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Abstract

The spin–orbit problem in Celestial Mechanics de-

scribes the motion of an oblate satellite moving

on a Keplerian orbit around a primary body. We

apply the conjugate points criterion for the non–

existence of rotational invariant tori. We treat both

the conservative case and a case including a dissi-

pative effect modeling a tidal torque generated by

internal non–rigidity. As a by-product of the con-

jugate points criterion we obtain a global view of

the dynamics, thanks to the introduction of a tan-

gent orbit indicator, which allows to discern the

dynamical character of the motion.

1 Introduction

Nearly–integrable Hamiltonian systems admit
rotational invariant tori (continuous deforma-
tions of those of the integrable case) when the
perturbation is sufficiently small; indeed, KAM
theory provides a lower bound on the perturb-
ing parameter ensuring the existence of rota-
tional invariant tori with given diophantine fre-
quencies. On the other hand, they are all de-
stroyed for systems sufficiently “far” from in-

tegrable: regions of parameter and phase space
for which there are no rotational invariant tori
can be obtained by Converse KAM theory, as
developed in [9, 10, 11]. Among the techniques
developed in the framework of converse KAM
theory, we are principally concerned with the
conjugate points criterion as described in [9]. In
this paper we discuss its application to a spe-
cific problem of Celestial Mechanics, namely
the rotational dynamics of a triaxial satellite
revolving on a Keplerian orbit around a pri-
mary body. We consider both rigid and non–
rigid models, providing in each case a global
view of their dynamics.
Under some simplifying assumptions, the con-

servative (rigid) model is described by a one-

dimensional, time–dependent differential equa-

tion. We consider also a truncation of the Taylor

expansion in terms of the orbital eccentricity and

of the Fourier–series development of the equation

of motion (see, e.g., [2]). Besides the above con-

servative model, we also consider the spin–orbit

interaction of a non–rigid satellite; the tidal torque

induced by the non–rigidity is modeled by the

MacDonald torque (see [5] for a discussion of the

tidal evolution and [3] for the existence of quasi–

periodic attractors). Within the spin–orbit model,
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we are interested in the dynamics around reso-

nances, which occur whenever the ratio of the pe-

riods of revolution and rotation is rational. For ex-

ample, the Moon is observed to move in a syn-

chronous resonance, since it makes one rotation

during a full revolution. Most of the evolved satel-

lites of the solar system are seen to move in a

synchronous resonance; the only exception is pro-

vided by Mercury, whose astronomical measure-

ments show that the planet completes three rota-

tions during two revolutions around the Sun.

Using the above models, with application to the

Moon or Mercury in mind, we implement the non–

existence criterion in the style of [9]. We remark

that the study of the behavior of a quantity related

to this criterion, which we call the tangent orbit

indicator, allows to give a description of the dy-

namics, being able to discern between librational,

rotational or chaotic motion, therefore providing a

global view of the dynamics with high accuracy

and within a reasonable computational effort.

2 The spin–orbit model

Let S be a triaxial satellite orbiting around a cen-

tral planet, say P , and rotating about an internal

spin–axis. A simple non–trivial model of spin–

orbit interaction is obtained under the following

assumptions (see, e.g., [2]):

i) the satellite is assumed to move on a Keplerian

orbit around the planet;

ii) the spin–axis coincides with the smallest physi-

cal axis (i.e., the axis of largest moment of inertia);

iii) the spin–axis is assumed to be constantly per-

pendicular to the orbital plane.

2.1 The conservative model

The conservative model makes the additional as-

sumption that one can neglect dissipative forces,

most notably the tidal torque due to the internal

non–rigidity of the satellite. With reference to the

Keplerian orbit of the satellite, let us denote by a,

r, f , the semimajor axis, the instantaneous orbital

radius and the true anomaly. Let A < B < C be

the principal moments of inertia of the satellite; fi-

nally, let x be the angle between the longest axis

of the ellipsoid and the pericentre line. Normaliz-

ing to 1 the mean motion n = 2π
Trev

, the equation

of motion is

ẍ + ε(
a

r
)3 sin(2x − 2f) = 0 , (1)

where the parameter

ε ≡ 3
2

B − A

C

is proportional to the equatorial oblateness of the

satellite. If A = B (equatorial symmetry), then

ε = 0 and the equation of motion is trivially

integrable. The actual values of ε for the Moon

and Mercury are given by ε = 3.45 · 10−4 and

ε = 1.5 · 10−4.

