INFRAPARTICLE SCATTERING STATES IN NON-RELATIVISTIC QED:
II. MASS SHELL PROPERTIES

THOMAS CHEN, JURG FROHLICH, AND ALESSANDRO PI1ZZO

ABSTRACT. We study the infrared problem in the usual model of QED with non-relativistic
matter. We prove spectral and regularity properties characterizing the mass shell of an
electron and one-electron infraparticle states of this model. Our results are crucial for the
construction of infraparticle scattering states, which are treated in a separate paper.

I. INTRODUCTION

We study the dynamics of an electron interacting with the quantized electromagnetic
field in the framework of non-relativistic Quantum Electrodynamics (QED). In a theory
describing a massive particle (the electron) interacting with a field of massless bosons (the
photons), massive one-particle states do, in general, not exist in the physical Hilbert space of
the theory. This fact was first observed by Schroer [24], who also coined the term “infraparti-
cle” | a notion that generalizes that of a particle. In relativistic QED, charged infraparticles
were shown to occur, using arguments from general quantum field theory; see [16, 3]. For
the spectrum of (H, ]3) in Nelson’s model, a simplified variant of non-relativistic QED, with
H denoting the Hamiltonian, and P the total, conserved momentum of the massive particle
and the massless bosons, it was proven in [14, 15] that the bottom of the spectrum of the
fiber Hamiltonian H 3 at a fixed total momentum P € R? is not an eigenvalue of Hp, for
any value of P with % < po(A) < 1 where A is the coupling constant and m is the electron
mass. To prove this result, one introduces an infrared cutoff ¢ > 0 in the Hamiltonian H 3
turning off all interactions of the non-relativistic, massive particle with the soft modes (with
frequencies < o) of the relativistic, massless boson field. One then aims to establish spectral
properties of the model in the limit ¢ — 0.

Extending results of [14, 15], an iterative algorithm for constructing the ground state
vector W% of the infrared regularized Hamiltonian H% in Nelson’s model has been developed
in [22] using a novel multiscale analysis technique. In [22], important regularity properties
have been derived, which are crucial for the analysis of the asymptotic dynamics of the elec-

tron. Similarly as in [15], the strategy in [22] is to apply a specific Bogoliubov transformation
1
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to the photon variables in H%, in order to obtain a Hamiltonian K% whose ground state %
remains in Fock space, as ¢ — 0. Subsequently, one derives properties of the ground state
vector of the physical Hamiltonian H s in the singular limit o — 0 by inverting the Bogoli-
ubov transformation. In the limit ¢ — 0, the latter gives rise to a coherent representation
of the observable algebra of the boson field unitarily inequivalent to the Fock representation
and to the coherent representations associated to different values of the total momentum.

The identification of the correct Bogoliubov transformation is crucial for the construc-
tions in [22, 23|. For Nelson’s model, this Bogoliubov transformation has been found in [14]
by a method that exploits the linearity of the interaction in the Nelson Hamiltonian with
respect to the creation- and annihilation operators. Due to the more complicated structure
of the interaction Hamiltonian in non-relativistic QED, this argument cannot be applied, and
the correct Bogoliubov transformation for non-relativistic QED has only recently been iden-
tified in [9], based on uniform bounds on the renormalized electron mass established in [§].
This makes it possible to extend the constructions and methods of [22, 23] to non-relativistic
QED.

By a generalization of the multiscale methods based on recursive analytic perturbation
theory introduced in [22], we present a new construction of the correct Bogoliubov transfor-

mation, and we prove the following main results:

e The ground state vectors % of the Bogoliubov-transformed Hamiltonians K% con-
verge strongly to a vector in Fock space, in the limit ¢ — 0. The convergence rate is
estimated by O(c"), for some explicit n > 0.

e The vectors <I>‘]’3 in Fock space are strongly Holder continuous in ]3, uniformly in o.

These properties are key ingredients for the construction of infraparticle scattering states,
which we present in [10]. A key difficulty in this analysis is the fact that the infrared behavior
of the interaction in QED is, in the terminology of renormalization group theory, of marginal

type (see also [8]).
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II. DEFINITION OF THE MODEL

The Hilbert space of pure state vectors of the system consisting of one non-relativistic

electron interacting with the quantized electromagnetic field is given by
Hom Mo ()

where H., = L?(R?) is the Hilbert space for a single Schrodinger electron (for expository
convenience, we neglect the spin of the electron). The Fock space used to describe the states
of the transverse modes of the quantized electromagnetic field (the photons) in the Coulomb

gauge is given by

F o= @FrY, FO-co. (11.2)
N=0

where 2 is the vacuum vector (the state of the electromagnetic field without any excited

modes), and
N
FN = Sy Qbh, N=>1, (IL.3)
j=1

where the Hilbert space h of a single photon is
h = L*(R®x Zy). (I1.4)

Here, R? is momentum space, and Zs, accounts for the two independent transverse polar-
izations (or helicities) of a photon. In (I1.3), Sy denotes the orthogonal projection onto
the subspace of ®jV:1h of totally symmetric N-photon wave functions, to account for the
fact that photons satisfy Bose-Einstein statistics. Thus, F) is the subspace of F of state
vectors for configurations of exactly N photons. It is convenient to represent the Hilbert
space H as the space of square-integrable wave functions on the electron position space R?

with values in the photon Fock space F| i.e.,
H = L*(R*; F). (I1.5)

In this paper, we use units such that Planck’s constant A, the speed of light ¢, and the
mass of the electron are equal to unity. The dynamics of the system is generated by the

Hamiltonian

—'65—1- 1/214)_» 2
o (2 20‘ @), s (IL6)

The multiplication operator & € R? accounts for the position of the electron. The electron

momentum operator is given by p = iV a1 /137 is the feinstructure constant (which,
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—

in this paper, plays the role of a small parameter), A(Z) denotes the vector potential of the

transverse modes of the quantized electromagnetic field in the Coulomb gauge,
Vz- A(@) = 0. (11.7)

The operator Hf is the Hamiltonian of the quantized, free electromagnetic field,
H =) /d3k k| a%, az . (IL.8)
A=+

where az’ \ and aj , are the usual photon creation- and annihilation operators, satisfying the

canonical commutation relations

lagps ap ) = S sk —F), (I1.9)
¥ aZ ] = 0 (I1.10)

(where a = a or a*). The vacuum vector (2 is characterized by the condition
ag, Q= 0, (IL.11)

for all k, k' € R® and \, N € Z, = {+}.

The quantized electromagnetic vector potential is given by

o A T
A(Z) = Z/ —_'{6]2’)\6
A=="Ba 4y [1k|

are photon polarization vectors, i.e., two unit vectors in R? ® C satisfying

k@ ox k@
’ ra;’i/\ + 8,;*7)\61 mam} , (I1.12)

where €5 i

Q)

G, = 0w, k&, =0, (11.13)

for A\, u = +. The equation k -€7 , = 0 expresses the Coulomb gauge condition. Moreover, By
is a ball of radius A centered at the origin in momentum space. A represents an ultraviolet
cutoff that will be kept fixed throughout our analysis. The vector potential defined in (I1.12)
is thus cut off in the ultraviolet.

Throughout this paper, it will be assumed that A ~ 1 (the rest energy of an electron),
and that « is sufficiently small. Under these assumptions, the Hamitonian H is selfadjoint
on D(H?), i.e., on the domain of definition of the operator

V)2
H° = % +H (I1.14)
The perturbation H — HY is small in the sense of Kato; see, e.g., [25].
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The operator measuring the total momentum of the system consisting of the electron

and the electromagnetic radiation field is given by

P .=+ P, (I1.15)
where p = —iV is the momentum operator for the electron, and
Pr=3" / &k kay,, ag (IL.16)
A=+

is the momentum operator associated with the photon field.

The operators H and P are essentially selfadjoint on the domain D(H,), and since
the dynamics is invariant under translations, they commute, [H, 15] = (. The Hilbert space
H can be decomposed on the joint spectrum, R3, of the component-operators of P. Their

spectral measure is absolutely continuous with respect to Lebesque measure. Thus,
@
H = / Hpd P, (I1.17)

where each fiber space H s is a copy of Fock space F.

