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Abstract. We construct infraparticle scattering states for Compton scattering in the stan-
dard model of non-relativistic QED. In our construction, an infrared cutoff initially intro-
duced to regularize the model is removed completely. We rigorously establish the properties
of infraparticle scattering theory predicted in the classic work of Bloch and Nordsieck from
the 1930’s, Faddeev and Kulish, and others. Our results represent a basic step towards
solving the infrared problem in (non-relativistic) QED.

I. Introduction

The construction of scattering states in Quantum Electrodynamics (QED) is an old

open problem. The main difficulties in solving this problem are linked to the infamous

infrared catastrophe in QED: It became clear very early in the development of QED that,

at the level of perturbation theory (e.g., for Compton scattering), the transition amplitudes

between formal scattering states with a finite number of photons are ill-defined, because,

typically, Feynman amplitudes containing vertex corrections exhibit logarithmic infrared

divergences; [14, 20].

A pragmatic approach proposed by Jauch and Rohrlich, [19, 25], and by Yennie,

Frautschi, and Suura, [29], is to circumvent this difficulty by considering inclusive cross

sections : One sums over all possible final states that include photons whose total energy lies

below an arbitrary threshold energy ε > 0. Then the infrared divergences due to soft virtual

photons are formally canceled by those corresponding to the emission of soft photons of total

energy below ε, order by order in perturbation theory in powers of the finestructure constant

α. A drawback of this approach becomes apparent when one tries to formulate a scattering

theory that is ε-independent: Because the transition probability P ε for an inclusive process

is estimated to be O(εconst.α), the threshold energy ε cannot be allowed to approach zero,

unless ”Bremsstrahlungs”processes (emission of photons) are properly incorporated in the

calculation.

An alternative approach to solving the infrared problem is to go beyond inclusive cross

sections and to define α-dependent scattering states containing an infinite number of photons

(so-called soft-photon clouds), which are expected to yield finite transition amplitudes, order
1
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by order in perturbation theory. The works of Chung [12], Kibble [21], and Faddeev and

Kulish [13], between 1965 and 1970, represent promising, albeit incomplete progress in this

direction. Their approaches are guided by an ansatz identified in the analysis of certain

solvable models introduced in early work by Bloch and Nordsieck, [2], and extended by Pauli

and Fierz, [14], in the late 1930’s. In a seminal paper [2] by Bloch and Nordsieck, it was

shown (under certain approximations that render their model solvable) that, in the presence

of asymptotic charged particles, the scattering representations of the asymptotic photon field

are coherent non-Fock representation, and that formal scattering states with a finite number

of soft photons do not belong to the physical Hilbert space of a system of asymptotically

freely moving electrons interacting with the quantized radiation field. These authors also

showed that the coherent states describing the soft-photon cloud are parameterized by the

asymptotic velocities of the electrons.

The perturbative recipes for the construction of scattering states did not remove some

of the major conceptual problems. New puzzles appeared, some of which are related to the

problem that Lorentz boosts cannot be unitarily implemented on charged scattering states;

see [18]. This host of problems was addressed in a fundamental analysis of the structural

properties of QED, and of the infrared problem in the framework of general quantum field

theory ; see [28]. Subsequent developments in axiomatic quantum field theory have led to

results that are of great importance for the topics treated in the present paper:

i) Absence of dressed one-electron states with a sharp mass; see [26], [4].

ii) Corrections to the asymptotic dynamics, as compared to the one in a theory with a

positive mass gap; see [3].

iii) Superselection rules pertaining to the space-like asymptotics of the quantized elec-

tromagnetic field, and connections to Gauss’ law; see [4].

In the early 1970’s, significant advances on the infrared problem were made for Nelson’s

model, which describes non-relativistic matter linearly coupled to a scalar field of massless

bosons. In [15], [16], the disappearance of a sharp mass shell for the charged particles was

established for Nelson’s model, in the limit where an infrared cut-off is removed. (An infrared

cutoff is introduced, initially, with the purpose to eliminate the interactions between charged

particles and soft boson modes). Techniques developed in [15, 16] have become standard tools

in more recent work on non-relativistic QED, and attempts made in [15, 16] have stimulated

a deeper understanding of the asymptotic dynamics of charged particles and photons. The

analysis of spectral and dynamical aspects of non-relativistic QED and of Nelson’s model

constitutes an active branch of contemporary mathematical physics. In questions relating to
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the infrared problem, mathematical control of the removal of the infrared cutoff is a critical

issue still unsolved in many situations.

The construction of an infraparticle scattering theory for Nelson’s model, after removal

of the infrared cutoff, has recently been achieved in [24] by introducing a suitable scattering

scheme. This analysis involves spectral results substantially improving those in [16]. It is

based on a new multiscale technique developed in [23].

While the interaction in Nelson’s model is linear in the creation- and annihilation

operators of the boson field, it is non-linear and of vector type in non-relativistic QED.

For this reason, the methods developed in [23, 24] do not directly apply to the latter. The

main goal of the present work is to construct an infraparticle scattering theory for non-

relativistic QED inspired by the methods of [23, 24]. In a companion paper, [11], we derive

those spectral properties of QED that are crucial for our analysis of scattering theory and

determine the mass shell structure in the infrared limit. We will follow ideas developed in

[23]. Bogoliubov transformations, proven in [10] to characterize the soft photon clouds in

non-relativistic QED, represent an important element in our construction. The proof in [10]

uses the uniform bounds on the renormalized electron mass previously established in [9].

We present a detailed definition of the model of non-relativistic QED in Section II.

Aspects of infraparticle scattering theory, developed in this paper, are described in Section

III.

To understand why background radiation parametrized by the asymptotic velocities of

the charged particles is expected to be present in all the scattering states, a very useful point

of view has been brought to our attention by Morchio and Strocchi. It relies on a classical

argument: Consider a current Jµ describing a point-like classical particle of velocity ~v, and

charge −α 1
2 ,

Jµ(t, ~y) := (−4π3/2α1/2 δ(3)(~y − ~vt) , 4π3/2α1/2 ~v δ(3)(~y − ~vt) ) . (I.1)

The Maxwell equations determining the e.m. fields generated by this current are given by

(∂2
t − ~∇ · ~∇)Aµ(t, ~y) = Jµ(t, ~y) (I.2)

∂µ∂A(t, ~y) = 0 (∂A ≡ ∂νA
ν) , (I.3)

where Aµ(~y, t) is the e.m. potential in an arbitrary gauge that satisfies (I.3). (Here and in the

rest of this paper, we are using units where c = 1 for the speed of light.) The back-reaction

of the electromagnetic field on the charged particle is neglected in our considerations.

From (I.2), (I.3), it follows that the field Aµ(~y, t) does not have compact support in

position space, because of Gauss’ law. A state of the classical system is parameterized by
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the data

(~v, Aµ(0, ~y), Ȧµ(0, ~y)) , (I.4)

with (I.3) assumed to be valid at time t = 0. It is of interest to distinguish states or solutions

according to the following criterion: We define a class, C ~vL.W. , of states of the form (I.4) by

the property that Aµ(0, ~y), Ȧµ(0, ~y) can be written as

Aµ(0, ~y) = A~vL.W.
µ (0, ~y) + hµ(0, ~y) , (I.5)

Ȧµ(0, ~y) = Ȧ~vL.W.
µ (0, ~y) + ḣµ(0, ~y) , (I.6)

where:

• A~vL.W.
µ (0, ~y), Ȧ~vL.W.

µ (0, ~y) are the Cauchy data for the so-called Liénard-Wiechert (L.W.)-

or causal solution of the equations (I.2), (I.3), with a constant velocity ~v = ~vL.W..

The corresponding electric and magnetic fields are given by

~E~vL.W.(t, ~y) = −π1/2α1/2[
~n− ~vL.W.

γ2
~vL.W.

(1− ~vL.W. · ~n)3R2
]ret (I.7)

~B~vL.W.(t, ~y) = [~n× ~E~vL.W. ]ret , (I.8)

where

γ~vL.W.
= (1− ~v 2

L.W.)
−1/2 , (I.9)

~n is the unit vector pointing from the charge to the observer in the point ~y at time t,

R is the distance between the charge and the observer, and [ ]ret implies evaluation

at the retarded time.

• hµ(0, ~y) and ḣµ(0, ~y) are such that

(∂µhν − ∂νhµ)(~y, 0) = o(
1

|~y|2
) , as |~y| → +∞ . (I.10)

The spatial asymptotics of the fields is determined by (I.7), (I.8) and characterizes the class

C ~vL.W. . Moreover, one can check that the fields corresponding to an initial condition in

C ~vL.W. , but with ~v 6= ~vL.W. in (I.1), (I.2), can be written as the sum of Liénard-Wiechert

fields F ~v
µν corresponding to a velocity ~v (that is, by the fields (I.7) and (I.8), but with ~vL.W.

replaced by ~v) and a solution of the homogenous Maxwell equations given by

Fµν(t, ~y) = ∂µAν(t, ~y) − ∂νAµ(t, ~y) − F ~v
µν(t, ~y) . (I.11)

Hence radiation described by the ~v- and ~vL.W.-dependent field Fµν is emitted in any state

in the class C ~vL.W. , except when ~v ≡ ~vL.W.. Notice that, at fixed time t, the fields Fµν do

not have compact support in position space. They decay like 1
|~y|2 . This is because in the

decomposition

∂µAν(t, ~y)− ∂νAµ(t, ~y) = Fµν(t, ~y) + F ~v
µν(t, ~y) , (I.12)
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Fµν(t, ~y)
∣∣
t=0

restores the Cauchy data appropriate for a state in C ~vL.W. . The state considered

here corresponds to a velocity ~v of the particle and Cauchy data

Aµ(0, ~y) = A~vL.W.
µ (0, ~y) + hµ(0, ~y) , (I.13)

Ȧµ(0, ~y) = Ȧ~vL.W.
µ (0, ~y) + ḣµ(0, ~y) , (I.14)

differing from those defining F ~v
µν(0, ~y).

In the Coulomb gauge the free field in (I.11) has the form

F0i(t, ~y) = −∂0A
as
i (t, ~y) + o(

1

|~y|2
) (I.15)

Fij(t, ~y) = −∂iA
as
j (t, ~y) + ∂jA

as
i (t, ~y) + o(

1

|~y|2
) (I.16)

where

~Aas.(t, ~y) := α
1
2

∑
λ

∫
d3k√
|~k|

{ ~v · ~ε ∗~k,λ

|~k| 32 (1− ~v · k̂)
~ε~k,λe

−i~k·~y+i|~k|t + c.c.
}

(I.17)

−α
1
2

∑
λ

∫
d3k√
|~k|

{ ~vL.W. · ~ε ∗~k,λ

|~k| 32 (1− ~vL.W. · k̂)
~ε~k,λe

−i~k·~y+i|~k|t + c.c.
}
.

The classes C ~vL.W. of states of the classical system (indexed by ~vL.W.) correspond to supers-

election sectors in the quantized theory; see e.g. [3]. In particular, the Fock representation,

which is the usual (but not the only possible) choice for the representation of the algebra

of photon creation- and annihilation operators, corresponds to ~vL.W. = 0. This implies that,

in the Fock representation, an asymptotic background radiation must be expected for all

values ~v 6= 0 of the asymptotic velocity of the electron. In particular, after replacing the

classical velocity ~v with the spectral values of the quantum operators ~vout/in (where ~vout/in

is the asymptotic velocity of an outgoing or incoming asymptotic electron, respectively), the

background field (I.17), with ~vL.W. = 0, corresponds to the background radiation described

by the coherent (non-Fock) representations of the asymptotic photon algebra labeled by

~vout/in. This is explained in detail in Section VI; see also Section III.5.
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II. Definition of the model

The Hilbert space of pure state vectors of the system consisting of one non-relativistic

electron interacting with the quantized electromagnetic field is given by

H := Hel ⊗ F , (II.1)

where Hel = L2(R3) is the Hilbert space for a single electron; (for expository convenience, we

neglect the spin of the electron). The Fock space used to describe the states of the transverse

modes of the quantized electromagnetic field (the photons) in the Coulomb gauge is given

by

F :=
∞⊕

N=0

F (N) , F (0) = C Ω , (II.2)

where Ω is the vacuum vector (the state of the electromagnetic field without any excited

modes), and

F (N) := SN

N⊗
j=1

h , N ≥ 1 , (II.3)

where the Hilbert space h of a single photon is

h := L2(R3 × Z2) . (II.4)

Here, R3 is momentum space, and Z2 accounts for the two independent transverse polar-

izations (or helicities) of a photon. In (II.3), SN denotes the orthogonal projection onto

the subspace of
⊗N

j=1 h of totally symmetric N -photon wave functions, to account for the

fact that photons satisfy Bose-Einstein statistics. Thus, F (N) is the subspace of F of state

vectors for configurations of exactly N photons. It is convenient to represent the Hilbert

space H as the space of square-integrable wave functions on the electron position space R3

with values in the photon Fock space F , i.e.,

H ∼= L2(R3 ; F) . (II.5)

In this paper, we use units such that Planck’s constant ~, the speed of light c, and the

mass of the electron are equal to unity. The dynamics of the system is generated by the

Hamiltonian

H :=

(
− i~∇~x + α1/2 ~A(~x)

)2

2
+ Hf . (II.6)

The multiplication operators ~x ∈ R3 correspond to the position of the electron. The electron

momentum operator is given by ~p = −i~∇~x; α ∼= 1/137 is the feinstructure constant (which,

in this paper, is treated as a small parameter), ~A(~x) denotes the (ultraviolet regularized)
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vector potential of the transverse modes of the quantized electromagnetic field at the point

~x (the electron position) in the Coulomb gauge,

~∇~x · ~A(~x) = 0 . (II.7)

Hf is the Hamiltonian of the quantized, free electromagnetic field, given by

Hf :=
∑
λ=±

∫
d3k |~k| a∗~k,λ

a~k,λ , (II.8)

where a∗~k,λ
and a~k,λ are the usual photon creation- and annihilation operators, which satisfy

the canonical commutation relations

[a~k,λ , a
∗
~k′,λ′

] = δλλ′ δ(~k − ~k′) , (II.9)

[a#
~k,λ
, a#

~k′,λ′
] = 0 , (II.10)

with a# = a or a∗. The vacuum vector Ω obeys the condition

a~k,λ Ω = 0 , (II.11)

for all ~k,~k′ ∈ R3 and λ, λ′ ∈ Z2 ≡ {+,−}.
The quantized electromagnetic vector potential is given by

~A(~y) :=
∑
λ=±

∫
BΛ

d3k√
|~k|

{
~ε~k,λe

−i~k·~ya∗~k,λ
+ ~ε ∗~k,λ

ei~k·~ya~k,λ

}
, (II.12)

where ~ε~k,−, ~ε~k,+ are photon polarization vectors, i.e., two unit vectors in R3 ⊗ C satisfying

~ε ∗~k,λ
· ~ε~k,µ = δλµ , ~k · ~ε~k,λ = 0 , (II.13)

for λ, µ = ±. The equation ~k · ~ε~k,λ = 0 expresses the Coulomb gauge condition. Moreover,

BΛ is a ball of radius Λ centered at the origin in momentum space; Λ represents an ultraviolet

cutoff that will be kept fixed throughout our analysis. The vector potential defined in (II.12)

is thus regularized in the ultraviolet.

Throughout this paper, it will be assumed that Λ ≈ 1 (the rest energy of an electron),

and that α is sufficiently small. Under these assumptions, the Hamitonian H is selfadjoint

on D(H0), the domain of definition of the operator

H0 :=
(−i~∇~x)

2

2
+ Hf . (II.14)

The perturbation H −H0 is small in the sense of Kato.

The operator measuring the total momentum of a state of the system consisting of the

electron and the electromagnetic field is given by

~P := ~p+ ~P f , (II.15)
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where ~p = −i~∇~x is the momentum operator for the electron, and

~P f :=
∑
λ=±

∫
d3k ~k a∗~k,λ

a~k,λ (II.16)

is the momentum operator for the radiation field.

The operators H and ~P are essentially selfadjoint on the domain D(H0), and since

the dynamics is invariant under translations, they commute: [H, ~P ] = 0. The Hilbert space

H can be decomposed on the joint spectrum, R3, of the component-operators of ~P . Their

spectral measure is absolutely continuous with respect to Lebesgue measure,

H :=

∫ ⊕
H~P d

3P , (II.17)

where each fiber space H~P is a copy of Fock space F .

Remark: Throughout this paper, the symbol ~P stands for both a variable in R3 and a vector

operator in H, depending on the context. Similarly, a double meaning is also associated with

functions of the total momentum operator.

To each fiber space H~P there corresponds an isomorphism

I~P : H~P −→ F b , (II.18)

where F b is the Fock space corresponding to the annihilation- and creation operators b~k,λ,

b∗~k,λ
, where b~k,λ is given by ei~k·~xa~k,λ, and b∗~k,λ

by e−i~k·~xa∗~k,λ
, with vacuum Ωf = I~P (ei ~P ·~x), where

~x is the electron position. To define I~P more precisely, we consider an (improper) vector

ψ(f1,...,fn;~P ) ∈ H~P with a definite total momentum, which describes an electron and n photons

in a product state. Its wave function, in the variables (~x;~k1, . . . , ~kn;λ1, . . . , λn), is given by

ei(~P−~k1−···−~kn)·~x 1

n!

∑
p∈Pn

fp(1)(~k1;λp(1)) · · · fp(n)(~kn;λp(n)) , (II.19)

Pn being the group of permutations of n elements. The isomorphism I~P acts by way of

I~P

(
ei(~P−~k1−···−~kn)·~x 1

n!

∑
Pn

fp(1)(~k1;λp(1)) · · · fp(n)(~kn;λp(n))
)

= (II.20)

=
1√
n!

∫
d3k′1 . . . d

3k′n f1(~k
′
1;λ1) · · · fn(~k′n;λn) b∗~k′1,λ1

· · · b∗~k′n,λn
Ωf . (II.21)

In the sequel, we will also use the notation fλ(~k) for f(~k, λ).

The Hamiltonian H maps each fiber space H~P into itself, i.e., it can be written as

H =

∫
H~P d

3P , (II.22)
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where

H~P : H~P −→ H~P . (II.23)

Written in terms of the operators b~k,λ, b
∗
~k,λ

, and of the variable ~P , the fiber Hamiltonian H~P

has the form

H~P :=

(
~P − ~P f + α1/2 ~A

)2

2
+ Hf , (II.24)

where

~P f :=
∑

λ

∫
d3k ~k b∗~k,λ

b~k,λ , (II.25)

Hf :=
∑

λ

∫
d3k |~k| b∗~k,λ

b~k,λ , (II.26)

and

~A :=
∑

λ

∫
BΛ

d3k√
|~k|

{
b∗~k,λ

~ε~k,λ + ~ε ∗~k,λ
b~k,λ

}
. (II.27)

Let

S := { ~P ∈ R3 : |~P | < 1

3
} . (II.28)

In order to give precise meaning to the constructions used in this work, we restrict the total

momentum ~P to the set S, and we introduce an infrared cut-off at an energy σ > 0 in the

vector potential. The removal of the infrared cutoff in the construction of scattering states

is the main problem solved in this paper. The restriction of ~P to S guarantees that the

propagation speed of a dressed electron is strictly smaller than the speed of light. We start

by studying a regularized fiber Hamiltonian given by

Hσ
~P

:=

(
~P − ~P f + α1/2 ~Aσ

)2

2
+ Hf (II.29)

acting on the fiber space H~P , for ~P ∈ S, where

~Aσ :=
∑

λ

∫
BΛ\Bσ

d3k√
|~k|

{
b∗~k,λ

~ε~k,λ + ~ε ∗~k,λ
b~k,λ

}
, (II.30)

and where Bσ is a ball of radius σ.

