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Abstract
We consider, in quantum scattering theory, symmetrised time delay defined
terms of sojourn times in arbitrary spatial regions symmetric with resp#oetorigin.
For potentials decaying more rapidly than— at infinity, we show the existence of
symmetrised time delay, and prove that it satisfies an anisotropic veiSi@vioe’s
formula. The importance of an anisotropic dilations-type operator isatesién our
study.

1 Introduction and main results

It is known for long that the definition dfime delay(in terms of sojourn times) in scat-
tering theory has to beymmetrisedh the case of multichannel-type scattering processes
(seee.q.[3, 4, 12, 13, 21, 22]). More recently [6] it has been showrt #yanmetrised
time delay does exist, in two-body scattering processesartuitrary dilated spatial re-
gions symmetric with respect to the origin (usual time delags exist only for spherical
spatial regions [20]). This leads to a generalised formaitdifne delay, which reduces to
the usual one in the case of spherical spatial regions. Theothe present paper is to
provide a reasonable interpretation of this formula foreptial scattering by proving its
identity with an anisotropic version of Lavine’s formulal]l

Let us recall the definition of symmetrised time delay for a4vody scattering
process inR?¢, d > 1. Consider a bounded open sgtin R? containing the origin
and the dilated spatial regions, := {rz | = € X}, r > 0. Let Hy := —1A be
the kinetic energy operator i := L?(R%) (endowed with the nornj - || and scalar
product(-,-)). Let H be a selfadjoint perturbation df, such that the wave operators
Wy = s-lim,_ 4 e e~Ho exist and are complete (so that the scattering operator
S := WiW_ is unitary). Then one defines for some states 7 andr > 0 two sojourn
times, namely:
|2
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and

T-(¢) := /jo dt /EZ dz |(e*itH W—@)(I)F-

If the statep is normalized to one the first number is interpreted as the spent by the
freely evolving state "o ¢ inside the seE,, whereas the second one is interpreted as
the time spent by the associated scattering staté’ W_ within the same region. The
usual time delay of the scattering process with incomintggstdor ¥, is defined as

() =Ty (@) — T (),

and the corresponding symmetrised time delaypis given by

() = To(p) = 5 [T7(9) + T (S9)] -
If ¥ is spherical and some abstract assumptions are verifieliyiteof 71" (o) andr, (¢)
asr — oo exist and satisfy [6, Sec. 4.3]
(Hy ¢, 5*[D, S|Hy ), (1.2)

lim 7,(p) = lm 7"(p) = —3

whereD is the generator of dilations. E is not spherical the limit of" () asr — oo
does not exist anymore [20], but the limit 6f(¢) asr — oo does still exist, as soon as
> is symmetric with respect to the origin [6, Rem. 4.8].

In this paper we study, (¢) in the setting of potential scattering. For potentials
decaying more rapidly thajp|~* at infinity, we prove the existence tifn, ... 7,.(¢) by
using the results of [6]. In a first step we show that the liratisfies the equality

Jim 7.(p) = —(f(Ho)™"?p, "Dy, S|f (Ho) /%), 1.2)
where f is a real symbol of degreeé and Dy, = Dx(f) is an operator acting as an
anisotropic generator of dilations. Then we prove that koan(il.2) can be rewritten as an
anisotropic Lavine’s formula. Namely, one has (see Theatdnifor a precise statement)

lim 7,(¢p) = / ds (e W_f(Ho)™"%p, Vs p e ™ W_f(Ho)™"%p), (1.3)

—
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where the operator
Vs = f(H) — f(Ho) —ilV, Ds]

generalises the viridl’ := 2V — 1[V, D]. Formula (1.3) provides an interesting relation
between the potentidl and symmetrised time delay, which we discuss.

Let us give a description of this paper. In section 2 we inficedthe condition on
the sety (see Assumption 2.1) under which our results are proved. [¢¢edefine the
anisotropic generator of dilation9y, and establish some of its properties. Section 3 is
devoted to symmetrised time delay in potential scatteting;existence of symmetrised
time delay for potentials decaying more rapidly thaf* at infinity is established in



Theorem 3.5. In Theorem 4.5 of Section 4 we prove the anigigtrioavine’s formula
(1.3) for the same class of potentials. Remarks and exarape® be found at the end of
Section 4.

We emphasize that the extension of Lavine’s formula to ndregpal sets. is
not straightforward due, among other things, to the appearaf a singularity in the
space of momenta not present in the isotropic case (seei&q(2i7) and the paragraphs
that follow). The adjunction of the symbdgl in the definition of the operatabsy; (see
Definition 2.2) is made to circumvent the difficulty.