Remark Throughout this paper, the symbol P stands both for a variable in R? and for a vec-
tor operator in 'H, depending on the context. Similarly, a double meaning is also associated

with functions of the total momentum operator.

To each fiber space H 3 there corresponds an isomorphism
Is:Hp — F°, (I1.18)

where F* is the Fock space corresponding to the annihilation- and creation operators by ,,
« o . ik-& . * —ik-Z, *
bE,A’ where bk«\ is given by e"“ay |, and b/;/\ by e ag

7 is the electron position. To define /5 more precisely, we consider an (improper) vector

with vacuum Qf = ]ﬁ(eiﬁ"z), where
.5 € Hp with a definite total momentum, which describes an electron and n photons
(fronfn:Py € Hp with a definite total t hich describ lect d n phot

in a product state. Its wave function, in the variables (Z; O S , An), is given by

i(P—k1——F, 71 7 7
pi(P—F ) - Z £y (B M) =+ Fotm) (Kon Apn)) + (I1.19)

PEPn
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P,, being the group of permutations of n elements. The isomorphism /5 acts by way of

]P(eus Fimofin) @ nlz Forwy (k15 Ay + Fot) (B o)) = (11.20)

= ﬁ/ Br PR FEN) e LK) b b Q. (I12D)
The Hamiltonian H maps each H 3 into itself, i.e., it can be written as
H = / Hpd’ P, (I1.22)
where
Hs : Hzp — Hp. (I1.23)

Written in terms of the operators by 5 bz N and of the variable ]3, the fiber Hamiltonian H 5
has the form

(P - P +al/2 )

Hp = 5 + HY, (11.24)
where
Pl = Z/d?’kkb* s (I1.25)
Hf = Z/d3k|/2|b;€:Abm, (11.26)
A
and

Z /BA \/> {bk )\616)\ + 515,,\1712,)\}' (11.27)

In the following, we will only construct infraparticle states of momentum Pes , where
— -1
S::{P€R3:|P|<§}. (11.28)

In order to give a well-defined meaning to the operations we use in the sequel, we introduce

an infrared cut-off at energy ¢ > 0 in the interaction term

BB R
H, 5 = a1/2A~¥+oc— (I1.29)
: 2 2
of the Hamiltonian H 3, which is imposed on the vector potential A. Tts removal is the main
problem solved in this paper. Our results are crucial ingredients for infraparticle scattering

theory; see [10]. We will start by studying the regularized fiber Hamiltonian

P— Pl 4+ al/247)?
HY = ( 5 ) + HY (I1.30)
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acting on the fiber space H 3, for PesS , where

~ 3k
A7 = Z/ {bmgm NN (I.31)
Ba\Bo /o] k| ’

and where B, is a ball of radius 0. We will consider a sequence ()32, of infrared cutoffs
given by 0; := Aé/, with 0 <e < 1and j € N.

In Section IV, we construct the ground state vector (\DUPE) of the Hamiltionan (H;j),
and we compare ground state vectors \If‘g, \If(;/ corresponding to different fiber Hamiltonians
H;j, H;f/ with P + P'. We compare the vectors \I/;j, \IJ(;/ as elements of the space F°. More
precisely, we use the expression

[0y — vl (11.32)
as an abbreviation for

115(5) = 15.(95)] - (I1.33)

II.1. Background. In a companion paper [10], we construct a vector ¢y, a, (t) converging to

a scattering state wO“t/ "

, as time t tends to infinity, applying and extending mathematical
techniques developed in [23] for Nelson’s model. The vector wff% "™ represents an electron
with a wave function h in the momentum variable with support contained in & = {P : |P| <
%}, accompanied by a cloud of real photons described by a Bloch-Nordsieck factor, and with
an upper photon frequency cutoff A;.

In [10] we also construct the scattering subspaces H“/™  starting from certain sub-
spaces, H! /™ and applying "hard” asymptotic photon creation operators. These spaces

out/in

carry representations of the algebras, .A and Aom/ " of asymptotic photon- and electron

observables, respectively, and the fact that their actions commute proves, mathematically,
asymptotic decoupling of the electron and photon dynamics, as time t — +o00. Properties

out/in

of the representations of A ;""" in the infrared expected on the basis of the Bloch-Nordsieck

paradigm are rigorously established; see [10].
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III. STATEMENT OF THE MAIN RESULTS

The main results of our paper are summarized in Theorem III.1 below. They are
fundamental for the construction of scattering states in [10] and are very similar to those
used in the analysis of Nelson’s model in [23].

We define the energy of a dressed one-electron state of momentum P by

% = infspecHg Es = infspecHp = E%ZO. (I11.1)

We refer to E% as the ground state energy of the fiber Hamiltonian H. If it exists the
corresponding ground state is denoted by \Il%. We always assume that PeS:= {]3 € R3 :
1P| < 5 } and that o is so small that, for all Pes,

IVES| < Voo < 1 (IIL.2)

for some constant v,,,, uniformly in o.

-~

Let 0%(k) be given by

. k-VE?
0%(k) =1 - ——*L. (I11.3)
||
We introduce an operator
R VES,
W,(VE%) := exp (oz% / Ph—5—L - (52,05, — hc)) , (TI1.4)
i 2 o, CRE D
on H 3, which is unitary for o > 0, and consider the transformed fiber Hamiltonian
3= J(VE;‘B)H%W;(VE%). (I11.5)

Conjugation by Wg(ﬁE}’B) acts on the creation- and annhilation operators by a (Bogoliubov)
translation

— = ]-o' E =, —
W,(VE%) bE Wi(VES%) = b2 Ah) G eF (I11.6)

AR ]Bao(R)

AQ

-

where 1, 4 (k) stands for the characteristic function of the set By \ B,. Our methods exploit
B
energy, E%, of K'7. These properties are formulated in the following theorem, which is the

regularity properties in ¢ and P of the ground state vector, ®%, and of the ground state

main result of this paper.

Theorem II1.1. For P € S and for a > 0 sufficiently small, the follouing statements hold.

(F1) The energy E% is a simple eigenvalue of the operator K% on F. Let B, := {/Z €
R3||k| < o}, and let F, denote the Fock space over L*((R3\ B,) x Zy). Likewise,



INFRAPARTICLE STATES IN QED II. 9

we define F to be the Fock space over L?(B, x Zy); hence F° = F, @ Fg. On F,,
the operator K% has a spectral gap of size p~c or larger, separating E% from the rest
of its spectrum, for some constant p~ (depending on «), with 0 < p~ < 1.
The contour
o

'07} L o>0 (11L.7)

bounds a disc which intersects the spectrum of K% i only one point, {E%} The

v :={2€Cllz - EF| =

ground state vectors,

v
- CW (VE0> ||qjg|l ’ CE C |<| = ]-’ (1118)
P
of the operators K% are given by
o7 27lrz o K" dZ Qf (III 9)
P ”27rz fw K”—z dZQfH]: ‘

and converge strongly to a non-zero vector ®5 € F°, in the limit o — 0. The rate of
convergence s of order 05(1—5)} for any 0 <9 < 1.
The dependence of the ground state energies E% of the fiber Hamiltonians K% on

the infrared cutoff o is characterized by the following estimates.
|E% — E% | < O(0), (T11.10)

and
1

|VES —VEZ | < 00207, (IIL.11)
for any 0 < § < 1, with o > o' > 0.
(#2) The following Hélder reqularity properties in P €S hold uniformly in o > 0:

|9% — ®%, \sll7 < Co| AP~ (IIL.12)

and
|VE}'3 ~ VE, 5l < CorlAP[T (IIL.13)
for 0 < 6" <& < 3 with ﬁ, P + AP ¢ S, where Cs and Cs» are finite constants

depending on 0" and 6", respectively.
(£3) Given a positive number Uy, there are numbers ro = Vpin + O(a) > 0 and vVpgee < 1

such that, for PesS \ B, and for a sufficiently small,
1> Vinaw > |VE%| > Vynin > 0, (II1.14)

uniformly in o.
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(F4) For PeS and for any k # 0, the following inequality holds uniformly in o, for a

small enough:

9 > E%— Colk,

where E% .= inf spec Hp i and % < Cy < 1, with C, — % as a — 0.