Remark: In a companion paper [11], we construct dressed one-electron states of fixed

momentum given by the ground state vectors Ψ
σj

~P
of the Hamiltonians H

σj

~P
, and we compare

ground state vectors Ψ
σj

~P
, Ψ

σj′

~P ′ corresponding to different fiber Hamiltonians H
σj

~P
, H

σj′

~P ′ with

~P 6= ~P ′. We compare these ground state vectors as vectors in the Fock space F b. In the

sequel, we use the expression

‖Ψσj

~P
−Ψ

σj′

~P ′ ‖F (II.31)
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as an abbreviation for

‖I~P (Ψ
σj

~P
)− I~P ′(Ψ

σj′

~P ′ )‖F ; (II.32)

‖ · ‖F stands for the Fock norm. Hölder continuity properties of Ψσ
~P

in σ and in ~P are proven

in [11]. These properties play a crucial role in the present paper.

II.1. Summary of contents. In Section III, time-dependent vectors ψh,κ(t) approximating

scattering states are constructed, and the main results of this paper are described, along

with an outline of infraparticle scattering theory. In Sections IV and V, ψh,κ(t) is shown to

converge to a scattering state ψ
out/in
h,κ in the Hilbert space H, as time t tends to infinity. This

result is based on mathematical techniques introduced in [24]. The vector ψ
out/in
h,κ represents

a dressed electron with a wave function h on momentum space whose support is contained

in the set S (see details in Section III.1), accompanied by a cloud of soft photons described

by a Bloch-Nordsieck operator, and with an upper cutoff κ imposed on photon frequencies.

This cutoff can be chosen arbitrarily.

In Section VI, we construct the scattering subspaces Hout/in. Vectors in these sub-

spaces are obtained from certain subspaces, H̊out/in, by applying ”hard” asymptotic photon

creation operators. These spaces carry representations of the algebras Aout/in
ph and Aout/in

el of

asymptotic photon creation- and annihilation operators and asymptotic electron observables,

respectively, which commute with each other. The latter property proves asymptotic decou-

pling of the electron and photon dynamics. We rigorously establish the coherent nature and

the infrared properties of the representation of Aout/in
ph identified by Bloch and Nordsieck in

their classic paper, [2].

In a companion paper [11], we establish the main spectral ingredients for the construc-

tion and convergence of the vectors {Ψ~P ,σ}, as σ tends to 0. These results are obtained with

the help of a new multiscale method introduced in [23], to which we refer the reader for some

details of the proofs.

In the Appendix, we prove some technical results used in the proofs.
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III. Infraparticle Scattering States

Infraparticle scattering theory is concerned with the asymptotic dynamics in QFT

models of infraparticles and massless fields. Contrary to theories with a non-vanishing mass

gap, the picture of asymptotically freely moving particles in the Fock representation is not

valid, due to the inseparability of the dynamics of charged massive particles and the soft

modes of the massless asymptotic fields.

Our starting point is to study the (dressed one-particle) states of a (non-relativistic)

electron when the interactions with the soft modes of the photon field are turned off. We

then analyze their limiting behavior when this infrared cut-off is removed. This amounts to

studying vectors ψσ, σ > 0, in the Hilbert space H that are solutions to the equation

Hσ ψσ = Eσ(~P )ψσ , (III.1)

where Hσ =
∫ ⊕

Hσ
~P
d3P , and Eσ(~P ) is a function of the vector operator ~P ; Eσ(~P ) is

the electron energy function defined more precisely in Section III.1. Since in our model

non-relativistic matter is coupled to a relativistic field, the form of Eσ(~P ) is not fixed by

symmetry, except for rotation invariance. Furthermore, the solutions of (III.1) must be

restricted to vectors of the form

ψσ(h) =

∫
h(~P ) Ψσ

~P
d3P , (III.2)

where the support of h is contained in a ball centered at ~P = 0, chosen such that |~∇Eσ(~P )| <
1, as a function of ~P . This requirement imposes the constraint that the maximal group

velocity of the electron, which, a priori, is not bounded from above in our non-relativistic

model, is bounded by the speed of light.

The guiding principle motivating our analysis of limiting or improper one-particle

states, ψσ, is that refined control of the infrared singularities, which push these vectors

out of the space H, as σ → 0, should enable one to characterize the soft photon cloud en-

countered in the scattering states. The analysis of Bloch and Nordsieck, [2], suggests that the

infrared behavior of the state describing the soft photons accompanying an electron should

be singular (i.e., not square-integrable at the origin in photon momentum space), and that it

should be determined by the momentum of the asymptotic electron. In mathematical terms,

this means that the asymptotic electron velocity is expected to determine an asymptotic

Weyl operator (creating a cloud of asymptotic photons), which when applied to a dressed

one-electron state ψ yields a well defined vector in the Hilbert space H. This vector is ex-

pected to describe an asymptotic electron with wave function h surrounded by a cloud of
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infinitely many asymptotic free photons, in accordance with the observations sketched in

(I.1) – (I.17).

Our goal in this paper is to translate this physical picture into rigorous mathematics,

following suggestions made in [15] and methods developed in [23, 24, 9, 10].

III.1. Key spectral properties. In our construction of scattering states, we make extensive

use of a number of spectral properties of our model proven in [11], and summarized in

Theorem III.1 below; (they are analogous to those used in the analysis of Nelson’s model in

[24]).

We define the energy of a dressed one-electron state of momentum ~P by

Eσ
~P

= inf specHσ
~P

, E~P = inf specH~P = Eσ=0
~P

. (III.3)

We refer to Eσ
~P

as the ground state energy of the fiber Hamiltonian Hσ
~P
. We assume that the

finestructure constant α is so small that

|~∇Eσ
~P
| < νmax < 1 (III.4)

for all ~P ∈ S := {~P ∈ R3 : |~P | < 1
3
}, for some constant νmax < 1, uniformly in σ.

Corresponding to ~∇Eσ
~P
, we introduce a Weyl operator

Wσ(~∇Eσ
~P
) := exp

(
α

1
2

∑
λ

∫
BΛ\Bσ

d3k
~∇Eσ

~P

|~k| 32 δ~P ,σ(k̂)
· (~ε~k,λb

∗
~k,λ
− h.c.)

)
, (III.5)

where

δ~P ,σ(k̂) := 1 − ~∇Eσ
~P
·
~k

|~k|
, (III.6)

acting on H~P , which is unitary for σ > 0. We consider the transformed fiber Hamiltonian

Kσ
~P

:= Wσ(~∇Eσ
~P
)Hσ

~P
W ∗

σ (~∇Eσ
~P
) . (III.7)

We note that conjugation by Wσ(~∇Eσ
~P
) acts on the creation- and annihilation operators as

a linear Bogoliubov transformation (translation)

Wσ(~∇Eσ
~P
) b#~k,λ

W ∗
σ (~∇Eσ

~P
) = b#~k,λ

− α1/2 1σ,Λ(~k)

|~k| 32 δ~P ,σ(k̂)
~∇Eσ

~P
· ~ε #

~k,λ
, (III.8)

where 1σ,Λ(~k) stands for the characteristic function of the set BΛ \ Bσ. Our methods rely

on proving regularity properties in σ and ~P of the ground state vector, Φσ
~P
, and of the

ground state energy, Eσ
~P
, of Kσ

~P
. These regularity properties are summarized in the following

theorem, which is the main result of the companion paper [11].

Theorem III.1. For ~P ∈ S and for α > 0 sufficiently small, the following statements hold.
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(I 1) The energy Eσ
~P

is a simple eigenvalue of the operator Kσ
~P

on F b. Let Bσ := {~k ∈
R3 | |~k| ≤ σ}, and let Fσ denote the Fock space over L2((R3 \ Bσ) × Z2). Likewise,

we define Fσ
0 to be the Fock space over L2(Bσ × Z2); hence F b = Fσ ⊗ Fσ

0 . On Fσ,

the operator Kσ
~P

has a spectral gap of size ρ−σ or larger, separating Eσ
~P

from the rest

of its spectrum, for some constant ρ− (depending on α), with 0 < ρ− < 1.

The contour

γ := {z ∈ C ||z − Eσ
~P
| = ρ−σ

2
} , σ > 0 (III.9)

bounds a disc which intersects the spectrum of Kσ
~P

in only one point, {Eσ
~P
}. The

ground state vectors of the operators Kσ
~P

are given by

Φσ
~P

:=

1
2π i

∫
γ

1
Kσ

~P
−z
dzΩf

‖ 1
2π i

∫
γ

1
Kσ

~P
−z
dzΩf‖F

(III.10)

and converge strongly to a non-zero vector Φ~P ∈ F b, in the limit σ → 0. The rate of

convergence is of order σ
1
2
(1−δ), for any 0 < δ < 1.

The dependence of the ground state energies Eσ
~P

of the fiber Hamiltonians Kσ
~P

on

the infrared cutoff σ is characterized by the following estimates.

|Eσ
~P
− Eσ′

~P
| ≤ O(σ) , (III.11)

and

| ~∇Eσ
~P
− ~∇Eσ′

~P
| ≤ O(σ

1
2
(1−δ)) , (III.12)

for any 0 < δ < 1, with σ > σ′ > 0.

(I 2) The following Hölder regularity properties in ~P ∈ S hold uniformly in σ ≥ 0:

‖Φσ
~P
− Φσ

~P+∆~P
‖F ≤ Cδ′|∆~P |

1
4
−δ′ (III.13)

and

|~∇Eσ
~P
− ~∇Eσ

~P+∆~P
| ≤ Cδ′′|∆~P |

1
4
−δ′′ , (III.14)

for 0 < δ′′ < δ′ < 1
4
, with ~P , ~P + ∆~P ∈ S, where Cδ′ and Cδ′′ are finite constants

depending on δ′ and δ′′, respectively.

(I 3) Given a positive number νmin, there are numbers rα = νmin +O(α) > 0 and νmax < 1

such that, for ~P ∈ S \ Brα and for α sufficiently small,

1 > νmax ≥ |~∇Eσ
~P
| ≥ νmin > 0 , (III.15)

uniformly in σ.
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(I 4) For ~P ∈ S and for any ~k 6= 0, the following inequality holds uniformly in σ, for α

small enough:

Eσ
~P−~k

> Eσ
~P
− Cα|~k| , (III.16)

where Eσ
~P−~k

:= inf specH~P−~k and 1
3
< Cα < 1, with Cα → 1

3
as α→ 0.

(I 5) For ~P ∈ S, one has that

‖ b~k,λΨ
σ
~P
‖ ≤ C α1/2 1σ,Λ(~k)

|~k|3/2
, (III.17)

where Ψσ
~P

is the ground state of Hσ
~P
; see Lemma 6.1 of [10] which can be extended to

~k ∈ R3 using (I 4).

Detailed proofs of Theorem III.1 based on results in [23, 10] are given in [11].

III.2. Definition of the approximating vector Ψh,κ(t). We construct infraparticle scat-

tering states by using a time-dependent approach to scattering theory. We define a time-

dependent approximating vector ψh,κ(t) that converges to an asymptotic vector, as t→∞.

It describes an electron with wave function h (whose momentum space support is contained in

S), and a cloud of asymptotic free photons with an upper photon frequency cutoff 0 < κ < Λ.

This interpretation will be justified a posteriori.

We closely follow an approach to infraparticle scattering theory developed for Nelson’s

model in [24], (see also [15]). In the context of the present paper, our task is to give a

mathematically rigorous meaning to the formal expression

Φout
κ (h) := lim

t→∞
lim
σ→0

eiHtWσ(~v(t), t) e−iHσt
ψσ(h) , (III.18)

where

Wσ(~v(t), t) := exp
(
α

1
2

∫
Bκ\Bσ

d3k√
|~k|

~v(t) · {~ε~k,λa
∗
~k,λ
e−i|~k|t − ~ε ∗~k,λ

a~k,λe
i|~k|t}

|~k|(1− k̂ · ~v(t))

)
.

The operator ~v(t) is not known a priori; but, in the limit t → ∞, it must converge to

the asymptotic velocity operator of the electron. The latter is determined by the operator

~∇E(~P ), applied to the (non-Fock) vectors Ψ~P . This can be seen by first considering the

infrared regularized model, with σ > 0, which has dressed one-electron states ψσ(h) in H,

and by subsequently passing to the limit σ → 0. Formally, for σ → 0, the Weyl operator

eiHtWσ(~v(t), t) e−iHσt
(III.19)

is an interpolating operator used in the L.S.Z. (Lehmann-Symanzik-Zimmermann) approach

to scattering theory for the electromagnetic field. In the definition of this operator the

photon wave functions are evolved backwards in time with the free evolution, and the photon
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creation- and annihilation operators are evolved forward in time with the interacting time

evolution. Moreover, the photon wave functions in (III.19) coincide with the wave functions

in the Weyl operator Wσ(~∇Eσ
~P
) defined in (III.5), after replacing the operator ~∇E(~P ) by the

operator ~v(t). We stress that, while the Weyl operator Wσ(~∇Eσ
~P
) leaves the fiber spaces H~P

invariant, the Weyl operator Wσ(~v(t), t) is expressed in terms of the operators {a , a∗}, as it

must be when describing real photons in a scattering process, and hence does not preserve

the fiber spaces.

Guided by the expected relation between ~v(t) and ~∇Eσ(~P ), as t → ∞ and σ → 0,

two key ideas used to make (III.18) precise are to render the infrared cut-off time-dependent,

with σt → 0, as t → ∞, and to discretize the ball S = {~P ∈ R3 | |~P | < 1
3
}, with a grid

size decreasing in time t. This discretization also applies to the velocity operator ~v(t) in

expression (III.18).

The existence of infraparticle scattering states in H is established by proving that the

corresponding sequence of time-dependent approximating scattering states, which depend

on the cutoff σt and on the discretization, defines a strongly convergent sequence of vectors

in H. This is accomplished by appropriately tuning the convergence rates of σt and of the

discretization of S. Our sequence of approximate infraparticle scattering states is defined as

follows:

i) We consider a wave function h with support in a region R contained in S \ Brα ; (see

condition (I 3) in Theorem III.1). We introduce a time-dependent cell partition G (t)

of R. This partition is constructed as follows:

At time t, the linear dimension of each cell is L
2n , where L is the diameter of R,

and n ∈ N is such that

(2n)
1
ε ≤ t < (2n+1)

1
ε , (III.20)

for some ε > 0 to be fixed later. Thus, the total number of cells in G (t) is N(t) = 23n,

where n = blog2 t
εc; (bxc extracts the integer part of x). By G (t)

j , we denote the jth

cell of the partition G (t).

ii) For each cell, we consider a one-particle state of the Hamiltonian Hσt

ψ
(t)
j,σt

:=

∫
G

(t)
j

h(~P )Ψσt

~P
d3P (III.21)

where

• h(~P ) ∈ C1
0(S \ Brα), with supph ⊆ R;
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• σt := t−β, for some exponent β (> 1) to be fixed later;

• In (III.21), the ground state vector, Ψσt

~P
, of Hσt

~P
is defined by

Ψσt

~P
:= W ∗

σt
(∇Eσt

~P
) Φσt

~P
, (III.22)

where Φσt

~P
is the ground state of Kσt

~P
; (see Theorem III.1).

iii) With each cell G (t)
j we associate a soft-photon cloud described by the following ”LSZ

(Lehmann-Symanzik-Zimmermann) Weyl operator”

eiHtWσt(~vj, t) e
−iHσt t , (III.23)

where

Wσt(~vj, t) := exp
(
α

1
2

∫
Bκ\Bσt

d3k√
|~k|

~vj · {~ε~k,λa
∗
~k,λ
e−i|~k|t − ~ε ∗~k,λ

a~k,λe
i|~k|t}

|~k|(1− k̂ · ~vj)

)
. (III.24)

• Here κ, with 0 < κ ≤ Λ, is an arbitrary (but fixed) soft-photon energy threshold.

• ~vj ≡ ~∇Eσt(~P ∗
j ) is the c-number vector corresponding to the value of the ”veloc-

ity” ~∇Eσt(~P ) in the center, ~P ∗
j , of the cell G (t)

j .

iv) For each cell, we consider a time-dependent phase factor

eiγσt (~vj ,~∇E
σt
~P

,t) , (III.25)

with

γσt(~vj, ~∇Eσt

~P
, t) := −α

∫ t

1

~∇Eσt

~P
·
∫
B

σS
τ
\Bσt

~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
τ − |~k|τ) d3k dτ , (III.26)

and

Σl
~vj

(~k) := 2
∑

l′

(δl,l′ −
klkl′

|~k|2
) vl′

j

1

|~k|2(1− k̂ · ~vj)
. (III.27)

Here, σS
τ := τ−θ, and the exponent 0 < θ < 1 will be chosen later. Note that, in

(III.25), (III.26), ~∇Eσt

~P
is interpreted as an operator.

v) The approximate scattering state at time t is given by the expression

ψh,κ(t) := eiHt

N(t)∑
j=1

Wσt(~vj, t) e
iγσt (~vj ,~∇E

σt
~P

,t) e−iE
σt
~P

tψ
(t)
j,σt

, (III.28)

where N(t) is the number of cells in G (t).

The role played by the phase factor eiγσt (~vj ,~∇E
σt
~P

,t) is similar to that of the Coulomb

phase in Coulomb scattering. However, in the present case, the phase has a limit, as t→∞,

and is introduced to control an oscillatory term in the Cook argument which is not absolutely
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convergent; (see Section III.3).

III.3. Statement of the main result. The main result of this paper is Theorem III.2,

below, from which the asymptotic picture described in Section III.5, below, emerges. It

relies on the assumptions summarized in the following hypothesis.

Main Assumption III.1. The following assumptions hold throughout this paper:

(1) The conserved momentum ~P takes values in S; see (II.28).

(2) The finestructure constant α satisfies α < αc, for some small constant αc � 1

independent of the infrared cutoff.

(3) The wave function h is supported in a set R and is of class C1, where R is contained

in S \ Brα, as indicated in Fig. 1, and rα is introduced in (III.15).

Figure 1. R can be described as a union of cubes with sides of length L
2n0

, for some n0 <∞.
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Theorem III.2. Given the Main Assumption III.1, the following holds: There exist positive

real numbers β > 1, θ < 1 and ε > 0 such that the limit

s− lim
t→+∞

ψh,κ(t) =: ψ
(out)
h,κ (III.29)

exists as a vector in H, and ‖ψ(out)
h,κ ‖2 =

∫
|h(~P )|2d3P . Furthermore, the rate of convergence

is at least of order t−ρ′, for some ρ′ > 0.