Finally we refer to [9] (see also [8, 11, 15, 16, 17]) for a tethwork on Lavine’s
formula for time delay.

2 Anisotropic dilations

In this section we define the operatbs; and establish some of its properties in relation
with the generator of dilation® and the shape af. We start by recalling some notations.

Given two Hilbert space®(; andH,, we write B(H;, Hz) for the set of bounded
operators fronf; to Hy with norm|| - ||, —#,, and put8(H, ) := B(Hi, H1). We set
Q = (Q1,Q2,...,Qq) andP := (P1, P5,..., P;), whereQ); (resp.P;) stands for the
j-th component of the position (resp. momentum) operatét.it¥ := {0,1,2,...} is the
set of natural numberg{*, k € N, are the usual Sobolev spaces o€ and; (R?),
s,t € R, are the weighted Sobolev spaces dRér1, Sec. 4.1], with the convention that
HE(RY) = H(RY) andH;(RY) := HY(R?). Given a setM C R we write 1,4 for
the characteristic function fok1. We always assume thatis a bounded open set Rr*
containing0, with boundarydy: of classC*. Often we even suppose thatsatisfies the
following stronger assumption (see [6, Sec. 2]).

Assumption 2.1. ¥ is a bounded open set &’ containing0, with boundary¥. of class
C*. FurthermoreX. satifies

/0Oc dp (g (pz) — Ig(—px)] =0, Vo € RY

If p € R?, then the numbefoOo dt 15 (tp) is the sojourn time ifX of a free classical parti-
cle moving along the trajectorty— x(t) := tp, t > 0. ObviouslyX. satisfies Assumption
2.1if ¥ is symmetric with respect to (i.e. X = —). Moreover if3 is star-shaped with
respect t@ and satisfies Assumption 2.1, thEn= —>..

We recall from [6, Lemma 2.2] that the limit

+oo
Ry (z) := il\r% (/6 dju Is (pz) + lne) (2.4)

exists for eactr € R\ {0}, and we define the functiofis : R? \ {0} — R by

Gx(x) := % [Rs(x) + Rs(—2x)]. (2.5)



The functionG's, : R?\ {0} — R is of classC* sinced. of classC*. Letx € R%\ {0}
andt > 0, then Formulas (2.4) and (2.5) imply that

Gyx(tr) = Ge(x) — In(t).
From this one easily gets the following identities for theidiives ofG'y::
z-(VGs)(z) = -1, (2.6)
el (0°Gy) (tx) = (0°Gsx) (), (2.7)

wherea is ad-dimensional multi-index witha| > 1 ando® := 0" - - - 95¢. The second
identity suggests a way of regularizing the functiénsss; which partly motivates the
following definition. We use the notatiofi*(R; R), 1 € R, for the vector space of real
symbols of degreg onR.

Definition 2.2. Let f € S*(R;R) be such that
(i) f(0)=0andf(u)> 0foreachu > 0,

(ii) for eachj = 1,2,...,d, the function — (9,Gx)(x)f(x*/2) (a priori only de-
fined forz € R4\ {0}) belongs toC?(R%; R).

Then we definéy, : R? — R? by Fyy () := —(VGyx)(x) f(22/2).

Given a seb: there are many appropriate choices for the funcfioRor instance if
v > 0 one can always takg(u) = 2(u? + v)~*u?, u € R. But whenX is equal to the
open unit ball3 := {x € R? | || < 1} one can obviously make a simpler choice. Indeed
in such case one has [6, Rem. 2.3.(#)]G5)(z) = —z,;2~2, and the choic¢ (u) = 2u,
u € R, leads to the>>°-function Fx(z) = z.

Remark 2.3. One can associate to each &t unique seb symmetric and star-shaped
with respect td such thati’s. = G5, [6, Rem. 2.3.(c)]. The boundad: of ¥ satisfies

oY = {eGZ(m)x |z € R4\ {0}},

and¥, := {rz | z € £}, > 0. Thus the vector fields; = F; is orthogonal to the

hypersyrface@ir in the following sense: it belongs to the tangent space @¥., at
y € 9%, then Fx,(y) is orthogonal tov. To see this lek — y(s) = re@=() g(5)
be any differentiable curve o, Then% y(s) belongs to the tangent space&ﬁ?r at
y(s), and a direct calculation using Equatioii®.6)}(2.7) givesFx (y(s)) - % y(s) =0.

In the rest of the section we give a meaning to the expression
Dy := }[F(P)-Q+ Q- Fx(P)),
and we establish some properties/af in relation with the generator of dilations
D:=%(P-Q+Q-P).