(#5) For P € S, one has that

—

1,4 (k)
|E|3/2

107,95 < Ca/?

Y

see Lemma 6.1 of [9] which can be extended to k € R® using (F4).

1
1
1
[}
1
1
[}
1
1
[}
1
é
Pl

N
ko

Figure 1. The condition (.#4).

(I11.15)

(I11.16)

The proof of statement (.#1) is given in Section IV; the proofs of statements (.#2) and
(.#3) are presented in Section V. Statement (.#4) is proven in Section VI. We note that

condition (.#4) plays an important role also in atomic and molecular bound state problems,

see for instance [19].

[II.1. Remark about infrared representations. The statement (.#5), which states that

1,2k
b 0% || < Cat/2 toah)

P |/;'|3/2 ’
follows from the identity
1 10'/\(];) 1 — =
bz V% = —a2 —=5 - £ sHZ WY
o kI* Hp g+ R —EBg 0 00T

(I1L.17)

(I11.18)
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which is derived by using a standard ”pull-through argument”. Combined with the uniform

bounds on the renormalized mass of the electron established in [8], it is used in [9] to prove

the bound

(UG, NpO%) = /d3k (U, b7 ,05,9%) < Ca(l+ |P|?|In()]) (I11.19)
on the expected number of photons in the ground state W%. Without using the uniform
bounds on the renormalized mass, one obtains the weaker upper bound (I11.17). Important
implications of this result, analyzed in [9] and used in [10] can be summarized as follows.
Let 2, denote the C*-algebra of bounded operators on the Fock space F(L*((R*\ B,) x
7)), where B, = {k € R3||k| < p}, and let 2 denote the C*-algebra 2 := mll-\\0p7
where the closure is taken in the operator norm. We define the state w% := (V%, (- ) V%)
on . In [9], it is proven that there exists a well-defined state wz on 2 corresponding to

the weak-* limit of w% as 0 — 0; i.e., any sequence (0,)nen, converging to zero contains a

subsequence (0, )jen, converging to zero such that

wp(A) = lim wp,_ (4), (I11.20)

j—o0 T

for all A € A. The proof of this statement in [9] is based on arguments combining (II1.16)
with the uniform bounds on the renormalized mass of the electron established in [8].

The representation of 2 corresponding to wp obtained by the GNS construction can
be characterized as follows. Let ap : % — 2 denote the Bogoliubov automorphism defined
by

ap(A) = lim W,(VE%) AW} (VES) (IIL.21)
with Wo(ﬁEg) defined in (III.4), and A € 2. Then the GNS representation 75 of 2 is quasi-
equivalent to mpee © a5, Where mp,e, denotes the Fock representation. In particular, 75 is
a coherent infrared representation unitarily inequivalent to mpgye, for P #+ 5, and unitarily

equivalent to Tpees if P =10. For proofs see [9].
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IV. PrOOF OF (#1) IN THEOREM III.1

In this section, we prove the statements (.#1) in Theorem III.1. This is the most

involved part of our analysis.

IV.1. Construction of the sequence {\I/(];’} of ground states. We recall the definition
of the fiber Hamiltonian from (I1.24),

. (ﬁ_ﬁf+oél/2go'j)2
HY =
P 2
It acts on a fixed fiber space H 35, with Pe S, where

+ HT. (IV.1)

Y d k —x
A = Z/ — {s,M + embm} (IV.2)
A=+ 7 Ba\Bo; \/ |k]
contains an infrared cutoff at
oj i =Aeé |, jEN, (IV.3)

with 0 < € < 1 to be fixed later (we recall that A ~ 1). As we will see, the Hamiltonian H;j
has a unique ground state \I/;?, which we construct below using an approach developed in
22].

We define the Fock spaces

Foy i =F(L*(R*\ By,) X Zy)) and  Fgi_ = F(L*((By, \ Bo,,,) X Zs)) .

J J Oj+1

It is clear that

Foin = Foy @ FJ0 1, (IV.4)
and that the Hamiltonians {H;f | j € N} are related to one another by
HY™ = HY + AHR|7 (IV.5)
where
AHg|% Dy = oz V HUJ A\U - (A|U]+1) (IV.6)
and

Bk B
Al Z /B \/7{616’)\ \ o EL D) (IV.7)

For a sufficiently small and P € S, we construct ground state vectors {\I/;f} of the
Hamiltonians {H;j }, j € N. We will prove the following results, adapting recursive argu-

ments developed in [22].
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We introduce four parameters €, p*, p~, u with the properties that

2
O<p_<;z<p+<1—0a<§ (IV.8)
0<e<? (IV.9)
pr ‘

where C,, is defined in (IT1.15). Then, for « small enough depending on A, €, p~, u, p*, we

prove:

e The infimum of the spectrum of H;j on F,,, which we denote by E;j , is an isolated,
simple eigenvalue which is separated from the rest of the spectrum by a gap p~o; or
larger.

. E;’ is also the ground state energy of the operators H;j and H;j —H'|g,, on F,, .,

where H7|77, | is defined in Eq (IV.21). E;] is, in this case, a simple eigenvalue which
is separated from the rest of the spectrum by a gap pto,1 or larger.
e The ground state energies E;j and E;j ' of the Hamiltonians H;j and H;j“, respec-

tively, acting on the same space F, ., satisfy

i1
Oj+1 oj 2
0 < EF" < B +caoy, (IV.10)
where ¢ is a constant independent of j and a but A-dependent.

We recursively construct the ground state vector, v% (which is at this stage not nor-
malized), of H% on F,, as follows. In the initial step, we set \II;O = Q.

Let \I/;j denote the ground state of the Hamiltonian H;j on F,, with non-degenerate

eigenvalue E;j and a spectral gap at least as large as p~o0;. We note that E;O = % is a
non-degenerate eigenvalue of H ;0 on F,,, and that
oo 2 —

gap(H%|7,,) = 300 > p og. (IV.11)
We observe that

VY@ Q€ Fopy = Foy @FT, (IV.12)
where

V5 @l = %51, (IV.13)

is an eigenvector of H;ﬂf(,jﬂ. In (IV.12), Q; stands for the vacuum state in F57,, (if not

further specified otherwise, {2y denotes the vacuum state in any of the photon Fock spaces).
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Moreover, we note that (IV.12) is the ground state of H;j restricted to ., because

. ; g5
infs ec(HﬂJ o — EJ)
p P ’fUHIe{(C\I/};@Qf} P

> min { poj, keR?%{llg 1{Eﬁﬂrg—l— k| — EF }}
i+

> min { poj, (1=Co)ojn }
> /0+O'j+1 >0, (IV14>

where F,

o1 of the one-dimensional

{C\Dg ® €} is the orthogonal complement in 7,
subspace {(C\I/C};j ® Q¢}. We use property (£4) to pass from the second to the third line in
(IV.14); for a proof of property (.#4) see Section VI.

