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Abstract. We study the infrared problem in the usual model of QED with non-relativistic
matter. We prove spectral and regularity properties characterizing the mass shell of an
electron and one-electron infraparticle states of this model. Our results are crucial for the
construction of infraparticle scattering states, which are treated in a separate paper.

I. Introduction

We study the dynamics of an electron interacting with the quantized electromagnetic

field in the framework of non-relativistic Quantum Electrodynamics (QED). In a theory

describing a massive particle (the electron) interacting with a field of massless bosons (the

photons), massive one-particle states do, in general, not exist in the physical Hilbert space of

the theory. This fact was first observed by Schroer [24], who also coined the term “infraparti-

cle”, a notion that generalizes that of a particle. In relativistic QED, charged infraparticles

were shown to occur, using arguments from general quantum field theory; see [16, 3]. For

the spectrum of (H, ~P ) in Nelson’s model, a simplified variant of non-relativistic QED, with

H denoting the Hamiltonian, and ~P the total, conserved momentum of the massive particle

and the massless bosons, it was proven in [14, 15] that the bottom of the spectrum of the

fiber Hamiltonian H~P at a fixed total momentum ~P ∈ R3 is not an eigenvalue of H~P , for

any value of ~P with |~P |
m
< ρ0(λ) < 1 where λ is the coupling constant and m is the electron

mass. To prove this result, one introduces an infrared cutoff σ > 0 in the Hamiltonian H~P

turning off all interactions of the non-relativistic, massive particle with the soft modes (with

frequencies < σ) of the relativistic, massless boson field. One then aims to establish spectral

properties of the model in the limit σ → 0.

Extending results of [14, 15], an iterative algorithm for constructing the ground state

vector Ψσ
~P

of the infrared regularized Hamiltonian Hσ
~P

in Nelson’s model has been developed

in [22] using a novel multiscale analysis technique. In [22], important regularity properties

have been derived, which are crucial for the analysis of the asymptotic dynamics of the elec-

tron. Similarly as in [15], the strategy in [22] is to apply a specific Bogoliubov transformation
1



2 T.CHEN, J.FRÖHLICH, AND A. PIZZO

to the photon variables in Hσ
~P
, in order to obtain a Hamiltonian Kσ

~P
whose ground state Φσ

~P

remains in Fock space, as σ → 0. Subsequently, one derives properties of the ground state

vector of the physical Hamiltonian H~P in the singular limit σ → 0 by inverting the Bogoli-

ubov transformation. In the limit σ → 0, the latter gives rise to a coherent representation

of the observable algebra of the boson field unitarily inequivalent to the Fock representation

and to the coherent representations associated to different values of the total momentum.

The identification of the correct Bogoliubov transformation is crucial for the construc-

tions in [22, 23]. For Nelson’s model, this Bogoliubov transformation has been found in [14]

by a method that exploits the linearity of the interaction in the Nelson Hamiltonian with

respect to the creation- and annihilation operators. Due to the more complicated structure

of the interaction Hamiltonian in non-relativistic QED, this argument cannot be applied, and

the correct Bogoliubov transformation for non-relativistic QED has only recently been iden-

tified in [9], based on uniform bounds on the renormalized electron mass established in [8].

This makes it possible to extend the constructions and methods of [22, 23] to non-relativistic

QED.

By a generalization of the multiscale methods based on recursive analytic perturbation

theory introduced in [22], we present a new construction of the correct Bogoliubov transfor-

mation, and we prove the following main results:

• The ground state vectors Φσ
~P

of the Bogoliubov-transformed Hamiltonians Kσ
~P

con-

verge strongly to a vector in Fock space, in the limit σ → 0. The convergence rate is

estimated by O(ση), for some explicit η > 0.

• The vectors Φσ
~P

in Fock space are strongly Hölder continuous in ~P , uniformly in σ.

These properties are key ingredients for the construction of infraparticle scattering states,

which we present in [10]. A key difficulty in this analysis is the fact that the infrared behavior

of the interaction in QED is, in the terminology of renormalization group theory, of marginal

type (see also [8]).
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II. Definition of the Model

The Hilbert space of pure state vectors of the system consisting of one non-relativistic

electron interacting with the quantized electromagnetic field is given by

H := Hel ⊗ F , (II.1)

where Hel = L2(R3) is the Hilbert space for a single Schrödinger electron (for expository

convenience, we neglect the spin of the electron). The Fock space used to describe the states

of the transverse modes of the quantized electromagnetic field (the photons) in the Coulomb

gauge is given by

F :=
∞⊕

N=0

F (N) , F (0) = C Ω , (II.2)

where Ω is the vacuum vector (the state of the electromagnetic field without any excited

modes), and

F (N) := SN

N⊗
j=1

h , N ≥ 1 , (II.3)

where the Hilbert space h of a single photon is

h := L2(R3 × Z2) . (II.4)

Here, R3 is momentum space, and Z2 accounts for the two independent transverse polar-

izations (or helicities) of a photon. In (II.3), SN denotes the orthogonal projection onto

the subspace of
⊗N

j=1 h of totally symmetric N -photon wave functions, to account for the

fact that photons satisfy Bose-Einstein statistics. Thus, F (N) is the subspace of F of state

vectors for configurations of exactly N photons. It is convenient to represent the Hilbert

space H as the space of square-integrable wave functions on the electron position space R3

with values in the photon Fock space F , i.e.,

H ∼= L2(R3 ; F) . (II.5)

In this paper, we use units such that Planck’s constant ~, the speed of light c, and the

mass of the electron are equal to unity. The dynamics of the system is generated by the

Hamiltonian

H :=

(
− i~∇~x + α1/2 ~A(~x)

)2

2
+ Hf . (II.6)

The multiplication operator ~x ∈ R3 accounts for the position of the electron. The electron

momentum operator is given by ~p = −i~∇~x. α ∼= 1/137 is the feinstructure constant (which,
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in this paper, plays the rôle of a small parameter), ~A(~x) denotes the vector potential of the

transverse modes of the quantized electromagnetic field in the Coulomb gauge,

~∇~x · ~A(~x) = 0 . (II.7)

The operator Hf is the Hamiltonian of the quantized, free electromagnetic field,

Hf :=
∑
λ=±

∫
d3k |~k| a∗~k,λ

a~k,λ , (II.8)

where a∗~k,λ
and a~k,λ are the usual photon creation- and annihilation operators, satisfying the

canonical commutation relations

[a~k,λ , a
∗
~k′,λ′

] = δλλ′ δ(~k − ~k′) , (II.9)

[a#
~k,λ
, a#

~k′,λ′
] = 0 (II.10)

(where a# = a or a∗). The vacuum vector Ω is characterized by the condition

a~k,λ Ω = 0 , (II.11)

for all ~k,~k′ ∈ R3 and λ, λ′ ∈ Z2 ≡ {±}.
The quantized electromagnetic vector potential is given by

~A(~x) :=
∑
λ=±

∫
BΛ

d3k√
|~k|

{
~ε~k,λe

−i~k·~xa∗~k,λ
+ ~ε ∗~k,λ

ei~k·~xa~k,λ

}
, (II.12)

where ~ε~k,−, ~ε~k,+ are photon polarization vectors, i.e., two unit vectors in R3 ⊗ C satisfying

~ε ∗~k,λ
· ~ε~k,µ = δλµ , ~k · ~ε~k,λ = 0 , (II.13)

for λ, µ = ±. The equation ~k ·~ε~k,λ = 0 expresses the Coulomb gauge condition. Moreover, BΛ

is a ball of radius Λ centered at the origin in momentum space. Λ represents an ultraviolet

cutoff that will be kept fixed throughout our analysis. The vector potential defined in (II.12)

is thus cut off in the ultraviolet.

Throughout this paper, it will be assumed that Λ ≈ 1 (the rest energy of an electron),

and that α is sufficiently small. Under these assumptions, the Hamitonian H is selfadjoint

on D(H0), i.e., on the domain of definition of the operator

H0 :=
(−i~∇~x)

2

2
+ Hf . (II.14)

The perturbation H −H0 is small in the sense of Kato; see, e.g., [25].
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The operator measuring the total momentum of the system consisting of the electron

and the electromagnetic radiation field is given by

~P := ~p+ ~P f , (II.15)

where ~p = −i~∇~x is the momentum operator for the electron, and

~P f :=
∑
λ=±

∫
d3k ~k a∗~k,λ

a~k,λ (II.16)

is the momentum operator associated with the photon field.

The operators H and ~P are essentially selfadjoint on the domain D(H0), and since

the dynamics is invariant under translations, they commute, [H, ~P ] = ~0. The Hilbert space

H can be decomposed on the joint spectrum, R3, of the component-operators of ~P . Their

spectral measure is absolutely continuous with respect to Lebesque measure. Thus,

H :=

∫ ⊕
H~P d

3P , (II.17)

where each fiber space H~P is a copy of Fock space F .

Remark Throughout this paper, the symbol ~P stands both for a variable in R3 and for a vec-

tor operator in H, depending on the context. Similarly, a double meaning is also associated

with functions of the total momentum operator.

To each fiber space H~P there corresponds an isomorphism

I~P : H~P −→ F b , (II.18)

where F b is the Fock space corresponding to the annihilation- and creation operators b~k,λ,

b∗~k,λ
, where b~k,λ is given by ei~k·~xa~k,λ, and b∗~k,λ

by e−i~k·~xa∗~k,λ
, with vacuum Ωf = I~P (ei ~P ·~x), where

~x is the electron position. To define I~P more precisely, we consider an (improper) vector

ψ(f1,...,fn;~P ) ∈ H~P with a definite total momentum, which describes an electron and n photons

in a product state. Its wave function, in the variables (~x;~k1, . . . , ~kn;λ1, . . . , λn), is given by

ei(~P−~k1−···−~kn)·~x 1

n!

∑
p∈Pn

fp(1)(~k1;λp(1)) · · · fp(n)(~kn;λp(n)) , (II.19)
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Pn being the group of permutations of n elements. The isomorphism I~P acts by way of

I~P

(
ei(~P−~k1−···−~kn)·~x 1

n!

∑
Pn

fp(1)(~k1;λp(1)) · · · fp(n)(~kn;λp(n))
)

= (II.20)

=
1√
n!

∫
d3k′1 . . . d

3k′n f1(~k
′
1;λ1) · · · fn(~k′n;λn) b∗~k′1,λ1

· · · b∗~k′n,λn
Ωf . (II.21)

The Hamiltonian H maps each H~P into itself, i.e., it can be written as

H =

∫
H~P d

3P , (II.22)

where

H~P : H~P −→ H~P . (II.23)

Written in terms of the operators b~k,λ, b
∗
~k,λ

, and of the variable ~P , the fiber Hamiltonian H~P

has the form

H~P :=

(
~P − ~P f + α1/2 ~A

)2

2
+ Hf , (II.24)

where

~P f :=
∑

λ

∫
d3k ~k b∗~k,λ

b~k,λ , (II.25)

Hf :=
∑

λ

∫
d3k |~k| b∗~k,λ

b~k,λ , (II.26)

and

~A :=
∑

λ

∫
BΛ

d3k√
|~k|

{
b∗~k,λ

~ε~k,λ + ~ε ∗~k,λ
b~k,λ

}
. (II.27)

In the following, we will only construct infraparticle states of momentum ~P ∈ S, where

S := { ~P ∈ R3 : |~P | < 1

3
} . (II.28)

In order to give a well-defined meaning to the operations we use in the sequel, we introduce

an infrared cut-off at energy σ > 0 in the interaction term

HI, ~P := α1/2 ~A · (~P − ~P f )

2
+ α

~A2

2
(II.29)

of the Hamiltonian H~P , which is imposed on the vector potential ~A. Its removal is the main

problem solved in this paper. Our results are crucial ingredients for infraparticle scattering

theory; see [10]. We will start by studying the regularized fiber Hamiltonian

Hσ
~P

:=

(
~P − ~P f + α1/2 ~Aσ

)2

2
+ Hf (II.30)
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acting on the fiber space H~P , for ~P ∈ S, where

~Aσ :=
∑

λ

∫
BΛ\Bσ

d3k√
2|~k|

{
b∗~k,λ

~ε~k,λ + ~ε∗~k,λ
b~k,λ

}
(II.31)

and where Bσ is a ball of radius σ. We will consider a sequence (σj)
∞
j=0 of infrared cutoffs

given by σj := Λεj, with 0 < ε < 1 and j ∈ N.