For the next lemma we emphasize th&t is contained in the domai®(f(H,)) of
f(Hp). The notation(-) stands for,/1 + | - |2, and.” is the Schwartz space @&f'.
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Lemma 2.4. LetY be a bounded open setlf containing0, with boundarydy: of class
C*. Then

(a) The operatorDsy; is essentially selfadjoint orv’. As a bounded operatol)y, ex-
tends to an element o8 (H;, H; "} ) for eachs € R, t € [-2,0] U [1, 3].

(b) One has for eache R andy € D(Dx) ND(f(Hy))
e "o Dy, "0 o = [Dy; — tf (Ho)Jep. (2.8)
In particular one has the equality
i[Ho, Ds] = f(Ho) (2.9)
as sesquilinear forms oR(Dyx) N 'H2.

The second claim of point (a) is sufficient for our purposegneif it is only a
particular case of a more general result.

Proof. (a) The essential seladjointnessiof on . follows from the fact thatFy; is of
classC? (seee.qg.[1, Prop. 7.6.3.(a)]).
Due to the hypotheses di}; one has for each € . the bound

(07 Fo) (Pl < Const. [P} o] (2.10)

whereFy; is thej-th component of s anda is ad-dimensional multi-index witha| <
3. Furthermore

rgong SO sup [[(PYTHQ) [Py (P)Q;s + §(9,Fy)(P)] ¢
j<d Wey:“‘/’“nng

| Ds:|

for eachs € R. Since(Q)” acts as the operatdr— A after a Fourier transform, the
inequalities above imply thdds; extends to an element &8(H3, H5 ). A similar argu-
ment shows thaDsy; extends to an element o (H;, H*~ ') for eachs € R. The second
part of the claim follows then by using interpolation and litya

(b) Let p € e~iHo 7, Sincee~Ho @, eitHo o, = (Q; — tP})¢p, it follows by
Formula (2.6) that

e~ Dy ettt o = [Dy +tP - (VGx)(P)f(Ho)lp = [Ds — tf(Ho)lp.

This together with the essential selfajointneseof o Dy, e?tfo one~*Ho & implies
the first part of the claim. Relation (2.9) follows by takimgetderivative of (2.8) w.r.t.in
the form sense and then posihg- 0. O

Remark 2.5. If ¥ = B and f(u) = 2u, thenFy(x) = z for eachz € R¢, and the
operatorsDy, and D coincide. IfY: is not spherical it is still possible to determine part of



the behaviour of the group/; := ¢*P=. Indeed leR x R? > (¢, ) — & (x) € R? be the
flow associated to the vector fieldFy;, that is, the solution of the differential equation

d

aft(x) = (VGx)(&(2) f(&(2)%/2), &o(z) == (2.11)

Then it is known (see.qg.the proof of [1, Prop. 7.6.3.(a)]) that the grouy; acts in the
Fourier space as

(W) (@) = V/e(@)p(&(2)), (2.12)

wheren,(z) = det(VE:(z)) is the Jacobian at: of the mapping: — & (x). Taking the
scalar product of Equatioif2.11) with & (z) and then using Formul§2.6) leads to the
equation

d
&ft(%“)Q = =2f(&(2)%/2), &o(z) ==
If t < 0andx # 0, thené;(z)? > 22 > 0, and&;(z)? is given by the implicit formula

515(95)2
2t+/ du f(u/2)"' = 0.

2

This, together with the facts that — f(22?/2) belongs toS?(R;R) and f(u) > 0
for u > 0, implies the estimaté¢;(z)) < ¢~ (x) for some constant > 0. Since
(&(z)) < (z) for eacht > 0 it follows that

(€e(@) < (L+e7%) (x) (2.13)

forall t € Randz € R? (the caser = 0 is covered sincg;(0) = 0 for all t € R).
Equation(2.13)implies that the domaif? of H, is left invariant by the groupV;.

The results of Remarks 2.3 and 2.5 suggestiiatay be interpreted as an anisotropic
version of the dilations group, which reduces to the usultidns group in the case
Y =Bandf(u) =2u.

In the next lemma we show some properties of the mollifiedlveso

Ry =i\ Ds +i\)~', A e R\ {0}.

We refer to [18, Lemma 6.2] for the same results in the casbeofisual dilations gen-
eratorD, that is, whenX = B and f(u) = 2u. See also [5, Lemma 4.5] for a general
result.

Lemma 2.6. LetX be a bounded open setlf containing0, with boundaryoX: of class
C*. Then

(a) One has for eache R andy € D(&(P)?)

eitDs [ e~itDs 5 — %gt(p)%p, (2.14)



(b) For each) € R with |\| large enoughR, belongs toZ(H?), and R, extends to
an element of8(H~?2). Furthermore we have for eache H? and each) € H >

Jim (1= Bl =0 and T |1 Bl =0.