By assumption i), the orbital radius r and the true

anomaly f are Keplerian functions of the time.

They also depend on the orbital eccentricity e; in

the limiting case of e = 0 one obtains r = a =
const and f = t + const. The dependence of r
and f on time t can be obtained through the Ke-

plerian relations involving the eccentric anomaly

u:

r = a(1 − e cos u)

f = 2 arctan
(√

1 + e

1 − e
tan

u

2

)
, (2)

where u is related to the mean anomaly � = t + �0

(�0 is some initial condition on the mean anomaly)

through Kepler’s equation � = u − e sinu.

A spin–orbit resonance of order p
q , for some inte-

gers p, q with q > 0, is a solution x = x(t) such

that

〈ẋ〉 =
p

q
,

which means that during q revolutions around the

planet, the satellite makes on average p rotations

about the spin–axis. In the case of a 1 : 1 spin–

orbit resonance, the angle x is always oriented

along the direction of r, which implies that the

satellite always points the same face to the host

planet. The Moon is presently trapped in a 1 : 1
spin–orbit resonance, while Mercury is observed

to move in a 3 : 2 resonance.
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2.2 The truncated conservative equation

Equation (1) can be written as

ẍ + εVx(x, t) = 0 ,

where V (x, t) = −1
2(a

r )3 cos(2x − 2f) and Vx

denotes the partial derivative. In view of (2) one

can expand Vx(x, t) in Fourier series as

ẍ + ε
∞∑

m�=0,m=−∞
W (

m

2
, e) sin(2x−mt) = 0 ,

(3)

where the coefficients W (m
2 , e) decay as powers

of the eccentricity: W (m
2 , e) = O(e|m−2|). To

give an example we report the explicit expressions

of some of these coefficients:

W (
1
2
, e) = −e

2
+

e3

16
− 5e5

384
+ O(e7)

W (1, e) = 1 − 5e2

2
+

13e4

16
− 35e6

288
+ O(e8)

W (
3
2
, e) =

7e

2
− 123e3

16
+

489e5

128
+ O(e7)

W (2, 1) =
17e2

2
− 115e4

6
+

601e6

48
+ O(e8) .

For ease of computation it is sometimes conve-

nient to consider a truncation of the series ex-

pansion appearing in (3). In particular we retain

only those terms whose magnitude is bigger than

the contribution of the neglected terms, like the

tidal torque, external perturbations, etc. (we refer

to [2] for a detailed discussion). For the Moon–

Earth case we are led to consider the equation

ẍ + ε [(−e

2
+

e3

16
) sin(2x − t) +

+ (1 − 5
2
e2 +

13
16

e4) sin(2x − 2t)

+ (
7
2
e − 123

16
e3) sin(2x − 3t) +

+ (
17
2

e2 − 115
6

e4) sin(2x − 4t)

+ (
845
48

e3 − 32525
768

e5) sin(2x − 5t) +

+
533
16

e4 sin(2x − 6t)

+
228347
3840

e5 sin(2x − 7t) ] = 0 . (4)

The case Mercury–Sun would deserve more com-

ponents because the orbital eccentricity of Mer-

cury is quite large. Nevertheless in the first in-

stance we limit to consider equation (4) also for

Mercury and we shall compare the results obtained

by using (4) with those obtained using the com-

plete equation (1).

2.3 The dissipative model

Different mathematical formulations are available

in the literature to express the tidal torque acting

on the satellite. Here we adopt the MacDonald ex-

pression which assumes a phase lag depending lin-

early on the angular velocity (see, e.g., [8], [7],

[12], [5]). Let us write the dissipative equation as

ẍ + ε(
a

r
)3 sin(2x − 2f) = T , (5)

where T denotes the MacDonald tidal torque

([12])

T = −K
a6

r6
(ẋ − ḟ) , (6)

with K the dissipation constant, depending on the

physical and orbital characteristics of the satellite.

