β, θ)+ϕ2

= eiλa1e
−i(2πβ)

(
b1e

−i(2πβ)ϕ1 + b2e
−i(2πβ)ϕ2

)

+a2e
−i(2πβ)

(
c1e

−i(3.(2πβ))ϕ1 + c2e
−i(3.(2πβ))ϕ2

+c3e
−i(5.(2πβ))ϕ3 + c4e

−i(5.(2πβ))ϕ4

)

Since |aj | < 1, |bj | < 1, |cj | < 1 and there are 2 + 4 < 4 × 4 terms in the
expansion of (Uλ(β, θ)+)2 ϕ1 and the largest exponent (which provides the
largest contribution by (30)) is obtained from the product of the exponentials
e−i(2πβ)e−i((2+3)2πβ) = e−i((1+2+3)2πβ), we obtain
∥∥∥
(
Uλ(β, θ)+

)2
ϕ1 −

(
Uλ(β′, θ)+

)2
ϕ1

∥∥∥ ≤ 4 × 4 × 2(1 + 2 + 3)2π
∣∣β − β′∣∣

= 2 × 42(1 + 2 + 3)2π
∣∣β − β′∣∣ ,

and the lemma is proved for n = 2. In a similar way by the structure of
Uλ(β, θ)+ we conclude that (Uλ(β, θ)+)3 ϕ1 has at most 42 × 4 terms where
the largest exponent is in e−i(1+2+3)2πβe−i((4+5)2πβ) = e−i((1+2+3+4+5)2πβ)
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and so ∥∥∥
(
Uλ(β, θ)+

)3
ϕ1 −

(
Uλ(β′, θ)+

)3
ϕ1

∥∥∥ ≤

≤ 4 × 4 × 4 × 2(1 + 2 + 3 + 4 + 5)2π
∣∣β − β′∣∣

= 2 × 43(1 + 2 + 3 + 4 + 5)2π
∣∣β − β′∣∣ .

Inductively one finds that (Uλ(β, θ)+)n ϕ1 has at the most 4n terms, and
according to (30) the largest contribution comes from the product

e−i(1+2+...+2n−3)2πβe−i(((2n−2)+(2n−1))2πβ) = e−i((1+2+...+2n−1)2πβ)

and then
∥∥(

Uλ(β, θ)+
)n

ϕ1 −
(
Uλ(β′, θ)+

)n
ϕ1

∥∥

≤ 2 × 4n(1 + 2 + . . . + 2n − 1)2π
∣∣β − β′∣∣ ;

since 2n2 − n = 1 + 2 + . . . + 2n − 1, the result follows.

4.4. Proof of Theorem 2(ii). Finally, using this preparatory set of results,
we finish the proof of our main result.

Let f(n) = (ln(2+ |n|))
1
5 . Sequences βm, Tm,∆m will be built inductively,

starting with β1 = 1, so that
(i) βm+1 − βm = 2−κm! for some κm ∈ IN;
(ii) 1

Tm+1

∑2Tm
j=Tm

‖Pn≥ Tm
f(Tm)

(Uλ(β, θ)+)j ϕ1‖2 ≥ 1
f(Tm)2 for all θ ∈ [0, 2π),

λ ∈ [π6 , π2 ] and β with |β − βm| ≤ ∆m;
(iii) |βm+1 − βk| < ∆k for k = 1, 2, . . . , m.

If (i), (ii) and (iii) are satisfied then we conclude by (i) that β∞ = limβm

is irrational, by (iii) that |β∞ − βm| ≤ ∆m and then by (ii) that

1
Tm + 1

2Tm∑

j=Tm

‖Pn≥ Tm
f(Tm)

(
Uλ(β∞, θ)+

)j
ϕ1‖2 ≥ 1

f(Tm)2

for θ ∈ [0, 2π) and λ ∈ [π6 , π2 ]. So by Lemma 2

lim sup
n→∞

‖X
(
Uλ(β, θ)+

)n
ϕ1‖2 f(n)5

n2
= ∞

for β = β∞ and the result is proved.
Then we shall construct βm, Tm,∆m such that (i), (ii) and (iii) hold. Start

with β1 = 1. Given β1, . . . , βm, T1, . . . , Tm−1 and ∆1, . . . ,∆m−1 we shall
show how to choose Tm,∆m and βm+1.

Given βm, let ϕ1 = η+ψ be the decomposition given by Lemma 6 and let
C1, C2 be the corresponding constants. Choose Tm ≥ 2Tm−1 (and T1 ≥ 2)
so that

C2
1 − 3

√
2πC2(2f(Tm)−1 + T−1

m )
1
2 ≥ 2f(Tm)−1.(31)
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This is possible since C1 and C2 are fixed (given βm) and f(n) → ∞.
Note that

1
T + 1

2T∑

j=T

‖Pn< T
f(T )

(
Uλ(β, θ)+

)j
ψ‖2 ≤ 2π

T + 1
#

{
n : n <

T

f(T )

}
|‖ψ‖|2;

(32)

in fact

1
T + 1

2T∑

j=T

‖Pn< T
f(T )

(
Uλ(β, θ)+

)j
ψ‖2 =

=
1

T + 1

2T∑

j=T

∑

n< T
f(T )

∣∣∣
((

Uλ(β, θ)+
)j

ψ
)

(n)
∣∣∣
2

=
1

T + 1

∑

n< T
f(T )