Proof. (a) Lety € e'*P» .7, A direct calculation using Formula (2.12) gives
(7 "P= Hye P> ) (k) = & (k)*(F 9)(k),

where.Z is the Fourier transform. This together with the essentif@intness o= H, e~
oneP= 7 implies the claim.

(b) Letp € H? and take € R with |A\| > c, wherec is the constant in the
inequality (2.13). Using the (strong) integral formula

(Ds +i\) !t = i/;oc dt eMe 0= gon(\) = +1,
and Relation (2.14) we get the equalities
(Ds +i\) "o = (Hy + 1) (Dg +i\) " H(Hy + 1)
+¢/OJFQO dt eM [e7*P® (Ho+1)7"] (Ho + 1)
= (Ho+ 1) (Ds +i\) " H(Ho + 1)p

Foo )
— z/ dt eM(Ho +1)""e P [Hy — 3&(P)*] ¢
0
= (Ho+1)"Y(Ds +iX) o+ 2(Hy+1)7" / dt eM e D= ¢, (P)%p.
0

It follows that
Foo ,
HoRxp = —g/ dt eMe Pz ¢, (P)%p, sgn(\) = £1.
0
Now [A| > ¢, and||&(P)2%e|| < (1 +e~")[l¢|l3 due to the bound (2.13). Thus

| HoRx¢||

IN

B[ e P e (P

2l /O dt (e 4 elmn eI Y

< Counst. ||@||2- (2.15)

IN

Using the estimate (2.15) and a duality argument one getsahieds

IR ||72 72 < Const. and |Rx||#~2—2¢-2 < Const., (2.16)



which imply the first part of the claim. For the second part emark that
1— Ry, = (Z‘)\)ingR)\

onH. Using this together with the bounds (2.16) one easily shtasim, | [|(1 —
R)\)¢llnz = 0 for eachy € H* and thatlim| | [[(1 — Rx)¥|»-2 = 0 for each
Y eH2 O

3 Symmetrised time delay

In this section we collect some facts on short-range s@agt¢ineory in connection with
the existence of symmetrised time delay. We always assuatéhth potential” satisfies
the usual Agmon-type condition:

Assumption 3.1. V' is a multiplication operator by a real-valued function suttat 1/
defines a compact operator froh® to H,. for somex > 1.

By using duality, interpolation and the fact tHatcommutes with the operaté®)’,
t € R, one shows that” also defines a bounded operator frffi to Hff[l) foranys €
[0, 1], ¢ € R. Furthermore the operator sukh:= H, + V is selfadjoint orD(H) = H?,
the wave operator8l/,. exist and are complete, and the projectidigs (Q) are locally
H-smooth on(0, o) \ o, (H) (seee.g.[7, Sec. 3] and [19, Sec. XII1.8]).

Since the first two lemmas are somehow standard, we give phaafs in the ap-
pendix.

Lemma 3.2. LetV satisfy Assumption 3.1 with> 1, and takez € C\ {o(Ho)Uo(H)}.

Then the operatofH — z)~! extends to an eIementﬂ(H;Qs,Hf(l_s)) for eachs €
[0,1],t € R.

Alternate formulations of the next lemma can be found in [@yma 4.6] and [22,
Lemma 3.9]. For each > 0 we define the dense set

75 = {¢ € D((Q)") | n(Ho)p = ¢ for somen € C5°((0, 00) \ opp(H)) }.

Lemma 3.3. Let V satisfy Assumption 3.1 with > 2. Then one has for each € Z;
with s > 2 '
(W= —1)e o || € L'(R_, dt) (3.17)

and 4
(W — 1) e o ]| € LY (R4, dt). (3.18)

Lemma 3.4. Let V satisfy Assumption 3.1 with > 4, and lety € ¥, for somes > 2.
Then there exists > 2 such thatSy € 2., and the following conditions are satisfied:

|(W_ —1)e ol e LNR_,dt) and |(W4 —1)e "o Syl € L'(Ry,dt).



Proof. The first part of the claim follows by [10, Thm. 1.4.(ii)]. i@y € Z; andSy €
9 with s, s’ > 2, the second part of the claim follows by Lemma 3.3. O

Theorem 3.5. LetY satisfy Assumption 2.1. Suppose thiatatisfies Assumption 3.1 with
k > 4. Lety € 9, with s > 2. Then the limit of,.(¢) asr — oo exists, and one has

Jim 7 () = —(f (Ho) /%, 5*[Dx, 51/ (Ho)~/?¢). (3.19)

Proof. Due to Lemma 3.4 all the assumptions for the existencémf_. ., 7..(p) are
verified (see [6, Sec. 4]), and we know by Theorem [6, Thm. th&f

lim 7.(p) = —3 (p, 9" [i[Q% Gx(P)], 5] ¢) .