In Section IV, we construct the ground state vector (Ψ
σj

~P
) of the Hamiltionan (H

σj

~P
),

and we compare ground state vectors Ψ
σj

~P
, Ψ

σj′

~P ′ corresponding to different fiber Hamiltonians

H
σj

~P
, H

σj′

~P ′ with ~P 6= ~P ′. We compare the vectors Ψ
σj

~P
, Ψ

σj′

~P ′ as elements of the space F b. More

precisely, we use the expression

‖Ψσj

~P
−Ψ

σj

~P ′‖F (II.32)

as an abbreviation for

‖I~P (Ψ
σj

~P
)− I~P ′(Ψ

σj

~P ′)‖F . (II.33)

II.1. Background. In a companion paper [10], we construct a vector ψh,Λ1(t) converging to

a scattering state ψ
out/in
h,Λ1

, as time t tends to infinity, applying and extending mathematical

techniques developed in [23] for Nelson’s model. The vector ψ
out/in
h,Λ1

represents an electron

with a wave function h in the momentum variable with support contained in S = {~P : |~P | <
1
3
}, accompanied by a cloud of real photons described by a Bloch-Nordsieck factor, and with

an upper photon frequency cutoff Λ1.

In [10] we also construct the scattering subspaces Hout/in, starting from certain sub-

spaces, H1 out/in, and applying ”hard” asymptotic photon creation operators. These spaces

carry representations of the algebras, Aout/in
ph and Aout/in

el , of asymptotic photon- and electron

observables, respectively, and the fact that their actions commute proves, mathematically,

asymptotic decoupling of the electron and photon dynamics, as time t → ±∞. Properties

of the representations of Aout/in
ph in the infrared expected on the basis of the Bloch-Nordsieck

paradigm are rigorously established; see [10].
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III. Statement of the Main Results

The main results of our paper are summarized in Theorem III.1 below. They are

fundamental for the construction of scattering states in [10] and are very similar to those

used in the analysis of Nelson’s model in [23].

We define the energy of a dressed one-electron state of momentum ~P by

Eσ
~P

= inf specHσ
~P

, E~P = inf specH~P = Eσ=0
~P

. (III.1)

We refer to Eσ
~P

as the ground state energy of the fiber Hamiltonian Hσ
~P
. If it exists the

corresponding ground state is denoted by Ψσ
~P
. We always assume that ~P ∈ S := {~P ∈ R3 :

|~P | < 1
3
} and that α is so small that, for all ~P ∈ S,

|~∇Eσ
~P
| < νmax < 1 (III.2)

for some constant νmax, uniformly in σ.

Let δσ
~P
(k̂) be given by

δσ
~P
(k̂) := 1 −

~k · ~∇Eσ
~P

|~k|
. (III.3)

We introduce an operator

Wσ(~∇Eσ
~P
) := exp

(
α

1
2

∑
λ

∫
BΛ\Bσ

d3k
~∇Eσ

~P

|~k| 32 δσ
~P
(k̂)

· (~ε~k,λb
∗
~k,λ
− h.c.)

)
, (III.4)

on H~P , which is unitary for σ > 0, and consider the transformed fiber Hamiltonian

Kσ
~P

:= Wσ(~∇Eσ
~P
)Hσ

~P
W ∗

σ (~∇Eσ
~P
) . (III.5)

Conjugation by Wσ(~∇Eσ
~P
) acts on the creation- and annhilation operators by a (Bogoliubov)

translation

Wσ(~∇Eσ
~P
) b#~k,λ

W ∗
σ (~∇Eσ

~P
) = b#~k,λ

− 1σ,Λ(~k)

|~k| 32 δσ
~P
(k̂)

~∇Eσ
~P
· ~ε #

~k,λ
, (III.6)

where 1σ,Λ(~k) stands for the characteristic function of the set BΛ \ Bσ. Our methods exploit

regularity properties in σ and ~P of the ground state vector, Φσ
~P
, and of the ground state

energy, Eσ
~P
, of Kσ

~P
. These properties are formulated in the following theorem, which is the

main result of this paper.

Theorem III.1. For ~P ∈ S and for α > 0 sufficiently small, the following statements hold.

(I 1) The energy Eσ
~P

is a simple eigenvalue of the operator Kσ
~P

on F b. Let Bσ := {~k ∈
R3 | |~k| ≤ σ}, and let Fσ denote the Fock space over L2((R3 \ Bσ) × Z2). Likewise,
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we define Fσ
0 to be the Fock space over L2(Bσ × Z2); hence F b = Fσ ⊗ Fσ

0 . On Fσ,

the operator Kσ
~P

has a spectral gap of size ρ−σ or larger, separating Eσ
~P

from the rest

of its spectrum, for some constant ρ− (depending on α), with 0 < ρ− < 1.

The contour

γ := {z ∈ C ||z − Eσ
~P
| = ρ−σ

2
} , σ > 0 (III.7)

bounds a disc which intersects the spectrum of Kσ
~P

in only one point, {Eσ
~P
}. The

ground state vectors,

Φσ
~P

= ζ Wσ(~∇Eσ
~P
)

Ψσ
~P

‖Ψσ
~P
‖

, ζ ∈ C , |ζ| = 1 , (III.8)

of the operators Kσ
~P

are given by

Φσ
~P

:=

1
2π i

∫
γ

1
Kσ

~P
−z
dzΩf

‖ 1
2π i

∫
γ

1
Kσ

~P
−z
dzΩf‖F

(III.9)

and converge strongly to a non-zero vector Φ~P ∈ F b, in the limit σ → 0. The rate of

convergence is of order σ
1
2
(1−δ), for any 0 < δ < 1.

The dependence of the ground state energies Eσ
~P

of the fiber Hamiltonians Kσ
~P

on

the infrared cutoff σ is characterized by the following estimates.

|Eσ
~P
− Eσ′

~P
| ≤ O(σ) , (III.10)

and

| ~∇Eσ
~P
− ~∇Eσ′

~P
| ≤ O(σ

1
2
(1−δ)) , (III.11)

for any 0 < δ < 1, with σ > σ′ > 0.

(I 2) The following Hölder regularity properties in ~P ∈ S hold uniformly in σ ≥ 0:

‖Φσ
~P
− Φσ

~P+∆~P
‖F ≤ Cδ′|∆~P |

1
4
−δ′ (III.12)

and

|~∇Eσ
~P
− ~∇Eσ

~P+∆~P
| ≤ Cδ′′|∆~P |

1
4
−δ′′ , (III.13)

for 0 < δ′′ < δ′ < 1
4
, with ~P , ~P + ∆~P ∈ S, where Cδ′ and Cδ′′ are finite constants

depending on δ′ and δ′′, respectively.

(I 3) Given a positive number νmin, there are numbers rα = νmin +O(α) > 0 and νmax < 1

such that, for ~P ∈ S \ Brα and for α sufficiently small,

1 > νmax ≥ |~∇Eσ
~P
| ≥ νmin > 0 , (III.14)

uniformly in σ.
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(I 4) For ~P ∈ S and for any ~k 6= 0, the following inequality holds uniformly in σ, for α

small enough:

Eσ
~P−~k

> Eσ
~P
− Cα|~k| , (III.15)

where Eσ
~P−~k

:= inf specH~P−~k and 1
3
< Cα < 1, with Cα → 1

3
as α→ 0.

(I 5) For ~P ∈ S, one has that

‖ b~k,λΨ
σ
~P
‖ ≤ C α1/2 1σ,Λ(~k)

|~k|3/2
, (III.16)

see Lemma 6.1 of [9] which can be extended to ~k ∈ R3 using (I 4).

|P-k| |P|

P-k
E
σ

E
σ
P

- |k|E
σ
P

Figure 1. The condition (I 4).

The proof of statement (I 1) is given in Section IV; the proofs of statements (I 2) and

(I 3) are presented in Section V. Statement (I 4) is proven in Section VI. We note that

condition (I 4) plays an important rôle also in atomic and molecular bound state problems,

see for instance [19].

III.1. Remark about infrared representations. The statement (I 5), which states that

‖ b~k,λΨ
σ
~P
‖ ≤ C α1/2 1σ,Λ(~k)

|~k|3/2
, (III.17)

follows from the identity

b~k,λΨ
σ
~P

= −α
1
2
1σ,Λ(~k)

|~k| 12
1

H~P−~k,σ + |~k| − Eσ
~P

~ε~k,λ · ~∇~PH
σ
~P
Ψσ

~P
(III.18)
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which is derived by using a standard ”pull-through argument”. Combined with the uniform

bounds on the renormalized mass of the electron established in [8], it is used in [9] to prove

the bound〈
Ψσ

~P
, Nf Ψσ

~P

〉
:=

∫
d3k

〈
Ψσ

~P
, b∗~k,λ

b~k,λΨ
σ
~P

〉
≤ Cα(1 + |~P |2| ln(σ)|) (III.19)

on the expected number of photons in the ground state Ψσ
~P
. Without using the uniform

bounds on the renormalized mass, one obtains the weaker upper bound (III.17). Important

implications of this result, analyzed in [9] and used in [10] can be summarized as follows.

Let Aρ denote the C∗-algebra of bounded operators on the Fock space F(L2((R3\Bρ)×
Z2)), where Bρ = {~k ∈ R3 | |~k| ≤ ρ}, and let A denote the C∗-algebra A :=

∨
ρ>0 Aρ

‖ · ‖op
,

where the closure is taken in the operator norm. We define the state ωσ
~P

:= 〈Ψσ
~P
, ( · ) Ψσ

~P
〉

on A. In [9], it is proven that there exists a well-defined state ω~P on A corresponding to

the weak-* limit of ωσ
~P

as σ → 0; i.e., any sequence (σn)n∈N0 converging to zero contains a

subsequence (σnj
)j∈N0 converging to zero such that

ω~P (A) = lim
j→∞

ω~P ,σnj
(A) , (III.20)

for all A ∈ A. The proof of this statement in [9] is based on arguments combining (III.16)

with the uniform bounds on the renormalized mass of the electron established in [8].

The representation of A corresponding to ω~P obtained by the GNS construction can

be characterized as follows. Let α~P : A → A denote the Bogoliubov automorphism defined

by

α~P (A) = lim
σ→0

Wσ(~∇Eσ
~P
)AW ∗

σ (~∇Eσ
~P
) (III.21)

with Wσ(~∇Eσ
~P
) defined in (III.4), and A ∈ A. Then the GNS representation π~P of A is quasi-

equivalent to πFock ◦ α~P , where πFock denotes the Fock representation. In particular, π~P is

a coherent infrared representation unitarily inequivalent to πFock, for ~P 6= ~0, and unitarily

equivalent to πFock if ~P = ~0. For proofs see [9].
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IV. Proof of (I 1) in Theorem III.1

In this section, we prove the statements (I 1) in Theorem III.1. This is the most

involved part of our analysis.