We note that this result corresponds to Theorem 3.1 of [24] for Nelson’s model.

The limiting state is the desired infraparticle scattering state without infrared cut-offs.

We shall verify that {ψh,κ(t)} is a Cauchy sequence in H, as t→∞; (or t→ −∞).

In Section III.4, we outline the key mechanisms responsible for the convergence of

the approximating vectors ψh,κ(t), as t → ∞. We note that, in (III.29), three different

convergence rates are involved:

• The rate t−β related to the fast infrared cut-off σt;

• the rate t−θ, related to the slow infrared cut-off σS
t (see (III.26));

• the rate t−ε of the grid size of the cell partition.

We anticipate that, in order to control the interaction,

• β has to be larger than 1, due to the time-energy uncertainty principle.

• The exponent θ has to be smaller than 1, in order to ensure the cancelation of some

“infrared tails” discussed in Section IV.

• The exponent ε, which controls the rate of refinement of the cell decomposition, will

have to be chosen small enough to be able to prove certain decay estimates.
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III.4. Strategy of convergence proof. Here we outline the key mechanisms used to prove

that the approximating vectors ψh,κ(t) converge to a nonzero vector in H, as t→ ±∞.

Among other things, we will prove that

lim
t→∞

‖ψh,κ(t)‖ = ‖h‖L2 := (

∫
|h(~P )|2 d3P )

1
2 . (III.30)

From its definition, see (III.28), one sees that the square of the norm of the vector ψh,κ(t)

involves a double sum over cells of the partitions G (t), i.e.,

‖ψh,κ(t)‖2 =

N(t)∑
l,j=1

〈
eiγσt (~vl,∇E

σt
~P

,t) e−iE
σt
~P

tψ
(t)
l,σt

, W∗
σt

(~vl, t)Wσt(~vj, t) e
iγσt (~vj ,∇E

σt
~P

,t) e−iE
σt
~P

tψ
(t)
j,σt

〉
,

(III.31)

where the individual terms, labeled by (l, j), are inner products between vectors labeled by

cells G (t)
l and G (t)

j of G (t).

A heuristic argument to see where (III.30) comes from is as follows. Assuming that

• the vectors ψh,κ(t) converge to an asymptotic vector of the form

lim
t→±∞

lim
σ→0

eiHtWσ(~v(t), t) e−iHσt
ψσ(h) = Wout/in(~v(±∞))ψ(h) , (III.32)

where

Wout/in(~v(±∞)) := exp
(
α

1
2

∫
Bκ

d3k√
|~k|

~v(±∞) · {~ε~k,λa
out/in ∗
~k,λ

− ~ε ∗~k,λ
a

out/in
~k,λ

}

|~k|(1− k̂ · ~v(±∞))

)
,

and a
out/in ∗
~k,λ

, a
out/in
~k,λ

are the creation- and annihilation operators of the asymptotic

photons;

• the operators ~v(±∞) commute with the algebra of asymptotic creation- and anni-

hilation operators {aout/in ∗
~k,λ

, a
out/in
~k,λ

}; (this can be expected to be a consequence of

asymptotic decoupling of the photon dynamics from the dynamics of the electron);

• the restriction of the asymptotic velocity operators, ~v(±∞), to the improper dressed

one-electron state is given by the operator ~∇E(~P ), i.e.,

~v(±∞)Ψ~P ≡ ~∇E(~P )Ψ~P ; (III.33)

then, the two vectors

Wσt(~vj, t) e
iγσt (~vj ,∇E

σt
~P

,t) e−iE
σt
~P

t ψ
(t)
j,σt

and Wσt(~vl, t) e
iγσt (~vl,∇E

σt
~P

,t) e−iE
σt
~P

tψ
(t)
l,σt

(III.34)

corresponding to two different cells of G (t) (i.e., j 6= l) turn out to be orthogonal in the limit

t→ ±∞. One can then show that the diagonal terms in the sum (III.31) are the only ones

that survive in the limit t→∞. The fact that their sum converges to ‖h‖2
L2 is comparatively

easy to prove.
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A mathematically precise formulation of this mechanism is presented in Section IV. In

Section IV.1, part A., the analysis of the scalar products between the cell vectors in (III.34)

is reduced to the study of an ODE. To prove (III.30), we invoke the following properties of

the one-particle states ψ
(t)
j,σt

and ψ
(t)
l,σt

located in the j-th and l-th cell:

• Their spectral supports with respect to the momentum operator ~P are disjoint up to

sets of measure zero.

• They are vacua for asymptotic annihilation operators, as long as an infrared cut-off

σt for a fixed time t is imposed: For Schwartz test functions gλ, we define

aout/in
σt

(g) := lim
s→±∞

eiHσts
∑

λ

∫
a~k,λ g

λ(~k) ei|~k|s e−iHσts d3k , (III.35)

on the domain of Hσt .

An important step in the proof of (III.30) is to control the decay in time of the off-

diagonal terms. After completion of this step, one can choose the rate, t−ε, by which the

diameter of the cells of the partition G (t) tends to 0 in such a way that the sum of the

off-diagonal terms vanishes, as t→∞. Precise control is achieved in Section IV.1, part B.,

where we invoke Cook’s argument and analyze the decay in time s of

d

ds

(
eiHσtsWσt(~vj, s) e

iγσt (~vj ,~∇E
σt
~P

,s) e−iE
σt
~P

sψ
(t)
j,σt

)
(III.36)

= i eiHσts[Hσt
I , Wσt(~vj, s)] e

iγσt (~vj ,~∇E
σt
~P

,s) e−iE
σt
~P

s ψ
(t)
j,σt

(III.37)

+ i eiHσtsWσt(~vj, s)
dγσt(~vj,∇E~P , s)

ds
eiγσt (~vj ,~∇E

σt
~P

,s) e−iE
σt
~P

s ψ
(t)
j,σt

, (III.38)

for a fixed infrared cut-off σt, and a fixed partition. As we will show, the term in (III.37)

can be written (up to a unitary operator) as

α
1
2

∫
d3y

{
~Jσt(t, ~y)

∫
Bκ\Bσt

~Σ~vj
(~q) cos(~q · ~y − |~q|s) d3q

}
ψ

(t)
j,σt

(III.39)

plus subleading terms, where ~Jσt(t, ~y) is essentially the electron current, which is proportional

to the velocity operator

i [Hσt , ~x] = ~p + α
1
2 ~Aσt(~x) . (III.40)

In (III.39), the electron current is smeared out with the vector function

~gt(s, ~y) :=

∫
Bκ\Bσt

~Σ~vj
(~q) cos(~q · ~y − |~q|s) d3q , (III.41)

which solves the wave equation

�s,~y ~gt(s, ~y) = 0 , (III.42)
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and is then applied to the one-particle state ψ
(t)
j,σt

. Because of the dispersive properties of

the dynamics of the system, the resulting vector is expected to converge to 0 in norm at an

integrable rate, as s→∞. An intuitive explanation proceeds as follows:

i) A vector function ~gt(s, ~y) that solves (III.42) propagates along the light cone, and

sup~y∈R3 |~gt(s, ~y)| decays in time like s−1, while a much faster decay is observed when

~y is restricted to the interior of the light cone.

ii) Because of the support in ~P of the vector ψ
(t)
j,σt

, the propagation of the electron current

in (III.37) is limited to the interior of the light cone, up to subleading tails.

Combination of i) and ii) is expected to suffice to exhibit decay of the vector norm of (III.37)

and to complete our argument. An important refinement of this reasoning process, involving

the term (III.38), is, however, necessary:

A mathematically precise version of statement ii) is as follows: Let χh be a smooth,

approximate characteristic function of the support of h. We will prove a propagation estimate∥∥∥χh(
~x

s
) eiγσt (~vj ,~∇E

σt
~P

,s) e−iE
σt
~P

s ψ
(t)
j,σt

−χh(~∇Eσt

~P
) eiγσt (~vj ,~∇E

σt
~P

,s) e−iE
σt
~P

s ψ
(t)
j,σt

∥∥∥
≤ 1

sν

1

t
3ε
2

| ln(σt)| , (III.43)

as s → ∞, where ν > 0 is independent of ε. Using result (I 3) of Theorem III.1, and our

assumption on the support of h formulated in point ii) of Section III.2, this estimate provides

sufficient control of the asymptotic dynamics of the electron.

An important modification of the argument above is necessary because of the depen-

dence of

~gt(s, ~y) :=

∫
Bκ\Bσt

~Σ~vj
(~q) cos(~q · ~y − |~q|s) d3q , (III.44)

on t, which cannot be neglected even if ~y is in the interior of the light cone. In order to

exhibit the desired decay, it is necessary to split ~gt(s, ~y) into two pieces,∫
Bκ\BσS

s

~Σ~vj
(~q) cos(~q · ~y − |~q|s)d3q (III.45)

and ∫
B

σS
s
\Bσt

~Σ~vj
(~q) cos(~q · ~y − |~q|s) d3q (III.46)

for s such that σS
s > σt, where σS

s = s−θ, with 0 < θ < 1. (The same procedure will also

be used in (III.49), below.) The function (III.45) has good decay properties inside the light

cone. Expression (III.39), with ~gt(s, ~y) replaced by (III.45), can be controlled by standard
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dispersive estimates. The other contribution, proportional to (III.46), is in principle singular

in the infrared region, but is canceled by (III.38). This can be seen by using a propagation

estimate similar to (III.43). This strategy has been designed in [24]. However, because of

the vector nature of the interaction in non-relativistic QED, the cancellation in our proof is

technically more subtle than the one in [24].

After having proven the uniform boundedness of the norms of the approximating vec-

tors ψh,κ(t), one must prove that they define a Cauchy sequence in H. To this end, we

compare these vectors at two different times, t2 > t1 (for the limit t → ∞), and split their

difference into

ψh,κ(t1)− ψh,κ(t2) = ∆ψ(t2, σt2 ,G
(t2) → G (t1)) + ∆ψ(t2 → t1, σt2 ,G

(t1))

+ ∆ψ(t1, σt2 → σt1 ,G
(t1)) , (III.47)

where the three terms on the r.h.s. correspond to

I) changing the partition G (t2) → G (t1) in ψh,κ(t2):

∆ψ(t2, σt2 ,G
(t2) → G (t1))

:= eiHt2

N(t1)∑
j=1

Wσt2
(~vj, t2) e

iγσt2
(~vj ,~∇E

σt2
~P

,t2)e−iE
σt2
~P

t2 ψ
(t1)
j,σt2

(III.48)

− eiHt2

N(t1)∑
j=1

∑
l(j)

Wσt2
(~vl(j), t2)e

iγσt2
(~vl(j),~∇E

σt2
~P

,t2) e−iE
σt2
~P

t2 ψ
(t2)
l(j),σt2

,

where l(j) labels all cells of G (t2) contained in the j-th cell G (t1)
j of G (t1). Moreover,

~vl(j) ≡ ~∇Eσt2

~P ∗
l(j)

and ~vj ≡ ~∇Eσt1

~P ∗
j

;

II) subsequently changing the time, t2 → t1, for the fixed partition G (t1), and the fixed

infrared cut-off σt2 :

∆ψ(t2 → t1, σt2 ,G
(t1))

:= eiHt1

N(t1)∑
j=1

Wσt2
(~vj, t1) e

iγσt2
(~vj ,~∇E

σt2
~P

,t1) e−iE
σt2
~P

t1 ψ
(t1)
j,σt2

(III.49)

− eiHt2

N(t1)∑
j=1

Wσt2
(~vj, t2) e

iγσt2
(~vj ,~∇E

σt2
~P

,t2) e−iE
σt2
~P

t2 ψ
(t1)
j,σt2

;

and, finally,
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III) shifting the infrared cut-off, σt2 → σt1 :

∆ψ(t1, σt2 → σt1 ,G
(t1))

:= eiHt1

N(t1)∑
j=1

Wσt1
(~vj, t1)e

iγσt1
(~vj ,~∇E

σt1
~P

,t1)e−iE
σt1
~P

t1ψ
(t1)
j,σt1

(III.50)

− eiHt1

N(t1)∑
j=1

Wσt2
(~vj, t1)e

iγσt2
(~vj ,~∇E

σt2
~P

,t1)e−iE
σt2
~P

t1ψ
(t1)
j,σt2

.

It is important to take these three steps in the order indicated above.

In step I), the size of ‖∆ψ(t2, σt2 ,G
(t2) → G (t1))‖ in (III.48) is controlled as follows:

The sum of off-diagonal terms yields a subleading contribution. The diagonal terms are

shown to tend to 0 by controlling the differences

~vl(j) − ~vj .

In step II), Cook’s argument, combined with the cancelation of an infrared tail (as in

the mechanism described above), yields the desired decay in t1.

Step III) is more involved. But the basic idea is quite simple to grasp: It consists in

rewriting

eiHt1

N(t1)∑
j=1

Wσt2
(~vj, t1) e

iγσt2
(~vj ,~∇E

σt2
~P

,t1) e−iE
σt2
~P

t1 ψ
(t1)
j,σt2

(III.51)

as

eiHt1

N(t1)∑
j=1

Wσt2
(~vj, t1)W

∗
σt2

(~∇Eσt2

~P
)Wσt2

(~∇Eσt2

~P
) eiγσt2

(~vj ,~∇E
σt2
~P

,t1) e−iE
σt2
~P

t1 ψ
(t1)
j,σt2

. (III.52)

The term in (III.52) corresponding to the cell G (t1)
j of G (t1) can then be obtained by acting

with the “dressing operator”

eiHt1Wσt2
(~vj, t1)W

∗
σt2

(~∇Eσt2

~P
) e−iE

σt2
~P

t1 , (III.53)

on the “infrared-regular” vector

Φ
(t1)
j,σt2

:=

∫
G

(t1)
j

h(~P )Φ
σt2

~P
d3P (III.54)

corresponding to the vectors Φσ
~P

:= W ∗
σ (~∇Eσ

~P
)Ψσ

~P
defined in (III.22), for all j. The advantage

of (III.52) over (III.51) is that the vector Φ
(t1)
j,σt2

inherits the regularity properties of Φσ
~P

described in Theorem III.1. In particular, the vectors Φ
(t1)
j,σt2

converge strongly, as σt2 → 0,

and the vector

e−i~q·~xΦ
(t1)
j,σt2

(III.55)
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depends on ~q in a strongly Hölder continuous manner, uniformly in σt2 . This last property

entails enough decay to offset various logarithmic divergences appearing in the removal of

the infrared cut-off in the dressing operator (III.53).

Our analysis of the strong convergence of the sequence of approximating vectors cul-

minates in the estimate

‖ψh,κ(t2)− ψh,κ(t1)‖ ≤ O
(
(ln(t2))

2/tρ1
)
, (III.56)

for some ρ > 0. By telescoping, this bound suffices to prove Theorem III.2.

III.5. A space of scattering states. We use the asymptotic states ψ
(out/in)
h,κ to construct

a subspace, H̊out/in
κ , of scattering states invariant under space-time translations, and with a

photon energy threshold κ,

H̊out/in
κ :=

{∨
ψ

out/in
h,κ (τ,~a) : h(~P ) ∈ C1

0(S \ Brα) , τ ∈ R, ~a ∈ R3
}
, (III.57)

where

ψ
out/in
h,κ (τ,~a) ≡ e−i~a·~P e−iHτψout

h,κ . (III.58)

This space contains states describing an asymptotically freely moving electron, accompanied

by asymptotic free photons with energy smaller than κ.

Spaces of scattering states are obtained from the space H̊out/in
κ by adding “hard” pho-

tons, i.e.,

Hout/in :=
{∨

ψ
out/in

h, ~F
: h(~P ) ∈ C1

0(S \ Brα) , ~̂F ∈ C∞
0 (R3 \ 0 ; C3)

}
, (III.59)

where

ψ
out/in

h, ~F
:= s− lim

t→+/−∞
ei

(
~A[~Ft,t]− ~A[~Ft,t]

)
ψh,κ(t) , (III.60)

and

~A[~Ft, t] (III.61)

is the L.S.Z. photon field smeared out with the vector test function

~Ft(~y) :=
∑
λ=±

∫
d3k

(2π)32
√
|k|

~ε ∗~k,λ
F̂ λ(~k) e−i|k|t+i~k·~y (III.62)

with

~̂F (~k) :=
∑

λ

~ε ∗~k,λ
F̂ λ(~k) ∈ C∞

0 (R3\{0} ; C3) . (III.63)

An a posteriori physical interpretation of the scattering states constructed here emerges

by studying how certain algebras of asymptotic operators are represented on the spaces of

scattering states:

• The Weyl algebra, Aout/in
ph , associated with the asymptotic electromagnetic field.
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• The algebra Aout/in
el generated by smooth functions of compact support of the asymp-

totic velocity of the electron.

These algebras will be defined in terms of the limits (III.64) and (III.66), below, whose

existence is established in Section VI.2.

Theorem III.3. Functions f ∈ C∞
0 (R3), of the variable eiHt ~x

t
e−iHt, have strong limits, as

t→ ±∞, as operators acting on Hout/in,

s− lim
t→+/−∞

eiHt f(
~x

t
) e−iHtψ

out/in

h, ~F
=: ψ

out/in

f~∇E
h , ~F

(III.64)

where f~∇E~P
:= limσ→0 f(~∇Eσ

~P
).

Theorem III.4. The LSZ Weyl operators{
ei

(
~A[ ~Gt,t]− ~A[ ~Gt,t]

)
: Ĝλ(~k) ∈ L2(R3, (1 + |~k|−1)d3k) , λ = ±

}
, (III.65)

have strong limits in Hout/in; i.e.,

Wout/in(~G) := s− lim
t→+/−∞

ei
(

~A[ ~Gt,t]− ~A[ ~Gt,t]
)
. (III.66)

exists.

The limiting operators are unitary and satisfy the following properties:

i)

Wout/in(~G)Wout/in(~G′) = Wout/in(~G+ ~G′) e−
ρ(~G, ~G′)

2 , (III.67)

where

ρ(~G, ~G′) = 2i Im
( ∑

λ

∫
Ĝλ(~k)Ĝ′λ(~k) d3k

)
. (III.68)

ii) The mapping R 3 s −→ Wout/in(s ~G) defines a strongly continuous one-parameter

group of unitary operators.

iii)

eiHτ Wout/in(~G) e−iHτ = Wout/in(~G−τ ) (III.69)

where ~G−τ is the freely time-evolved (vector) test function at time −τ .