2T∑

j=T

∣∣∣
((

Uλ(β, θ)+
)j

ψ
)

(n)
∣∣∣
2

≤ 1
T + 1

∑

n< T
f(T )

∞∑

j=−∞

∣∣∣〈ϕn,
(
Uλ(β, θ)+

)j
ψ〉

∣∣∣
2
,

then by Lemma 4

1
T + 1

2T∑

j=T

‖Pn< T
f(T )

(
Uλ(β, θ)+

)j
ψ‖2 ≤ 1

T + 1

∑

n< T
f(T )

2π|‖ψ‖|2,

and (32) follows.
By Lemma 3 and (32)

1
Tm + 1

2Tm∑

j=Tm

‖Pn≥ Tm
f(Tm)

(
Uλ(βm, θ)+

)j
ϕ1‖2 ≥

≥ ‖ψ‖2 − 3
( 1

Tm + 1

2Tm∑

j=Tm

‖Pn< Tm
f(Tm)

(
Uλ(βm, θ)+

)j
ψ‖2

) 1
2

≥ ‖ψ‖2 − 3
( 2π

Tm + 1
#

{
n : n <

Tm

f(Tm)

}
|‖ψ‖|2

) 1
2

≥ C2
1 − 3

( 2π
Tm + 1

#
{

n : n <
Tm

f(Tm)

}
C2

2

) 1
2

= C2
1 − 3

√
2πC2

( 1
Tm + 1

#
{

n : n <
Tm

f(Tm)

}) 1
2
.
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Since #
{

n : n < Tm
f(Tm)

}
≤ 2 Tm

f(Tm) + 1 it follows that

1
Tm + 1

2Tm∑

j=Tm

‖Pn≥ Tm
f(Tm)

(
Uλ(βm, θ)+

)j
ϕ1‖2

≥ C2
1 − 3

√
2πC2

( 1
Tm + 1

( 2Tm

f(Tm)
+ 1

)) 1
2

≥ C2
1 − 3

√
2πC2

( 2
f(Tm)

+
1

Tm

) 1
2

for θ ∈ [0, 2π) and λ ∈ [π6 , π2 ]. Thus by (31), we obtain

1
Tm + 1

2Tm∑

j=Tm

‖Pn≥ Tm
f(Tm)

(
Uλ(βm, θ)+

)j
ϕ1‖2 ≥ 2

f(Tm)

for θ ∈ [0, 2π) and λ ∈ [π6 , π2 ].
So, by Lemma 7, for β ∈ IR, θ ∈ [0, 2π) and λ ∈ [π6 , π2 ]

1
Tm + 1

2Tm∑

j=Tm

‖Pn≥ Tm
f(Tm)

(
Uλ(β, θ)+

)j
ϕ1‖2 ≥

≥
( 1

Tm + 1

2Tm∑

j=Tm

‖P|n|≥ Tm
f(Tm)

(
Uλ(β, θ)+

)j
ϕ1‖

)2

=

(
1

Tm + 1

2Tm∑

j=Tm

∥∥∥Pn≥ Tm
f(Tm)

(
Uλ(βm, θ)+

)j
ϕ1

+Pn≥ Tm
f(Tm)

((
Uλ(β, θ)+

)j
ϕ1 −

(
Uλ(βm, θ)+

)j
ϕ1

) ∥∥∥

)2

≥
(

1
Tm + 1

2Tm∑

j=Tm

∥∥∥∥Pn≥ Tm
f(Tm)

(
Uλ(βm, θ)+

)j
ϕ1

∥∥∥∥

−
∥∥∥
((

Uλ(β, θ)+
)j −

(
Uλ(βm, θ)+

)j
)
ϕ1

∥∥∥

)2

≥
( 1

Tm + 1

2Tm∑

j=Tm

(‖Pn≥ Tm
f(Tm)

(
Uλ(βm, θ)+

)j
ϕ1‖2

−4j+1(2j2 − j)π|β − βm|)
)2

≥
( 2

f(Tm)
− 1

Tm + 1

( 2Tm∑

j=Tm

4j+1(2j2 − j)π
)
|β − βm|

)2
.



PURE POINT AND ENERGY INSTABILITY 23

Taking

∆m =
Tm + 1

f(Tm)
∑2Tm

j=Tm
4j+1(2j2 − j)π

we obtain that, if |β − βm| < ∆m,

1
Tm + 1

2Tm∑

j=Tm

‖Pn≥ Tm
f(Tm)

(
Uλ(β, θ)+

)j
ϕ1‖2 ≥ 1

f(Tm)2
.

Finally, pick βm+1 rational so that

|βn − βm+1| < ∆n n = 1, . . . , m,

and βm+1 = βm + 2−κm! for some κm ∈ IN. This finishes the proof of
Theorem 2(ii).

Remark. For the operator Uλ(β, θ) := U(β, θ)(Id +(eiλ−1)Pϕ1) on l2(ZZ) we
can similarly prove an analogous result. The proof of dynamical instability
for some irrational β is essentially unchanged except for Lemma 6 which is
simplified since U(β, θ) is purely absolutely continuous for β rational. On
the other hand, about pure point spectrum, the main difference in this case
is that ϕ1 might not be cyclic, an thus, we don’t get pure point spectrum
for Uλ(β, θ) for a.e. θ and λ as obtained on l2(IN∗), but we get that ϕ1 is in
the point spectral subspace corresponding to Uλ(β, θ) for a.e. θ and λ.
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