IV.1. Construction of the sequence {Ψσj

~P
} of ground states. We recall the definition

of the fiber Hamiltonian from (II.24),

H
σj

~P
=

(
~P − ~P f + α1/2 ~Aσj

)2

2
+ Hf . (IV.1)

It acts on a fixed fiber space H~P , with ~P ∈ S, where

~Aσj =
∑
λ=±

∫
BΛ\Bσj

d3k√
|~k|

{
~ε~k,λb

∗
~k,λ

+ ~ε ∗~k,λ
b~k,λ

}
(IV.2)

contains an infrared cutoff at

σj := Λ εj , j ∈ N , (IV.3)

with 0 < ε < 1 to be fixed later (we recall that Λ ≈ 1). As we will see, the Hamiltonian H
σj

~P

has a unique ground state Ψ
σj

~P
, which we construct below using an approach developed in

[22].

We define the Fock spaces

Fσj
:= F b(L2((R3 \ Bσj

)× Z2)) and Fσj
σj+1

:= F b(L2((Bσj
\ Bσj+1

)× Z2)) .

It is clear that

Fσj+1
= Fσj

⊗ Fσj
σj+1

, (IV.4)

and that the Hamiltonians {Hσj

~P
| j ∈ N} are related to one another by

H
σj+1

~P
= H

σj

~P
+ ∆H~P |

σj
σj+1

, (IV.5)

where

∆H~P |
σj
σj+1

:= α
1
2 ~∇~PH

σj

~P
· ~A|σj

σj+1
+
α

2
( ~A|σj

σj+1
)2 (IV.6)

and

~A|σj
σj+1

:=
∑
λ=±

∫
Bσj \Bσj+1

d3k√
|~k|

{
~ε~k,λb

∗
~k,λ

+ ~ε ∗~k,λ
b~k,λ

}
. (IV.7)

For α sufficiently small and ~P ∈ S, we construct ground state vectors {Ψσj

~P
} of the

Hamiltonians {Hσj

~P
}, j ∈ N. We will prove the following results, adapting recursive argu-

ments developed in [22].
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We introduce four parameters ε, ρ+, ρ−, µ with the properties that

0 < ρ− < µ < ρ+ < 1 − Cα <
2

3
(IV.8)

0 < ε <
ρ−

ρ+
(IV.9)

where Cα is defined in (III.15). Then, for α small enough depending on Λ, ε, ρ−, µ, ρ+, we

prove:

• The infimum of the spectrum of H
σj

~P
on Fσj

, which we denote by E
σj

~P
, is an isolated,

simple eigenvalue which is separated from the rest of the spectrum by a gap ρ−σj or

larger.

• Eσj

~P
is also the ground state energy of the operators H

σj

~P
and H

σj

~P
−Hf |σj

σj+1 on Fσj+1
,

where Hf |σj
σj+1 is defined in Eq (IV.21). E

σj

~P
is, in this case, a simple eigenvalue which

is separated from the rest of the spectrum by a gap ρ+σj+1 or larger.

• The ground state energies E
σj

~P
and E

σj+1

~P
of the Hamiltonians H

σj

~P
and H

σj+1

~P
, respec-

tively, acting on the same space Fσj+1
satisfy

0 ≤ E
σj+1

~P
≤ E

σj

~P
+ c α σ2

j , (IV.10)

where c is a constant independent of j and α but Λ-dependent.

We recursively construct the ground state vector, Ψσ
~P

(which is at this stage not nor-

malized), of Hσ
~P

on Fσ, as follows. In the initial step, we set Ψσ0

~P
= Ωf .

Let Ψ
σj

~P
denote the ground state of the Hamiltonian H

σj

~P
on Fσj

with non-degenerate

eigenvalue E
σj

~P
and a spectral gap at least as large as ρ−σj. We note that Eσ0

~P
≡ ~P 2

2
is a

non-degenerate eigenvalue of Hσ0

~P
on Fσ0 , and that

gap(Hσ0

~P
|Fσ0

) ≥ 2

3
σ0 ≥ ρ−σ0 . (IV.11)

We observe that

Ψ
σj

~P
⊗ Ωf ∈ Fσj+1

= Fσj
⊗Fσj

σj+1
, (IV.12)

where

‖Ψ
σj

~P
⊗ Ωf ‖ = ‖Ψ

σj

~P
‖ , (IV.13)

is an eigenvector of H
σj

~P
|Fσj+1

. In (IV.12), Ωf stands for the vacuum state in Fσj
σj+1 (if not

further specified otherwise, Ωf denotes the vacuum state in any of the photon Fock spaces).
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Moreover, we note that (IV.12) is the ground state of H
σj

~P
restricted to Fσj+1

, because

inf spec
(
H

σj

~P

∣∣
Fσj+1	{CΨ

σj
~P
⊗Ωf}

− E
σj

~P

)
≥ min

{
ρ−σj , inf

~k∈R3\Bσj+1

{Eσj

~P+~k
+ |~k| − E

σj

~P
}

}
≥ min

{
ρ−σj , (1− Cα)σj+1

}
≥ ρ+σj+1 > 0 , (IV.14)

where Fσj+1
	 {CΨ

σj

~P
⊗ Ωf} is the orthogonal complement in Fσj+1

of the one-dimensional

subspace {CΨ
σj

~P
⊗ Ωf}. We use property (I 4) to pass from the second to the third line in

(IV.14); for a proof of property (I 4) see Section VI.

Consequently, the spectral gap of H
σj

~P
restricted to Fσj+1

is bounded from below by

gap(H
σj

~P
|Fσj+1

) ≥ ρ+σj+1 , (IV.15)

where

gap(H) := inf{ spec(H) \ { inf spec(H) } } − inf spec(H) . (IV.16)

We define the contour γσj+1
:= {zj+1 ∈ C

∣∣ |zj+1 − E
σj

~P
| = µσj+1} which is the boundary of

a closed disc that contains the non-degenerate ground state eigenvalue E
σj

~P
of H

σj

~P
, but no

other elements of the spectrum of H
σj

~P
; see also Figure 2 below.

Then we define

Ψ
σj+1

~P
:=

1

2πi

∮
γj+1

dzj+1
1

H
σj

~P
− zj+1

Ψ
σj

~P
⊗ Ωf

=
∑
n≥0

1

2πi

∮
γj+1

dzj+1
1

H
σj

~P
− zj+1

(IV.17)

(
−∆H~P |

σj
σj+1

1

H
σj

~P
− zj+1

)n

Ψ
σj

~P
⊗ Ωf ,

which is, by construction, the ground state eigenvector of H
σj+1

~P
|Fσj+1

. The associated ground

state eigenvalue E
σj+1

~P
, with H

σj+1

~P
Ψ

σj+1

~P
= E

σj+1

~P
Ψ

σj+1

~P
, is non-degenerate. To control the

expansion in (IV.17) for sufficiently small α, we show that, for zj+1 ∈ γj+1,

sup
zj+1∈γj+1

∥∥∥( 1

H
σj

~P
− zj+1

) 1
2
∆H~P |

σj
σj+1

( 1

H
σj

~P
− zj+1

) 1
2
∥∥∥
Fσj+1

≤ C
α1/2

ε1/2 [min{(ρ+ − µ), µ}]1/2
, (IV.18)
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where the constant on the r.h.s. depends on ~P and Λ. The largest value of α such that

(IV.18) < 1 may depend on ε and µ. The estimate (IV.18) is obtained from the following

bounds, which depend critically on the spectral gap (as in the model treated in [22]):

i) For zj+1 ∈ γj+1,

sup
zj+1∈γj+1

∥∥∥( 1

H
σj

~P
− zj+1

) 1
2
(~∇~PH

σj

~P
)2

( 1

H
σj

~P
− zj+1

) 1
2
∥∥∥
Fσj+1

≤ O
( 1

εj+1 min{(ρ+ − µ), µ}

)
(IV.19)

where the implicit constant depends on ~P and Λ.

ii) Writing ( ~A|σj
σj+1)

− and ( ~A|σj
σj+1)

+ for the parts in ~A|σj
σj+1 which contain annihilation-

and creation operators, respectively, we have that

‖ ( ~A|σj
σj+1

)−ψ‖ ≤
( ∫

Bσj \Bσj+1

d3k

|~k|2
)1/2

‖(Hf |σj
σj+1

)1/2ψ‖

≤ c ε
j
2‖(Hf |σj

σj+1
)1/2ψ‖ , (IV.20)

where

Hf |σj
σj+1

:=
∑

λ

∫
Bσj \Bσj+1

d3k |~k| b∗~k,λ
b~k,λ , (IV.21)

with ψ in the domain of (Hf |σj
σj+1)

1/2. Moreover,

0 < [( ~A|σj
σj+1

)− , ( ~A|σj
σj+1

)+] ≤ c′ ε2j , (IV.22)

where the constants c, c′ are proportional to Λ1/2 and Λ, respectively.

iii) For zj+1 ∈ γj+1,

sup
zj+1∈γj+1

∥∥∥( 1

H
σj

~P
− zj+1

) 1
2
Hf |σj

σj+1

( 1

H
σj

~P
− zj+1

) 1
2
∥∥∥
Fσj+1

≤ O(
1

ρ+ − µ
) , (IV.23)

which follows from the spectral theorem for the commuting operators Hf |σj
σj+1 and

H
σj

~P
.

Using (IV.18), one concludes that

‖Ψσj+1

~P
− Ψ

σj

~P
‖F ≤ C α

1
2 ‖Ψσj

~P
‖F , (IV.24)

with C uniform in j, such that, for α small enough,

‖Ψ
σj+1

~P
‖F ≥ C ′ ‖Ψ

σj

~P
‖F , (IV.25)

for a constant C ′ > 0 independent of j. In particular, the vector constructed in (IV.17) is

indeed non-zero.
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Because of (IV.10), which follows from a variational argument, we find that, for α small

enough and Λ-dependent, but independent of j,

gap(H
σj+1

~P
|Fσj+1

) ≥ µσj+1 − c α σ2
j ≥ ρ−σj+1 . (IV.26)

This estimate allows us to proceed to the next scale.

Figure 2. The contour integral in the energy plane.

It easily follows from the previous results that E
σj

~P
is simple and isolated, and (H

σj

~P
)~P∈S

is an analytic family of type A. In particular, this allows us to express ~∇Eσj

~P
as a function

of ~P by using the Feynman-Hellman formula; see (IV.27) below.

IV.2. Transformed Hamiltonians and the sequence of ground states {Φσj

~P
}. In this

section, we consider the Hamiltonians obtained from {Hσj

~P
} after a j−dependent Bogoliubov

transformation of the photon variables. In the limit j → ∞, this transformation coincides

with the one identified in [9], which provides the correct representation of the photon degrees

of freedom for which the Hamiltonian H~P has a ground state.