For the Moon and Mercury the value of K is about

10−8. Taking the average of T over one orbital pe-

riod, as is usual in this field (see, e.g., [5]), one

obtains

〈T 〉 = −K
[
L(e)ẋ − N(e)

]

with

L(e) ≡ 1
(1 − e2)9/2

(1 + 3e2 +
3
8
e4)

N(e) ≡ 1
(1 − e2)6

(1 +
15
2

e2 +
45
8

e4 +
5
16

e6)

Taking into account the dissipative contribution,

the equation of motion becomes

ẍ + ε(
a

r
)3 sin(2x − 2f) = K

[
N(e) − L(e)ẋ

]
.

(7)
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3 Non–existence of rotational in-
variant tori

We investigate the models (1), (4), (5)–(6), (7);

since r, f are periodic functions of the time, such

models are defined for (x, y, t) ∈ T×R×T, with

y = ẋ. In particular we will be concerned with the

non–existence of rotational invariant tori. The key

hypothesis on which the methods depend is twist,
which in the present context can be taken to mean1

∂ẋ

∂y
≥ C > 0

for some constant C. Of course this is satisfied for

the spin-orbit models (with C = 1).

In this section we present numerical results, while

some analytical estimates are given in appendix A.

For the purposes of the present paper, a rotational

torus is the graph

y = v(x, t) , (x, t) ∈ T2 ,

of some continuous function v. Figure 4 will show

an example of a rotational invariant torus in a

Poincaré section.

Rotational tori are to be contrasted with other pos-

sible types of torus. For example, there can be in-

variant tori of the form r = R(θ, t) in polar co-

ordinates (r, θ) about a periodic orbit of period

2π (e.g. Figure 1). There can be invariant tori

which form chains of islands in a Poincaré sec-

tion around a p/q-resonant periodic orbit of period

2πq, q > 1 (not shown), and there can be invari-

ant tori which form chains of islands around peri-

odic orbits whose period is a multiple of the order

of resonance, as in Figure 2. We lump all these

under the term librational invariant tori, although

some authors might reserve the term for just the

first type.

A torus that is not a graph but is continuously de-

formable to a graph could also be counted as ro-

tational. In the conservative case, however, a the-

orem of Birkhoff [1] ensures that such cases do

1This condition implies that the first return map is a com-

position of twist maps and therefore is a tilt map, which is a

sufficient hypothesis for the application of the non-existence

criterion.

not occur as invariant tori, because of twist. In

the dissipative case, the theorem does not apply,

and indeed invariant tori which are continuously

deformable to graphs but not graphs can occur;

we exclude them from the definition of rotational

because the criterion we will use applies only to

graphs.

3.1 The conjugate points criterion

The numerical analysis of the non–existence of in-

variant tori is based on the conjugate points crite-

rion ([9]). It was developed in the context of con-

servative dynamics, but suitably interpreted it ap-

plies to dissipative systems too. Below we sketch

the content of the method in a form which applies

to both conservative and dissipative systems.

Conjugate points criterion: Let (x, y) : [t0, t1] →
T × R be an orbit; the times t0 and t1 are said

to be conjugate for the orbit, if there is a non–zero

tangent orbit (δx, δy) such that δx(t0) = δx(t1) =
0. The existence of conjugate points implies that

(x, y) does not belong to any rotational invariant

torus, else the forward orbit of an initial vertical

vector (0, 1) at t = t0 is prevented from crossing

the tangent to the torus and so twist obliges it to

have δx(t) > 0 for all t > t0.

For a system with time–reversal symmetry under

(x, y) → (−x, y) (as in the conservative case (1)

if the origin of time is taken to have f = 0) and

initial conditions on the symmetry line x = 0,

one can obtain the backward trajectory and the

backward tangent orbit by reflecting the forward

ones. So times ±t are conjugate if the tangent or-

bit of the horizontal vector (δx, δy)(0) = (1, 0)
has δx(t) = 0. This observation can more than

halve the time required to obtain conjugate points,

because not only do we obtain orbits of twice the

length but also if the symmetry line is well chosen

(dominant, see e.g. [9]) the rotation of tangent or-

bits is strongest near there, so it is best to choose

orbit segments which straddle it symmetrically.