Consequently, the spectral gap of H 7 restricted to F, ., is bounded from below by

ojt1
gap(HY |7, ) = proji, (IV.15)

where
gap(H) := inf{spec(H) \ {infspec(H)}} — infspec(H). (IV.16)
We define the contour 7,,,, := {241 € C||zj41 — Cij| = o1} which is the boundary of

a closed disc that contains the non-degenerate ground state eigenvalue Eq of H 7. but no
other elements of the spectrum of H; ]3]7 see also Figure 2 below.
Then we define

. 1 1 .
\1,034»1 = -— dZ i+1 o——qlgj ® Qf
P 271 Yj+1 ! ]3] — Zj+1 P
Z 7{ e — (IV.17)
n>0 B At
AH; _ )"\If" Q.
< O'J+1 H J o ZJ+1 P ® f

which is, by construction, the ground state eigenvector of H

”1| . The associated ground

7j+1

ag ag ag g
state eigenvalue E};“, with Hﬁ”lllfff“ = Eff“\l/ff“, is non-degenerate. To control the

expansion in (IV.17) for sufficiently small a, we show that, for z;11 € 41,

1 1
( : )5 ila; ( : >§
95 _ P Tj+1 95 _
B A+l B T R+l

1/2

sup
Zj+1€754+1

]:"Hl
«

< C

= €2 [min{(pt — p), p}2’

(IV.18)
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where the constant on the r.h.s. depends on P and A. The largest value of a such that
(IV.18) < 1 may depend on € and pu. The estimate (IV.18) is obtained from the following
bounds, which depend critically on the spectral gap (as in the model treated in [22]):

1) For Zj+1 € Vi+1,

<.

sup
Zj4+1€Y5+1

1 )é SN 1 3
7o (VﬂH*) (aj—>
<H]5' — Zj+1 PP Hﬁ — Zj+1

<o( 1 )
N min{(pT — p), 1}
where the implicit constant depends on P and A.

ii) Writing (J\Z; ) and (/T]gj ..)T for the parts in /T]Z; ., which contain annihilation-

Fojn

(IV.19)

and creation operators, respectively, we have that

o BNz,
H(A 0'§‘+1) w” S (/l;, \B ) ’l(Hf’o_;+1)l/2w”

. e, R
< cer||[(HT|g )y (IV.20)
where
ag,, = Z/ &k || b, by (IV.21)
x /Boj\Bojiy
with ¢ in the domain of (H7|72,,)/2. Moreover,
0 < [(Al72,,)" (AZ, )" < e, (IV.22)

where the constants ¢, ¢ are proportional to A/? and A, respectively.

111) For Zj41 S Yi+1,

1 1
() 7 ()|
HﬁJ—Zj_H 7it Hﬁ]—Zj-i-l

which follows from the spectral theorem for the commuting operators H/ \Z; 4, and
-
Using (IV.18), one concludes that

N =

1
< O(—
-7:03'+1 pr— K

), (IV.23)

sup
Zj+1€Y54+1

oj oj 1 oj
19— W% < Cat [ 0%)r, (IV.24)
with C' uniform in j, such that, for a small enough,
[ F > O 97 |, (Iv.25)

for a constant C’ > 0 independent of j. In particular, the vector constructed in (IV.17) is

indeed non-zero.
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Because of (IV.10), which follows from a variational argument, we find that, for v small

enough and A-dependent, but independent of 7,
{j+1

gap(H; " |7, ) 2 poji1 — co 02 > poj. (IV.26)

This estimate allows us to proceed to the next scale.

m(z,,)

s’ N \ Tu.
/ / N \ n J+1
I /, cog? ) LT
! ! ! ' | (—
|
Re(zj +1)

T T

Vo'v " | I
\ \ E >po,. . |
\ P / J+1
\\ N / : : N o,
~ 4 / 7
\ So -7 / | spec Hﬁ
\ / | (o)
\ , T . 7
\ / >p 0'].+1

- >p O,
pJ

|
|
|
|
N | s
|
|
|
|

Figure 2. The contour integral in the energy plane.
It easily follows from the previous results that E;j is simple and isolated, and (H;j ) Bes
is an analytic family of type A. In particular, this allows us to express VE;j as a function

of P by using the Feynman-Hellman formula; see (IV.27) below.

IV.2. Transformed Hamiltonians and the sequence of ground states {@g}. In this
section, we consider the Hamiltonians obtained from {ng } after a j—dependent Bogoliubov
transformation of the photon variables. In the limit j — oo, this transformation coincides
with the one identified in [9], which provides the correct representation of the photon degrees

of freedom for which the Hamiltonian H 3 has a ground state.

IV.2.1. Bogoliubov transformation and canonical form of the Hamiltonian. The Feynman-

Hellman formula yields

VEY = P — (Pf — o'/?A" Y (IV.27)
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where
. . U7 (Pf— a2 A7) w%
(P =iy, o TR (P PR U
7 (07, v%7)
We define
B’UJ _ ﬁf al/QAa]
(55(/{:) = 1—k VE];
VEY . &
« ¥ B Ex
Cin = AT —=5=
k|20 5 (k
1 ﬁEo—}? _)_‘
Cin = bpytaz *;Paj =2
k|20 5 (k)
We then rewrite H;j as
— —oo_ 2
2 )
and
ﬁ - 6E~j + <B}a—]>‘1};‘3j ’
thus obtaining
j ﬁ2 =7 1703 20, 30; <gaj)2 !
Hg = 5 —(VEZ +{%)y7) 67 +——+H
- 7 + 2 - </6 >\II;J : /8
+ / k167 (k) b% b \d*k
XA: RA\(BA\E-,) L T

+y / K[0% () ¢z g \d*k
by BA\Bo'j

17

(IV.28)

(IV.29)

(IV.30)

(IV.31)

(IV.32)
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Adding and subtracting (6"]} , one gets

o 132 <5Uj>2w (5 = (B7)y%)°
HY — —_ _ + P

P 2
+ / k|67 (k) bt by dPk
Z s, IO B
+) / |k|5;’;(E) et o &k (IV.33)
Ba\Bs -
VEY .55 VEY .z
o5 7 F\ Y
a / FIO% ()~ P g
A /Br\Bs k205 (k) [k[205 (k)
Next, we apply the Bogoliubov transformation
= 1 ﬁE;] "
b% W, VEU7 b* N VEY)=1b: —a2—5—22
[ i ) (VEZ) = b; |k|g(5;j(k)
o * o 1 ﬁEU_’j ) _)l;)\
bpn — Wo,(VEZ)bp W, (VEZ) =b;\ — a2 |E|§P5"j(?) (IV.34)
P
for k € By \ B,,, where
N VE?
W, VE?Z) := exp (a% / d?’k%- gz \b% —h.c ) : V.35
( P> ; Bo\B ’k’%5ﬁj(k) ( LGP ) ( )

It is evident that W, acts as the identity on F°(L*(B,, X Z3)) and on F*(L*((R*\ By) X Zs)).

Moreover, we define the vector operators

0} = W, (VEZ) 3" W, (VEY)
— (W, (VEZ) G W (VED ), | (IV 36)
noting that
(377)yy = P—VEY (IV.37)
P
< (I) ‘TJ (I)JJ >

= Togany TR VED I VB,
P’ P

where Cbg is the ground state of the Bogoliubov-transformed Hamiltonian

K% = W, (VEZYHW, (VEY) . (IV.38)

P j
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It thus follows that

— 5

W, (VEZ) 3% W (VEZ) = (37)m = T — (%), 2 (IV.39)

J

"Ux

As in [22], it is convenient to write K %7 in the ”canonical” form

Z = \k;|5"ﬂ by bk + EF (IV.40)
where
Iz = H};—<Hﬁj >q><;j, (Iv.41)
so that
(T% >@;j =0, (IV.42)
and
”. P2 (P-VEY)?
5 = o = IV4
€5 5 5 (IV.43)
. _NE7.Zr VET .z
—aZ/ K107 (k)= —L—= dk
- /Ba\B, k|20 (k) |k|205 (k)
One arrives at (IV.40) using
W, (VEﬁj) C;';‘,A we, (VEI;) ,’%’,\ ;
ng(VE;j) Cix W:j(VEg) = biys (IV.44)

for k € Ba\B,,. The Hamiltonian K;j has a structure similar to the Bogoliubov-transformed
Nelson Hamiltonian in [22].