T—00

It follows that

39, 87[Q - (VGx)(P) + (VGx)(P) - Q, S]y)
= S{f(Ho) ¢, S*[f(Ho)"?*(Q - (VGx)(P)
+(VGs)(P) - Q) f(Ho)' 2, S| f(Ho) /%p)
= —(f(Ho) ™29, S*[Ds, S| f(Ho)~/?¢).

lim 7,.(¢) =

T —00

~

O

Note that Theorem 3.5 can be proved with the funcifén) = 2u, even if¥ is not
spherical. Indeed, in such a case, point (ii) of Definitio2 8.the only assumption not
satisfied byf, and a direct inspection shows that this assumption doeglagtany role
in the proof of Theorem 3.5.

Remark 3.6. Some results of the literature suggest that Theorem 3.5 maydved under

a less restrictive decay assumption @rif one modifies some of the previous definitions.
Typically one proves the existence of (usual) time delaypfiientials decaying more
rapidly than|z|~2 (or even|z|~1) at infinity by using smooth cutoff in configuration space
and by considering particular potentials. The reader ieredd to [2, 14, 15, 23, 24] for
more informations on this issue.

4 Anisotropic Lavine’s formula

In this section we prove the anisotropic Lavine’s formula3j1We first give a precise
meaning to some commutators.

Lemma4.1. LetY. be a bounded open setRf* containing0 with boundarydy. of class
C*. LetV satisfy Assumption 3.1 with> 1. Then

(@) The commutatoV, Dy], defined as a sesquilinear form @ Ds) N H?, extends
uniquely to an element oB(H?, H~2).



(b) For eacht € R the commutatof Dy, e~ ], defined as a sesquilinear form on
D(Ds) N'H2, extends uniquely to an eleménts,, e~ *# ]2 of (H2, H~2) which
satisfies

|[Ds, e " < Const. |t].

}a||H2HH—2

(c) For eachn € C§°(R) the commutatofDs, n(H)], defined as a sesquilinear form
onD(Dys) N 'H?, extends uniquely to an element®{H). In particular, the oper-
ator (H) leavesD(Dy) invariant.

Proof. Point (a) follows easily from Lemma 2.4.(a) and the hypo#isemnl’. Given point
(a) and Lemma 2.6.(b), one shows points (b) and (c) as in [@8rha 7.4]. O

If V satisfies Assumption 3.1 with > 2, then the result of Lemma 4.1.(a) can be
improved by using Lemma 2.4.(a). Namely, there exists % such that the commutator
[V, Ds], defined as a sesquilinear form ®{Dy;) N H?2, extends uniquely to an element
[V, Ds]® of 2(H? 5, Hz?).

Next Lemma is a generalisation of [9, Lemmas 2.5 & 2.7]. Itieved under the
following assumption on the functiofi

Assumption 4.2. For eacht € R there existg > 1 such that the operatof (H)— f(Hy),
defined or#?, extends to an element &f(H7, H,,).

We refer to Remark 4.4 for examples of admissible functipnidere we only note
that the operator

Vsp = f(H) —i[H,Ds]* = f(H) — f(Ho) — iV, Ds]".
belongs toZ(H? ;, H; *) for somes > 1 as soon ag satisfies Assumption 4.2.

Lemma 4.3. LetX be a bounded open setRf containing0, with boundarydy: of class
C*. LetV satisfy Assumption 3.1 with > 2. Suppose that Assumption 4.2 is verified.
Then

(a) One has for each € C§°((0,00) \ opp(H)) and eacht € R the inequality
|(Ds, + i)~ e~ y(H)(Ds, + i)~ '|| < Const. ().

(b) Foreach; € Cg°((0, 00)\opp (H)) the operator§ Dy, Wn(Ho)] and[Ds, Win(H)],
defined as sesquilinear forms @1 Dy;), extend uniquely to elements@f(H). In
particular, the operator$V,n(H,) andWin(H) leaveD(Dy) invariant.

Proof. (a) Since the case= 0 is trivial, we can suppose# 0. Lety, v € D(Ds) NH?,
then

t
(Dzp, ™) — (o™ D) = lim | ds(p, "™ i[H, DpRy]e™*" )

10



due to Lemma 2.6.(b). By using Lemma 2.4.(b) and Lemma 4.wélget in% (H?, H~?)
the equalities

t
[Dz,efitH}a _ efitH/ ds eiSHi[H, Dz]aefisH
0
t
=te " f(H) —e / ds vy pe . (4.20)
0

Taken,d € C§°((0,00) \ opp(H)) with ¥ identically one on the support of, and
let ¢ € C5°((0,00) \ opp(H)) be defined by (u) = f(u)~'9(u). Thenn(H) =
f(H)C(H)n(H) and
e~ () = C(H)te™ " F(H)n(H)

1

ot
— Eg(H) e*”H/O ds e Vg pe 1 p(H) + %C(H)[Dg,e’”H]“n(H).