The two algebras, Aout/in
ph and Aout/in

el , commute. This is the precise mathematical

expression of the asymptotic decoupling of the dynamics of photons from the one of the

electron. The proof is non-trivial because collective degrees of freedom are involved. The

appearance of collective degrees of freedom is reflected in the representation of the asymptotic
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electromagnetic algebra Aout/in
ph , which is non-Fock (but locally Fock; see Section VI.2). We

will show that 〈
ψ

out/in
h,κ , Wout(~G)ψ

out/in
h,κ

〉
=

∫
e−

‖~G‖22
2 e

%~∇E ~P
( ~G) |h(~P ) |2 d3P , (III.70)

where

‖ ~G‖2 =
( ∫

|~G(~k)|2d3k
)1/2

, (III.71)

and

%~u(~G) := 2iRe
(
α

1
2

∑
λ

∫
Bκ

Ĝλ(~k)
~u · ~ε ∗~k,λ

|~k| 32 (1− ~u · k̂)
d3k

)
. (III.72)

More precisely, the representation of Aout/in
ph on the space of scattering states can be de-

composed in a direct integral of inequivalent irreducible representations labelled by the

asymptotic velocity of the electron. For different values of the asymptotic velocity, these

representations turn out to be inequivalent. Only for a vanishing electron velocity, the rep-

resentation is Fock; for non-zero velocity, it is a coherent non-Fock representation. The

coherent photon cloud, labeled by the asymptotic velocity, is the one anticipated by Bloch

and Nordsieck.

These results can be interpreted as follows: In every scattering state, an asymptotically

freely moving electron is observed (with an asymptotic velocity whose size is strictly smaller

than the speed of light, by construction) accompanied by a cloud of asymptotic photons prop-

agating along the light cone.

Remark: We point out that, in our definition of scattering states, we can directly accom-

modate an arbitrarily large number of “hard” photons without energy restriction, i.e., we

can construct the limiting vector

~Aout[~F (m)] . . . ~Aout[~F (1)]ψout
h,κ := s− lim

t→+∞
~A[~F

(m)
t , t] . . . ~A[~F

(1)
t , t]ψh,κ(t) (III.73)

which represents the state ψout
h,κ plusm asymptotic photons with wave functions ~F (m), . . . , ~F (1),

respectively. Analogously, we define

~Ain[~G(m′)] . . . ~Ain[~G(1)]ψin
h,κ := s− lim

t→−∞
~A[−~G(m′)

t , t] . . . ~A[−~G(1)
t , t]ψh,κ(t) (III.74)

This is possible because, apart from some higher order estimates to control the commutator

i[H , ~x], and the photon creation operators in (III.73) (see for example [17]), we use the

propagation estimate (III.43), which only limits the asymptotic velocity of the electron. This

fact is very important for estimating scattering amplitudes involving an arbitrary number of

“hard” photons.
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In particular, for any m,m′ ∈ N, we can define the S-matrix element

Sm,m′

α ( {~Fi} , {~Gj} ) =
(
~Aout[~F (m)] . . . ~Aout[~F (1)]ψout

h,κ ,
~Ain[~G(m′)] . . . ~Ain[~G(1)]ψin

h,κ

)
(III.75)

which corresponds to the transition amplitude between two states describing an incoming

electron with wave function hin, accompanied by a soft photon cloud of free photons of

energy smaller than κin, and an outgoing electron with wave function hout and soft photon

energy threshold κout, respectively.

The expansion of Sm,m′
α ( {~Fi} , {~Gj} ) in the finestructure constant α can be carried

out, at least to leading order, along the lines of [1]. This yields a rigorous proof of the

transition amplitudes for Compton scattering in leading order, and in the non-relativistic

approximation, that one can find in textbooks.

Moreover, as expected from classical electromagnetism, ”close” to the electron a Liénard-

Wiechert electromagnetic field is observed. The precise mathematical statement is

lim|~d|→∞ limt→±∞ |~d|2
{〈

ψ
out/in

h, ~F
, eiHt

∫
d3y Fµν(0, ~y) δ̃(~y − ~x− ~d) e−iHtψ

out/in

h, ~F

〉
−

∫
F

~∇E~P
µν (0, ~d)|h(~P )|2d3P

}
= 0 , (III.76)

where δ̃ is a smooth delta function, ~x is the electron position,

Fµν = ∂µAν − ∂νAµ (III.77)

with

A0(0, ~y) := − π1/2α1/2

|~y − ~x|
(III.78)

Ai(0, ~y) := −
∑

λ

∫
d3k√
|~k|

(
(~ε~k,λ)i e

−i~k·~ya∗~k,λ
+ (~ε∗~k,λ

)i e
i~k·~ya~k,λ

)
, (III.79)

and F
~∇E~P
µν is the electromagnetic field tensor corresponding to a Liénard-Wiechert solution

for the current

Jµ(t, ~y) :=
(
− 4π3/2α

1
2 δ(3)(~y − ~∇E~P t) , 4π3/2α

1
2 ~∇E~P δ

(3)(~y − ~∇E~P t)
)

, |~∇E~P | � 1 ;

(III.80)

see the discussion in Section I.
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IV. Uniform boundedness of the limiting norm

Our first aim is to prove the uniform boundedness of ‖ψh,κ(t)‖, as t → ∞; more

precisely, that

lim
t→∞

〈
ψh,κ(t) , ψh,κ(t)

〉
=

∫
|h(~P )|2d3P . (IV.1)

The sum of the diagonal terms – with respect to the partition G (t) introduced above – is

easily seen to yield
∫
|h(~P )|2d3P in the limit t→∞, as one expects. Thus, our main task is

to show that the sum of the off-diagonal terms vanishes in this limit.

In Section V, we prove that the norm-bounded sequence {ψh,κ(t)} is, in fact, Cauchy.

We recall that the definition of the vector ψh,κ(t) involves three different rates:

• The rate t−β related to the fast infrared cut-off σt;

• the rate t−θ of the slow infrared cut-off σS
t (see (III.26));

• the rate t−ε of refinement of the cell partitions G (t).

IV.1. Control of the off-diagonal terms. We denote the off-diagonal term labeled by the

pair (l, j) of cell indices l 6= j contributing to the l.h.s. of (IV.1) by

Ml,j(t) :=
〈
eiγσt (~vl,∇E

σt
~P

,t) e−iE
σt
~P

tψ
(t)
l,σt

, Wσt,l,j(t)e
iγσt (~vj ,∇E

σt
~P

,t) e−iE
σt
~P

t ψ
(t)
j,σt

〉
(IV.2)

where we use the notation

Wσt,l,j(t) := exp
(
α

1
2

∫
Bκ\Bσt

~ηl,j(~k) ·
{
~ε~k,λ a

∗
~k,λ
e−i|~k|t − ~ε ∗~k,λ

a~k,λ e
i|~k|t } d3k

)
, (IV.3)

and

~ηl,j(~k) := α
1
2

~vj

|~k| 32 (1− k̂ · ~vj)
− α

1
2

~vl

|~k| 32 (1− k̂ · ~vl)
. (IV.4)

We study the limit t→ +∞; the case t→ −∞ is analogous.

A. Asymptotic orthogonality

We introduce a family of operators

Wµ
σt,l,j

(s) := exp
(
µα

1
2

∫
Bκ\Bσt

~ηl,j(~k) · {~ε~k,λa
∗
~k,λ
e−i|~k|s − ~ε ∗~k,λ

a~k,λe
i|~k|s}d3k

)
(IV.5)

depending on a parameter µ ∈ R, and define

M̂µ
l,j(t, s) :=

〈
eiγσt (~vl,∇E

σt
~P

,s)e−iE
σt
~P

sψ
(t)
l,σt

, Wµ
σt,l,j

(s)eiγσt (~vj ,∇E
σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

〉
(IV.6)

for s ≥ t(� 1). Obviously, M̂µ=1
l,j (t, t) = Ml,j(t).
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The phase factor γσt(~vj,∇Eσt

~P
, s) is chosen as follows:

γσt(~vj,∇Eσt

~P
, s) := −α

∫ s

1

~∇Eσt

~P
·
∫
B

σS
τ
\Bσt

~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
τ − |~k|τ)d3kdτ (IV.7)

for s−θ ≥ σt, and

γσt(~vj,∇Eσt

~P
, s) := −α

∫ σ
− 1

θ
t

1

~∇Eσt

~P
·
∫
B

σS
τ
\Bσt

~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
τ − |~k|τ)d3kdτ , (IV.8)

for s−θ < σt. As a function of µ, the scalar product in (IV.6) satisfies the ordinary differential

equation

dM̂µ
l,j(t, s)

dµ
= −µCl,j,σt M̂

µ
l,j(t, s) + rµ

σt
(t, s) , (IV.9)

where

Cl,j,σt :=

∫
Bκ\Bσt

|~ηl,j(~k)|2d3k , (IV.10)

and

rµ
σt

(t, s) := −
〈
eiγσt (~vl,~∇E

σt
~P

,s)e−iE
σt
~P

sψ
(t)
l,σt

,

Wµ
σt,l,j

(s)~aσt(~ηl,j)(s) e
iγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

〉
+

〈
~aσt(~ηl,j)(s)e

iγσt (~vl,~∇E
σt
~P

,s)e−iE
σt
~P

sψ
(t)
l,σt

,

Wµ
σt,l,j

(s)eiγσt (~vj ,~∇E
σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

〉
,

with

~aσt(~ηl,j)(s) :=
∑

λ

∫
Bκ\Bσt

~ηl,j(~k) · ~ε ∗~k,λ
a~k,λ e

i|~k|s d3k . (IV.11)

The solution of the ODE (IV.9) is given by

M̂µ
l,j(t, s) = e−

Cl,j,σt
2

µ2

M̂0
l,j(t, s) +

∫ µ

0

rµ′

σt
(t, s) e−

Cl,j,σt
2

(µ2−µ′2) dµ′ , (IV.12)

where the initial condition at µ = 0 is given by

M̂0
l,j(t, s) = 0 , (IV.13)

since the supports in ~P of the two vectors ψ
(t)
l,σt

, ψ
(t)
j,σt

are disjoint (up to sets of measure 0),

for arbitrary t and s.

Furthermore, the vectors ψ
(t)
l,σt

, ψ
(t)
j,σt

are vacua for the annihilation part of the asymp-

totic photon field 1 under the dynamics generated by the Hamiltonian Hσt . This fact is

1The existence of the asymptotic field operator for a fixed cut-off dynamics is derived as explained in part
B. of this section.
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implied by condition (I 4) in Theorem III.1. As a consequence, we find that

lim
s→+∞

rµ
σt

(t, s) = 0 , (IV.14)

for fixed µ and t.

Therefore, by dominated convergence, it follows that

lim
s→+∞

M̂1
l,j(t, s) = 0 . (IV.15)

Since M̂1
l,j(t, t) ≡Ml,j(t), we have

|Ml,j(t)| ≤
∫ +∞

t

∣∣ d
ds
M̂1

l,j(t, s)
∣∣ ds . (IV.16)

To estimate | d
ds
M̂1

l,j(t, s)| (see (IV.6)), we proceed as follows.

Since we are interested in the limit t → ∞, and the integration domain on the r.h.s.

of (IV.16) is [t,∞), our aim is to show that∣∣∣ d
ds

(
eiHσtsWσt(~vj, s)e

iγσt (~vj ,∇E
σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

) ∣∣∣ (IV.17)

is integrable in s, and that the rate at which the time integral in (IV.16) converges to zero

offsets the growth of the number of cells in the partition. This allows us to conclude that∑
l,j (l 6=j)

Ml,j(t) −→ 0 (IV.18)

in the limit t→ +∞, and, as a corollary,

lim
t→+∞

N(t)∑
l,j

Ml,j(t) =

∫
|h(~P )|2d3P , (IV.19)

as asserted in Theorem III.2. The convergence (IV.18) follows from the following theorem.

Theorem IV.1. The off-diagonal terms Ml,j(t), l 6= j, satisfy

|Ml,j(t) | ≤ C
1

tη
| ln σt|2 t−3ε , (IV.20)

for some constants C < ∞ and η > 0, where C is independent of l and j, and η > 0 is

independent of ε. In particular, Ml,j(t) → 0, as t→ +∞.

As a corollary, we find∑
1≤l 6=j≤N(t)

|Ml,j(t) | ≤ C ′N2(t)
1

tη
| ln σt|2 t−3ε ≤ C

1

tη
| ln σt|2 t3ε (IV.21)

since N(t) ≈ t3ε. We conclude that, for ε < η
4
, (IV.18) follows.
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B. Time derivative and infrared tail

We now proceed to prove Theorem IV.1. The arguments developed here will also be relevant

for the proof of the (strong) convergence of the vectors ψh,κ(t), as t→ +∞, which we discuss

in Section V.

To control (IV.16), we focus on the derivative

d

ds

(
eiHσtsWσt(~vj, s) e

iγσt (~vj ,~∇E
σt
~P

,s) e−iE
σt
~P

s ψ
(t)
j,σt

)
(IV.22)

= i eiHσts[Hσt
I ,Wσt(~vj, s)] e

iγσt (~vj ,~∇E
σt
~P

,s) e−iE
σt
~P

s ψ
(t)
j,σt

(IV.23)

+ i eiHσtsWσt(~vj, s)
dγσt(~vj, ~∇E~P , s)

ds
eiγσt (~vj ,~∇E

σt
~P

,s) e−iE
σt
~P

sψ
(t)
j,σt

, (IV.24)

where

Hσt
I := α

1
2 ~p · ~Aσt(~x) + α

~Aσt(~x) · ~Aσt(~x)

2
. (IV.25)

We have used that Wσt(~vj, s) = e−isH0Wσt(~vj, 0)eisH0 , where H0 := Hσt − Hσt
I is the free

Hamiltonian, to obtain the commutator in (IV.23). We rewrite the latter in the form

[Hσt
I , Wσt(~vj, s) ] = Wσt(~vj, s)

(
Wσt(~vj, s)

∗Hσt
I Wσt(~vj, s) − Hσt

I

)
, (IV.26)

and use that

Wσt(~vj, s)
∗ ~Aσt(~x)Wσt(~vj, s) = ~Aσt(~x) + α

1
2

∫
Bκ\Bσt

~Σ~vj
(~k) cos(~k · ~x− |~k|s) d3k (IV.27)

(see (III.8)), where Σl
~vj

(~k) is defined in (III.27). We can then write the term (IV.23) as

(IV.23) = i eiHσtsWσt(~vj, s)α i[H
σt , ~x] ·

∫
Bκ\Bσt

d3k ~Σ~vj
(~k)× (IV.28)

× cos(~k · ~x− |~k|s) e−iE
σt
~P

seiγσt (~vj ,~∇E
σt
~P

,s)ψ
(t)
j,σt

+ i eiHσtsWσt(~vj, s)
α2

2

∫
Bκ\Bσt

~Σ~vj
(~k) cos(~k · ~x− |~k|s)d3k · (IV.29)

·
∫
Bκ\Bσt

d3q ~Σ~vj
(~q) cos(~q · ~x− |~q|s) eiγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

,

where we recall that i[Hσt , ~x] = ~p+ α
1
2 ~Aσt(~x); see (III.40).

From the decay estimates provided by Lemma A.2 in the Appendix one concludes that

the norm of (IV.29) is integrable in s, and that∫ ∞

t

ds ‖ (IV.29) ‖ ≤ 1

tη
| ln σt |2 t−

3ε
2 (IV.30)

for some η > 0 independent of ε.
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The analysis of (IV.28) is more involved. Our argument will eventually involve the

derivative of the phase factor in (IV.24). To begin with, we write (IV.28) as

(IV.28) = i eiHσtsWσt(~vj, s)α i[H
σt , ~x] · 1

Hσt + i
× (IV.31)

×(Hσt + i)

∫
Bκ\Bσt

d3k ~Σ~vj
(~k) cos(~k · ~x− |~k|s) e−iE

σt
~P

seiγσt (~vj ,~∇E
σt
~P

,s)ψ
(t)
j,σt

.

Pulling the operator (Hσt + i) through to the right, the vector (IV.31) splits into the sum of

a term involving the commutator [Hσt , ~x],

i eiHσtsWσt(~vj, s)α i[H
σt , ~x] · 1

Hσt + i
× (IV.32)

×
∫
Bκ\Bσt

d3k ~Σ~vj
(~k) [Hσt , cos(~k · ~x− |~k|s) ] eiγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

,

and

i eiHσtsWσt(~vj, s)α i[H
σt , ~x] ·

∫
Bκ\Bσt

d3k ~Σ~vj
(~k)× (IV.33)

× 1

Hσt + i
cos(~k · ~x− |~k|s)eiγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

s(Eσt

~P
+ i)ψ

(t)
j,σt

.

To control (IV.32) and (IV.33), we invoke a propagation estimate for the electron position op-

erator as follows. Due to condition (I 3) in Theorem III.1, we can introduce a C∞−function

χh(~y), ~y ∈ R3, such that

• χh(~∇Eσt

~P
) ≡ 1 for ~P ∈ supph, uniformly in σt.

• χh(~y) = 0 for |~y| < νmin and |~y| > νmax .

It is shown in Theorem A.3 of the Appendix that, for θ < 1 sufficiently close to 1 and s

large, the propagation estimate∥∥∥χh(
~x

s
)eiγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

−χh(~∇Eσt

~P
)eiγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

∥∥∥ (IV.34)

≤ 1

sν

1

t
3ε
2

| ln(σt)| ,

holds, where ν > 0 is independent of ε. The argument uses the Hölder regularity of ~∇Eσ
~P

and

of Φσ
~P

listed under properties (I 2) in Theorem III.1, differentiability of h(~P ), and (III.17).
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We continue with the discussion of the expressions (IV.32) and (IV.33). We split

(IV.33) into two parts using the definitions

J |κσS
s
(s) := α i[Hσt , ~x] · 1

Hσt + i

∫
Bκ\BσS

s

~Σ~vj
(~k) cos(~k · ~x− |~k|s)d3k if s−θ ≥ σt

:= (IV.33) if s−θ < σt , (IV.35)

and

J |σS
s

σt
(s) := α i[Hσt , ~x] · 1

Hσt + i

∫
B

σS
s
\Bσt

~Σ~vj
(~k) cos(~k · ~x− |~k|s)d3k if s−θ ≥ σt

:= 0 if s−θ < σt , (IV.36)

where we refer to σS
s := s−θ as the slow infrared cut-off.