Following ideas of [22], we define the intermediate Hamiltonian

~o
Kﬁ]+1 p— W

Oj+1

(VEDYHTV WS (VED), (IV.45)

ot
where
_— . , VEY
W,,.,(VE%) == exp (a? 3 /B . d km (Eba(R) — h.c.)) . (IV.46)
and split it into different terms similarly as for K;j . We write

H‘Zj+1 _ E—P /80']+1 (ﬁa'j-‘rl)Q

Hf V.4
j 5 o+ H (IV.47)
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and replace P by ﬁEgj +(G77)

ex thus obtaining
, ISQ - . o (60j+1)2
g+ L E‘ZJ %5y o Tj+1 4 Hf
5 ] (VEZ +(F7)y) 7 S+
— (ﬁU]H) _)Uj 3 Tj+1
+ / |k’|5aﬁ(k:) by bz A’k
Z R3\(BA\Bs;, 1) r FATEA
+Z / R0 (R) ¢ e 'k
A\BUJ+1

} VEF &, VEY - &
_— / k|67 (k) 22 P
N JBA\B

ik 5””( ) [k[367 (k)

7541

(IV.48)

We add and subtract = (ﬁ"f)i and apply a Bogoliubov transformation by conjugating with

5
the unitary operator W, (VE?, ) Formally, we find that

(C% + L7+ T5)°
2

- Z |/<;|5"J )br b &k + EF

Kot
P

where
. L HVE;J' . %AbEA + h.c. .
£g§+1 = — Q2 E / k _,370' = d’k
35 J
A BUj\BUj+1 |k|25“ (k)
1 =
— 3 Al
azA oy

IR o N A A
Oj+1 ™
N Y Bo;\Bs

o (k357 ())?

VEU] dSk

+o / = —U“+h.c.
; 7 \Boyia % [k[205 () ]\/ua

—

= = 1775 \2
P? (P_VEp)
2

ot k}_>
[\)

} VE} -, VEY - &
—a Z/ k|67 (k) _ A
N BB [E[267 ( ) [k[267 (k)

7i+1

(IV.49)

(IV.50)

(IV.51)

(IV.52)

For details on the derivation of (IV.49) and for the proof that (IV.40) and (IV.49) hold in the

operator sense (and not only formally), we refer to Lemmata A.1 and A.2 in the Appendix.
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We also define the operators

3595

Mp = W, (VES YW, (VED S W, (VEZ )W, (VEZ™) (IV.53)
and
=95 =95 595
I's = 1Ip — <Hﬁ>&\>;j, (IV.54)

which are used in the proofs in the next section. Here, EI\)‘;J denotes the ground state vector
of the Hamiltonian K;j = Waj(VE;j’l)K;jW;j(VEg’l).

IV.3. Construction and convergence of {@;’} In this section, we construct a sequence
{CIDCI;j |j € N} of ground state vectors of the (Bogoliubov-transformed) Hamiltonians K;j,

and establish the existence of

Q5 = s— lim <I>(If3j. (IV.55)

Jj—o00
We estimate the rate of convergence, and establish regularity properties with respect to P.

Our results are similarly to those in [22] for the Nelson model.

In the initial step of the construction corresponding to j = 0, we define @%0 = Qy,
with ||Qf]| = 1.
To pass from scale j to j + 1, we proceed in two steps. First, we construct an interme-
diate vector <T>j;‘+1
oo
. 1 1 1 .
o — _,/ d2jus ——— [~ AK 57— ]"®%
P HZ:O ) _ J ;J — Zj41 [ Plojt K;J — sz} P
(IV.56)
where
_|o; L 70541 . COi4+1 g o
AKP 0'§'+1 = ﬁj ﬁj + 513] ﬁj
=0, o 2o Ao 2o 2
= U5 (L3, +I3 )+ (L3, +I7,.)" . (IV.57)
Then, we define
@g“ = ngH(VE;"“)W;Hl(VE?)@?“ . (IV.58)

The series in (IV.56) is termwise well-defined and converges strongly to a non-zero vector,
provided « is small enough (independently of j). This follows from operator-norm estimates
of the type used for (IV.18).
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To prove the convergence of the sequence {@g}, we proceed as follows. The key point

is to show that the term

(L7, +17) (IV.59)

Oj+1 agq j+1
contained in (IV.57), which is superﬁc1ally marginal in the infrared by power counting (using
the terminology of renormalization group theory), is in fact irrelevant. This is a consequence
of the orthogonality relation

(0% T70%) =0, (IV.60)

as we will show. We then proceed to showing that
1

(e — )
==
Kﬁj—2]+1

)2 23

.
VIEY - (LD + T2 )] (o
P j+1

(IV.61)

(where Eaj J) stands for the part which contains only photon creation operators) is of order

O(e™), for some n > 0, and we consequently deduce that

1274 — @%|| (IV.62)
tends to 0, as j — oo.
Theorem IV.1. The strong limit
Ps = s5— JILI?O @;J (IV.63)
exists and is non-zero, and the rate of convergence is O( J%( 6)), forany 0 <9 < 1.

In the proof, we can import results from [22] at various places. Thus, we will be sketchy

in part of our presentation.

IV.4. Key ingredients of the proof of proof of Theorem IV.1.
e Constraints on €, p and «

In addition to the conditions on «, € and p imposed in our discussion so far, the analysis
in this part will require an upper bound on g and an upper bound on € strictly smaller than
the ones imposed by the inequalities (IV.8), (IV.9); see Lemma A.3 and (IV.90) below. We
note that the more restrictive conditions on p and e imply new bounds on p~, p*. Moreover,
e must satisty a lower bound e > C’)(oz%). We will point out below where these constraints

are needed.
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e FEstimates on the shift of the ground state energy and its gradient

There are constants C', Cy such that the following hold.

(e71)

(#72)

|EY — EZY | < Crad (IV.64)

This estimate can be proved as inequality (I1.19) in [4].

% %!
]_'

IVEY - VEZ?| < G| =£— - =&
PR 1821 12270

+—e%> (IV.65)

For the proof, see Lemma A.2 in the Appendix.

e Bounds relating expectations of operators to those of their absolute values

There are constants C'3, Cy > 1 such that the following hold.

(73)

(e74)

For zj11 € Y41,

(rgy¢g>y (IV.66)

For zj 11 € ¥j41,

o () (799 )i p T o (+) (703 \i i,
<£0’j+1 (Fﬁ)@ﬁ 9 Kﬁj —Z] 1‘ i1 <Ff’) (P >
~ N0 1 - o
o5 (4) (779 )i g7 o; (+) (793 \iFH I
S 04’ < £0j+1 (Fﬁ) @ﬁ ) KO_'.] _ Zj+1 £0j+1 <Fﬁ) (1)13 >’ . (IV67>
P

To obtain these two bounds, it suffices to exploit the fact that the spectral support
. : . . . o + . . . . .
(with respect to K;’;) of the two vectors (Fg)’@g and Egjfl )(I‘Uﬁ)l@g is strictly

P
above the ground state energy, since they are both orthogonal to the ground state
o
¢ﬁ .
Remark: The constants C,... ,C5 are independent of «, €, u, and 5 € N, provided that

a, €, and p are sufficiently small.

IV.5. Proof of the convergence of ((I);j)o‘io- The proof of Theorem IV.1 consists of four

main steps.
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Step (1).

(i) Assuming the bound
Ry

o €ed

Uji O’j 1 Uji O'j
‘<(Fa)q>ﬂ,—(rﬁ)¢ﬁ>‘ < 1>6>0, (IV.68)

rer K;‘sj — Fitt
where Ry 1s a constant uniform in j € N, for a, €, u sufficiently small, we prove that

1 Liog > - 1
- - 9% . (o5 (+) ) - -
H (K;j o Zj ) ) 2 [Fﬁj (£U;+1 + Iaj‘ﬂ)] (K;j o Zj+1

20T, < O(00);  (1V.69)

see . . (12) For a and Ry small enough tndepenaently of 7, we prove that
1V.61 1) F d R ll h ind dentl ' h
D%+ — %l < €700, (IV.70)

For the term on the Lh.s. of (IV.69) proportional to to f;’;fﬂ, the asserted upper bound
is readily obtained from estimate (473) combined with (IV.68). For the term proportional
to Ei;ff), we prove (IV.69) following arguments developed in [22]; see Lemma A.3 of the

Appendix for details. This involves the application of a ”pull-through formula”, a resolvent
expansion, and the bounds (273), (<74).

Step (2).

We relate the l.h.s. of (IV.68) to the corresponding quantity with j replaced by j — 1, and to

the norm difference

187 — 87 (Iv.71)

(see (IV.80) — (1V.83) below).