SinceVs, ; belongs to%(H? s, H; *) for somes > 1, a local H-smoothness argument
shows that the first term is bounded Oynst.|t| ! in H. Furthermore by using Lemma
4.1.(c) one shows thaDs, + i)~ *¢(H)[Ds, e~ ]y (H)(Dx + i)~* is bounded irH
by a constant independent©fThus

|(Ds + i) Le " py(H)(Dy +1i)~* | < Const. [t~

and the claim follows.

(b) Consider first{Ds;, Wyn(Hy)]. Givenn € C§°((0,00) \ opp(H)) let ¢ €
C§°((0,00) \ opp(H)) be identically one on the support gf Due to Lemma 4.1.(c)
one has oD(Dy)

[Ds, ¢(H) ™™ n(H) e ((Ho)]

= ((H)[Ds, e y(H) e "™|¢(Ho) + [Dg, C(H)] e y(H) e~ ((Ho)

+C(H) e n(H) e [Dy, ((Ho),

and the last two operators belong #(H) with norm uniformly bounded irt. Let
»,¥ € D(Ds). Using Lemma 2.4.(b) and Lemma 2.6.(b) one gets for the fppsta

11



tor the following equalities

(@,¢(H)[Ds, e n(H) e ™ 01¢(Ho )

= (@, C(H)[Ds, ™ ]n(H) e~ ((Ho)y)
+ (¢, C(H) "™ Dy, n(H)] e~ "o ¢(Hq)t)
+ (p, C(H) ™ n(H)[Ds, e~ "¢ (Ho )1))

_ /t s <¢,C(H) ei(t_s)H i[H, Dz]aeiSH W(H) e—itHo C(H0)>
0

+ (¢, ((H) "™ [ Dy, n(H)] e~ "o ¢ (Ho))
+t{p,((H) e n(H)e "™ f(Ho)((Ho))

t
- / ds (o, C(H) &= vy, oisH () e~ H0 ¢ (Hy))
0

+ (0, C(H) ™ [Dy,n(H)] e~ ((Ho)y)
—t{p.n(H) " {f(H) — f(Ho)} e~ ((Ho)y) .
The first two terms are bounded byj|| - ||¢|| with ¢ > 0 independent op, ¢) andt (use

the local H-smoothness of's; ; for the first term). Furthermore due to the lo¢at and
Hy-smoothness of (H) — f(Hy) one can find a sequencg — oo asn — oo such that

lim t, (@, n(H) " {f(H) — f(Ho)} e~ ((Ho)y) = 0.
This together with the previous remarks implies that
lim (¢, [Dx, ((H) " n(H)e "o ¢(Ho)lp) < |l - [0,

n—00

with ¢’ > 0 independent ofp, ) and¢. Thus using the intertwining relation and the
identity n(Ho) = ¢(Ho)n(Ho)((Hp) one finds that

| (Dso, Win(Ho)¥) — (@, Win(Ho)) |
= lim | (¢, [Ds, ((H) e n(H)e "0 ((Ho)]y) |

n—oo

<l - 1.

This proves the result foDy., W,n(Hp)]. A similar proof holds for[Ds,, W_n(Hy)].
Since the wave operators are complete, ondhag(H) = s-lim;_, 1, e?*Ho e=%H p(H),
and an analogous proof can be given for the operafoss Win(H)]. O

Remark 4.4. In the casex = B the requirements of Definition 2.2 and Assumption 4.2
are satisfied by many functiorfs A natural choice isf(u) = 2u, u € R, since in such
acasef(H) — f(Hy) = 2V € B(H}, Hitr), t € R, £ > 1. If X is not spherical
there are still many appropriate choices fgr For instance ify > 0, then the function

12



f(u) = 2(u? + v)~ '3, u € R, satisfies all the desired requirements. Indeed in such a
case one has oi? the following equalities

J(H) = f(Ho)

=2V —2y[(H? +~) 'H — (H§ +~) " Ho|

=2V — 29(H? + )" 'V + 2y(H? +~) " (HoV + VHy + V?)(H§ +~) "' Ho,
and thusf(H) — f(H,) also extends to an element@f(H?, H, 1), t € R, x > 1, due
to Lemma 3.2 and the assumptionsion

Next Theorem provides a rigorous meaning to the anisotrbpidne’s formula
(1.3).