Without such a symmetry (as in the dissipative

case), one has to integrate backwards and forwards

independently. The lengths of backwards and for-
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wards times can be chosen independently, how-

ever, so one can choose just to take t0 = 0 and do

no backward integration. This means we integrate

forwards from the vertical vector (δx, δy)(0) =
(0, 1) and look for a sign change in δx(t). Alter-

natively one could integrate in both directions of

time from a horizontal tangent vector (or any vec-

tor with δx > 0) and look for t0 < 0 and t1 > 0
such that δx(t1) = δx(t2) = 0. A slightly more

sophisticated way to handle this case is the cone-

crossing criterion, described in Appendix B.

3.2 Tangent orbit indicator

We now give some examples to verify the non-

existence criterion by looking for sign changes in

δx(t). The numerics reveal that one can learn more

from δx(t) if it does change sign, distinguishing

between rotational tori, librational tori and chaos,

leading us to introduce a “tangent orbit indicator”.

In case of a librational curve with horizontal initial

tangent vector, the δx–component shows oscilla-

tions around zero; the amplitude increases linearly

when starting from the vertical tangent vector. We

report an example in Figure 1 obtained by integrat-

ing equation (4) through a fourth–order symplectic

Yoshida’s method ([14]); it is enough to integrate

up to t = 500 to recognize the librational char-

acter of the motion due to the successive oscilla-

tions around zero. If one just wants to establish the

non–existence of rotational invariant tori, it is suf-

ficient to determine the first crossing, which occurs

almost immediately at t = 3.39. A similar result is

obtained for the chain of islands shown in Figure 2,

where the first crossing occurs at t = 3.51. In both

cases the maximum Lyapunov exponent (hereafter,

MLE) seems to converge to zero, while it does not

converge for chaotic motions as shown in Figure 3

where the non–existence criterion provides severe

oscillations of very large amplitudes with the first

crossing of the zero line at t = 3.64. As far as

rotational invariant tori (Figure 4) are concerned,

the non–existence method correctly does not show

changes in sign of δx, but rather positive oscilla-

tions of increasing amplitude. The corresponding

MLE converges to zero.

We remark that the interval of time necessary to

obtain reliable results is definitely longer for the

Lyapunov exponents than for the non–existence

criterion (compare the time scales in Figures 1–4).

Indeed, after the first change of sign of δx we can

already exclude the existence of rotational invari-

ant tori through the given point.

Moreover, in contrast to the Lyapunov exponents,

the non–existence criterion allows to distinguish

between chaotic motions, librational tori and rota-

tional tori, extending the idea of the Fast Lyapunov

Indicators ([6]). In order to have a global view

of the dynamics, we introduce a quantity based

on the conjugate points criterion, which we call a

tangent orbit indicator. More precisely, we com-

pute the average over a finite interval of time (say

t = 100) of δx(t). According to the value of this

quantity one can discern the behavior of the dy-

namics: zero value denotes a librational regime,

a moderate value is associated to rotational tori,

while high values correspond to chaotic motions.

It is useful to visualize such results by assigning a

color as follows:

• black or blue for tangent orbit indicators close to

zero;

• red to orange for moderate values;

• yellow for large values of the tangent orbit indi-

cator.

As an example we report in Figure 5 (top pan-

els) the computation of the tangent orbit indicators

over a grid of 500 × 500 initial conditions with

x ∈ [0, 2π] and y ∈ [0.5, 2.5] for the equation

(4), with horizontal initial tangent vector. Similarly

one can proceed to explore the space of parameters

by plotting the tangent orbit indicator, for example,

in the plane y–ε for a fixed x0. The results shown

in Figure 5 (bottom panels) are validated by the

computation of the frequency analysis, obtained

by evaluating the frequency of motion versus the

initial condition y(0) (see Figure 6).

We conclude this subsection with proofs that the

generic behaviour of δx(t) for an orbit on an in-

variant torus in the conservative case with vertical

initial vector is quasiperiodic oscillation with lin-

ear growth, between two lines with positive slope
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in the rotational case, or with opposite signs and

mean zero in the librational case, and for the case

of systems with time-reversal symmetry, symmet-

ric initial condition and horizontal initial tangent

vector, the generic behaviour on an invariant torus

is bounded quasiperiodic oscillation, with no ze-

roes if rotational, mean zero if librational.