By unitarity of Waj(ﬁE;j’l)W:j(ﬁE;j), the Lh.s. of (IV.68) equals
RNOiNi 1O 1 RNOiNi 7O
()07, ———— @783 ). (IV.72)
P P Kp‘J — Zjn P P
Assuming that « is small enough and € > O(«2), we may use (71) to re-expand the resolvent

and find

jsj — Zj+1
NOiN; = 0i 1 NGO
< 2‘<(F]§)”¢>ﬁ’, 5 (Fﬁj)l@g>(. (IV.73)
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We then readily obtain that

GO 1 o~
e e L
< 4H< 1 )5 (fgj)i§gﬂ (F‘Tgfl)zq)ajfl) ’2 (IV 74>
B K7™ — 2z Bl P P | -
Oj—1\i ;05—1 ]' Oj—1\i /75—1
+4 ‘< (FIB ) q)ﬁ ) ‘ij—l (Fﬁ ) (I)IB >‘ . (IV75)

— Zj+1
Our strategy is to construct a recursion that relates (IV.75) to the initial expression (IV.72)
with j replaced by j — 1, while (IV.74) is a remainder term.

We bound the remainder term (IV.74) by

D=

1 ROiNi T 0 Oi_1\i+.07—1
4H((,_—) (T)d% — (%)% )

P/ 7P

5 T A+l F
< 8H<— ! )5 T7)id% — (D%)id%) ’ (IV.76)
= K;Fl—zjﬂ P/ ©P P P/ r
+8 (e ! )é(r‘:j—l)i(aﬁ_@?—l) ‘2
K77 =z © 8 TR TR s
el gj-1 i
< R_jl(”q)ﬁ (I)ﬁz ||f+€2>2 (Iv.77)
€2 €4
[l T
+R_g( Bl e T >2
€2 4ei 7

where R; and R, are constants independent of «, €, u, and j € N, provided that «, €, and
11 are sufficiently small, and ¢ > O(a2). For details on the step from (IV.76) to (IV.77), we
refer to Lemma A.4 of the Appendix.

To bound the term (IV.75), we use (\A3) and the orthogonality property expressed in
(IV.60). We find that, for any z; € v;,

(o] I 705 —1 ]- Oj—1\1 F+07—1
(@ ey | yey )]
K5 = zin
. o 1 ) S
< 4C ‘< r7ient - (% 1<1>”3*1>‘ V.78
= 3 ( P ) P Kﬁ371 —Zj+1( P ) P ( )
Ti-1\igTi— 1 Ti-1\igTi—1
< 80??‘<(r13 VR g T >‘ (IV.79)
P

In passing from (IV.78) to (IV.79), we have used the constraint on the spectral support (with

respect to K7/7") of the vector (I'y™")"®%~".
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Therefore, for sufficiently small values of the parameters € and «, we conclude that
o 1
J

K 5oy, K7 o rs)yes > (IV.80)
R, /|97 — 07 | 4 €3
< _].1<H B | ) (IV.81)
€2 €4
gt — bl +
R (I) 95 <I> J 1 6 2
n 2< @71 : I (IV.82)
€2 4e1
Tj—1\i ;05—1 ]' Oj—1\i /T5—1
+8C5 <(Fﬁ N — (T ) 97 >‘ (IV.83)
P
Step (3).
We prove that
oj Ao'j 1 = oj— = 110 1
107 —@F|lr < Csaz [VEY = VEZ||In()]. (IV.84)
From the definition
% = W, (VEZ )W, (VEZ™)DY (IV.85)
we get that
|85 — 87 = = |W2, (FEG W, (VEZ)WE — 7| (1V.86)

where (with an abuse of notation) we have denoted by \I/C];f the ground state eigenvector
W;‘j(VEﬁJ)(I)Ff , (IV.87)
W, (ﬁEgj)CI)g |7 <1, of the Hamiltonian H}?. Then, we apply formula (I11.16) (which was
derived in [9]), and obtain the logarithmic bound (Ny) - < O(|Ino;|) for the expectation
P

value of the photon number operator Ny in \If(g, where 0; = A/, and A ~ 1. Hence, the
estimate (IV.84) follows.

Step (4).

We prove the bound (IV.68) assumed in step (1) by an inductive argument (see (IV.95)
below).
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We assume «, €, and p to be sufficiently small for all our previous results to hold, and

such that:

i)
, Il m L m 1
i = mzl [eﬂl—&) +4C5Cyat F0 (en)]| < 3, (IV.88)
uniformly in j. :

i)

8% — &% < e2=9) (IV.89)
iii) The bound (IV.68) holds for j =1, and

0<R+Ry< (1—-8C 65)%. (IV.90)

Notably, (IV.90) imposes a more restrictive upper bound on the admissible values of €. Then,

we proceed with the induction in j.

o Inductive hypotheses We assume that, for j — 1

(H1) we have an estimate

j—1
|95~ ®llr < 871 = 30 [F070 440Gy b EOImn(en) ]
m=1

(H2) the bound (IV.68) holds for j — 1.

e Induction step from j — 1 to j

From (H2), we get that

1B — &% || < 2070 (IV.91)
From (H1), (H2) and (72), we can conclude that
05— o Oj—1 o 2
957 > | — 02 — @l > (1V.92)
IVE (P) — VE 1 (P)| < ACqe2(9) | (IV.93)

and then, by combining (IV.70), (IV.84) and (IV.65), that

|07 — o%||r < 7. (1V.94)
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Finally, we obtain from (IV.81) — (IV.83) that
S 1 g

(RO, o (T)D% )|
‘< PIUP KT — gy PP

R, <||<T>;'s — 02|l + ea‘<l—6>)2

S J J
€2 2€1
377 eI 1 j
B _ B 2(1-9)
Ry (H T el et
+ _— -
J J
€2 4e1
o 1 o
2 Oi—1\i 1.0j—1 Oj—1\1 J%5i—1
+803’<(Pﬁ] )@ ,m(rﬁ )@ >‘
Rl Rg 2 Ro RO
< 63_5 + 675 + 803 e 10 < Tl (IV.95)

This proves (IV.69) and implies that the sequence {@g} converges (as can be derived from
(IV.94)). The limit is a non-zero vector because of (IV.92).
This concludes the proof of statement (.#1) in Theorem III.1. O

V. PROOF OF STATEMENTS (.#2) AND (.#3) IN THEOREM III.1

Statement (.#2) expresses Holder regularity of $% and ﬁE}’S with respect to Pe S,
uniformly in o > 0. That is,

o o Bii—¢
|95 — %, \pllz < Cs [AP|17° (V.1)
and
[VES — VES, 5| < Cor | AP[I7" (V.2)

where P , P+ AP € 8. The constants Cy and Cyr depend on ¢’

and ¢”, respectively. This result can be taken over from [22].

for any 0 < 0" < ¢’ < }1,
Statement (.#3) follows easily from (.#5). In fact, we recall from the beginning of
Section IV.2.1 that
P-VEg = (PF-a'?4,) . (V.3)
B

g
P

We then find that
M Sy T PR A
A

3
C’a/ @k < Ca, (V.4)
B

s [KJ2

IA
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and

» & i
(024, )y, | < al/z;/—%ll/? R
d*k
S C/O{/ - S COé, (V5>
By |k|?
where we used (.£5) in (V.5). Therefore,
|P-VE%| < Ca, (V.6)

for a constant C' independent of P € S and o. Statement (.#3) then follows immediately.
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VI. PROOF OF STATEMENT (.#4) IN THEOREM III.1
To prove statement (.#4) in Theorem IIL.1, we must show that, for P € S, a small
enough, k #0and o > 0,
E% . > E%— Culk| (VL1)
holds, where E% 2= inf specH? -, and <Cy <1, with(C, — s as a — 0.
To prove (VI.1), we first note that

o o oage R
and that
(6. By, z0) > (6. H30) — [Fl(o. (FHZ20)"" +
o o 1/2 E ?
> (6. H30) — VAR (0, Ho)* + A (V13)
for ¢ € D(H}C§+E) N F,, with ||¢|| = 1. Thus, we obtain the inequality
(0, HE ;9) — B}
> inf { (z+ E%) — V2lk| (2 + EZ)Y? + |E—|2 - E%}
220 P 2 P
= inf {a2* — V2Ik|z + |E|2 - E%} (VI.4)
at>(E°' )i/2 2 Pl '
where z := <¢, H]% ¢> — E% > 0 in the expression on the second line.
Setting 0,(---) = 0 in the expression on the last line of (VI.4), we find
22— V2[k| = 0. (VL5)

The minimum is therefore attained at z = ‘/7§|E|, if ‘/7§|l;| > (E%)l/z, and at © = (E%)UQ,

corresponding to z = 0, otherwise. That is,

2 -
i = max{ SZIF, (B} (Vo)
Now, for ‘/7§|lg| > (E%)l/Q, so that z,;, = */7§|l;|, we evaluate the lower bound and get
K2 e LR
— — |k — — k7 VIL.7
L i
and we observe that
g 1 7
—-E% > — §|k|, (VL8)
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because
Fp < (5 + ) (Bp)"2 < 3R (VL9)
5 —(z + ca A il '
for \]3 | < % This follows from
1, = 5

by Rayleigh-Ritz, so that (E%)'/? < 75(5 +ca) for |P| < 5.