Theorem 4.5. Let X satisfy Assumption 2.1. L&t satisfy Assumption 3.1 with > 4.
Suppose that Assumption 4.2 is verified. Then one has foreact; with s > 2

lim 7, (¢p) = / ds (e MW f(Ho) ™" /%p, Vs pe " W_f(Ho) " ?0), _,,

T o (4.21)
where(-, ), ,: H? x H~? — Cis the anti-duality map betweeH* andH .
Proof. (i) Set W (t) := ¢itH ¢~itHo and lety := n(H)y, wheren € C§°((0,00) \
Opp(H)) andi € D(Ds). We shall prove that D W (¢)*¢|| < c, with ¢ independent
of t. Due to Lemma 2.4.(b) and Lemma 4.1.(c) one has
IDsW (t)* ¢ = || e~ Dy ™o e ™™ n(H)(Ds; + 1) "4 |
< [t|[{F(H) = f(Ho)}e™" n(H)(Ds + 1)~ 4| (4.22)
+|{Ds — tf(H)} e " n(H)(Ds +14) " 'n .
wherey = n(H)(Dyx, + i) '4;. Letz € C\ {o(Hop)Uo(H)} and setj(H) := (H —
2)?n(H). Then Lemmas 2.4.(a), 3.2, and 4.3.(a) imply that
[t1[[{f (H) — f(Ho)} e n(H)(Ds + i)' |
< [H{f(H) = f(Ho)}H — 2)(Ds + )| - [(Ds +0)~ e T 7(H)(Ds +0)7 |
< Const.

Calculations similar to those of Lemma 4.3.(a) show thas#wond term of (4.22) is also
bounded uniformly irt.

(i) Let W (¢) andv be as in point (i). Lemma 2.4.(b), Lemma 4.1.(c), and commu-
tator calculations as in (4.20) lead to

(W (t)", DeW (t)* ) = <w,eitH Dy, e #H W) —t (3, oitH f(Hy) e itH )
t
= <¢7 DEQZ}) - /0 ds < e_iSH w’ VZ,f e_iSH w>2,_2
+t <1/},eitH{f(H) o f(HO)}efitH 1/}> )

13



The local H-smoothness of (H) — f(Hy) implies the existence of a sequerige— co
asn — oo such that

Jim o (9, {f(H) = f(Ho)} e~ ) = 0.

This together with point (i) and the local-smoothness o¥s; ; implies that

(Wi, DsWiap) = (b, Dstp) — [ ds (e ™, Vg pe ),
; ,

Similarly, one finds

0

(W* o, DsW* ) = (4, D) + / ds (e Vi ooy

and thus
(Wi, DsW2) = (Wos, DsWe) = = [ as (e 0,V ),
~ (4.23)
Let p € 5 with s > 2. Due to Lemma 4.3.(b) thgvect(W,f(Ho)—l/% is of the
form n(H)y, with n € C§°((0,00) \ opp(H)) andy € D(Dsy). Thus one can put
Y = W_f(Hy)~'/?¢in Formula (4.23). This gives

<Sf(H0)—1/230,Dsz(HO)—1/2¢> _ <f(H0)_1/2<,0,sz(Ho)_1/2<,0>

(oo}
= [ s (e W (o) M Ve W (o) )

2,2
— 00

and the claim follows by Theorem 3.5. O

Remark 4.6. Symmetrised time delay and usual time delay are equal Whsispherical
(see Formula1.1)). Therefore in such a case Formuld.21) must reduces to the usual
Lavine’s formula. This turns out to be true. Indeed™if= B and f(u) = 2u, then
f(Ho) = 2Hy, Vs, 5 is equal to the viriall’ := 2V — i[V, D]*, and Formula(4.21)takes
the usual form

oo

dm o) = [ ds (e WG i (V= VD e W ),

In the following remark we give some insight on the meaning-ofmula (4.21)
whenX is not spherical. Then we present two simple examples asusirdtion.