IV.2.1. Bogoliubov transformation and canonical form of the Hamiltonian. The Feynman-

Hellman formula yields

~∇Eσj

~P
= ~P −

〈
~P f − α1/2 ~Aσj

〉
Ψ

σj
~P

, (IV.27)
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where

〈
~P f − α1/2 ~Aσj

〉
Ψ

σj
~P

:=

〈
Ψ

σj

~P
, (~P f − α1/2 ~Aσj) Ψ

σj

~P

〉〈
Ψ

σj

~P
, Ψ

σj

~P

〉 . (IV.28)

We define

~βσj := ~P f − α1/2 ~Aσj

δ
σj

~P
(k̂) := 1− k̂ · ~∇Eσj

~P

c∗~k,λ
:= b∗~k,λ

+ α
1
2

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

c~k,λ := b~k,λ + α
1
2

~∇Eσj

~P
· ~ε~k,λ

|~k| 32 δσj

~P
(k̂)

. (IV.29)

We then rewrite H
σj

~P
as

H
σj

~P
=

(
~P − ~βσj

)2

2
+ Hf , (IV.30)

and

~P = ~∇Eσj

~P
+ 〈~βσj〉

Ψ
σj
~P

, (IV.31)

thus obtaining

H
σj

~P
=

~P 2

2
− (~∇Eσj

~P
+ 〈~βσj〉

Ψ
σj
~P

) · ~βσj +
(~βσj)2

2
+Hf

=
~P 2

2
+

(~βσj)2

2
− 〈~βσj〉

Ψ
σj
~P

· ~βσj

+
∑

λ

∫
R3\(BΛ\Bσj )

|~k|δσj

~P
(k̂) b∗~k,λ

b~k,λd
3k

+
∑

λ

∫
BΛ\Bσj

|~k|δσj

~P
(k̂) c∗~k,λ

c~k,λd
3k (IV.32)

−α
∑

λ

∫
BΛ\Bσj

|~k|δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

~∇Eσj

~P
· ~ε~k,λ

|~k| 32 δσj

~P
(k̂)

d3k .
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Adding and subtracting 1
2
〈~βσj〉2

Ψ
σj
~P

, one gets

H
σj

~P
=

~P 2

2
−
〈~βσj〉2

Ψ
σj
~P

2
+

(
~βσj − 〈~βσj〉

Ψ
σj
~P

)2

2

+
∑

λ

∫
R3\(BΛ\Bσj )

|~k|δσj

~P
(k̂) b∗~k,λ

b~k,λd
3k

+
∑

λ

∫
BΛ\Bσj

|~k|δσj

~P
(k̂) c∗~k,λ

c~k,λd
3k (IV.33)

−α
∑

λ

∫
Bk\Bσj

|~k|δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

~∇Eσj

~P
· ~ε~k,λ

|~k| 32 δσj

~P
(k̂)

d3k .

Next, we apply the Bogoliubov transformation

b∗~k,λ
−→ Wσj

(~∇Eσj

~P
)b∗~k,λ

W ∗
σj

(~∇Eσj

~P
) = b∗~k,λ

− α
1
2

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

b~k,λ −→ Wσj
(~∇Eσj

~P
)b~k,λW

∗
σj

(~∇Eσj

~P
) = b~k,λ − α

1
2

~∇Eσj

~P
· ~ε~k,λ

|~k| 32 δσj

~P
(k̂)

(IV.34)

for ~k ∈ BΛ \ Bσj
, where

Wσj
(~∇Eσj

~P
) := exp

(
α

1
2

∑
λ

∫
BΛ\Bσj

d3k
~∇Eσj

~P

|~k| 32 δσj

~P
(k̂)

· (~ε~k,λb
∗
~k,λ
− h.c.)

)
. (IV.35)

It is evident that Wσj
acts as the identity on F b(L2(Bσj

×Z2)) and on F b(L2((R3\BΛ)×Z2)).

Moreover, we define the vector operators

~Π
σj

~P
:= Wσj

(~∇Eσj

~P
) ~βσj W ∗

σj
(~∇Eσj

~P
)

−〈Wσj
(~∇Eσj

~P
) ~βσj W ∗

σj
(~∇Eσj

~P
)〉Ωf

, (IV.36)

noting that

〈~βσj〉
Ψ

σj
~P

= ~P − ~∇Eσj

~P
(IV.37)

=

〈
Φ

σj

~P
, ~Π

σj

~P
Φ

σj

~P

〉〈
Φ

σj

~P
, Φ

σj

~P

〉 + 〈Wσj
(~∇Eσj

~P
) ~βσj W ∗

σj
(~∇Eσj

~P
)〉Ωf

,

where Φ
σj

~P
is the ground state of the Bogoliubov-transformed Hamiltonian

K
σj

~P
:= Wσj

(~∇Eσj

~P
)H

σj

~P
W ∗

σj
(~∇Eσj

~P
) . (IV.38)
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It thus follows that

Wσj
(~∇Eσj

~P
) ~βσj W ∗

σj
(~∇Eσj

~P
)− 〈~βσj〉

Ψ
σj
~P

= ~Π
σj

~P
− 〈~Πσj

~P
〉
Φ

σj
~P

. (IV.39)

As in [22], it is convenient to write K
σj

~P
in the ”canonical” form

K
σj

~P
=

(
~Γ

σj

~P
)2

2
+

∑
λ

∫
R3

|~k|δσj

~P
(k̂) b∗~k,λ

b~k,λd
3k + Eσj

~P
, (IV.40)

where

~Γ
σj

~P
:= ~Π

σj

~P
−

〈
~Π

σj

~P

〉
Φ

σj
~P

, (IV.41)

so that 〈
~Γ

σj

~P

〉
Φ

σj
~P

= 0 , (IV.42)

and

Eσj

~P
:=

~P 2

2
−

(~P − ~∇Eσj

~P
)2

2
(IV.43)

−α
∑

λ

∫
BΛ\Bσj

|~k|δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

~∇Eσj

~P
· ~ε~k,λ

|~k| 32 δσj

~P
(k̂)

d3k .

One arrives at (IV.40) using

Wσj
(~∇Eσj

~P
) c∗~k,λ

W ∗
σj

(~∇Eσj

~P
) = b∗~k,λ

,

Wσj
(~∇Eσj

~P
) c~k,λW

∗
σj

(~∇Eσj

~P
) = b~k,λ , (IV.44)

for ~k ∈ BΛ\Bσj
. The Hamiltonian K

σj

~P
has a structure similar to the Bogoliubov-transformed

Nelson Hamiltonian in [22].

Following ideas of [22], we define the intermediate Hamiltonian

K̂
σj+1

~P
:= Wσj+1

(~∇Eσj

~P
)H

σj+1

~P
W ∗

σj+1
(~∇Eσj

~P
) , (IV.45)

where

Wσj+1
(~∇Eσj

~P
) := exp

(
α

1
2

∑
λ

∫
BΛ\Bσj+1

d3k
~∇Eσj

~P

|~k| 32 δσj

~P
(k̂)

· (~ε~k,λb
∗
λ(
~k)− h.c.)

)
, (IV.46)

and split it into different terms similarly as for K
σj

~P
. We write

H
σj+1

~P
=

~P 2

2
− ~P · ~βσj+1 +

(~βσj+1)2

2
+Hf , (IV.47)
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and replace ~P by ~∇Eσj

~P
+ 〈~βσj〉

Ψ
σj
~P

, thus obtaining

H
σj+1

~P
=

~P 2

2
−

(
~∇Eσj

~P
+ 〈~βσj〉

Ψ
σj
~P

)
· ~βσj+1 +

(~βσj+1)2

2
+Hf

=
~P 2

2
+

(~βσj+1)2

2
− 〈~βσj〉

Ψ
σj
~P

· ~βσj+1

+
∑

λ

∫
R3\(BΛ\Bσj+1 )

|~k|δσj

~P
(k̂) b∗~k,λ

b~k,λd
3k

+
∑

λ

∫
BΛ\Bσj+1

|~k|δσj

~P
(k̂) c∗~k,λ

c~k,λd
3k (IV.48)

−α
∑

λ

∫
BΛ\Bσj+1

|~k|δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

~∇Eσj

~P
· ~ε~k,λ

|~k| 32 δσj

~P
(k̂)

d3k .

We add and subtract 1
2
〈~βσj〉2

Ψ
σj
~P

, and apply a Bogoliubov transformation by conjugating with

the unitary operator Wσj+1
(~∇Eσj

~P
). Formally, we find that

K̂
σj+1

~P
=

(
~Γ

σj

~P
+ ~Lσj

σj+1 + ~Iσj
σj+1

)2

2
(IV.49)

+
∑

λ

∫
R3

|~k|δσj

~P
(k̂) b∗~k,λ

b~k,λd
3k + Êσj

~P

where

~Lσj
σj+1

:= −α
1
2

∑
λ

∫
Bσj \Bσj+1

~k
~∇Eσj

~P
· ~ε∗~k,λ

b~k,λ + h.c.

|~k| 32 δσj

~P
(k̂)

d3k

−α
1
2 ~A|σj

σj+1
(IV.50)

~Iσj
σj+1

:= α
∑

λ

∫
Bσj \Bσj+1

~k
~∇Eσj

~P
· ~ε ∗~k,λ

~∇Eσj

~P
· ~ε~k,λ

|~k|3(δσj

~P
(k̂))2

d3k (IV.51)

+α
∑

λ

∫
Bσj \Bσj+1

[
~ε~k,λ

~∇Eσj

~P
· ~ε∗~k,λ

|~k| 32 δσj

~P
(k̂)

+ h.c.
] d3k√

|~k|

Êσj

~P
:=

~P 2

2
−

(~P − ~∇Eσj

~P
)2

2
(IV.52)

−α
∑

λ

∫
BΛ\Bσj+1

|~k|δσj

~P
(k̂)

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

~∇Eσj

~P
· ~ε~k,λ

|~k| 32 δσj

~P
(k̂)

d3k .

For details on the derivation of (IV.49) and for the proof that (IV.40) and (IV.49) hold in the

operator sense (and not only formally), we refer to Lemmata A.1 and A.2 in the Appendix.
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We also define the operators

~̂Π
σj

~P := Wσj
(~∇Eσj−1

~P
)W ∗

σj
(~∇Eσj

~P
)~Π

σj

~P
Wσj

(~∇Eσj

~P
)W ∗

σj
(~∇Eσj−1

~P
) (IV.53)

and

~̂Γ
σj

~P := ~̂Π
σj

~P − 〈~̂Π
σj

~P 〉bΦσj
~P

, (IV.54)

which are used in the proofs in the next section. Here, Φ̂
σj

~P
denotes the ground state vector

of the Hamiltonian K̂
σj

~P
:= Wσj

(~∇Eσj−1

~P
)K

σj

~P
W ∗

σj
(~∇Eσj−1

~P
).

IV.3. Construction and convergence of {Φσj

~P
}. In this section, we construct a sequence

{Φσj

~P
| j ∈ N} of ground state vectors of the (Bogoliubov-transformed) Hamiltonians K

σj

~P
,

and establish the existence of

Φ~P := s− lim
j→∞

Φ
σj

~P
. (IV.55)

We estimate the rate of convergence, and establish regularity properties with respect to ~P .

Our results are similarly to those in [22] for the Nelson model.

In the initial step of the construction corresponding to j = 0, we define Φσ0

~P
:= Ωf ,

with ‖Ωf‖ = 1.