If, however, ‘/7§|lg| < (E%)UQ, so that X, = (E%)l/Q, evaluation of the lower bound

yields
. o\1/2 UZIZ
—V2|k| (ES)Y? + 5 (VI.11)
and we observe that
. k|2 , . 1 .
VR ()2 + B s (P ca)lfl 2 G+ o)l (VL12)
for |P| < 3
Therefore, we conclude that
E} ¢ > Ef — Culk| (VI.13)
for
1
Co = 3 + ca, (VI.14)
and all k # 0.
This establishes statement (.#4) in Theorem III.1. O

Thus, we have proven our main result, up to auxiliary results proven in the Appendix.
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APPENDIX A

A.1. Well-definedness of the operators K5 % and [A(;j . We need to verify that the canon-
ical form of the Hamiltonians K ; % and K Zin (IV.40) and (IV.49) are not only formal. This
can be achieved by adapting an argument in the work [21] of E. Nelson, Lemma 3. We shall
only outline the proof for K ;j - the case of K ;j is similar.

To this end, we write (K;j“)’ for the operator on the right hand side of (IV.40), in
order to distinguish it from (IV.38). We let H 5(oco) denote the linear span of vectors in H 5
with a finite number of photons. For the values of a and of A assumed in Section II, we
know that H;j is selfadjoint in D(HIOS), where

HY = w +H. (A1)
Then, we conclude the following:

1) The equality (IV.40) trivially holds on H z(00) ) D(Hlos), because vectors in this space
are analytic for the generator of ng(ﬁE;j), and since H;j ) H% and the generator
of ng(ﬁE;j) map H 3(00) (| D(HY) into itself.

2) By standard arguments, one shows that

IHEWo, (VEZ)YI < b (1R + 1411 . (A.2)

where 1 € H 5(00) (| D(HY), for some b > 0.
Because H(oo) () D(HY) is dense in D(HY) with respect to the norm || H%|| +
4], it follows that W, (VE 5 ) and W;‘j(VE;J) map D(H}) into itself.
Consequently,
0y — 7
D(Hp) = D(KY). (A.3)

3) The equality (IV.40) holds on D(K ') because Hp(oo) () D(HY) is dense in D(HY)
in the norm ||H%¢[| + |4, and because of (A.3). Since (K;j)’ = K;j on the do-
main of selfadjointness of K ;j , we can therefore conclude that D((K 7; )) = D(K;j ).

Consequently, we have proven that (K ;;j ) =K ;j . This is what we intended to prove.
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A.2. Technical lemmata for the proof of (.#1) in Theorem III.1.

Lemma A.1. The Hamiltonian [/(\';”1 has the form (IV.49), with (IV.50), (IV.51), and
(IV.52).

Proof.
Recalling the definitions of Section IV.2.1, we have

Wo, o (VEZ B WS (VER) = (57)ye) (A.4)
— W, (VBRI (VEY) = (37 (A5
— W, (VEZ)A7 W (VEY) (A.6)
= W,,(VEZ )W (VEZ) — (67) e ¥ (A7)
Wci'il(VE”J)PfW;’J:;( EY) - P/ (A.8)
— a2 W, (VEF)AR Wi (VEY) (A.9)
= T3 — (%) 4 (A.10)

o i Pr.; R 5 Bk A12
| RAGE A1)

A 7 \Boj i1 g

VEY .&* Bk
+a§:/ e S Ly (A.13)

N JBai\Bay k|20 (k) k|

where
VE
Wgﬂ 1(VE' = exp oz / + . (_};;)\Zfi — hC)) . (A14)
it Z D \Bo |1<;y%5ﬁy (k) PMEA

This establishes (IV.50) and (IV.51). O
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Lemma A.2. For P € S, there exists Cy > 0 such that, uniformly in j € N, the inequality

J+1 aj

VESH - VEY| < C Q‘ i L

holds.

Proof.
Using (IV.37) and (IV.53), we write VE7*' and VE?Y in the form

L ey e
VE} = P—-—£_ L
P (%, %)

P’ P

<$0j+1 ﬁ?“@fﬁl >
}3/\ .’ PA A13
<¢5“=¢5“>

_<WUJ‘+1 (6 ) 5aj+1 W,

Oj+1

ﬁE;f“ - P

(VEZ Do

;-
By a simple, but slightly lengthy calculation, one can check that

(Wo, (VEZ) 37 W} (VEZ))a,—
—(W,, ., (VEZ ™) g7 W; (VEZ™))g,
_VEY & VEZ - &
:aZ/ 5 g
|l<:|3 (67 ()2
EZ*.ex VB! &,

—« ~ Bk
Z/ e ()

VEJ _'* d3/{5
+a§;/ ER —a“mc.]
X JBs k|26 (k) JIE
VEUJH - & A3k
—Q Z/ [_’E —U T k)\ —I—hC} =
X JBe [kI2057 (k) B
ﬁVE"J“ £ VE”f“ £
—a Z/ o 2 Pk
N Ba\Boy lk‘l( 7 ())?

VEJJH : _’*7 A3k

- Sia
-« - —S——>=+ h.c. .
) B e Y

— (W, (VEZ) 37 W, (VEZ))a,

(A.15)

(A.16)

(A.17)

(A.23)

(A.24)

(A.25)
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On the other hand, using definition (IV.53), we can calculate

S05+1 o

E s
P P
_ poj
- K’Uj+1
+« E /
A Bffj+1
Y /
A Tj+1
+a E /
A VB

=, crj'_.* =, U]"—»_'
_VE) .¢ VEF, FEn

P TEA
|k[3(0F (k))?
= 0+l w7 pOitl | =
_VE; “€ia VLS &y .
1. Ti+1 (7.
k2657 (k)
ﬁEUJ e Bk
[8_};)\ %j/k\’/\ + hC] =
|k[205 (k) JIE
B VE;j+1 8_}2*)\ d3k'
[ EA e + h.c.} i
[k[265™" (k) B

In order to shorten our notations, we define

F]?;Fl(BUj) =
F}j+1(ng+1) =

Gj-i-l(BUj \ Bffj+1) =

(A.20) + (A.21) + (A.22) + (A.23)

(A.28) + (A.29) + (A.30) + (A.31
(A.24) + (A.25)

Returning to (A.16), (A.18), we can write

VEY" —VET - Fl,\(B,)

A R

g DO
(&7 15 07)

~Tj11
. 1 < Do _)_,]

HIi+1 a;
Q5 ®ﬁ)>

~ - o
RNEA

(

(o7 H3R)

A0-.+1 o
125 5]

(Ey iigey)

95 179 &%
(o7, ;o7

AO"+1 o
125 H 25l

P

17 I

5 12
[l

)

+ Gj-i-l(BUj \ BUj+1) :

35

(A.32)
(A.33)
(A.34)

(A.35)

(A.36)

(A.37)

(A.38)
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Using (A.26) — (A.31), this can be rewritten into

VA A v A Bk J <EI\)UI3J.+1 ’ q);j > J
VEﬁ — VEI; - Fj+1(Boj) + W j+1(80'j+1) (A.39)
P P

. 1 < a\)ngrl 303+1 ( a\)g‘H q)(; ) > (A 4())
[ T [ T T '
1 NA % o
% <( e ),H,3’<I>g> (A.41)
@7 \YE T e
(O, Lo, )
P i+ p
_ HZI\){J'JJ H H(I)Uj H + G]'Jrl(ng \ ng+1) . (A42)
P P
We deduce from the definitions (A.32) and (A.33) that
L1 (Bl 41 (Boyy )| < ¢ IVEZ = VEY| (A.43)

where ¢ is a-dependent but j-independent. Then, it suffices to check that, for o small

enough, there are positive constants ¢, C' uniform in 7, such that

7t % .