For a rotational invariant torus, generically there

is a coordinate system (X, Y ) (depending on

(x, y, t)) in which the torus is Y = 0 and the

linearised motion δY (t) is constant, δX(t) =
δX(0) + τtδY (0), for some τ called the normal

torsion of the torus. Because of twist, τ > 0. Thus

in this coordinate system δX(t) grows exactly lin-

early with t. Transforming back to the original co-

ordinates, we have δx(t) = ∂x
∂X δX(0) + ( ∂x

∂X τt +
∂x
∂Y )δY (0). The partial derivatives are generically

quasiperiodic functions of t, so if δY (0) > 0,

as for vertical initial vector, one obtains oscilla-

tion between two lines of linear growth. Both lines

have positive slope, else δx(t) would become neg-

ative at some time, which is forbidden. If δY (0) =
0, as in the symmetric case with horizontal ini-

tial vector, then only the first term contributes and

δx(t) performs bounded quasiperiodic oscillations

(by symmetry the torus crosses the symmetry line

horizontally, so the tangent orbit remains tangent

to the invariant torus).

For a librational torus, the tangent to the torus

makes one full revolution for each revolution of

the base point around the torus. The tangent orbit

of the initial vertical vector is obliged to remain on

the same side of the tangent all the time, thus it

has to keep turning. This obliges its x-component

to oscillate with mean zero. Generically the tor-

sion of a librational torus is non-zero, hence the

oscillations grow linearly. In the symmetric case

with horizontal initial vector, it is tangent to the

torus so its orbit performs quasi–periodic oscilla-

tions with zero mean because averaging the tan-

gent vector over the torus it must make a full turn

back to the starting point.

3.3 The conservative models

Now we consider the complete and truncated spin–

orbit models provided by equations (1) and (4)

and make a detailed scan of parameter and phase

space. The integration of such systems is per-

formed by Yoshida’s symplectic method ([14])

with step–size h = 10−2 and conjugate points are

computed up to tmax = 150; a grid of 500 × 500
points over the initial velocity y ≡ ẋ and ε has

been investigated. The other initial conditions have

been set to x0 = 0, δx = 1, δẋ = 0 (mak-

ing use of time-reversal symmetry, we are looking

for x(±t) to be conjugate). Two cases have been

considered: e = 0.0549 (i.e. Moon’s eccentricity)

and e = 0.2056 (i.e. Mercury’s eccentricity). Fig-

ures 7a and 8a locate a zone (black region) where

invariant rotational tori associated to (1) are de-

duced not to exist and therefore they provide also

an estimate of the amplitude of the librational re-

gion around a given resonance2. The white region

can be tori or not: in the limit of infinite computa-

tion and if we examined every vertical, not just the

dominant symmetry line, the white region is filled

by tori ([13]). Indeed for the Moon the 1:1 reso-

nance has a librational extent larger than the 3:2

resonance (Figure 7a), while for Mercury the two

resonances appear to have about the same ampli-

tude (Figure 8a).

We have performed the same computations for the

truncated equation (4), selecting the same values

of parameters and initial conditions. The results

show a qualitatively similar behavior, thus indicat-

ing the validity of the truncated model, both for the

Moon and Mercury’s eccentricity, as far as non–

existence of rotational invariant tori is concerned.

3.4 The dissipative models

We applied the same criterion for non–existence

of rotational invariant tori to the dissipative mod-

els (5)–(6) and (7), but starting from δx = 0, δẋ =
1, as the dissipative system does not have time-

reversal symmetry. The method was applied up to

tmax = 150 over a grid of 500 × 500 points in the

2A p : q resonance corresponds to y = p
q

at ε = 0.
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plane ε–y, integrating the equation of motion by

Yoshida’s method with step–size h = 10−2. We

remark that although we call the method symplec-

tic, it is not in general symplectic when applied to

a non–Hamiltonian vector–field.