To pass from scale j to j + 1, we proceed in two steps. First, we construct an interme-

diate vector Φ̂
σj+1

~P

Φ̂
σj+1

~P
=

∞∑
n=0

1

2πi

∫
γj+1

dzj+1
1

K
σj

~P
− zj+1

[
−∆K~P |

σj
σj+1

1

K
σj

~P
− zj+1

]n
Φ

σj

~P
,

(IV.56)

where

∆K~P |
σj
σj+1

:= K̂
σj+1

~P
− Êσj+1

~P
+ Eσj

~P
−K

σj

~P

= ~Γ
σj

~P
·
(
~Lσj

σj+1
+ ~Iσj

σj+1

)
+

(
~Lσj

σj+1
+ ~Iσj

σj+1

)2
. (IV.57)

Then, we define

Φ
σj+1

~P
:= Wσj+1

(~∇Eσj+1

~P
)W ∗

σj+1
(~∇Eσj

~P
)Φ̂

σj+1

~P
. (IV.58)

The series in (IV.56) is termwise well-defined and converges strongly to a non-zero vector,

provided α is small enough (independently of j). This follows from operator-norm estimates

of the type used for (IV.18).
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To prove the convergence of the sequence {Φσj

~P
}, we proceed as follows. The key point

is to show that the term

~Γ
σj

~P
·
(
~Lσj

σj+1
+ ~Iσj

σj+1

)
(IV.59)

contained in (IV.57), which is superficially marginal in the infrared by power counting (using

the terminology of renormalization group theory), is in fact irrelevant. This is a consequence

of the orthogonality relation 〈
Φ

σj

~P
, ~Γ

σj

~P
Φ

σj

~P

〉
= 0 , (IV.60)

as we will show. We then proceed to showing that∥∥( 1

K
σj

~P
− zj+1

) 1
2
[
~Γ

σj

~P
·
(
~Lσj (+)

σj+1
+ ~Iσj

σj+1

)]( 1

K
σj

~P
− zj+1

) 1
2 Φ

σj

~P

∥∥
F (IV.61)

(where ~Lσj (+)
σj+1 stands for the part which contains only photon creation operators) is of order

O(εηj), for some η > 0, and we consequently deduce that

‖Φ̂σj+1

~P
− Φ

σj

~P
‖F (IV.62)

tends to 0, as j →∞.

Theorem IV.1. The strong limit

Φ~P = s− lim
j→∞

Φ
σj

~P
(IV.63)

exists and is non-zero, and the rate of convergence is O(σ
1
2
(1−δ)

j ), for any 0 < δ < 1.

In the proof, we can import results from [22] at various places. Thus, we will be sketchy

in part of our presentation.

IV.4. Key ingredients of the proof of proof of Theorem IV.1.

• Constraints on ε, µ and α

In addition to the conditions on α, ε and µ imposed in our discussion so far, the analysis

in this part will require an upper bound on µ and an upper bound on ε strictly smaller than

the ones imposed by the inequalities (IV.8), (IV.9); see Lemma A.3 and (IV.90) below. We

note that the more restrictive conditions on µ and ε imply new bounds on ρ−, ρ+. Moreover,

ε must satisfy a lower bound ε > O(α
1
2 ). We will point out below where these constraints

are needed.
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• Estimates on the shift of the ground state energy and its gradient

There are constants C1, C2 such that the following hold.

(A 1)

|Eσj

~P
− E

σj+1

~P
| ≤ C1 α ε

j (IV.64)

This estimate can be proved as inequality (II.19) in [4].

(A 2)

| ~∇Eσj

~P
− ~∇Eσj−1

~P
| ≤ C2

(∥∥∥ Φ̂
σj

~P

‖Φ̂σj

~P
‖F

−
Φ

σj−1

~P

‖Φσj−1

~P
‖F

∥∥∥
F

+ ε
j
2

)
(IV.65)

For the proof, see Lemma A.2 in the Appendix.

• Bounds relating expectations of operators to those of their absolute values

There are constants C3, C4 > 1 such that the following hold.

(A 3) For zj+1 ∈ γj+1,〈
(Γ

σj

~P
)iΦ

σj

~P
,
∣∣ 1

K
σj

~P
− zj+1

∣∣ (Γ
σj

~P
)iΦ

σj

~P

〉
≤ C3

∣∣∣〈 (Γ
σj

~P
)iΦ

σj

~P
,

1

K
σj

~P
− zj+1

(Γ
σj

~P
)iΦ

σj

~P

〉∣∣∣ . (IV.66)

(A 4) For zj+1 ∈ γj+1,〈
~Lσj (+)

σj+1
(Γ

σj

~P
)iΦ

σj

~P
,
∣∣ 1

K
σj

~P
− zj+1

∣∣ ~Lσj (+)
σj+1

(Γ
σj

~P
)iΦ

σj

~P

〉
≤ C4

∣∣∣〈 ~Lσj (+)
σj+1

(Γ
σj

~P
)iΦ

σj

~P
,

1

K
σj

~P
− zj+1

~Lσj (+)
σj+1

(Γ
σj

~P
)iΦ

σj

~P

〉∣∣∣ . (IV.67)

To obtain these two bounds, it suffices to exploit the fact that the spectral support

(with respect to K
σj

~P
) of the two vectors (Γ

σj

~P
)iΦ

σj

~P
and ~Lσj (+)

σj+1 (Γ
σj

~P
)iΦ

σj

~P
is strictly

above the ground state energy, since they are both orthogonal to the ground state

Φ
σj

~P
.

Remark: The constants C1, . . . , C5 are independent of α, ε, µ, and j ∈ N, provided that

α, ε, and µ are sufficiently small.

IV.5. Proof of the convergence of (Φ
σj

~P
)∞j=0. The proof of Theorem IV.1 consists of four

main steps.
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Step (1).

(i) Assuming the bound∣∣∣〈 (Γ
σj

~P
)iΦ

σj

~P
,

1

K
σj

~P
− zj+1

(Γ
σj

~P
)iΦ

σj

~P

〉∣∣∣ ≤ R0

α εjδ
1 > δ > 0 , (IV.68)

where R0 is a constant uniform in j ∈ N, for α, ε, µ sufficiently small, we prove that∥∥( 1

K
σj

~P
− zj+1

) 1
2
[
~Γ

σj

~P
·
(
~Lσj (+)

σj+1
+ ~Iσj

σj+1

)]( 1

K
σj

~P
− zj+1

) 1
2 Φ

σj

~P

∥∥
F ≤ O(ε

j
2
(1−δ)) ; (IV.69)

(see (IV.61)). (ii) For α and R0 small enough independently of j, we prove that

‖Φ̂σj+1

~P
− Φ

σj

~P
‖F ≤ ε

j+1
2

(1−δ). (IV.70)

For the term on the l.h.s. of (IV.69) proportional to to ~Iσj
σj+1 , the asserted upper bound

is readily obtained from estimate (A 3) combined with (IV.68). For the term proportional

to ~Lσj (+)
σj+1 , we prove (IV.69) following arguments developed in [22]; see Lemma A.3 of the

Appendix for details. This involves the application of a ”pull-through formula”, a resolvent

expansion, and the bounds (A 3), (A 4).

Step (2).

We relate the l.h.s. of (IV.68) to the corresponding quantity with j replaced by j − 1, and to

the norm difference

‖Φ̂σj

~P
− Φ

σj−1

~P
‖F (IV.71)

(see (IV.80) – (IV.83) below).

By unitarity of Wσj
(~∇Eσj−1

~P
)W ∗

σj
(~∇Eσj

~P
), the l.h.s. of (IV.68) equals∣∣∣〈 (Γ̂

σj

~P
)iΦ̂

σj

~P
,

1

K̂
σj

~P
− zj+1

(Γ̂
σj

~P
)iΦ̂

σj

~P

〉∣∣∣ . (IV.72)

Assuming that α is small enough and ε > O(α
1
2 ), we may use (A 1) to re-expand the resolvent

and find ∣∣∣〈 (Γ̂
σj

~P
)iΦ̂

σj

~P
,

1

K̂
σj

~P
− zj+1

(Γ̂
σj

~P
)iΦ̂

σj

~P

〉∣∣∣
≤ 2

∣∣∣〈 (Γ̂
σj

~P
)iΦ̂

σj

~P
,
∣∣∣ 1

K
σj−1

~P
− zj+1

∣∣∣ (Γ̂
σj

~P
)iΦ̂

σj

~P

〉∣∣∣ . (IV.73)
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We then readily obtain that

2
∣∣∣〈 (Γ̂

σj

~P
)iΦ̂

σj

~P
,
∣∣∣ 1

K
σj−1

~P
− zj+1

∣∣∣ (Γ̂
σj

~P
)iΦ̂

σj

~P

〉∣∣∣
≤ 4

∥∥∥( 1

K
σj−1

~P
− zj+1

) 1
2
((Γ̂

σj

~P
)iΦ̂

σj

~P
− (Γ

σj−1

~P
)iΦ

σj−1

~P
)
∥∥∥2

F
(IV.74)

+ 4
∣∣∣〈 (Γ

σj−1

~P
)iΦ

σj−1

~P
,
∣∣∣ 1

K
σj−1

~P
− zj+1

∣∣∣ (Γ
σj−1

~P
)iΦ

σj−1

~P

〉∣∣∣ . (IV.75)

Our strategy is to construct a recursion that relates (IV.75) to the initial expression (IV.72)

with j replaced by j − 1, while (IV.74) is a remainder term.

We bound the remainder term (IV.74) by

4
∥∥∥( 1

K
σj−1

~P
− zj+1

) 1
2
((Γ̂

σj

~P
)iΦ̂

σj

~P
− (Γ

σj−1

~P
)iΦ

σj−1

~P
)
∥∥∥2

F

≤ 8
∥∥∥( 1

K
σj−1

~P
− zj+1

) 1
2
((Γ̂

σj

~P
)iΦ̂

σj

~P
− (Γ

σj−1

~P
)iΦ̂

σj

~P
)
∥∥∥2

F
(IV.76)

+ 8
∥∥∥( 1

K
σj−1

~P
− zj+1

) 1
2
(Γ

σj−1

~P
)i(Φ̂

σj

~P
− Φ

σj−1

~P
)
∥∥∥2

F

≤ R1

ε
j
2

(‖Φ̂σj

~P
− Φ

σj−1

~P
‖F + ε

j
2

ε
j
4

)2

(IV.77)

+
R2

ε
j
2

(∥∥ bΦσj
~P

‖bΦσj
~P
‖F
−

Φ
σj−1
~P

‖Φ
σj−1
~P

‖

∥∥
F + ε

j
2

4ε
j
4

)2

,

where R1 and R2 are constants independent of α, ε, µ, and j ∈ N, provided that α, ε, and

µ are sufficiently small, and ε > O(α
1
2 ). For details on the step from (IV.76) to (IV.77), we

refer to Lemma A.4 of the Appendix.

To bound the term (IV.75), we use (A3) and the orthogonality property expressed in

(IV.60). We find that, for any zj ∈ γj,

4
∣∣∣〈 (Γ

σj−1

~P
)iΦ

σj−1

~P
,
∣∣∣ 1

K
σj−1

~P
− zj+1

∣∣∣ (Γ
σj−1

~P
)iΦ

σj−1

~P

〉∣∣∣
≤ 4C3

∣∣∣〈 (Γ
σj−1

~P
)iΦ

σj−1

~P
,

1

K
σj−1

~P
− zj+1

(Γ
σj−1

~P
)iΦ

σj−1

~P

〉∣∣∣ (IV.78)

≤ 8C2
3

∣∣∣〈 (Γ
σj−1

~P
)iΦ

σj−1

~P
,

1

K
σj−1

~P
− zj

(Γ
σj−1

~P
)iΦ

σj−1

~P

〉∣∣∣ . (IV.79)

In passing from (IV.78) to (IV.79), we have used the constraint on the spectral support (with

respect to K
σj−1

~P
) of the vector (Γ

σj−1

~P
)iΦ

σj−1

~P
.
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Therefore, for sufficiently small values of the parameters ε and α, we conclude that∣∣∣〈 (Γ
σj

~P
)iΦ

σj

~P
,

1

K
σj

~P
− zj+1

(Γ
σj

~P
)iΦ

σj

~P

〉∣∣∣ (IV.80)

≤ R1

ε
j
2

(‖Φ̂σj

~P
− Φ

σj−1

~P
‖+ ε

j
2

ε
j
4

)2

(IV.81)

+
R2

ε
j
2

(∥∥ bΦσj
~P

‖bΦσj
~P
‖
−

Φ
σj−1
~P

‖Φ
σj−1
~P

‖

∥∥ + ε
j
2

4ε
j
4

)2

(IV.82)

+ 8C2
3

∣∣∣〈 (Γ
σj−1

~P
)iΦ

σj−1

~P
,

1

K
σj−1

~P
− zj

(Γ
σj−1

~P
)iΦ

σj−1

~P

〉∣∣∣ . (IV.83)

Step (3).