To control J |σ
S
t

σt (s) in (IV.36), we define the ”infrared tail”

dγ̂σt(~vj,
~x
s
, s)

ds
:= α e−iHσts 1

Hσt + i

d(eiHσts~xh(s)e
−iHσts)

ds
eiHσts · (IV.37)

·
∫
B

σS
s
\Bσt

~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
s− |~k|s) d3k if s−θ ≥ σt ,

:= 0 if s−θ < σt

where ~xh(s) := ~xχh(
~x
s
). Summarizing, we can write (IV.22) as

(IV.22) = (IV.29) +

+ i eiHσtsWσt(~vj, s)J |κσS
s
(s) eiγσt (~vj ,∇E

σt
~P

,s) e−iE
σt
~P

s(Eσt

~P
+ i)ψ

(t)
j,σt

(IV.38)

+ i eiHσtsWσt(~vj, s)J |σ
S
s

σt
(s) eiγσt (~vj ,∇E

σt
~P

,s) e−iE
σt
~P

s(Eσt

~P
+ i)ψ

(t)
j,σt

(IV.39)

+ i eiHσtsWσt(~vj, s)
dγσt(~vj,∇Eσt

~P
, s)

ds
eiγσt (~vj ,∇E

σt
~P

,s) e−iE
σt
~P

s ψ
(t)
j,σt

(IV.40)

+ i eiHσtsWσt(~vj, s)α i [H
σt , ~x] · 1

Hσt + i
× (IV.41)

×
∫
Bκ\Bσt

d3k ~Σ~vj
(~k) [Hσt , cos(~k · ~x− |~k|s)] eiγσt (~vj ,~∇E

σt
~P

,s) e−iE
σt
~P

s ψ
(t)
j,σt

,

where we recall that (IV.29) satisfies (IV.30). We claim that

∥∥∥ ∫ ∞

t

[(IV.38) + (IV.39) + (IV.40)] ds
∥∥∥ ≤ 1

tη
| ln σt|2 t−3ε , (IV.42)
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for some η > 0 depending on θ, but independent of ε. This is obtained from∥∥∥ ∫ ∞

t

[(IV.38) + (IV.39) + (IV.40)] ds
∥∥∥ (IV.43)

≤
∫ ∞

t

ds
∥∥∥α i[Hσt , ~x] · 1

Hσt + i

∫
Bκ\Bσt

d3k ~Σ~vj
(~k) cos(~k · ~x− |~k|s)×

×
[
χh(~∇Eσt

~P
)− χh(

~x

s
)
]
eiγσt (~vj ,∇E

σt
~P

,s) e−iE
σt
~P

s (Eσt

~P
+ i)ψ

(t)
j,σt

∥∥∥ (IV.44)

+

∫ ∞

t

ds
∥∥∥J |κσS

s
(s)χh(

~x

s
)eiγσt (~vj ,∇E

σt
~P

,s)e−iE
σt
~P

s(Eσt

~P
+ i)ψ

(t)
j,σt

∥∥∥ (IV.45)

+
∥∥∥∫ ∞

t

ds eiHσtsWσt(~vj, s)
[
J |σS

s
σt

(s)χh(
~x

s
)−

dγ̂σt(~vj,
~x
s
, s)

ds

]
× (IV.46)

× eiγσt (~vj ,~∇E
σt
~P

,s) e−iE
σt
~P

s (Eσt

~P
+ i)ψ

(t)
j,σt

∥∥∥
+

∥∥∥ ∫ ∞

t

ds eiHσtsWσt(~vj, s)
[dγσt(~vj, ~∇Eσt

~P
, s)

ds
−
dγ̂σt(~vj,

~x
s
, s)

ds

]
× (IV.47)

× eiγσt (~vj ,~∇E
σt
~P

,s) e−iE
σt
~P

s (Eσt

~P
+ i)ψ

(t)
j,σt

∥∥∥
using the following arguments:

• The term (IV.44) can be bounded from above by 1
tη
| ln σt|2 t−3ε, for some η > 0

independent of ε, due to the propagation estimate for (III.43) and Lemma A.2, which

show that the integrand has a sufficiently strong decay in s.

• In (IV.45), the slow cut-off σS
t and the function χh(

~x
s
) make the norm integrable in

s with the desired rate, for a suitable choice of θ < 1. In particular, we can exploit

that

sup
~x∈R3

∣∣∣ ∫
Bκ\BσS

s

d3k ~Σ(~k,~vj) cos(~k · ~x− |~k|s)χh(
~x

s
)
∣∣∣ ≤ O(

sθ

s2
) , (IV.48)

see Lemma A.2 in the Appendix.

• In (IV.46), only terms integrable in s and decaying fast enough to satisfy the bound

(IV.34) are left after subtracting

dγ̂σt(~vj,
~x
s
, s)

ds
(IV.49)

from J |σ
S
s

σt (s). This is explained in detail in the proof of Theorem A.4 in the Appendix.

• To bound (IV.47), we use the electron propagation estimate, combined with an inte-

gration by parts, to show that the derivative of the phase factor tends to the “infrared

tail” for large s, at an integrable rate. We note that due to the vector interaction

in non-relativistic QED, this argument is more complicated here than in the Nel-

son model treated in [24] where the interaction term is scalar. Here, we have to
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show (see Theorem A.4) that in the integral with respect to s, the pointwise velocity

eiHσtsi[~x,Hσt ]e−iHσts can be replaced by the mean velocity ~∇Eσt

~P
at asymptotic times.

Finally, to control (IV.41), we observe that the commutator introduces additional decay

in s into the integrand when ~x
s

is restricted to the support of χh. It then follows that

the propagation estimate suffices (without infrared tail) to control the norm, by the same

arguments that were applied to J |κσS
s
(s) in (IV.44), (IV.45).

Combining the above arguments, the proof of Theorem IV.1 is completed.
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V. Proof of convergence of ψh,κ(t)

In this section, we prove that ψh,κ(t) defines a bounded Cauchy sequence in H, as

t→∞. To this end, it is necessary to control the norm difference between vectors ψh,κ(ti),

i = 1, 2, at times t2 > t1.

V.1. Three key steps. As anticipated in Section III.4, we decompose the difference of

ψh,κ(t1) and ψh,κ(t2) into three terms

ψh,κ(t1)− ψh,κ(t2) = ∆ψ(t2, σt2 ,G
(t2) → G (t1)) + ∆ψ(t2 → t1, σt2 ,G

(t1))

+ ∆ψ(t1, σt2 → σt1 ,G
(t1)) , (V.1)

where we recall from (III.48) – (III.50):

I) The term

∆ψ(t2, σt2 ,G
(t2) → G (t1))

= eiHt2

N(t1)∑
j=1

Wσt2
(~vj, t2) e

iγσt2
(~vj ,~∇E

σt2
~P

,t2)e−iE
σt2
~P

t2 ψ
(t1)
j,σt2

(V.2)

− eiHt2

N(t1)∑
j=1

∑
l(j)

Wσt2
(~vl(j), t2)e

iγσt2
(~vl(j),~∇E

σt2
~P

,t2) e−iE
σt2
~P

t2 ψ
(t2)
l(j),σt2

,

accounts for the change of the partition G (t2) → G (t1) in ψh,κ(t2), where l(j) labels

the sub-cells belonging to the sub-partition G (t2)∩G (t1)
j of G (t1)

j , and where we define

~vl(j) ≡ ~∇Eσt2

~P ∗
l(j)

and ~vj ≡ ~∇Eσt1

~P ∗
j

;

II) the term

∆ψ(t2 → t1, σt2 ,G
(t1))

= eiHt1

N(t1)∑
j=1

Wσt2
(~vj, t1) e

iγσt2
(~vj ,~∇E

σt2
~P

,t1) e−iE
σt2
~P

t1 ψ
(t1)
j,σt2

(V.3)

− eiHt2

N(t1)∑
j=1

Wσt2
(~vj, t2) e

iγσt2
(~vj ,~∇E

σt2
~P

,t2) e−iE
σt2
~P

t2 ψ
(t1)
j,σt2

,

accounts for the subsequent change of the time variable, t2 → t1, for the fixed parti-

tion G (t1), and the fixed infrared cut-off σt2 ; and finally,
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III) the term

∆ψ(t1, σt2 → σt1 ,G
(t1))

= eiHt1

N(t1)∑
j=1

Wσt1
(~vj, t1)e

iγσt1
(~vj ,~∇E

σt1
~P

,t1)e−iE
σt1
~P

t1ψ
(t1)
j,σt1

(V.4)

− eiHt1

N(t1)∑
j=1

Wσt2
(~vj, t1)e

iγσt2
(~vj ,~∇E

σt2
~P

,t1)e−iE
σt2
~P

t1ψ
(t1)
j,σt2

accounts for the change of the infrared cut-off, σt2 → σt1 .

Our goal is to prove

‖ψh,κ(t2)− ψh,κ(t1) ‖ ≤ O
(
(ln(t2))

2/tρ1
)
, (V.5)

for some ρ > 0. To this end, we must take these three steps in the order displayed above.

As a corollary of the bound (V.5), we obtain Theorem III.2 by telescoping.

The arguments in our proof are very similar to those in [24], but a number of mod-

ifications are necessary because of the vector nature of the QED interaction. For these

modifications, we provide detailed explanations.

V.2. Refining the cell partition. In this section, we discuss step (V.2) in which the

momentum space cell partition is refined. It is possible to apply the methods developed in

[24], up to some minor modifications.

We will prove that∥∥ ∆ψ(t2, σt2 ,G
(t2) → G (t1))

∥∥2 ≤ O
(
(ln(t2))

2/tρ1
)

(V.6)

for some ρ > 0. The contributions from the off-diagonal terms with respect to the sub-

partition G (t2) of G (t1) can be estimated by the same arguments that have culminated in the

proof of Theorem IV.1. That is, we first express ψ
(t1)
j,σt2

as

ψ
(t1)
j,σt2

=

∫
G

(t1)
j

h(~P )Ψ
σt2

~P
d3P =

∑
l(j)

∫
G

(t2)
j

h(~P )Ψ
σt2

~P
d3P =

∑
l(j)

ψ
(t2)
l(j),σt2

. (V.7)

Then,

(V.6) =

N(t1)∑
j,j′=1

∑
l(j),l′(j′)

〈
[Ŵσt2

(~vl(j), t2)− Ŵσt2
(~vj, t2)]e

−iE
σt2
~P

t2ψ
(t2)
l(j),σt2

,

[Ŵσt2
(~vl′(j′), t2)− Ŵσt2

(~vj′ , t2)]e
−iE

σt2
~P

t2ψ
(t2)
l′(j′),σt2

〉
, (V.8)
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where we define

Ŵσt2
(~vj, t2) := Wσt2

(~vj, t2) e
iγσt2

(~vj ,~∇E
σt2
~P

,t2) , (V.9)

Ŵσt2
(~vl(j), t2) := Wσt2

(~vl(j), t2) e
iγσt2

(~vl(j),~∇E
σt2
~P

,t2) . (V.10)

Following the analysis in Section IV.1, one finds that the sum over pairs (l′(j′) , l(j)) with

either l 6= l′ or j 6= j′ can be bounded by O(t−ε
2 ), provided that ε < η

4
, as in (IV.21).

Let 〈 〉eΨ stand for the expectation value with respect to the vector Ψ̃. Then, we are

left with the diagonal terms

N(t1)∑
j=1

∑
l(j)

〈 [
2− Ŵ∗

σt2
(~vl(j), t2) Ŵσt2

(~vj, t2)− Ŵ∗
σt2

(~vj, t2)Ŵσt2
(~vl(j), t2)

] 〉
eΨ , (V.11)

labeled by pairs (l(j) , l(j)), where Ψ̃ ≡ e−iE
σt2
~P

t2ψ
(t2)
l(j),σt2

in the case considered here. For

each term 〈
Ŵ∗

σt2
(~vl(j), t2)Ŵσt2

(~vj, t2)
〉eΨ , (V.12)

we can again invoke the arguments developed for off-diagonal elements indexed by (l, j)

(where l 6= j) from Section IV.1.

In particular, we define for s > t2

M̂µ
[l(j),~vj ],[l(j),~vl(j)]

(t2, s) :=
〈
e−iE

σt
~P

sψ
(t2)
l(j),σt

, Ŵ∗µ
σt2

(~vj, s) Ŵµ
σt2

(~vl(j), s) e
−iE

σt
~P

sψ
(t2)
l(j),σt

〉
, (V.13)

where

Ŵ∗µ
σt2

(~vj, s) Ŵµ
σt2

(~vl(j), s) = e−iγσt2
(~vj ,~∇E

σt2
~P

,s)Wµ ∗
σt2

(~vj, s)Wµ
σt2

(~vl(j), s) e
iγσt2

(~vl(j),~∇E
σt2
~P

,s) ,

(V.14)

and

Wµ ∗
σt2

(~vj, s)Wµ
σt2

(~vl(j), s) = exp
(
µα

1
2

∫
Bκ\Bσt

~ηj,l(j)(~k) ·
{
~ε~k,λa

∗
~k,λ
e−i|~k|s − ~ε ∗~k,λ

a~k,λe
i|~k|s }

d3k
)
,

(V.15)

with µ a real parameter.

Proceeding similarly as in (IV.12), the solution of the ODE analogous to (IV.9) for

M̂µ
[l(j),~vj ],[l(j),~vl(j)]

(t2, s) at µ = 1 consists of a contribution at µ = 0, which remains non-zero

as s→∞, and a remainder term that vanishes in the limit s→∞. In fact,

lim
s→+∞

M̂1
[l(j),~vj ],[l(j),~vl(j)]

(t2, s) (V.16)

= e−
Cj,l(j) σt2

2

〈
eiγσt2

(~vj ,~∇E
σt2
~P

,σ
− 1

θ
t2

)ψ
(t2)
l(j),σt2

, eiγσt2
(~vl(j),~∇E

σt2
~P

,σ
− 1

θ
t2

)ψ
(t2)
l(j),σt2

〉
,
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where

Cj,l(j),σt2
:=

∫
Bκ\Bσt2

|~ηj,l(j)(~k)|2d3k , (V.17)

as in (IV.10), with ~ηj,l(j)(~k) defined in (IV.4). Hence, (V.11) is given by the sum of

−
N(t2)∑
j=1

∑
`(j)

∫ ∞

t2

d

ds
M̂1

[`(j),~vj ],[`(j),~v`(j)]
(t2, s) ds

−
N(t2)∑
j=1

∑
`(j)

∫ ∞

t2

d

ds
M̂1

[`(j),~v`(j)],[`(j),~vj ]
(t2, s) ds (V.18)

and

N(t2)∑
j=1

∑
`(j)

〈
ψ

(t2)
l(j),σt2

,
[
2− 2 cos

(
∆γσt2

(~vj − ~vl(j), ~∇E
σt2

~P
, t2)

)
e−

Cl(j),j,σt2
2

]
ψ

(t2)
l(j),σt2

〉
, (V.19)

where

∆γσt2
(~vj − ~vl(j), ~∇E

σt2

~P
, t2) := γσt2

(~vl(j), ~∇E
σt2

~P
, σ

− 1
θ

t2 ) − γσt2
(~vj, ~∇E

σt2

~P
, σ

− 1
θ

t2 ) . (V.20)

The arguments that have culminated in Theorem IV.1 also imply that the sum (V.18) can

be bounded by O(t−4ε
2 ), for η > 4ε. The leading contribution in (V.6) is represented by the

sum (V.19) of diagonal terms (with respect to G (t2)), which can now be bounded from above.

It suffices to show that

sup
~P∈S

∣∣∣ 2− 2 cos
(
∆γσt2

(~vj − ~vl(j), ~∇E
σt2

~P
, t2)

)
e−

Cl(j),j,σt2
2

∣∣∣ ≤ 1

tη1
log t2 (V.21)

for some η > 0 that depends on ε. To see this, we note that the lower integration bound in

the integral (V.17) contributes a factor to (V.21) proportional to log t2. In Lemma A.1, it is

proven that∣∣ γσt2
(~vj, ~∇E

σt2

~P
, (σt2)

− 1
θ )− γσt2

(~vl(j), ~∇E
σt2

~P
, (σt2)

− 1
θ )

∣∣ ≤ O(|~vj − ~vl(j)|) . (V.22)

We can estimate the difference ~vj − ~vl(j) = ~∇Eσt1

~P ∗
j

− ~∇Eσt2

~P ∗
l(j)

, which also appears in ~ηl(j),j(~k),

using condition (I 2) of Theorem III.1. This yields the ε-dependent negative power of t1 in

(V.21).

V.3. Shifting the time variable for a fixed cell partition and infrared cut-off. In

this subsection, we prove that∥∥ ∆ψ(t2 → t1, σt2 ,G
(t1))

∥∥2 ≤ O
(
(ln(t2))

2/tρ1
)

(V.23)
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for some ρ > 0; see (V.3). This accounts for the change of the time variable, while both the

cell partition and the infrared cutoff are kept fixed. It can be controlled by a standard Cook

argument, and methods similar to those used in the discussion of (IV.22).

For t1 ≤ s ≤ t2, we define

γσt2
(~vj, ~∇E

σt2

~P
, s) := −

∫ s

1

~∇Eσt2

~P
·
∫
B

σS
τ
\Bσt2

~Σ~vj
(~k) cos(~k · ~∇Eσt2

~P
τ − |~k|τ) d3k dτ . (V.24)

Then, we estimate∫ t2

t1

ds
d

ds

(
eiH

σt2 sWσt2
(~vj, s)e

iγσt2
(~vj ,~∇E

σt2
~P

,s)e−iE
σt2
~P

sψ
(t1)
j,σt2

)
(V.25)

cell by cell. To this end, we can essentially apply the same arguments that entered the

treatment of the time derivative in (IV.22), see also the remark after Theorem A.3, by

defining a tail in a similar fashion. The only modification to be added is that, apart from

two terms analogous to (IV.23), (IV.24), we now also have to consider

i eiHt2(H −Hσt2 )Wσt2
(~vj, s)e

iγσt2
(~vj ,~∇E

σt2
~P

,s)e−iE
σt2
~P

sψ
(t1)
j,σt2

, (V.26)

which enters from the derivative in s of the operator underlined in

eiHse−iH
σt2 seiH

σt2 sWσt2
(~vj, s)e

iγσt2
(~vj ,~∇E

σt2
~P

,s)e−iE
σt2
~P

sψ
(t1)
j,σt2

. (V.27)

To control the norm of (V.26), we observe that

H −Hσt2 = α
1
2 i[H,~x] · ~A<σt2

− α
~A<σt2

· ~A<σt2

2
, (V.28)

where

~A<σt2
:=

∑
λ=±

∫
Bσt2

d3k√
|~k|

{
~ε~k,λb

∗
~k,λ

+ ~ε ∗~k,λ
b~k,λ

}
, (V.29)

and we note that

[H,~x] · ~A<σt2
= ~A<σt2

· [H,~x] ,

because of the Coulomb gauge condition. Moreover,

W∗
σt2

(~vj, s) i[H,~x]Wσt2
(~vj, s) = i[H,~x] + ~hs(~x) (V.30)

with ‖~hs(~x)‖ < O(1) and

[b~k,λ ,
~hs(~x)] = [~hs(~x) , ~A<σt2

] = 0 .

Furthermore, we have

b~k,λψ
(t1)
j,σt2

= 0

for ~k ∈ Bσt2
, and

‖ ~A<σt2
ψ

(t1)
j,σt2

‖ , ‖ ~A<σt2
· ~A<σt2

ψ
(t1)
j,σt2

‖ ≤ O(σt2) . (V.31)
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The estimate

‖ ~A<σt2
· [H,~x]ψ(t1)

j,σt2
‖ ≤ O(σt2

{
‖[H,~x]ψ(t1)

j,σt2
‖ + ‖ψ(t1)

j,σt2
‖

}
) , (V.32)

holds, where

‖[H,~x]ψ(t1)
j,σt2

‖ ≤ O(t
− 3ε

2
1 ) , (V.33)

because

‖[H,~x]ψ(t1)
j,σt2

‖ ≤ c1‖(Hσt2 + i)ψ
(t1)
j,σt2

‖

for some constant c1, and

‖ψ(t1)
j,σt2

‖ = O(t
− 3ε

2
1 ) .