Different values of the dissipation factor were

used, namely K = 10−4 (Figures 7b and 8b), K =
10−2 (Figures 7c and 8c). The region where the

method gives non–existence gets wider as the dis-

sipation increases (compare with [4]). Very sim-

ilar results are obtained using the model (5)–(6)

with time–dependent dissipation (Figures 7d and

8d); indeed the graphs obtained using (7) and (5)–

(6) can be essentially superimposed, thus indicat-

ing that for the present values of the parameters it

suffices to consider the averaged model described

by equation (7). As in the conservative case, for

higher eccentricities the extent of the 3:2 reso-

nance increases with respect to the synchronous

one.

Some words are required about the interpretation

of the results in the dissipative case. Unlike the

conservative case, it is not correct to assume that if

the method is run for long enough then every ini-

tial condition that is not excluded by the method

lies on a rotational invariant torus. All points in a

sufficiently small neighbourhood of attraction of a

rotational invariant torus also have forward orbits

with no conjugate points. Thus the regions of non-

existence given by our criterion avoid a neighbour-

hood of each attracting rotational invariant torus.

Also, one should not expect many points to lie on

a rotational invariant torus. For models like (6),

(7), where the dissipation leads to contraction of

area everywhere (at rate K a6

r6 for (6) and KL for

(7)), there can be at most one rotational invari-

ant torus, else the region in between two of them

would be simultaneously invariant and contracted.

Even if the dissipation does not have constant sign,

generically, a rotational invariant torus of a dissi-

pative system is isolated, because attracting (or re-

pelling), so we do not expect many initial condi-

tions to lie on rotational invariant tori.

In addition, in a dissipative system there can be

invariant tori continuously deformable to rota-

tional tori, but not rotational. For example, take the

damped pendulum

ẋ = y, ẏ = sinx − νy

(independent of t, so trivially of period 2π in t)
with subcritical damping ν ∈ (0, 2). It has an

invariant circle (hence torus when extended in t)
connecting the two equilibria (0, 0) and (π, 0) (pe-

riodic orbits when extended in t) and separating

large positive y from large negative y, but for

ν ∈ (0, 2) the eigenvalues at (0, 0) are complex

conjugate, so the invariant circle rolls up in a pair

of infinite spirals around it. For any initial condi-

tion on this torus (apart from (π, 0)), our method

will declare after enough time that it is not on a

rotational invariant torus, because of the roll-up.

Probably the real Moon and Mercury are on such

an invariant torus (to the extent that the models

here apply). This is what Figure 8(b,c) suggest: the

regions of libration around x = 0, π are subject to

slow area-contraction so one would see attracting

spirals if resolved sufficiently.

3.5 Poincaré sections

The results shown in the previous sections are

validated by the computation of the correspond-

ing Poincaré sections in the plane (x, y) for the

conservative case and for the dissipative samples

(see Figure 9). Passing from the conservative case

(Figure 9a) to the weakly dissipative regime with

K = 10−6 (Figure 9b) the main resonances are

preserved, though the higher order ones are de-

stroyed. For larger dissipation, say K = 10−4

(Figure 9c), most of the orbits are attracted by the

1:1 and 3:2 periodic orbits, while for stronger dis-

sipation, say K = 10−2, the synchronous reso-

nance dominates the whole region as shown in Fig-

ure 9d, being the only attractor in the considered

domain.

The results provided in the dissipative context de-

pend strongly on the overall computational time of

conjugate points, which has been typically set to

tmax = 150. But the conclusions might strengthen

drastically as the time increases. To provide an

example, we compare the results on the region
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where non–existence associated to (7) is estab-

lished over two different times, i.e. tmax = 150
and tmax = 1500 (see Figure 10). Indeed we con-

clude by noticing that non-existence of rotational

invariant tori is established for a slightly larger re-

gion of (ε, y) space (see Figure 10, where the re-

sults are computed over a grid of 150×150 points).