We prove that

‖Φσj

~P
− Φ̂

σj

~P
‖F ≤ C5 α

1
2 |~∇Eσj−1

~P
− ~∇Eσj

~P
| | ln(εj)| . (IV.84)

From the definition

Φ
σj

~P
:= Wσj

(~∇Eσj

~P
)W ∗

σj
(~∇Eσj−1

~P
)Φ̂

σj

~P
, (IV.85)

we get that

‖Φ
σj

~P
− Φ̂

σj

~P
‖F = ‖W ∗

σj
(~∇Eσj−1

~P
)Wσj

(~∇Eσj

~P
)Ψ

σj

~P
−Ψ

σj

~P
‖F (IV.86)

where (with an abuse of notation) we have denoted by Ψ
σj

~P
the ground state eigenvector

W ∗
σj

(~∇Eσj

~P
)Φ

σj

~P
, (IV.87)

‖Wσj
(~∇Eσj

~P
)Φ

σj

~P
‖F ≤ 1, of the Hamiltonian H

σj

~P
. Then, we apply formula (III.16) (which was

derived in [9]), and obtain the logarithmic bound 〈Nf〉Ψσj
~P

≤ O(| lnσj|) for the expectation

value of the photon number operator Nf in Ψ
σj

~P
, where σj = Λεj, and Λ ≈ 1. Hence, the

estimate (IV.84) follows.

Step (4).

We prove the bound (IV.68) assumed in step (1) by an inductive argument (see (IV.95)

below).
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We assume α, ε, and µ to be sufficiently small for all our previous results to hold, and

such that:

i)

Sj
1 :=

j∑
m=1

[
ε

m
2

(1−δ) + 4C5C2 α
1
2 ε

m
2

(1−δ)| ln(εm)|
]
≤ 1

3
, (IV.88)

uniformly in j.

ii)

‖Φ̂σ1

~P
− Φσ0

~P
‖F ≤ ε

1
2
(1−δ) . (IV.89)

iii) The bound (IV.68) holds for j = 1, and

0 < R1 +R2 ≤ (1− 8C3 ε
δ)
R0

α
. (IV.90)

Notably, (IV.90) imposes a more restrictive upper bound on the admissible values of ε. Then,

we proceed with the induction in j.

• Inductive hypotheses We assume that, for j − 1

(H1) we have an estimate

‖Φσj−1

~P
− Φσ0

~P
‖F ≤ Sj−1

1 =

j−1∑
m=1

[
ε

m
2

(1−δ) + 4C5C2 α
1
2 ε

m
2

(1−δ)| ln(εm)|
]
;

(H2) the bound (IV.68) holds for j − 1.

• Induction step from j − 1 to j

From (H2), we get that

‖Φ̂σj

~P
− Φ

σj−1

~P
‖F ≤ ε

j
2
(1−δ) . (IV.91)

From (H1), (H2) and (A 2), we can conclude that

‖Φσj−1

~P
‖F ≥ ‖Φσ0

~P
‖F − ‖Φ

σj−1

~P
− Φσ0

~P
‖F ≥

2

3
(IV.92)

|~∇Eσj(~P )− ~∇Eσj−1(~P )| ≤ 4C2ε
j
2
(1−δ) . (IV.93)

and then, by combining (IV.70), (IV.84) and (IV.65), that

‖Φσj

~P
− Φσ0

~P
‖F ≤ Sj

1 . (IV.94)
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Finally, we obtain from (IV.81) – (IV.83) that∣∣∣〈 (Γ
σj

~P
)iΦ

σj

~P
,

1

K
σj

~P
− zj+1

(Γ
σj

~P
)iΦ

σj

~P

〉∣∣∣
≤ R1

ε
j
2

(‖Φ̂σj

~P
− Φ

σj−1

~P
‖F + ε

j
2
(1−δ)

2ε
j
4

)2

+
R2

ε
j
2

(∥∥ bΦσj
~P

‖bΦσj
~P
‖F
−

Φ
σj−1
~P

‖Φ
σj−1
~P

‖F

∥∥
F + ε

j
2
(1−δ)

4ε
j
4

)2

+ 8C2
3

∣∣∣〈 (Γ
σj−1

~P
)iΦ

σj−1

~P
,

1

K
σj−1

~P
− zj

(Γ
σj−1

~P
)iΦ

σj−1

~P

〉∣∣∣
≤ R1

εjδ
+
R2

εjδ
+ 8C2

3

R0

αε(j−1)δ
≤ R0

αεjδ
. (IV.95)

This proves (IV.69) and implies that the sequence {Φσj

~P
} converges (as can be derived from

(IV.94)). The limit is a non-zero vector because of (IV.92).

This concludes the proof of statement (I 1) in Theorem III.1. �

V. Proof of Statements (I 2) and (I 3) in Theorem III.1

Statement (I 2) expresses Hölder regularity of Φσ
~P

and ~∇Eσ
~P

with respect to ~P ∈ S,

uniformly in σ ≥ 0. That is,

‖Φσ
~P
− Φσ

~P+∆~P
‖F ≤ Cδ′ |∆~P |

1
4
−δ′ (V.1)

and

| ~∇Eσ
~P
− ~∇Eσ

~P+∆~P
| ≤ Cδ′′ |∆~P |

1
4
−δ′′ , (V.2)

for any 0 < δ′′ < δ′ < 1
4
, where ~P , ~P + ∆~P ∈ S. The constants Cδ′ and Cδ′′ depend on δ′

and δ′′, respectively. This result can be taken over from [22].

Statement (I 3) follows easily from (I 5). In fact, we recall from the beginning of

Section IV.2.1 that

~P − ~∇Eσ
~P

=
〈
~P f − α1/2 ~Aσ

〉
Ψσ

~P

. (V.3)

We then find that

|
〈
~P f

〉
Ψσ

~P

| ≤
∑

λ

∫
d3k |~k| ‖ b~k,λΨ

σ
~P
‖2

≤ C ′ α

∫
BΛ

d3k

|~k|2
≤ C α , (V.4)
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and

|
〈
α1/2 ~Aσ

〉
Ψσ

~P

| ≤ α1/2
∑

λ

∫
d3k

|~k|1/2
‖ b~k,λΨ

σ
~P
‖

≤ C ′ α

∫
BΛ

d3k

|~k|2
≤ C α , (V.5)

where we used (I 5) in (V.5). Therefore,

| ~P − ~∇Eσ
~P
| ≤ C α , (V.6)

for a constant C independent of ~P ∈ S and σ. Statement (I 3) then follows immediately.
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VI. Proof of Statement (I 4) in Theorem III.1

To prove statement (I 4) in Theorem III.1, we must show that, for ~P ∈ S, α small

enough, ~k 6= 0 and σ ≥ 0,

Eσ
~P−~k

> Eσ
~P
− Cα|~k| (VI.1)

holds, where Eσ
~P−~k

:= inf specHσ
~P−~k

, and 1
3
< Cα < 1, with Cα → 1

3
as α→ 0.

To prove (VI.1), we first note that

Hσ
~P+~k

= Hσ
~P

+ ~k · ~∇Hσ
~P

+
|~k|2

2
, (VI.2)

and that 〈
φ , Hσ

~P+~k
φ
〉
≥

〈
φ , Hσ

~P
φ
〉
− |~k|

〈
φ , (~∇Hσ

~P
)2 φ

〉1/2
+
|~k|2

2

≥
〈
φ , Hσ

~P
φ
〉
−
√

2 |~k|
〈
φ , Hσ

~P
φ
〉1/2

+
|~k|2

2
(VI.3)

for φ ∈ D(Hσ
~P+~k

) ∩ Fσ, with ‖φ‖ = 1. Thus, we obtain the inequality〈
φ , Hσ

~P+~k
φ
〉
− Eσ

~P

≥ inf
z≥0

{
(z + Eσ

~P
) −

√
2|~k| (z + Eσ

~P
)1/2 +

|~k|2

2
− Eσ

~P

}
= inf

x≥(Eσ
~P
)1/2

{
x2 −

√
2|~k|x +

|~k|2

2
− Eσ

~P

}
, (VI.4)

where z :=
〈
φ , Hσ

~P
φ
〉
− Eσ

~P
≥ 0 in the expression on the second line.

Setting ∂x(· · · ) = 0 in the expression on the last line of (VI.4), we find

2x−
√

2|~k| = 0 . (VI.5)

The minimum is therefore attained at x =
√

2
2
|~k|, if

√
2

2
|~k| ≥ (Eσ

~P
)1/2, and at x = (Eσ

~P
)1/2,

corresponding to z = 0, otherwise. That is,

xmin = max{
√

2

2
|~k| , (Eσ

~P
)1/2} . (VI.6)

Now, for
√

2
2
|~k| ≥ (Eσ

~P
)1/2, so that xmin =

√
2

2
|~k|, we evaluate the lower bound and get

|~k|2

2
− |~k|2 +

|~k|2

2
− Eσ

~P
, (VI.7)

and we observe that

−Eσ
~P
≥ − 1

3
|~k| , (VI.8)
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because

Eσ
~P
≤ 1√

2
(
1

3
+ cα) (Eσ

~P
)1/2 ≤ 1

3
|~k| (VI.9)

for |~P | < 1
3
. This follows from

0 < Eσ
~P

= infspecHσ
~P
≤

〈
Ωf , H

σ
~P
Ωf

〉
=

1

2
|~P |2 +

α

2

〈
( ~Aσ)2

〉
(VI.10)

by Rayleigh-Ritz, so that (Eσ
~P
)1/2 ≤ 1√

2
(1

3
+ cα) for |~P | < 1

3
.

If, however,
√

2
2
|~k| ≤ (Eσ

~P
)1/2, so that xmin = (Eσ

~P
)1/2, evaluation of the lower bound

yields

−
√

2|~k| (Eσ
~P
)1/2 +

|~k|2

2
, (VI.11)

and we observe that

−
√

2|~k| (Eσ
~P
)1/2 +

|~k|2

2
≥ − (|~P |+ cα)|~k| ≥ − (

1

3
+ cα)|~k| (VI.12)

for |~P | < 1
3
.

Therefore, we conclude that

Eσ
~P+~k

> Eσ
~P
− Cα |~k| (VI.13)

for

Cα =
1

3
+ cα , (VI.14)

and all ~k 6= 0.

This establishes statement (I 4) in Theorem III.1. �

Thus, we have proven our main result, up to auxiliary results proven in the Appendix.
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Appendix A

A.1. Well-definedness of the operators K
σj

~P
and K̂

σj

~P
. We need to verify that the canon-

ical form of the Hamiltonians K
σj

~P
and K̂

σj

~P
in (IV.40) and (IV.49) are not only formal. This

can be achieved by adapting an argument in the work [21] of E. Nelson, Lemma 3. We shall

only outline the proof for K
σj

~P
; the case of K̂

σj

~P
is similar.