Consequently, we obtain that∥∥∥ (H −Hσt2 )Wσt2
(~vj, s)e

iγσt2
(~vj ,~∇E

σt2
~P

,s)e−iE
σt2
~P

sψ
(t1)
j,σt2

∥∥∥
≤ O(σt2

{
‖[H,~x]ψ(t1)

j,σt2
‖ + ‖ψ(t1)

j,σt2
‖

}
) ≤ O(σt2 t

−3/2ε ) . (V.34)

Following the procedure in Section II.2.1, B., one can also check that∥∥∥ eiHt2e−iH
σt2 s d

ds

(
eiH

σt2 sWσt2
(~vj, s)e

iγσt2
(~vj ,~∇E

σt2
~P

,s)e−iE
σt2
~P

sψ
(t1)
j,σt2

) ∥∥∥
≤ O(

1

tη1
| lnσt2 |2 t

− 3ε
2

1 ) , (V.35)

for some η > 0. Similarly as in (IV.21), we choose ε small enough that η
4
> ε.

The number of cells in the partition G (t1) is N(t1) ≈ t3ε
1 . Therefore, summing over all

cells, we get

O
(
N(t1) t

− 3ε
2

1 σt2

)
+ O

(
N(t1)

1

tη1
| lnσt2|2 t

− 3ε
2

1

)
, (V.36)

as an upper bound on the norm of the term in (V.3).

The parameter β in the definition of σt2 = t−β
2 can be chosen arbitrarily large, inde-

pendently of ε. Hereby, we arrive at the upper bound claimed in (V.5).

V.4. Shifting the infrared cut-off. In this section, we prove that

‖∆ψ(t1, σt2 → σt1 ,G
(t1)) ‖2 ≤ O

(
(ln(t2))

2/tρ1
)

(V.37)

for some ρ > 0; see (V.4). The analysis of this last step is the most involved one, and will

require extensive use of our previous results.

The starting idea is to rewrite the last term in (V.4),

eiHt1

N(t1)∑
j=1

Wσt2
(~vj, t1) e

iγσt2
(~vj ,~∇E

σt2
~P

,t1) e−iE
σt2
~P

t1 ψ
(t1)
j,σt2

, (V.38)
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as

eiHt1

N(t1)∑
j=1

Wσt2
(~vj, t1)W

∗
σt2

(~∇Eσt2

~P
)Wσt2

(~∇Eσt2

~P
) eiγσt2

(~vj ,~∇E
σt2
~P

,t1) e−iE
σt2
~P

t1 ψ
(t1)
j,σt2

, (V.39)

and to group the terms appearing in (V.39) in such a way that, cell by cell, we consider the

new dressing operator

eiHt1 Wσt2
(~vj, t1)W

∗
σt2

(~∇Eσt2

~P
) e−iE

σt2
~P

t1 , (V.40)

which acts on

Φ
(t1)
j,σt2

:=

∫
G

(t1)
j

h(~P ) Φ
σt2

~P
d3P , (V.41)

where Φσ
~P

= Wσ(~∇Eσ
~P
)Ψσ

~P
, see (III.22). The key advantage is that the vector Φ

(t1)
j,σt2

inherits

the Hölder regularity of Φσ
~P
; see (III.13) in condition (I 2) of Theorem III.1. We will refer

to (V.41) as an infrared-regular vector.

Accordingly, (V.39) now reads

eiHt1

N(t1)∑
j=1

Wσt2
(~vj, t1)W

∗
σt2

(~∇Eσt2

~P
) eiγσt2

(~vj ,~∇E
σt2
~P

,t1) e−iE
σt2
~P

t1 Φ
(t1)
j,σt2

, (V.42)

and we proceed as follows.

A. Shifting the IR cutoff in the infrared-regular vector

First, we substitute

eiHt1

N(t1)∑
j=1

Wσt2
(~vj, t1)W

∗
σt2

(~∇Eσt2

~P
) eiγσt2

(~vj ,~∇E
σt2
~P

,t1)e−iE
σt2
~P

t1Φ
(t1)
j,σt2

(V.43)

−→ eiHt1

N(t1)∑
j=1

Wσt2
(~vj, t1)W

∗
σt2

(~∇Eσt2

~P
) eiγσt1

(~vj ,~∇E
σt1
~P

,t1)e−iE
σt1
~P

t1Φ
(t1)
j,σt1

,

where σt2 is replaced by σt1 in the underlined terms. We prove that the norm difference of

these two vectors is bounded by the r.h.s. of (V.37). The necessary ingredients are:

1) Condition (I 1) in Theorem III.1.

2) The estimate

|γσt2
(~vj, ~∇E

σt2

~P
, t1)− γσt1

(~vj, ~∇E
σt1

~P
, t1)| ≤ O

(
σ

1
2
(1−δ)

t1 t1−θ
1

)
+ O

(
t1 σt1

)
,

for t2 > t1 � 1, proven in Lemma A.1. The parameter 0 < θ < 1 is the same as the

one in (III.25).

3) The cell partition G (t1) depends on t1 < t2.
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4) The parameter β can be chosen arbitrarily large, independently of ε, so that the

infrared cutoff σt1 = t−β
1 can be made as small as one wishes.

First of all, it is clear that the norm difference of the two vectors in (V.43) is bounded by the

norm difference of the two underlined vectors, summed over all N(t1) cells. Using 1) and 2),

one straightforwardly derives that the norm difference between the two underlined vectors

in (V.43) is bounded from above by

O( t1 σ
1
2
(1−δ)

t1 t
− 3

2
ε

1 ) , (V.44)

where the last factor, t
− 3

2
ε

1 , accounts for the volume of an individual cell in G (t1), by 3). The

sum over all cells in G (t1) yields a bound

O(N(t1)σ
1
2
(1−δ)

t1 t
1− 3

2
ε

1 ) (V.45)

where N(t1) ≈ t3ε
1 , by 3). Picking β sufficiently large, by 4), we find that the norm difference

of the two vectors in (V.43) is bounded by t−η
1 , for some η > 0. This agrees with the bound

stated in (V.37).

B. Shifting the IR cutoff in the dressing operator

Subsequently to (V.43), we substitute

eiHt1

N(t1)∑
j=1

Wσt2
(~vj, t1)W

∗
σt2

(~∇Eσt2

~P
)eiγσt1

(~vj ,~∇E
σt1
~P

,t1)e−iE
σt2
~P

t1Φ
(t1)
j,σt1

(V.46)

−→ eiHt1

N(t1)∑
j=1

Wσt1
(~vj, t1)W

∗
σt1

(~∇Eσt1

~P
)eiγσt1

(~vj ,~∇E
σt1
~P

,t1)e−iE
σt1
~P

t1Φ
(t1)
j,σt1

,

where σt2 → σt1 in the underlined operators. A crucial point in our argument is that when

σt1(> σt2) tends to 0, the Hölder continuity of Φ
σt1

~P
in ~P offsets the (logarithmic) divergence

in t2 which arises from the dressing operator.

We subdivide the shift σt2 → σt1 in

Wσt2
(~vj, t1)W

∗
σt2

(~∇Eσt2

~P
) −→ Wσt1

(~vj, t1)W
∗
σt1

(~∇Eσt1

~P
) (V.47)

into the following three intermediate steps, where the operators modified in each step are

underlined:

Step a)

Wσt2
(~vj, t1)W

∗
σt2

(~vj)Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P
) (V.48)

−→Wσt1
(~vj, t1)W

∗
σt1

(~vj)Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P
) ,
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Step b)

Wσt1
(~vj, t1)W

∗
σt1

(~vj)Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P
) (V.49)

−→Wσt1
(~vj, t1)W

∗
σt1

(~vj)Wσt2
(~vj)W

∗
σt2

(~∇Eσt1

~P
) ,

Step c)

Wσt1
(~vj, t1)W

∗
σt1

(~vj)Wσt2
(~vj)W

∗
σt2

(~∇Eσt1

~P
) (V.50)

−→Wσt1
(~vj, t1)W

∗
σt1

(~vj)Wσt1
(~vj)W

∗
σt1

(~∇Eσt1

~P
) .

Analysis of Step a)

In step a), we analyze the difference between the vectors

eiHt1Wσt2
(~vj, t1)W

∗
σt2

(~vj)Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P
)eiγσt1

(~vj ,~∇E
σt1
~P

,t1)e−iE
σt2
~P

t1Φ
(t1)
j,σt1

(V.51)

and

eiHt1Wσt1
(~vj, t1)W

∗
σt1

(~vj)Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P
)eiγσt1

(~vj ,~∇E
σt1
~P

,t1)e−iE
σt2
~P

t1Φ
(t1)
j,σt1

, (V.52)

for each cell in G (t1). Our goal is to prove that

‖ (V.51)− (V.52) ‖ ≤ const log t2 P (t1, t2) , (V.53)

where

P (t1, t2) := sup
~k∈Bσt1

∥∥∥ (e−i(|~k|t1−~k·~x) − 1)Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P
)) × (V.54)

× eiγσt2
(~vj ,~∇E

σt2
~P

,t1)e−iE
σt2
~P

t1Φ
(t1)
j,σt1

∥∥∥ ≤ O( t−η
1 log t2 )

as t1 → +∞, for some η > 0, and for β large enough.

Using the identity

Wσt2
(~vj, t1)W

∗
σt2

(~vj) = Wσt1
(~vj, t1)W

∗
σt1

(~vj)×

× exp
(iα

2

∫
Bσt1

\Bσt2

d3k
~vj · ~Σ~vj

(~k) sin(~k · ~x− |~k|t1)
|~k|(1− k̂ · ~vj)

)
× (V.55)

× exp
(
α

1
2

∫
Bσt1

\Bσt2

d3k√
|~k|

~vj · {~ε~k,λb
∗
~k,λ

(e−i(|~k|t1−~k·~x) − 1)− h.c. }

|~k|(1− k̂ · ~vj)

)
,
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the difference between (V.51) and (V.52) is given by

eiHt1Wσt1
(~vj, t1)W

∗
σt1

(~vj) exp
(iα

2

∫
Bσt1

\Bσt2

d3k
~vj · ~Σ~vj

(~k) sin(~k · ~x− |~k|t1)
|~k|(1− k̂ · ~vj)

)
×

×
[
exp

(
α

1
2

∫
Bσt1

\Bσt2

d3k√
|~k|

~vj · {~ε~k,λb
∗
~k,λ

(e−i(|~k|t1−~k·~x) − 1)− h.c. }

|~k|(1− k̂ · ~vj)

)
− I

]
×

×Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P
) eiγσt1

(~vj ,~∇E
σt1
~P

,t1)e−iE
σt2
~P

t1Φ
(t1)
j,σt1

(V.56)

+ eiHt1Wσt1
(~vj, t1)W

∗
σt1

(~vj)
[

exp
( iα

2

∫
Bσt1

\Bσt2

d3k
~vj · ~Σ~vj

(~k) sin(~k · ~x− |~k|t1)
|~k|(1− k̂ · ~vj)

)
− I

]
×

×Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P
) eiγσt1

(~vj ,~∇E
σt1
~P

,t1)e−iE
σt2
~P

t1Φ
(t1)
j,σt1

, (V.57)

where I is the identity operator in H.

The norm of the vector (V.56) equals

∥∥∥ [
exp

(
α

1
2

∫
Bσt1

\Bσt2

d3k√
|~k|

~vj · {~ε~k,λb
∗
~k,λ

(e−i(|~k|t1−~k·~x) − I)− h.c. }

|~k|(1− k̂ · ~vj)

)
− I

]
×

×Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P
)eiγσt1

(~vj ,~∇E
σt1
~P

,t1)e−iE
σt2
~P

t1Φ
(t1)
j,σt1

∥∥∥ . (V.58)

We now observe that

• for ~k ∈ Bσt1
,

b~k,λWσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P
) (V.59)

= Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P
) b~k,λ (V.60)

+Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P
) f~k,λ(~vj, ~P ) , (V.61)

where ∫
Bσt1

\Bσt2

d3k |f~k,λ(~vj, ~P )|2 ≤ O(lnσt2) (V.62)

uniformly in ~vj, and in ~P ∈ S, and where j enumerates the cells.

• for ~k ∈ Bσt1
,

b~k,λ e
iγσt2

(~vj ,~∇E
σt2
~P

,t1)e−iE
σt2
~P

t1Φ
(t1)
j,σt1

= 0 , (V.63)

because of the infrared properties of Φ
(t1)
j,σt1

.

From the Schwarz inequality, we therefore get

(V.58) ≤ c | log σt2|P (t1, t2) , (V.64)
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for some finite constant c as claimed in (V.53), where

P (t1, t2) = sup
~k∈Bσt1

∥∥∥ (e−i(|~k|t1−~k·~x) − 1)Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P
)eiγσt2

(~vj ,~∇E
σt2
~P

,t1)e−iE
σt2
~P

t1Φ
(t1)
j,σt1

∥∥∥ ,
(V.65)

as defined in (V.54). To estimate P (t1, t2), we regroup the terms inside the norm into

(e−i(|~k|t1−~k·~x) − 1)Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P
) eiγσt2

(~vj ,~∇E
σt2
~P

,t1) e−iE
σt2
~P

t1 Φ
(t1)
j,σt1

= Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P+~k
) (e−i(|~k|t1−~k·~x) − I) eiγσt2

(~vj ,~∇E
σt2
~P

,t1) e−iE
σt2
~P

t1 Φ
(t1)
j,σt1

(V.66)

+ Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P+~k
) eiγσt2

(~vj ,~∇E
σt2
~P

,t1) e−iE
σt2
~P

t1 Φ
(t1)
j,σt1

(V.67)

− Wσt2
(~vj)W

∗
σt2

(~∇Eσt2

~P
) eiγσt2

(~vj ,~∇E
σt2
~P

,t1) e−iE
σt2
~P

t1 Φ
(t1)
j,σt1

. (V.68)

We next prove that

‖(V.66)‖ , ‖(V.67)− (V.68)‖ ≤ O( (σt1)
ρ t1 ln t2 ) (V.69)

for some ρ > 0. To this end, we use:

i) The Hölder regularity of Φσ
~P

and ~∇Eσ
~P

described under condition (I 2) in Theorem

III.1.

ii) The regularity of the phase function

γσt2
(~vj, ~∇E

σt2

~P
, t1) (V.70)

with respect to ~P ∈ S expressed in the following estimate, which is similar to (A.3)

in Lemma A.1: For ~q ∈ R3 with |~q| < s(1−θ),∣∣ γσt2
(~vj, ~∇E

σt2

~P
, t1) − γσt2

(~vj, ~∇E
σt2

~P+~k
, t1)

∣∣ ≤ O( |~k|−
1
4
(1−δ′′) t

(1−θ)
1 ) , (V.71)

where 0 < θ(< 1) can be chosen arbitrarily close to 1.

iii) The estimate

‖ b~k,λΨ
σ
~P
‖ ≤ C

1σ,Λ(~k)

|~k|3/2
(V.72)

from (I 5) in Theorem III.1 for ~P ∈ S, which implies

‖N1/2
f Ψσ

~P
‖ =

( ∫
d3k ‖ b~k,λ Ψσ

~P
‖2

)1/2 ≤ C | log σ |1/2 . (V.73)

Likewise,

‖N1/2
f Φσ

~P
‖ =

( ∫
BΛ\Bσ

d3k
∥∥ (

b~k,λ + O(|~k|−3/2)
)
Ψσ

~P

∥∥2)1/2

≤ C | log σ |1/2 , (V.74)
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which controls the expected photon number in the states {Φσt1

~P
}. As a side remark,

we note that the true size is in fact O(1), uniformly in σ, but the logarithmically

divergent bound here is sufficient for our purposes.

iv) The cell decomposition G (t1) is determined by t1 < t2. Moreover, since β(> 1) can

be chosen arbitrarily large and independent of ε, σt1 = t−β
1 can be made as small as

desired.

We first prove the bound on ‖(V.66)‖ stated in (V.69). To this end, we use(
e−i(|~k|t1−~k·~x) − I

)
eiγσt2

(~vj ,~∇E
σt2
~P

,t1) e−iE
σt2
~P

t1 Φ
(t1)
j,σt1

(V.75)

= e
iγσt2

(~vj ,~∇E
σt2
~P+~k

,t1)
e
−iE

σt2
~P+~k

t1(e−i(|~k|t1−~k·~x) − I) Φ
(t1)
j,σt1

(V.76)

+ e
iγσt2

(~vj ,~∇E
σt2
~P+~k

,t1)
e
−iE

σt2
~P+~k

t1 Φ
(t1)
j,σt1

(V.77)

− eiγσt2
(~vj ,~∇E

σt2
~P

,t1) e−iE
σt2
~P

t1 Φ
(t1)
j,σt1

. (V.78)

The Hölder regularity of Φ
σt1

~P
from i) yields

‖ (V.76) ‖ ≤ O( t1 σ
( 1
4
−δ′)

t1 t
− 3ε

2
1 ) , (V.79)

where δ′ can be chosen arbitrarily small, and independently of ε. The derivation of a similar

estimate is given in the proof of Theorem A.3 in the Appendix, starting from (A.27), where

we refer for details. The Hölder continuity of E
σt2

~P
and ~∇Eσt2

~P
, again from i), combined with

ii), with θ sufficiently close to 1, implies that, with ~k ∈ Bσt1
,

‖ (V.77)− (V.78) ‖ ≤ O( t1 σ
1
5
t1 t

− 3ε
2

1 ) , (V.80)

as desired.

To prove the bound on

sup
~k∈Bσt1

‖ (V.67)− (V.68) ‖ (V.81)

stated in (V.69), we use that

W ∗
σt2

(~∇Eσt2

~P+~k
)−W ∗

σt2
(~∇Eσt2

~P
) = W ∗

σt2
(~∇Eσt2

~P
)(W ∗

σt2
(~∇Eσt2

~P+~k
− ~∇Eσt2

~P
)− I) . (V.82)

We apply the Schwarz inequality in the form∥∥∥ (W ∗
σt2

(~∇Eσt2

~P+~k
− ~∇Eσt2

~P
)− I) Φ̃

∥∥∥ (V.83)

≤ C
( ∫

Bσt2

d3q

|~q|3
)1/2∣∣ ~∇Eσt2

~P+~k
− ~∇Eσt2

~P

∣∣ ‖N1/2
f Φ̃ ‖
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where in our case, Φ̃ ≡ eiγσt2
(~vj ,~∇E

σt2
~P

,t1)e−iE
σt2
~P

t1 Φ
(t1)
j,σt1

. We have

‖N1/2
f Φ

σt1

~P
‖ ≤ c | log σt1|1/2 ≤ c′ ( log t1 )1/2 , (V.84)

as a consequence of iii). Due to i),

sup
~k∈Bσt1

∣∣ ~∇Eσt2

~P+~k
− ~∇Eσt2

~P

∣∣ ≤ O(σ
1
4
−δ′′

t1 ) (V.85)

where δ′′ > 0 is arbitrarily small, and independent of ε (see (III.14)). Therefore,

sup
~k∈Bσt1

∥∥ (V.67)− (V.68)
∥∥ ≤ O((ln t2) (σt1)

ρ′)

for some ρ′ > 0 which does not depend on ε (recalling that t1 < t2).