4 Conclusions

The spin–orbit model has been investigated as a

test-bench of a numerical method aimed to de-

termine the non–existence of rotational invariant

tori. In particular the conjugate points criterion has

been widely exploited to study the dynamics. In-

deed such method can be successfully used to dis-

cern between librational, rotational or chaotic mo-

tions. A comparison with standard methods, like

the Lyapunov exponents or frequency analysis, has

been also performed. There are several advantages

when using the conjugate points technique: it has a

strong background based on the analytical theory

describing the converse KAM technique, it is very

simple to implement and it runs relatively fast. The

extension of such method to more general systems

would be certainly of interest and could be used as

a complementary tool to standard techniques.

A Analytical estimates for the
truncated conservative model

Let us write (4) as

ẍ + ε
7∑

m=1

αm(e) sin(2x − mt) = 0 (8)

with the obvious identification of the coefficients

αm(e) which turn out to be a truncation of the co-

efficients W (m
2 , e) (for example, α2(e) = 1 −

5
2e2 + 13

16e4). We apply the non–existence crite-

rion for rotational invariant tori developed in [9]

on the basis of Weierstrass’ theorem. The result

applies in arbitrarily many degrees of freedom, but

we specialize it here to the present case. Consider

a Lagrangian L(x, ẋ, t) on T × R × T with the

second derivative Lẋẋ > 0 and let x : R → T be

a trajectory; let W be the action associated to the

Lagrangian L.

Criterion: If x : [t0, t1] → T is not a non–

degenerate minimum of the action W associated

to L, then x is not contained in any rotational in-

variant graph.

The practical implementation of such criterion re-

quires to evaluate when the second variation of the

action fails to be positive definite for δx(ti) van-

ishing at the ends.

We proceed to apply this criterion to the equation

(8), whose associated Lagrangian function takes

the form

L(x, ẋ, t) =
1
2
ẋ2 +

ε

2

7∑
m=1

αm(e) cos(2x − mt) ,

while the second variation of the action is

δ2W =
∫ t1

t0

[δẋ2−2ε
7∑

m=1

αm(e) cos(2x−mt)δx2] dt .

Let us consider the deviation δx(t) = cos t
4τ such

that δx(±2πτ) = 0; for later use we notice that∫ 2πτ
0 δx2 = πτ ,

∫ 2πτ
0 δẋ2 = π

16τ . Let us write (8)

as

ẍ = f(x, t) ≡ −ε
7∑

m=1

αm(e) sin(2x − mt) ;

assuming the initial conditions x(0) = 0, ẋ(0) =
v0 we note that the solution of (8) is odd and we

write the solution in the integral form as

x(t) = v0t +
∫ t

0
(t − s)f(x(s), s) ds .

Let H be an upper bound for f(x, t), i.e.

|f(x, t)| ≤ ε
∑7

m=1 |αm(e)| ≡ H; as a first ap-

proximation we can use

|x(t) − v0t| ≤ H

2
t2 .

Using the estimate cos θ ≥ 1 − 1
2θ2, we get

cos(2x − mt) ≥ 1 − 1
2
(|m − 2v0|t + Ht2)2 .
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Therefore we obtain that the second variation

of the action for the variation δx(t) = cos t
4τ ,

−2πτ ≤ t ≤ 2πτ , is bounded by

δ2W ≤ π

8τ
− 4ε

7∑
m=1

|αm(e)|
∫ 2πτ

0

[
1 − 1

2
(|m − 2v0|t + Ht2)2

]
δx2 dt

≤ π

8τ
− 4Hπτ + 2ε

7∑
m=1

|αm(e)|
∫ π

2

0

[
|m − 2v0|2(4τ)3θ2 cos2 θ

+H2(4τ)5θ4 cos2 θ

+2|m − 2v0|H(4τ)4θ3 cos2 θ
]

dθ .

Setting

In ≡ 2
∫ π

2

0
θn cos2 θ ,

one finds

δ2W

τ
≤ π

8τ2
− 4Hπ +

ε

τ

7∑
m=1

|αm(e)| ·

·
[
|m − 2v0|2(4τ)3I2 + 2|m − 2v0|H(4τ)4I3

+H2(4τ)5I4

]
≡ Φ(ε, v0, τ) . (9)

The non–existence criterion relies on the study of

the sign of the function Φ(ε, v0, τ): non–existence

is guaranteed whenever one can find τ > 0 such

that Φ(ε, v0, τ) is negative, implying that δ2W <
0. Let us denote by εNE the value of the perturbing

parameter at which this condition first occurs.