To this end, we write (K
σj+1

~P
)′ for the operator on the right hand side of (IV.40), in

order to distinguish it from (IV.38). We let H~P (∞) denote the linear span of vectors in H~P

with a finite number of photons. For the values of α and of Λ assumed in Section II, we

know that H
σj

~P
is selfadjoint in D(H0

~P
), where

H0
~P

:=
(~P − ~P f )2

2
+Hf . (A.1)

Then, we conclude the following:

1) The equality (IV.40) trivially holds onH~P (∞)
⋂
D(H0

~P
), because vectors in this space

are analytic for the generator of Wσj
(~∇Eσj

~P
), and since H

σj

~P
, H0

~P
and the generator

of Wσj
(~∇Eσj

~P
) map H~P (∞)

⋂
D(H0

~P
) into itself.

2) By standard arguments, one shows that

‖H0
~P
Wσj

(~∇Eσj

~P
)ψ‖ ≤ b (‖H0

~P
ψ‖+ ‖ψ‖) , (A.2)

where ψ ∈ H~P (∞)
⋂
D(H0

~P
), for some b > 0.

Because H~P (∞)
⋂
D(H0

~P
) is dense in D(H0

~P
) with respect to the norm ‖H0

~P
ψ‖ +

‖ψ‖, it follows that Wσj
(~∇Eσj

~P
) and W ∗

σj
(~∇Eσj

~P
) map D(H0

~P
) into itself.

Consequently,

D(H0
~P
) ≡ D(K

σj

~P
) . (A.3)

3) The equality (IV.40) holds on D(K
σj

~P
) because H~P (∞)

⋂
D(H0

~P
) is dense in D(H0

~P
)

in the norm ‖H0
~P
ψ‖ + ‖ψ‖, and because of (A.3). Since (K

σj

~P
)′ ≡ K

σj

~P
on the do-

main of selfadjointness of K
σj

~P
, we can therefore conclude that D((K

σj

~P
)′) ≡ D(K

σj

~P
).

Consequently, we have proven that (K
σj

~P
)′ ≡ K

σj

~P
. This is what we intended to prove.
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A.2. Technical lemmata for the proof of (I 1) in Theorem III.1.

Lemma A.1. The Hamiltonian K̂
σj+1

~P
has the form (IV.49), with (IV.50), (IV.51), and

(IV.52).

Proof.

Recalling the definitions of Section IV.2.1, we have

Wσj+1
(~∇Eσj

~P
)~βσj+1W ∗

σj+1
(~∇Eσj

~P
)− 〈~βσj〉

Ψ
σj
~P

(A.4)

= Wσj+1
(~∇Eσj

~P
)~βσjW ∗

σj+1
(~∇Eσj

~P
)− 〈~βσj〉

Ψ
σj
~P

(A.5)

−α
1
2Wσj+1

(~∇Eσj

~P
) ~Aσj

σj+1
W ∗

σj+1
(~∇Eσj

~P
) (A.6)

= Wσj
(~∇Eσj

~P
)~βσjW ∗

σj
(~∇Eσj

~P
)− 〈~βσj〉

Ψ
σj
~P

(A.7)

+W σj
σj+1

(~∇Eσj

~P
)~P fW σj ∗

σj+1
(~∇Eσj

~P
)− ~P f (A.8)

−α
1
2Wσj+1

(~∇Eσj

~P
) ~Aσj

σj+1
W ∗

σj+1
(~∇Eσj

~P
) (A.9)

= ~Π
σj

~P
− 〈~Πσj

~P
〉
Φ

σj
~P

(A.10)

−α
1
2

∑
λ

∫
Bσj \Bσj+1

~k
~∇Eσj

~P
· ~ε ∗~k,λ

b~k,λ + h.c.

|~k| 32 δσj

~P
(k̂)

d3k − α
1
2 ~Aσj

σj+1
(A.11)

+α
∑

λ

∫
Bσj \Bσj+1

~k
~∇Eσj

~P
· ~ε ∗~k,λ

~∇Eσj

~P
· ~ε~k,λ

|~k|3(δσj

~P
(k̂))2

d3k (A.12)

+α
∑

λ

∫
Bσj \Bσj+1

[
~ε~k,λ

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

+ h.c.
] d3k√

|~k|
, (A.13)

where

W σj
σj+1

(~∇Eσj

~P
) := exp

(
α

1
2

∑
λ

∫
Bσj \Bσj+1

d3k
~∇Eσj

~P

|~k| 32 δσj

~P
(k̂)

· (~ε~k,λb
∗
~k,λ
− h.c.)

)
. (A.14)

This establishes (IV.50) and (IV.51). �
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Lemma A.2. For ~P ∈ S, there exists C2 > 0 such that, uniformly in j ∈ N, the inequality

|~∇Eσj+1

~P
− ~∇Eσj

~P
| ≤ C2

(∥∥∥ Φ̂
σj+1

~P

‖Φ̂σj+1

~P
‖F

−
Φ

σj

~P

‖Φσj

~P
‖F

∥∥∥
F

+ ε
j+1
2

)
(A.15)

holds.

Proof.

Using (IV.37) and (IV.53), we write ~∇Eσj+1

~P
and ~∇Eσj

~P
in the form

~∇Eσj

~P
= ~P −

〈
Φ

σj

~P
, ~Π

σj

~P
Φ

σj

~P

〉〈
Φ

σj

~P
, Φ

σj

~P

〉 − 〈Wσj
(~∇Eσj

~P
) ~βσj W ∗

σj
(~∇Eσj

~P
)〉Ωf

(A.16)

~∇Eσj+1

~P
= ~P −

〈
Φ̂

σj+1

~P
, ~̂Π

σj+1

~P Φ̂
σj+1

~P

〉〈
Φ̂

σj+1

~P
, Φ̂

σj+1

~P

〉 (A.17)

−〈Wσj+1
(~∇Eσj+1

~P
) ~βσj+1 W ∗

σj+1
(~∇Eσj+1

~P
)〉Ωf

.

By a simple, but slightly lengthy calculation, one can check that

〈Wσj
(~∇Eσj

~P
) ~βσj W ∗

σj
(~∇Eσj

~P
)〉Ωf

− (A.18)

−〈Wσj+1
(~∇Eσj+1

~P
) ~βσj+1 W ∗

σj+1
(~∇Eσj+1

~P
)〉Ωf

(A.19)

= α
∑

λ

∫
Bσj

~k
~∇Eσj

~P
· ~ε ∗~k,λ

~∇Eσj

~P
· ~ε~k,λ

|~k|3(δσj

~P
(k̂))2

d3k (A.20)

−α
∑

λ

∫
Bσj

~k
~∇Eσj+1

~P
· ~ε ∗~k,λ

~∇Eσj+1

~P
· ~ε~k,λ

|~k|3(δσj+1

~P
(k̂))2

d3k (A.21)

+α
∑

λ

∫
Bσj

[
~ε~k,λ

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

+ h.c.
] d3k√

|~k|
(A.22)

−α
∑

λ

∫
Bσj

[
~ε~k,λ

~∇Eσj+1

~P
· ~ε ∗~k,λ

|~k| 32 δσj+1

~P
(k̂)

+ h.c.
] d3k√

|~k|
(A.23)

−α
∑

λ

∫
Bσj \Bσj+1

~k
~∇Eσj+1

~P
· ~ε ∗~k,λ

~∇Eσj+1

~P
· ~ε~k,λ

|~k|3(δσj+1

~P
(k̂))2

d3k (A.24)

−α
∑

λ

∫
Bσj \Bσj+1

[
~ε~k,λ

~∇Eσj+1

~P
· ~ε ∗~k,λ

|~k| 32 δσj+1

~P
(k̂)

+ h.c.
] d3k√

|~k|
. (A.25)
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On the other hand, using definition (IV.53), we can calculate

~̂Π
σj+1

~P − ~Π
σj

~P
(A.26)

= ~Lσj
σj+1

(A.27)

+α
∑

λ

∫
Bσj+1

~k
~∇Eσj

~P
· ~ε ∗~k,λ

~∇Eσj

~P
· ~ε~k,λ

|~k|3(δσj

~P
(k̂))2

d3k (A.28)

−α
∑

λ

∫
Bσj+1

~k
~∇Eσj+1

~P
· ~ε ∗~k,λ

~∇Eσj+1

~P
· ~ε~k,λ

|~k|3(δσj+1

~P
(k̂))2

d3k (A.29)

+α
∑

λ

∫
Bσj+1

[
~ε~k,λ

~∇Eσj

~P
· ~ε ∗~k,λ

|~k| 32 δσj

~P
(k̂)

+ h.c.
] d3k√

|~k|
(A.30)

−α
∑

λ

∫
Bσj+1

[
~ε~k,λ

~∇Eσj+1

~P
· ~ε ∗~k,λ

|~k| 32 δσj+1

~P
(k̂)

+ h.c.
] d3k√

|~k|
. (A.31)

In order to shorten our notations, we define

F j
j+1(Bσj

) := (A.20) + (A.21) + (A.22) + (A.23) (A.32)

F j
j+1(Bσj+1

) := (A.28) + (A.29) + (A.30) + (A.31) (A.33)

Gj+1(Bσj
\ Bσj+1

) := (A.24) + (A.25) (A.34)

Returning to (A.16), (A.18), we can write

~∇Eσj+1

~P
− ~∇Eσj

~P
− F j

j+1(Bσj
) (A.35)

= − 1

‖Φ̂σj+1

~P
‖

〈
Φ̂

σj+1

~P
, ~̂Π

σj+1

~P (
Φ̂

σj+1

~P

‖Φ̂σj+1

~P
‖
−

Φ
σj

~P

‖Φσj

~P
‖
)
〉

(A.36)

−
〈
Φ̂

σj+1

~P
, ~̂Π

σj+1

~P Φ
σj

~P

〉
‖Φ̂σj+1

~P
‖ ‖Φσj

~P
‖

+

〈
Φ̂

σj+1

~P
, ~Π

σj

~P
Φ

σj

~P

〉
‖Φ̂σj+1

~P
‖ ‖Φσj

~P
‖

(A.37)

−
〈
Φ̂

σj+1

~P
, ~Π

σj

~P
Φ

σj

~P

〉
‖Φ̂σj+1

~P
‖ ‖Φσj

~P
‖

+

〈
Φ

σj

~P
, ~Π

σj

~P
Φ

σj

~P

〉
‖Φσj

~P
‖2

+Gj+1(Bσj
\ Bσj+1

) . (A.38)
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Using (A.26) – (A.31), this can be rewritten into

~∇Eσj+1

~P
− ~∇Eσj

~P
− F j

j+1(Bσj
) +

〈
Φ̂

σj+1

~P
, Φ

σj

~P

〉
‖Φ̂σj+1

~P
‖ ‖Φσj

~P
‖
F j

j+1(Bσj+1
) (A.39)

= − 1

‖Φ̂σj+1

~P
‖

〈
Φ̂

σj+1

~P
, ~̂Π

σj+1

~P

( Φ̂
σj+1

~P

‖Φ̂σj+1

~P
‖
−

Φ
σj

~P

‖Φσj

~P
‖
) 〉

(A.40)

− 1

‖Φσj

~P
‖

〈 ( Φ̂
σj+1

~P

‖Φ̂σj+1

~P
‖
−

Φ
σj

~P

‖Φσj

~P
‖
)
, ~Π

σj

~P
Φ

σj

~P

〉
(A.41)

−
〈
Φ̂

σj+1

~P
, ~Lσj

σj+1 Φ
σj

~P

〉
‖Φ̂σj+1

~P
‖ ‖Φσj

~P
‖

+Gj+1(Bσj
\ Bσj+1

) . (A.42)