(J(H £ __F H + et (A.44)
[ 1077l

> | (A40) + (AAl1) + (A42)| > ¢|VEF" - VE7| (A.45)

is satisfied. O
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Lemma A.3. Assume P € S, and «, p, and € small enough. Then, uniformly in j € N,
the bound

1 ) 1 1 12
_ 2 Lo IV (————) 2% A.46
H( }5‘] _ Zj+1> Oj+1 ( P) (Kﬁj _ Zj_|_1) P H}— ( )
; 1 . . 1 . .
< —CCZ? (,.—<PUEZ<I>‘?,U—F‘?’<IDUJ>‘
> 1 — 3 Y4 j+1 |E]3]_1 _ Zj+1‘ ( P) P KPJ . ZJ+1 ( P) P

holds for each | = 1,2,3, where ,,,, = {zj41 € C||zj41 — Eﬁ7| = poji1}, and ¢ < 1. Cy
and Cy are defined in (IV.66), (IV.67) ((</3) and (<7/4) from Section IV.4), and

Zly = (LpDNLg e, (A.47)
VEY &, (1-5,)p2
_ az/ Rals Tp G ’“)( .
N Bo\B k1205 (k) /1))
Proof.
We first use Eq. (IV.67) to estimate
1 1 ) . 12
) 2 L5 D) D% A48
”(stj—zjﬂ) Oj+1 ( P) PH]: ( )
. . 1 . .
o l [FAVE X o l OiNlI /O
< (L ey Il ep P TRy )
, 1 . .
a; ()1 o~ poi ()i §H
< 04)<£% (rp)clx,Kcy_Zj+1 £ (rﬁ)@ﬁ>]. (A.49)
P

Then we use pull-through formula to derive the following equality which holds in the sense
of distributions for k € B,
1

————b(k) = (A.50)
K5 —zin

1

+ 2o Js "ﬂ(sg] q) b \bgad®q + 50] + ]klég’( ) — Zj+1

Moreover, for o1 < |k:| < o0y, j > 1, and for a, p, and € small enough but uniform in j, we

= b(k)

@ 13”

can control the series expansion in the space F,
1

I ; — X (A.51)
T+H60j +(‘:ﬁ +|]{7|513 (k>_2j+1
B

“+o00 Do ‘k|2 1 n
XZ[_<Fﬁk+ 2)(ﬁa~]) o; 71 <05 (1o }
n=0 }; Hf —i—S J +|]€|(513J<k3)—2j+1
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where
H, = 3 [ R @ b
P by R3

the key estimate being

1 1/2
) (4.5
% + Hé;j +(€I3J + |k'|5l3j (k?) — Zj+1
=07 ‘k‘Q 1 1/2
' -k ( — > ‘ <c<l1.
< gk 5 )\ T £y =

o Hly + €7 + [FIOT (k) — 21
P

In order to control the term proportional to f;’ . E, we note that, for « sufficiently small but

uniform in 7,

1

1 2(14‘1;])Z
Crr—l

2 ] .
_ < |6y | sy
K7+ |k[6% (k) = 241 V2 I PR 4 |K|6% (k) — 24
Then, we observe that
1 2 o 1 2 PIV3 3
() 1% arrmmm o Ve — 55 < 5 s
k|65 (k) K5 + k|65 (k) — zj1 1—|P| 2

as i, « — 0; therefore, the estimate (A.52) also holds true for the term proportional to r g -k

if 4> 0 and o > 0 are small enough, but uniform in j. For the last estimate, we used that

by assumption, P € 8. To estimate of the term proportional to @, we use

K[
2

1 H - k|
K2+ k6% (k) = 22 U 7 2(1K(07 (k) — poja)

<1, (A.55)
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for a, €, o small enough but unifor in j. Therefore, recalling that by , q> — 0 for |k < o,
we find
(A.49) (A.56)
VE% . & 1.2
< c{a) P ia L ’“)‘ x (A.57)
x /Bo\Boy k|20 () 1|
1 Lo o 2 <= 1
X||(———=——= 2(T%) 0% ()"
H(Kﬁ] +|k|5ﬁj(k)_zj+1) el } o 2
1 VEY . &, T-8:.) 2
< {aZ/ @ K —L i L ’“’*)] x (A.58)
l—c By \Bf’j+1 |k’2(5ﬁj (k) \/ |E|
1 L o\ |12
*|| (o e’}
e oy m - zjﬂ) Al
VE?Z - &: l-&;
< —0304 Z/ [F— P f“) )x  (A59)
Bo\Boj |/€]2513] k) /‘k‘)
T4 (<] 1 T4 g4
< [ (1207, o (T2 >\

P’ K% _ P’/ P

P j+1
where, in passing from (A.58) to (A.59), we use (IV.67), and property (2/3) from Section
IV.4. For oy < |k| < 00, a similar argument yields (A.59).

This proves the lemma. O
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Lemma A.4. For a and € small enough, with € > O(«), there exist constants Ry, Ry <
O(e™Y), uniformly in j € N and P €8, for which

Y (R A | (A.60)

B At

1 % Oj—1\i/ROj 0j-1
+8H<K——z]+1> (T3 )25 — @57
P

&(”@g — 07| F + €§>2

< - n (A.61)
€2 €1
| — il +
+R_g( e 5 1l ||<1>};‘1|| F >2.
€3 et
Proof.
In order to justify the estimate in the statement, it is enough to make the difference
ERFAY] Oj—1\i
(Fﬁ) —(F]3 ) (A.62)
explicit. The definitions are given in (IV.41) and (IV.54).
From (A.16), (A.18), we get
204 30_{“ 041 9 1197 &7
_<(I)ﬁ+ , Up q)ﬁ+ >+<©ﬁ>_ﬂﬁ(§ﬁ> (A.63)
(a6
_ Rt _ O
= VE;" —VEg (A.64)
(W, (VEF) 520 W (VEZ ), (A.65)
(Wo (VEZ) 57 W5 (VEZ ))a,
From (A.26) — (A.31), we obtain
305 =oiq 395+1 =5
I'p =157 = 1l -1 (A.66)
o7 Ty 07ty (@7, %o
—< - PAMf ) + < L ) (A.67)
(o7, oF™) (23, 23)
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= VEY" — VE7 + Ly (A.68)

O’+1

—a Z/ k IEP((S”(E))? = dk (A.69)

A Y Boj\Bojiy B
_VEGY .z VEGY &,
o / k - k?'ﬂ T > &’k (A'7O>
N I Boj\Boy |k[>(057 (k))?
ﬁEC:j -gf dgk
—a Z/ [Ein =i + ] (A.71)
A B \Bojiy k|20 5 (k k|
T dgk
X [ e e he] L (A7
= o, PR R
SR TR 2
wpf | A,
A f’j\Bffj+1 |k|3(5133 (k>>2
6Eij+1 . 6_‘:* d3k
X [ e e S (A7)
X 7 Bo\Bajy k2657 (k) K|
Now, we simply combine the result in (A.15) with the bounds
H( 7 )5 (3™ () (A.75)
ERIAS!
3 - j+1
7 A7 = 0@ ™), A.76
H < A ZJ+1> Oj+1 — (E ) ( )

and similarly for Egj +1- The size of all other expressions (A.69) — (A.74) can trivially be seen

to be of order O(¢’). The assertion of the lemma follows. O
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