Remark 4.7. LetV satisfy Assumption 3.1 with> 4, and choose a sét # B satisfying
Assumption 2.1. In such a case the functfgiu) := 2(u? + v)~'u?, u € R, fulfills the
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requirements of Definition 2.2 and Assumption 4.2 (see Rerhd). Thus Theorem 4.5
applies, and one has far € 2, with s > 2

lim 7,.(p)

= lim [ ds (T T WL f (Ho) 2, Vs g, e WL (Hy) V)

2,-2°
INO J o

Now f., (Hy)¢ converges in norm t8Hyp as~ \, 0, so formally one gets the identity

lim 7(p) = 3 / ds (e T W_Hy V2, Ve e M W_H; ), (4.24)
—0o0
where

Vs =2V —i[V,Dg]* =2V — L ¥ {[V,Fs;(P)]-Q; +Q; - [V, Fs;(P)]},

and
Fy;(P) = —(9;Gs)(P)P?. (4.25)

The pseudodifferential operatdts; generalises the virial” of the isotropic case. It
furnish a measure of the variation of the potentiélalong the vector field- Fy;, which
is orthogonal to the hypersurfaces:, due to Remark 2.3. Therefore Formul.24)
establishes a relation between symmetrised time delaytentriation ofl” along— Fx..
Moreover one can rewrit¥s. as

Vy =V +i[V,D — Dy)]*
=V 45> {Vi(P = Fe5(P)] - Qs + Qs - [V (P = F(P))] ).

j<d

whereP — F;(P) is orthogonal taP due to Formulag4.25)and(2.6). Consequently there
are two distinct contributions to symmetrised time deldye Tirst one is standard; it is
associated to the terii, and it is due to the variation of the potentiélalong the radial
coordinate (see [11, Sec. 6] for details). The second oneus it is associated to the term
i[V, D — Dx]* and it is due to the variation df along the vector field: — = — Fx(z).

Example 4.8(Examples inR?). Setd = 2, suppose that” satisfies Assumption 3.1 with
k> 4, and letY be equal to the superellipse := {(21,22) € R? | 2 + 23 < 1},
Then one ha&le (x) = —§ In (2 + 23) and (9,Ge)(z) = —a3 (¢ + x%)fl. Thus due
to Remark 4.7 the symmetrised time delay associatédiso(formally) caracterised by
the pseudodifferential operator

Ve =2V — £ {[V.Fe;(P)] - Q; + Q; - [V, Fe;(P)] },
i<d

whereFg ;(P) = P}P?(P} + PQ‘*)_1 (see Figure 1).
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Figure 1:The vector field Fe and the sets d&,

WhenX: is equal to the star-type set
S = {5(9) etf € R? | 0 e [0,27)7 5(9) < [008(29)8 +Sin(29)8]71/2}’

one hasis(z) = I In(zi+23)— 1 In [(23 —23)% +2%(212,)8], and a direct calculation

using Formula(4.25)gives the vector field's. The result is plotted in Figure 2.

Figure 2:The vector field Fis and the sets 95,
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Appendix

Proof of Lemma 3.2We first prove thatH —z) ~* extends to an element & (H; >, H,)
for eacht > 0. This clearly holds fot = 0. Since(Hy — z) ! (P)* = 24 (14 2z)(Hy —
z)~1 one has by virtue of the second resolvent equation

(@ (H —2)7H(P)* (@7 (4.26)

=2+ (1+22)(Q)" (Ho —2) (@)™

—(Q)" (Ho = =)' (@ V)@ (@ (H - )7 (P (@)

If we taket = 1 we find that each term on the r.h.s. of (4.26) is4itH) due to [2, Lemmas
1 & 2]. Hence, by interpolationQ)" (H — z)~* (P)* (Q) ™" € #(H) for eacht < [0, 1].
Next we choosé € (1,2] and obtain, by using the preceding result and (4.26), that
(@) (H — 2)"* (P)*(Q)™" € #(H) for these values of. By iteration (take € (2, 3],
thent € (3,4], etc.) one obtains thaR)' (H — z)~! (P)*(Q)™" € %(H) for each
t > 0. Thus(H — z)~! extends to an element o (H; >, H,) for eacht > 0. A similar

argument shows thatt/ — 2)~* also extends to an element &f(7; >, H,) for each
t < 0. The claim follows then by using duality and interpolation. O

Proof of Lemma 3.3For ¢ € %, andt € R, we have (see the proof of [7, Lemma 4.6])
t
(W_ o 1) e—itHU o= —i e—itH/ dr eiTH Ve—i‘ng 0,
where the integral is strongly convergent. Hence to prove7(3t is enough to show that
- t ‘
/ dt/ dr ||[Ve ™o p|| < oo (4.27)

for somed > 0. If ¢ := min{x, s}, then|| (Q)° ¢|| < oo, andV (P)~* (Q)* belongs to
2(H) due to Assumption 3.1. Sineg H)¢ = ¢ for somen € C5°((0,00) \ opp(H)),
this implies that

[Vemmo o] < Const]| (@)™ (P)* n(Ho) e ™ (@)~ .
For eacte > 0, it follows from [2, Lemma 9] that there exists a constant 0 such that
[V emimHo || < c(1+|r|)~*"*. Since¢ > 2, this implies (3.17). The proof of (3.18)
is similar. O
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