We may now return to (V.53). From iv), and the fact that the number of cells is

N(t1) ≈ t3ε
1 , summation over all cells yields

N(t1)∑
j=1

∥∥ (V.51) − (V.52)
∥∥ ≤ O(

ln(t2)

tρ1
) (V.86)

for some ρ > 0, provided that β is sufficiently large. This agrees with (V.37).

The sum
∑N(t1)

j=1 ‖ (V.57) ‖ can be treated in a similar way.

Analysis of Step b)

We have to show that the norm difference of the two vectors corresponding to the change

(V.49) in (V.46) is bounded by the r.h.s. of (V.5). The proof is similar to the one just given

for step a), and we shall not reiterate it. The argument is based on the same properties i) –

iv) as used there.

Analysis of Step c)

Finally, we prove that the difference of the vectors corresponding to (V.50) satisfies

∥∥∥ N(t1)∑
j=1

Wσt1
(~vj, t1)

[
W |σt1

σt2
(~vj)W

∗|σt1
σt2

(~∇Eσt1

~P
)− I

]
eiγσt1

(~vj ,~∇E
σt1
~P

,t1)e−iE
σt1
~P

t1ψ
(t1)
j,σt1

∥∥∥2

≤ O
(
(ln(t2))

2/tρ1
)
, (V.87)



INFRAPARTICLE STATES IN QED I. 49

where we define

W |σt1
σt2

(~vj) := W ∗
σt1

(~vj)Wσt2
(~vj) , (V.88)

W ∗|σt1
σt2

(~∇Eσt1

~P
) := W ∗

σt2
(~∇Eσt1

~P
)Wσt1

(~∇Eσt1

~P
) . (V.89)

We separately discuss the diagonal and off-diagonal contributions to (V.87) from the sum

over cells in G(t1).

• The diagonal terms in (V.87).

To bound the diagonal terms in (V.87), we use that

W |σt1
σt2

(~vj)W
∗|σt1

σt2
(~∇Eσt1

~P
) = W |σt1

σt2
(~vj − ~∇Eσt1

~P
) , (V.90)

and that, by definition, ~vj ≡ ~∇Eσt1 |~P=~P ∗
j
. Using the Schwarz inequality, we obtain an

estimate analogous to (V.83). Then, we note that

sup
~P∈G

(t1)
j

|~∇Eσt1

~P
− ~vj| ≤ O( t

−ε( 1
4
−δ′′)

1 ) , (V.91)

by the Hölder regularity of ~∇Eσ
~P
, due to condition (I 2) in Theorem III.1; see (III.14).

Moreover, we use (V.84) to bound the expected photon number in the states {Ψσt1

~P
}.

This shows that the sum of diagonal terms can be bounded by

O(N(t1) ‖ψ(t1)
j,σt1

‖2 (ln t2) t
−ε( 1

4
−δ′′)

1 ) ≤ O( t−ρ
1 ln t2 ) (V.92)

for some ρ > 0, using N(t1) = O(t3ε
1 ), and ‖ψ(t1)

j,σt1
‖2 = O(t−3ε

1 ).

• The off-diagonal terms in (V.87).

Next, we bound the off-diagonal terms in (V.87), corresponding to the inner product of

vectors supported on cells j 6= l of the partition G (t1). Those are similar to the off-diagonal

terms M̂1
l,j(t, s) in (IV.6) that were discussed in detail previously. Correspondingly, we can

apply the methods developed in Section IV.1, up to some modifications which we explain

now.

Our goal is to prove the asymptotic orthogonality of the off-diagonal terms in (V.87).

We first of all prove the auxiliary result

lim
s→+∞

‖~aσt1
(~ηl,j)(s)W

∗|σt1
σt2

(~∇Eσt1

~P
)e−iH

σt1 sψ
(t1)
j,σt1

‖ = 0 . (V.93)

To this end, we compare

W ∗|σt1
σt2

(~∇Eσt1

~P
)1

G
(t1)
j

(~P ) (V.94)
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(where 1
G

(t1)
j

is the characteristic function of the cell G (t1)
j ) to its discretization:

1. We pick t̄ large enough such that G (t̄) is a sub-partition of G (t); in particular, G (t)
j =∑M

m(j)=1 G (t̄)
m(j), where M = N(t̄)

N(t)
.

2. Furthermore, defining ~um(j) := ~∇Eσt1

~P ∗
m(j)

, where ~P ∗
m(j) is the center of the cell G (t̄)

m(j),

we have, for ~P ∈ G (t̄)
m(j),

|~um(j) − ~∇Eσt1

~P
| ≤ C

(1

t̄

)ε ( 1
4
−δ′′)

, (V.95)

where C is uniform in t1.

3. We define

Wσt1
σt2

(M) :=
M∑

m(j)=1

W ∗|σt1
σt2

(~um(j))1G
(t̄)
m(j)

(~P ) (V.96)

and rewrite the vector

~aσt1
(~ηl,j)(s)W

∗|σt1
σt2

(~∇Eσt1

~P
)e−iH

σt1 sψ
(t1)
j,σt1

(V.97)

in (V.93) as∑
λ

∫
Bκ\Bσt1

d3k e−i~k·~x [
W ∗|σt1

σt2
(~∇Eσt1

~P
)−Wσt1

σt2
(M)

]
× (V.98)

× ~ηl,j(~k) · ~ε ∗~k,λ
b~k,λe

i|~k|s e−iE
σt1
~P

sψ
(t1)
j,σt1

+
M∑

m(j)=1

W ∗|σt1
σt2

(~um(j))
∑

λ

∫
Bκ\Bσt1

d3k ~ηl,j(~k) · ~ε ∗~k,λ
a~k,λe

i|~k|s ×

× e−iE
σt1
~P

sψ
(t̄)
m(j),σt1

. (V.99)

We now observe that, at fixed t1, (III.17) and the bound (V.95) imply that the vector in

(V.98) converges to the zero vector as t̄→ +∞, uniformly in s. Moreover, the norm of the

vector in (V.99) tends to zero, as s→ +∞, at fixed t̄. This proves (V.93).

The main difference between (V.87) and the similar expression in (IV.22) that is dif-

ferentiated in s is the operator

W |σt1
σt2

(~vj)W
∗|σt1

σt2
(~∇Eσt1

~P
) , (V.100)

which is absent in (IV.22). To control it, we first note that the Hamiltonian

Ĥσt1
:=

∫ ⊕
Ĥ~P ,σt1

d3P , (V.101)

where

Ĥ~P ,σt1
:=

(
~P − ~P f

>σt1
+ α1/2 ~Aσt1

)2

2
+ Hf

>σt1
(V.102)
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with

~P f
>σt1

:=

∫
R3\Bσt1

~k b∗~k,λ
b~k,λ d

3k , (V.103)

and

Hf
>σt1

:=

∫
R3\Bσt1

|~k| b∗~k,λ
b~k,λ d

3k , (V.104)

satisfies

Ĥ
σt1

~P
Ψ

σt1

~P
= E

σt1

~P
Ψ

σt1

~P
, (V.105)

and

[W |σt1
σt2

(~vj)W
∗|σt1

σt2
(~∇Eσt1

~P
) , Ĥσt1

] = 0 . (V.106)

Using (V.106), the vector in (V.87) corresponding to the j-th cell can be written as

ei bHσt1
sWσt1

(~vj, s) e
iγσt1

(~vj ,∇E
σt1
~P

,s) e−i bHσt1
sW |σt1

σt2
(~vj − ~∇Eσt1

~P
)ψ

(t)
j,σt1

, (V.107)

where

W |σt1
σt2

(~vj − ~∇Eσt1

~P
) = W |σt1

σt2
(~vj)W

∗|σt1
σt2

(~∇Eσt1

~P
) .

Similarly to our strategy in Section IV.1, we control M̂1
l,j(t, s) by integrating a suf-

ficiently strong bound on | d
ds

(M̂1
l,j(t, s))| with respect to s over [t,∞); see (IV.16). The

derivative in s of the j-th cell vector has the form

d

ds

(
ei bHσt1

sWσt1
(~vj, s) e

iγσt1
(~vj ,~∇E

σt1
~P

,s) e−iE
σt1
~P

sW |σt1
σt2

(~vj − ~∇Eσt1

~P
)ψ

(t1)
j,σt1

)
= i ei bHσt1

sWσt1
(~vj, s)α i[Ĥσt1

, ~x] ·
∫
Bκ\Bσt1

~Σ~vj
(~k) cos(~k · ~x− |~k|s) d3k ×

× e−iE
σt1
~P

s eiγσt1
(~vj ,∇E

σt
~P

,s)W |σt1
σt2

(~vj − ~∇Eσt1

~P
)ψ

(t)
j,σt

+ i ei bHσt1
sWσt1

(~vj, s)α
2

∫
Bκ\Bσt1

~Σ~vj
(~k) cos(~k · ~x− |~k|s) d3k ·

·
∫
Bκ\Bσt1

~Σ~vj
(~q) cos(~q · ~x− |~q|s)d3q × (V.108)

× eiγσt1
(~vj ,∇E

σt
~P

,s) e−iE
σt1
~P

sW |σt1
σt2

(~vj − ~∇Eσt1

~P
)ψ

(t)
j,σt1

+ i ei bHσt1
sWσt1

(~vj, s)
dγσt1

(~vj,∇E
σt1

~P
, s)

ds
×

× eiγσt1
(~vj ,~∇E

σt1
~P

,s) e−iE
σt1
~P

sW |σt1
σt2

(~vj − ~∇Eσt1

~P
)ψ

(t1)
j,σt1

.

Due to the similarity of this expression with (IV.22) – (IV.29), we can essentially adopt the

analysis presented in Section IV.1. The only difference here is the operator Ĥσt1 instead of

Hσt1 , and the additional term involving the commutator

[χh(
~x

s
) , W ∗|σt1

σt2
(~∇Eσt1

~P
)] (V.109)
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applied to the one-particle state

eiγσt1
(~vj ,~∇E

σt1
~P

,s) e−iE
σt1
~P

s ψ
(t1)
j,σt1

. (V.110)

However, the latter tends to zero as s→ +∞, at a rate of orderO( 1
sη ), for some ε-independent

η > 0. This follows from the Hölder regularity of ~∇Eσ
~P

(condition (I 2) in Theorem III.1),

and (III.17). Similarly, we treat the commutator (V.109) with the infrared tail (IV.37) in

place of χh(
~x
s
) (and with Ĥσt1 replacing Hσt1 ). It is then straightforward to see that we

arrive at (V.5). �
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VI. Scattering subspaces and asymptotic observables

This section is dedicated to the following key constructions in the scattering theory for

an infraparticle with the quantized electromagnetic field:

i) We define scattering subspaces Hout/in which are invariant under space-time transla-

tions, built from vectors {Ψ
out/in
h,κ }.

To this end, we first define a subspace, H̊out/in
κ , depending on the choice of a thresh-

old frequency κ with the following purpose: Apart from photons with energy smaller

than κ, this subspace contains states describing only a freely moving (asymptotic)

electron.

Adding asymptotic photons to the states in H̊out/in
κ , we define spaces of scattering

states of the system, where the asymptotic electron velocity is restricted to the region

{~∇E~P : |~P | < 1
3
} .

We note that the choice of H̊out/in
κ is not unique, except for the behavior of the

dressing photon cloud in the infrared limit. It is useful because

– in the construction of the spaces of scattering states, we can separate “hard

photons” from the photon cloud present in the states in H̊out/in
κ , which is not

completely removable – each state in the scattering spaces contains an infinite

number of asymptotic photons.

– from the physical point of view, every experimental setup is limited by a thresh-

old energy κ below which photons cannot be measured.

ii) The construction of asymptotic algebras of observables, Aout/in
ph and Aout/in

el , related

to the electromagnetic field and to the electron, respectively.

The asymptotic algebras are

– the Weyl algebra, Aout/in
ph , associated to the asymptotic electromagnetic field;

– the algebra Aout/in
el generated by smooth functions of compact support of the

asymptotic velocity of the electron.

The two algebras Aout/in
ph and Aout/in

el commute. This is the mathematical coun-

terpart of the asymptotic decoupling between the photons and the electron. This

decoupling is, however, far from trivial: In fact, in contrast to a theory with a mass

gap or a theory where the interaction with the soft modes of the field is turned off,

collective degrees of freedom are involved because of the emission of soft photons for

arbitrarily long times.
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In this respect, the asymptotic convergence of the electron velocity is a new con-

ceptual result, obtained from the solution of the infraparticle problem in a concrete

model, here non-relativistic QED. Furthermore, the appearance of collective degrees

of freedom is reflected in the representation of the asymptotic electromagnetic alge-

bra, which is non-Fock but only locally Fock (see Section VI.2). More precisely, the

representation can be decomposed on the spectrum of the asymptotic velocity of the

electron; for different values of the asymptotic velocity, the representations turn out

to be inequivalent. Only for ~∇E~P = 0, the representation is Fock, otherwise they are

coherent non-Fock. The coherent photon cloud, labeled by the asymptotic velocity,

is the well known Bloch-Nordsieck cloud.

All the results and definition clearly hold for both the out and the in-states. We shall

restrict ourselves to the discussion of out-states.

VI.1. Scattering subspaces and “One-particle” subspaces with counter threshold

κ. In Section III, we have constructed a scattering state with electron wave function h, and

a dressing cloud exhibiting the correct behavior in the limit ~k → 0, with maximal photon

frequency κ.

To construct a space which is invariant under space-time translations, we may either

focus on the vectors

e−i~a·~P e−iHτψout
h,κ , (VI.1)

or on the vectors obtained from

s− lim
t→+∞

eiHt

N(t)∑
j=1

Wτ,~a
σt

(~vj, t)e
iγσt (~vj ,~∇E

σt
~P

,t)e−iE
σt
~P

tψ
(t)
j,σt

(τ,~a) , (VI.2)

where

Wτ,~a
σt

(~vj, t) := exp
(
α

1
2

∫
Bκ\Bσt

d3k√
|~k|

~vj · {~ε~k,λa
∗
~k,λ
e−i|~k|(t+τ)e−i~k·~a − h.c.}

|~k|(1− k̂ · ~vj)

)
, (VI.3)

and

ψ
(t)
j,σt

(τ,~a) :=

∫
G

(t)
j

e−i~a·~P e−iE
σt
~P

τ h(~P )ψσt

~P
d3P . (VI.4)
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Using Theorem III.2, one straightforwardly finds that

e−i~a·~P e−iHτψout
h,κ (VI.5)

= s− lim
t→+∞

e−i~a·~P e−iHτeiHt

N(t)∑
j=1

Wσt(~vj, t)e
iγσt (~vj ,~∇E

σt
~P

,t)e−iE
σt
~P

tψ
(t)
j,σt

(VI.6)

= s− lim
t→+∞

eiHt

N(t+τ)∑
j=1

Wτ,~a
σt+τ

(~vj, t)e
iγσt+τ (~vj ,~∇E

σt+τ
~P

,t+τ) e−iE
σt+τ
~P

tψ
(t+τ)
j,σt+τ

(τ,~a) . (VI.7)

The two limits (VI.2) and (VI.7) coincide; this follows straightforwardly from the line of

analysis presented in the previous section.

Therefore, we can define the “one-particle” space corresponding to the frequency

threshold κ as

H̊out/in
κ :=

{∨
ψ

out/in
h,κ (τ,~a) : h(~P ) ∈ C1

0(S \ Brα) , τ ∈ R, ~a ∈ R3
}
. (VI.8)

By construction, H̊out/in
κ is invariant under space-time translations.

General scattering states of the system can contain an arbitrarily large number of

“hard” photons, i.e., photons with an energy above a frequency threshold, say for instance

κ. One can construct such states based on H̊out/in
κ according to the following procedure.

We consider positive energy solutions of the form

Ft(~y) :=

∫
d3k

2 (2π)3
√
|k|

F̂ (~k) e−i|k|t+i~k·~y (VI.9)

of the free wave equation

~∇~y · ~∇~yFt(~y)−
∂2Ft(~y)

∂t2
= 0 , (VI.10)

which exhibit fast decay in |~y| for arbitrary fixed t, and where F̂ (~k) ∈ C∞
0 (R3\{0}).

We then construct vector-valued test functions

~Ft(~y) :=
∑
λ=±

∫
d3k

2 (2π)3
√
|k|

~ε ∗~k,λ
F̂ λ(~k) e−i|k|t+i~k·~y (VI.11)

satisfying the wave equation (VI.10), with

~̂F (~k) :=
∑

λ

~ε ∗~k,λ
F̂ λ(~k) ∈ C∞

0 (R3\{0} ; C3) (VI.12)

We set

~A(t, ~y) := eiHt ~A(~y)e−iHt ; (VI.13)

here ~A(~y) is the expression in (II.12) with Λ = ∞. An asymptotic vector potential is

constructed starting from LSZ (t→ ±∞) limits of interpolating field operators

~A[~Ft, t] := i

∫ (
~A(t, ~y) · ∂

~Ft(~y)

∂t
− ∂ ~A(t, ~y)

∂t
· ~Ft(~y)

)
d3y, (VI.14)
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with ~Ft as in (VI.11) for the positive-energy component, and with −~Ft for the negative

energy component. We define

ψ
out/in

h, ~F
:= s− lim

t→+/−∞
ψh, ~F (t) , (VI.15)

where

ψh, ~F (t) := ei
(

~A[~Ft,t]− ~A[~Ft,t]
)
ψh,κ(t) . (VI.16)

Here, ψh,κ(t) approximates a vector ψout
h,κ in H̊out/in

κ (we temporarily drop the dependence

on (~a, τ) in our notation). The existence of the limit in (VI.15) is a straightforward conse-

quence of standard decay estimates for oscillating integrals under the assumption in (VI.12),

combined with the propagation estimate (III.43).

Finally, we can define the scattering subspaces as

Hout/in :=
{ ∨

ψ
out/in

h, ~F
: h(~P ) ∈ C1

0(S \ Brα) , ~̂F ∈ C∞
0 (R3 \ 0 ; C3)

}
. (VI.17)

VI.2. Asymptotic algebras and Bloch-Nordsieck coherent factor. We now state

some theorems concerning the construction of the asymptotic algebras. The proofs can

be easily derived using the arguments developed in Sections IV and V; for further details we

refer to [24].

Theorem VI.1. The functions f ∈ C∞
0 (R3), of the variable eiHt ~x

t
e−iHt, have strong limits

for t→∞ in Hout/in, namely:

s− lim
t→+/−∞

eiHt f(
~x

t
) e−iHtψ

out/in

h, ~F
=: ψ

out/in

h f~∇E
, ~F

(VI.18)

where f~∇E~P
:= limσ→0 f(~∇Eσ

~P
).

The proof is obtained from an adaptation of the proof of Theorem A.3 in the Appendix.

For the radiation field, we have the following result.