We deduce from the definitions (A.32) and (A.33) that

|F j
j+1(Bσj

)| , |F j
j+1(Bσj+1

)| < c′ |~∇Eσj+1

~P
− ~∇Eσj

~P
| (A.43)

where c′ is α-dependent but j-independent. Then, it suffices to check that, for α small

enough, there are positive constants c, C uniform in j, such that

C
(∥∥∥ Φ̂

σj+1

~P

‖Φ̂σj+1

~P
‖F

−
Φ

σj

~P

‖Φσj

~P
‖F

∥∥∥
F

+ ε
j+1
2

)
(A.44)

≥
∣∣ (A.40) + (A.41) + (A.42)

∣∣ ≥ c |~∇Eσj+1

~P
− ~∇Eσj

~P
| (A.45)

is satisfied. �
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Lemma A.3. Assume ~P ∈ S, and α, µ, and ε small enough. Then, uniformly in j ∈ N,

the bound∥∥( 1

K
σj

~P
− zj+1

) 1
2 Lσj (+) l

σj+1
(Γ

σj

~P
)l

( 1

K
σj

~P
− zj+1

) 1
2 Φ

σj

~P

∥∥2

F (A.46)

≤ 2

1− c
C3C4 Z

j
j+1

1

|Eσj−1

~P
− zj+1|

∣∣∣ 〈
(Γ

σj

~P
)lΦ

σj

~P
,

1

K
σj

~P
− zj+1

(Γ
σj

~P
)lΦ

σj

~P

〉∣∣∣
holds for each l = 1, 2, 3, where γσj+1

:= {zj+1 ∈ C
∣∣ |zj+1 − E

σj

~P
| = µσj+1}, and c < 1. C3

and C4 are defined in (IV.66), (IV.67) ((A 3) and (A 4) from Section IV.4), and

Zj
j+1 := 〈Lσj (−) l

σj+1
Lσj (+) l

σj+1
〉Ωf

(A.47)

= α
∑

λ

∫
Bσj \Bσj+1

d3k
∣∣∣kl

~∇Eσj

~P
· ~ε~k,λ

|~k| 32 δσj

~P
(k̂)

+
(l̂ · ~ε~k,λ)√
|~k| )

∣∣∣2 .
Proof.

We first use Eq. (IV.67) to estimate∥∥( 1

K
σj

~P
− zj+1

) 1
2Lσj (+) l

σj+1
(Γ

σj

~P
)l Φ

σj

~P

∥∥2

F (A.48)

≤
〈
Lσj (+) l

σj+1
(Γ

σj

~P
)lΦ

σj

~P
,
∣∣ 1

K
σj

~P
− zj+1

∣∣Lσj (+) l
σj+1

(Γ
σj

~P
)lΦ

σj

~P

〉
≤ C4

∣∣∣〈Lσj (+) l
σj+1

(Γ
σj

~P
)lΦ

σj

~P
,

1

K
σj

~P
− zj+1

Lσj (+) l
σj+1

(Γ
σj

~P
)lΦ

σj

~P

〉∣∣∣ . (A.49)

Then we use pull-through formula to derive the following equality which holds in the sense

of distributions for ~k ∈ Bσj

1

K
σj

~P
− zj+1

b(~k) = (A.50)

= b(~k)
1

(~Γ
σj
~P

+~k)2

2
+

∑
λ

∫
R3 |~q|δ

σj

~P
(q̂) b∗~q,λb~q,λd3q + Eσj

~P
+ |~k|δσj

~P
(k̂)− zj+1

.

Moreover, for σj+1 ≤ |~k| ≤ σj, j ≥ 1, and for α, µ, and ε small enough but uniform in j, we

can control the series expansion in the space Fσj

1

(~Γ
σj
~P

)2

2
+Hf

δ
σj
~P

+ Eσj

~P
+ |~k|δσj

~P
(k̂)− zj+1

× (A.51)

×
+∞∑
n=0

[
− (~Γ

σj

~P
· ~k +

|k|2

2
)

1

(~Γ
σj
~P

)2

2
+Hf

δ
σj
~P

+ Eσj

~P
+ |~k|δσj

~P
(k̂)− zj+1

]n
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where

Hf

δ
σj
~P

:=
∑

λ

∫
R3

|~q|δσj

~P
(q̂) b∗~q,λb~q,λd

3q ,

the key estimate being

∥∥∥( 1

(~Γ
σj
~P

)2

2
+Hf

δ
σj
~P

+ Eσj

~P
+ |~k|δσj

~P
(k̂)− zj+1

)1/2

× (A.52)

× (~Γ
σj

~P
· ~k +

|k|2

2
)
( 1

(~Γ
σj
~P

)2

2
+Hf

δ
σj
~P

+ Eσj

~P
+ |~k|δσj

~P
(k̂)− zj+1

)1/2∥∥∥
Fσj

≤ c < 1 .

In order to control the term proportional to ~Γ
σj

~P
·~k, we note that, for α sufficiently small but

uniform in j,

∥∥∥( 1

K
σj

~P
+ |~k|δσj

~P
(k̂)− zj+1

)1/2 (~Γ
σj

~P
)i

√
2

∥∥∥2

≤ 1

3

∥∥∥Kσj

~P

∣∣∣ 1

K
σj

~P
+ |~k|δσj

~P
(k̂)− zj+1

∣∣∣ ∥∥∥ . (A.53)

Then, we observe that

( 1

|~k|δσj

~P
(k̂)

)1/2∥∥∥Kσj

~P

∣∣∣ 1

K
σj

~P
+ |~k|δσj

~P
(k̂)− zj+1

∣∣∣ ∥∥∥1/2√
6 |~k| −→ |~P |

√
3

1− |~P |
≤
√

3

2
(A.54)

as µ, α→ 0; therefore, the estimate (A.52) also holds true for the term proportional to ~Γ
σj

~P
·~k

if µ > 0 and α > 0 are small enough, but uniform in j. For the last estimate, we used that

by assumption, ~P ∈ S. To estimate of the term proportional to |~k|2
2

, we use

|~k|2

2

∥∥∥ 1

K
σj

~P
+ |~k|δσj

~P
(k̂)− zj+1

∥∥∥ ≤ |~k|2

2(|~k|δσj

~P
(k̂)− µσj+1)

� 1 , (A.55)
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for α, ε, µ small enough but unifor in j. Therefore, recalling that b~k,λ Φ
σj

~P
= 0 for |~k| ≤ σj,

we find

(A.49) (A.56)

≤ C4

{
α

∑
λ

∫
Bσj \Bσj+1

d3k
∣∣∣kl

~∇Eσj

~P
· ~ε~k,λ

|~k| 32 δσj

~P
(k̂)

+
(l̂ · ~ε~k,λ)√
|~k| )

∣∣∣2 × (A.57)

×
∥∥( 1

K
σj

~P
+ |~k|δσj

~P
(k̂)− zj+1

) 1
2 (Γ

σj

~P
)lΦ

σj

~P

)∥∥2
} +∞∑

n=0

(
1

2
)n

≤ 1

1− c
C4

{
α

∑
λ

∫
Bσj \Bσj+1

d3k
∣∣∣kl

~∇Eσj

~P
· ~ε~k,λ

|~k| 32 δσj

~P
(k̂)

+
(l̂ · ~ε~k,λ)√
|~k| )

∣∣∣2 × (A.58)

×
∥∥( 1

K
σj

~P
+ |~k|δσj

~P
(k̂)− zj+1

) 1
2 (Γ

σj

~P
)lΦ

σj

~P

)∥∥2
}

≤ 1

1− c
C3C4

(
α

∑
λ

∫
Bσj \Bσj+1

d3k
∣∣∣kl

~∇Eσj

~P
· ~ε~k,λ

|~k| 32 δσj

~P
(k̂)

+
(l̂ · ~ε~k,λ)√
|~k| )

∣∣∣2)× (A.59)

×
∣∣ 〈

(Γ
σj

~P
)lΦ

σj

~P
,

1

K
σj

~P
− zj+1

(Γ
σj

~P
)lΦ

σj

~P

〉∣∣
where, in passing from (A.58) to (A.59), we use (IV.67), and property (A 3) from Section

IV.4. For σ1 ≤ |~k| ≤ σ0, a similar argument yields (A.59).

This proves the lemma. �
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Lemma A.4. For α and ε small enough, with ε > O(α), there exist constants R1, R2 ≤
O(ε−1), uniformly in j ∈ N and ~P ∈ S, for which

8
∥∥∥( 1

K
σj−1

~P
− zj+1

) 1
2
((Γ̂

σj

~P
)iΦ̂

σj

~P
− (Γ

σj−1

~P
)iΦ̂

σj

~P
)
∥∥∥2

F
(A.60)

+ 8
∥∥∥( 1

K
σj−1

~P
− zj+1

) 1
2
(Γ

σj−1

~P
)i(Φ̂

σj

~P
− Φ

σj−1
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)
∥∥∥2

F

≤ R1

ε
j
2

(‖Φ̂σj

~P
− Φ

σj−1

~P
‖F + ε

j
2

ε
j
4

)2

(A.61)

+
R2

ε
j
2

(∥∥ bΦσj
~P

‖bΦσj
~P
‖F
−

Φ
σj−1
~P

‖Φ
σj−1
~P

‖

∥∥
F + ε

j
2

4ε
j
4

)2

.

Proof.

In order to justify the estimate in the statement, it is enough to make the difference

(Γ̂
σj

~P
)i − (Γ

σj−1

~P
)i (A.62)

explicit. The definitions are given in (IV.41) and (IV.54).

From (A.16), (A.18), we get

−
〈
Φ̂

σj+1

~P
, ~̂Π

σj+1

~P Φ̂
σj+1
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〉〈
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Φ
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, Φ

σj

~P

〉 (A.63)

= ~∇Eσj+1

~P
− ~∇Eσj

~P
(A.64)

+〈Wσj+1
(~∇Eσj+1

~P
) ~βσj+1 W ∗

σj+1
(~∇Eσj+1

~P
)〉Ωf

(A.65)

−〈Wσj
(~∇Eσj

~P
) ~βσj W ∗

σj
(~∇Eσj

~P
)〉Ωf

.

From (A.26) – (A.31), we obtain

~̂Γ
σj

~P − ~Γ
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〉 (A.67)
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= ~∇Eσj+1

~P
− ~∇Eσj

~P
+ ~Lσj

σj+1
(A.68)

−α
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+α
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∫
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+α
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λ

∫
Bσj \Bσj+1

[
~ε~k,λ
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|~k| 32 δσj+1

~P
(k̂)

+ h.c.
] d3k√
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Now, we simply combine the result in (A.15) with the bounds∥∥∥( 1

K
σj−1

~P
− zj+1

) 1
2
(Γ

σj−1

~P
)i

∥∥∥ ≤ O(ε−
j+1
2 ) (A.75)

∥∥∥( 1

K
σj−1

~P
− zj+1

) 1
2 ~Aσj

σj+1

∥∥∥ ≤ O(ε−
j+1
2 ) , (A.76)

and similarly for ~Lσj
σj+1 . The size of all other expressions (A.69) – (A.74) can trivially be seen

to be of order O(εj). The assertion of the lemma follows. �

Acknowledgements. The authors gratefully acknowledge the support and hospitality of the

Erwin Schrödinger Institute (ESI) in Vienna in June 2006, where this collaboration was

initiated. T.C. was supported by NSF grants DMS-0524909 and DMS-0704031.

References

[1] F. Bloch and A. Nordsieck. Phys. Rev., 52: 54 (1937). F. Bloch, A. Nordsieck, Phys. Rev. 52, 59, (1937).
[2] D. Buchholz. Comm. Math. Phys., 52: 147 (1977).
[3] D. Buchholz. Phys. Lett. B, 174: 331 (1986).
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