We consider the two special cases provided by

e = 0.0549 and e = 0.2056; such values of the

eccentricity correspond to the Moon and Mercury,

respectively. Moreover, we take into account two

values of v0, i.e. v0 = 1 and v0 = 1.5, which cor-

respond, respectively, to the 1:1 and to the 3:2 res-

onance. The results of the implementation of the

above criterion based on the estimate (9) are sum-

marized in Table 2. It provides values much larger

than the actual values of the oblatenesses, whereas

the previous numerics indicates non-existence in

tongues around these low order rational initial ve-

locities right down to ε = 0 for the conservative

dynamics (Figures 7a and 8a) (and even for the

weakly dissipative cases, Figures 7b, c and 8b, c).

This failure is not surprising, however, since the

estimates of this appendix are crude. The point of

the appendix is only to show that some explicit re-

gions of non-existence of rotational invariant tori

can be found by hand.

Table 2.

Moon Mercury

v0 = 1 εNE 	 0.15 εNE 	 0.82
v0 = 1.5 εNE 	 0.77 εNE 	 0.58

B Cone-crossing criterion

Without assuming time-reversal symmetry under

(x, y) → (−x, y) or initial conditions on a sym-

metry line, one could apply the conjugate points

criterion with t0 = −t1 if one could guess

the slope of an initial tangent vector (δx, δy)(0)
such that δx(±t1) = 0 simultaneously. This can

be achieved by computing monodromy matrices

M(±t) governing how the orbits of arbitrary ini-

tial tangent vectors evolve:

Ṁ = FzM ,

with M(0) = I , the identity matrix, and Fz the

matrix of partial derivatives of the vector field ż =
F (z, t), where z ≡ (x, y) ∈ T × R and t ∈ T.

Then the required initial condition (δx, δy)(0) =
(ξ, η) is such that

M11(t)ξ + M12(t)η = 0 ,

M11(−t)ξ + M12(−t)η = 0 .

There is a non-zero solution (ξ, η) iff

C(t) ≡ M11(t)M12(−t)−M12(t)M11(−t) = 0 .

Thus times ±t (t > 0) are conjugate iff C(t) = 0.

Computation of the forward and backward mon-

odromy matrices provides even more information,

9



however, namely if the initial condition is really on

a rotational invariant torus then upper and lower

bounds on its slope at the initial point can be

obtained, more precisely a local Lipschitz cone.

C(t) = 0 corresponds to equality of the upper and

lower bounds, and it follows that for larger t the

upper bound is less than the lower bound, provid-

ing a contradiction to the existence of a rotational

invariant torus through the initial point, so this ap-

proach was called the “cone-crossing criterion” in

[11].

We explain briefly how to implement this version

of the non-existence criterion. It is done most con-

veniently by integrating the equation for the in-

verse monodromy matrix N(t) = M(t)−1. Given

an initial condition z0 at t = 0, let z(±t, z0) be its

forward and backward trajectories, and integrate

Ṅ(t) = −N(t) Fz(z(t), t) with N(0) = Id ,

backwards and forwards in time (or just forwards

if time-reversal symmetry can be used). Then for

any t > 0 let

w±(t) = N(∓t)
( 0

±1

)
=

( ±N12(∓t)
±N22(∓t)

)
,

which are tangent vectors at z0; they provide a

local Lipschitz cone for any rotational invariant

torus through the initial condition. Let C(t) =
w−(t) ∧ w+(t). Then C(0) = 0 and Ċ(0) > 0.

If there is t′ > 0 such that C(t′) ≤ 0, then the

orbit associated to z0 does not belong to an in-

variant rotational torus. In the time-reversible case

with symmetric initial condition then w±(t) =( −N12(t)
±N22(t)

)
and C(t) = −2N12(t)N22(t). Al-

though it is not an efficient way to compute δx(t),
note that for horizontal initial vector, δx(t) =
N22(t)/ detN(t), and for vertical initial vector,

δx(t) = −N12(t)/ detN(t) (and detN = 1 in

the conservative case).
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