Theorem VI.2. The LSZ Weyl operators{
ei

(
~A[ ~Gt,t]− ~A[ ~Gt,t]

)
: Ĝλ(~k) ∈ L2(R3, (1 + |~k|−1)d3k) , λ = ±

}
(VI.19)

have strong limits in Hout/in:

Wout/in(~G) := s− lim
t→+/−∞

ei
(

~A[ ~Gt,t]− ~A[ ~Gt,t]
)
. (VI.20)

The limiting operators are unitary, and have the following properties:
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i)

Wout/in(~G)Wout/in(~G′) = Wout/in(~G+ ~G′)e−
ρ(~G, ~G′)

2 (VI.21)

where

ρ(~G, ~G′) = 2iIm(
∑

λ

∫
Ĝλ(~k)Ĝ′λ(~k)d3k) . (VI.22)

ii) The mapping R 3 s −→ Wout/in(s ~G) defines a strongly continuous, one parameter

group of unitary operators.

iii)

eiHτWout/in(~G)e−iHτ = Wout/in(~G−τ ) (VI.23)

where ~G−τ is a freely evolved, vector-valued test function in the time −τ .

Next, we define

• Aout/in
el as the norm closure of the (abelian) *algebra generated by the limits in

(VI.18).

• Aout/in
ph as the norm closure of the *algebra generated by the unitary operators in

(VI.20).

From (VI.21) and (VI.23), we conclude that Aout/in
ph is the Weyl algebra associated to

a free radiation field. Moreover, from straightforward approximation arguments applied to

the generators, we can prove that the two algebras, Aout/in
el and Aout/in

ph , commute.

Moreover, we can next establish key properties of the representation Π of the algebras

Aout/in
ph for the concrete model at hand that confirm structural features derived in [18] under

general assumptions.

To study the infrared features of the representation of Aout/in
ph , it suffices to analyze the

expectation of the generators {Wout(~G) } of the algebra with respect to arbitrary states of

the form ψout
h,κ,〈

ψout
h,κ , Wout(~G)ψout

h,κ

〉
(VI.24)

= lim
t→+∞

N(t)∑
j=1, l=1

〈
eiγσt (~vl,~∇E

σt
~P

,t)e−iE
σt
~P

tψ
(t)
l,σt

, (VI.25)

W∗
σt

(~vl, t)e
i
(

~A[ ~Gt,t]− ~A[ ~Gt,t]
)
Wσt(~vj, t)e

iγσt (~vj ,~∇E
σt
~P

,t)e−iE
σt
~P

tψ
(t)
j,σt

〉
.

In the step passing from (VI.24) to (VI.25), we use Theorem III.2. One infers from the

arguments developed in Section IV.1 that the sum of the off-diagonal terms, l 6= j, vanishes
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in the limit. Therefore,

(V I.25) = lim
t→+∞

N(t)∑
j=1

〈
eiγσt (~vj ,~∇E

σt
~P

,t)e−iE
σt
~P

tψ
(t)
j,σt

, (VI.26)

ei
(

~A[ ~Gt,t]− ~A[ ~Gt,t]
)
e%~vj

( ~G)eiγσt (~vj ,~∇E
σt
~P

,t)e−iE
σt
~P

tψ
(t)
j,σt

〉
,

where

%~u(~G) := 2iRe
(
α

1
2

∑
λ

∫
Bκ

Ĝλ(~k)
~u · ~ε ∗~k,λ

|~k| 32 (1− ~u · k̂)
d3k

)
. (VI.27)

After solving an ODE analogous to (IV.9), we find that the diagonal terms yield〈
ψout

h,κ , Wout(~G)ψout
h,κ

〉
=

∫
e−

C ~G
2 e

%~∇E ~P
( ~G) |h(~P )|2 d3P , (VI.28)

where

C~G :=

∫
| ~̂G(~k)|2d3k , (VI.29)

Here, we also use that ~vj ≡ ~∇Eσt

~P ∗
j

, combined with the convergence ~∇Eσt

~P
→ ~∇E~P (as t→∞

and ~P ∈ S).

Now, we can reproduce the following results in [18]: The representation Π(A out/in
ph ) is

given by a direct integral on the spectrum of the operator ~v
out/in

as in Hout/in, defined by

f(~v out/in
as ) := lim

t→+/−∞
eiHtf(

~x

t
)e−iHt (VI.30)

for any f ∈ C∞
0 (R3), of mutually inequivalent, irreducible representations. These representa-

tions are coherent non-Fock for values ~v
out/in

as 6= 0. The coherent factors, labeled by ~v
out/in

as ,

are

α
1
2

~v
out/in

as · ~ε~k,λ

|~k| 32 (1− ~v out/in
as · k̂)

and α
1
2

~v
out/in

as · ~ε ∗~k,λ

|~k| 32 (1− ~v out/in
as · k̂)

, (VI.31)

for the annihilation and the creation part, a
out/in
~k,λ

and a
out/in ∗
~k,λ

, respectively.

The representation Π(Aout/in
ph ) is locally Fock in momentum space. This property is

equivalent to the following one:

For any κ > 0, and ~̂Gκ ∈ C∞
0 (R3 \ Bκ ; C3), the operator

~A[−~Gκ
t , t] (VI.32)

annihilates vectors of the type ψout
h,κ in the limit t→ +∞, i.e.,

lim
t→+∞

~A[−~Gκ
t , t]ψ

out
h,κ = 0 . (VI.33)

To prove this, we first consider Theorem III.2, then

lim
t→+∞

~A[−~Gκ
t , t]ψ

out
h,κ = lim

t→+∞
~A[−~Gκ

t , t]ψh,κ(t) . (VI.34)
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Next, we rewrite the vector

~A[−~Gκ
t , t]ψh,κ(t) = eiHt ~A[−~Gκ

t , 0]

N(t)∑
j=1

Wσt(~vj, t)e
iγσt (~vj ,~∇E

σt
~P

,t)e−iE
σt
~P

tψ
(t)
j,σt

(VI.35)

as

−
∫ +∞

t

d

ds
{ eiHs ~A[−~Gκ

s , s]

N(t)∑
j=1

Wσt(~vj, s)e
iγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt
} ds (VI.36)

+ lim
s→+∞

eiHs

N(t)∑
j=1

Wσt(~vj, s) ~A[−~Gκ
s , 0]eiγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

. (VI.37)

The integral in (VI.36), and the limit in (VI.37) exist. To see this, it is enough to follow the

procedure in Section IV.1, taking into account that the operator

~A[−~Gκ
s , 0]

1

(Hσt + i)
[Hσt , ~x] (VI.38)

is bounded, uniformly in t and s. The limit (VI.37) vanishes at fixed t because of condition

(I 4) in Theorem III.1. Therefore we finally conclude that the limit (VI.34) vanishes.

Liénard-Wiechert fields generated by the charge

Now we briefly explain how to obtain the result stated in (III.76). The assertion is ob-

vious for the longitudinal degrees of freedom; see the definition of Fµν in (III.77). For the

transverse degrees of freedom, we argue as follows. Similarly to the treatment of (VI.24), we

arrive at a sum over the diagonal terms,

lim
t→±∞

〈
ψ

out/in

h, ~F
, eiHt

∫
d3y F tr

µν(0, ~y) δ̃(~y − ~x− ~d) e−iHtψ
out/in

h, ~F

〉
= lim

t→±∞

N(t)∑
j=1

〈
ψσt

j,σt
,

∫
d3y F tr

µν(0, ~y) δ̃(~y − ~x− ~d)ψσt
j,σt

〉
,

by exploiting the usual decay properties in time of solutions gt,~y of the free wave equation

whose Fourier transform behaves like |~k|−1 for ~k → 0. Then, one uses Proposition 5.1 in [9]

which identifies the infrared coherent factor by showing that

∣∣∣〈 Ψσ
~P
, b~k,λ Ψσ

~P

〉
+ α

1
2
1σ,Λ(~k)

|~k| 12
1

|~k| − ~k · ~∇Eσ
~P

~ε~k,λ · ~∇E
σ
~P

∣∣∣ ≤ α1/2C |~k|−1 (VI.39)
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for ~k → 0. This straightforwardly implies that

| ~d |2
∣∣∣ lim

t→±∞

{ N(t)∑
j=1

〈
ψσt

j,σt
,

∫
d3y F tr

µν(0, ~y) δ̃(~y − ~x− ~d)ψσt
j,σt

〉
− (VI.40)

−
N(t)∑
j=1

∫
G

(t)
j

|h(~P )|2
〈
ψσt

~P
, ψσt

~P

〉 (
F

~∇E
σt
~P

µν

)tr
(0, ~d) d3P

} ∣∣∣ ≤ O(|~d|−1/2) ,

which vanishes in the limit |~d| → ∞, as asserted in (III.76).
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Appendix A

In this part of the Appendix, we present detailed proofs of auxiliary results used in

Section III.

Lemma A.1. The following estimates hold for ~P ∈ S:

(i) For t2 > t1 � 1,

|γσt2
(~vj, ~∇E

σt2

~P
, (σt2)

− 1
θ )− γσt2

(~vl(j), ~∇E
σt2

~P
, (σt2)

− 1
θ )| ≤ O(|~vj − ~vl(j)|) , (A.1)

where ~vj ≡ ~∇Eσt1

~P
and ~vj ≡ ~∇Eσt2

~P
.

(ii) For t2 > t1 � 1,

| γσt2
(~vj, ~∇E

σt2

~P
, t1)− γσt1

(~vj, ~∇E
σt1

~P
, t1) | ≤ O

(
[(σt1)

1
2
(1−δ) t1−θ

1 + t1 σt1 ]
)
. (A.2)

(iii) For s, t� 1 and ~q ∈ {~q : |~q| < s(1−θ)},

| γσt(~vj, ~∇Eσt

~P
, s)− γσt(~vj, ~∇Eσt

~P+ ~q
s

, s) | ≤ O(s−
θ
4
(1−δ′′) s(1−θ)) , (A.3)

whenever γσt(~vj, ~∇Eσt

~P
, s) is defined different from zero.

Proof.

The proofs only require the definition of the phase factor, and some elementary integral

estimates, using conditions (I 1) and (I 2) in Theorem III.1. �

Lemma A.2. For s ≥ t� 1, the estimates

sup
~x∈R3

∣∣∣ ∫
Bκ\Bσt

Σl
~vj

(~k) cos(~k · ~x− |~k|s)d3k
∣∣∣ ≤ O(

| ln σt|
s

) , (A.4)

sup
~x∈R3

∣∣∣ ∫
Bκ\BσS

t

Σl
~vj

(~k) cos(~k · ~x− |~k|s)d3k χh(
~x

s
)
∣∣∣ ≤ O(

tθ

s2
) , (A.5)

hold, where

Σl
~vj

(~k) := 2
∑

l′

(δl,l′ −
klkl′

|~k|2
)vl′

j

1

|~k|2(1− k̂ · ~vj)
, (A.6)

and where σt = t−β, σS
τ := τ−θ, with β > 1, 0 < θ < 1. Moreover, χh(~y) = 0 for |~y| < νmin

and |~y| > νmax with 0 < νmin < νmax < 1 (see (III.15)).



62 T.CHEN, J.FRÖHLICH, AND A. PIZZO

Proof.

To prove the estimate (A.4), we consider the variable ~x first in the set

{~x ∈ R3 : |~x| < (1− ρ)s, 0 < ρ < 1} .

We denote by θ~k the angle between ~x and ~k. Integration with respect to |~k| yields

∣∣ ∫
Bκ\Bσt

Σl
~vj

(~k) cos(~k · ~x− |~k|s)d3k
∣∣ (A.7)

=
∣∣ ∫

Σ̂l
~vj

(k̂)
sin(κk̂ · ~x− κs)− sin(t−βk̂ · ~x− t−βs)

k̂ · ~x− s
dΩ~k

∣∣ (A.8)

≤ 2

ρ s

∫
|Σ̂~vj

(k̂)|dΩ~k , (A.9)

where Σ̂l
~vj

(k̂) := |~k|2 Σl
~vj

(~k).

For ~x in the set

{~x ∈ R3 : |~x| > (1− ρ)s, 0 < ρ < 1} ,

we integrate by parts with respect to cos θ~k, and observe that the two functions

Σ̂l
~vj

(k̂) and
d(Σ̂l

~vj
(k̂))

d cos θ~k
(A.10)

belong to L1(S2 ; dΩ~k). This yields∫
Bκ\Bσt

Σl
~vj

(~k) cos(~k · ~x− |~k|s)d3k (A.11)

=

∫ κ

σt

∫
Σ̂l

~vj
(k̂)|θ~k

=π
sin(|~k| |~x|+ |~k|s)

|~k| |~x|
d|~k|dφ (A.12)

+

∫ κ

σt

∫
Σ̂l

~vj
(k̂)|θ~k

=0
sin(|~k| |~x| − |~k|s)

|~k| |~x|
d|~k|dφ (A.13)

−
∫
Bκ\Bσt

d(Σ̂l
~vj

(k̂))

d cos θ~k

sin(~k · ~x− |~k|s)
|~k| |~x|

d|k|dΩ~k . (A.14)

The absolute values of (A.12), (A.13), and (A.14), are all bounded above by O( ln σt

s−ρs
), as one

easily verifies. This establishes (A.4), uniformly in ~x ∈ R3.

To prove (A.5), we consider ~x in a set of the form

{~x ∈ R3 : (1− ρ′)s > |~x| > (1− ρ)s, 0 < ρ′ < ρ < 1} . (A.15)
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We apply integration by parts with respect to |~k| in (A.12), (A.13), and (A.14) in the case

σS
t . As an example, we get for (A.12)

(A.12) = −
∫

Σ̂l
~vj

(k̂)|θ~k
=π

cos(κ (|~x|+ s))

κ (|~x|+ s) |~x|
dφ (A.16)

+

∫
Σ̂l

~vj
(k̂)|θ~k

=π
cos(t−θ (|~x|+ s))

t−θ (|~x|+ s) |~x|
dφ (A.17)

−
∫ κ

σS
t

∫
Σ̂l

~vj
(k̂)|θ~k

=π
cos(|~k| |~x|+ |~k|s)
|~k|2 |~x|(|~x|+ s)

d|k|dφ . (A.18)

Since ~x is assumed to be an element of (A.15), it follows that the bound (A.5) holds for (A.12).

In the same manner, one obtains a similar bound for (A.13) and (A.14). �

Theorem A.3. For θ < 1 sufficiently close to 1, and s ≥ t, the propagation estimate∥∥∥χh(
~x

s
)eiγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

(A.19)

−χh(~∇Eσt

~P
)eiγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

∥∥∥
≤ c

1

sν

1

t
3ε
2

| ln(σt)| (A.20)

holds, where ν > 0 is independent of ε.

Proof.

Since the detailed proof of a closely related result is given in Theorem A2 of [24], we only

sketch the argument.

Expressing χh (which we assume to be real) in terms of its Fourier transform χ̂h, we

bound (A.19) by

‖
∫

d3q χ̂h(~q)(e
−i~q·~∇E

σt
~P − e−i~q·~x

s ) eiγσt (~vj ,~∇E
σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt
‖ (A.21)

≤ ‖
∫

d3q χ̂h(~q)(e
−i~q·~∇E

σt
~P − e

i(E
σt
~P
−E

σt
~P+

~q
s

)s
) eiγσt (~vj ,~∇E

σt
~P

,s) ψ
(t)
j,σt
‖ (A.22)

+‖
∫

d3q χ̂h(~q) e
i(E

σt
~P
−E

σt
~P+

q
s
)s

(e−i~q·~x
s − 1) eiγσt (~vj ,~∇E

σt
~P

,s) ψ
(t)
j,σt
‖ . (A.23)

We split the integration domains of (A.22) and (A.23) into the two regions

I+ := {~q : |~q| > s1−θ} and I− := {~q : |~q| ≤ s1−θ} . (A.24)

In both (A.22) and (A.23), the contribution to the integral from I+ is controlled by the

decay properties of χ̂(~q), and one easily derives the bound in (A.20). For the contributions

to (A.22) from the integral over I−, the existence of the gradient of the energy, the Hölder
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property in ~P of the gradient, and the decay properties of χ̂(~q) are enough to produce the

bound in (A.20).

To control (A.23), we note that the two vectors

Ψσt

~P− ~q
s

and Ψ̂σt

~P− ~q
s

:= e−i~q·~x
s Ψσt

~P
(A.25)

belong to the same fiber space H~P− ~q
s
, and that, as vectors in Fock space, Ψ̂σt

~P− ~q
s

and Ψσt

~P

coincide, i.e.,

I~P− ~q
s
(e−i~q·~x

s Ψσt

~P
) ≡ I~P (Ψσt

~P
) . (A.26)

We split and estimate (A.23) by

(A.23) =
∥∥∫

I−

χ̂h(~q)

∫
Γ

(t)
j

e
i(E

σt
~P− ~q

s

−E
σt
~P

)s
h~P e

iγσt (~vj ,~∇E
σt
~P

,s)Ψ̂σt

~P− ~q
s

d3Pd3q (A.27)

−
∫

I−

χ̂h(~q)

∫
Γ

(t)
j

e
i(E

σt
~P
−E

σt
~P+

~q
s

)s
h~P e

iγσt (~vj ,~∇E
σt
~P

,s)Ψσt

~P
d3Pd3q

∥∥ (A.28)

≤
∥∥∫

I−

χ̂h(~q)

∫
Γ

(t)
j

e
i(E

σt
~P− ~q

s

−E
σt
~P

)s
h~P e

iγσt (~vj ,~∇E
σt
~P

,s)Ψ̂σt

~P− ~q
s

d3Pd3q (A.29)

−
∫

I−

χ̂h(~q)

∫
Γ

(t)
j

e
i(E

σt
~P− ~q

s

−E
σt
~P

)s
h~P e

iγσt (~vj ,~∇E
σt
~P

,s)Ψσt

~P− ~q
s

d3Pd3q
∥∥

+
∥∥∫

I−

χ̂h(~q)

∫
Γ

(t)
j

e
i(E

σt
~P− ~q

s

−E
σt
~P

)s
h~P e

iγσt (~vj ,~∇E
σt
~P

,s)Ψσt

~P− ~q
s

d3Pd3q (A.30)

−
∫

I−

χ̂h(~q)

∫
Γ

(t)
j

e
i(E

σt
~P− ~q

s

−E
σt
~P

)s
h~P− ~q

s
e

iγσt (~vj ,~∇E
σt
~P− ~q

s

,s)
Ψσt

~P− ~q
s

d3Pd3q
∥∥

+
∥∥ ∫

I−

χ̂h(~q)

∫
Γ

(t)
j

e
i(E

σt
~P− ~q

s

−E
σt
~P

)s
h~P− ~q

s
e

iγσt (~vj ,~∇E
σt
~P− ~q

s

,s)
Ψσt

~P− ~q
s

d3Pd3q (A.31)

−
∫

I−

χ̂h(~q)

∫
Γ

(t)
j

e
i(E

σt
~P
−E

σt
~P+

~q
s

)s
h~P e

iγσt (~vj ,~∇E
σt
~P

,s)Ψσt

~P
d3Pd3q

∥∥ .
The terms (A.29), (A.30), and (A.31) can be bounded by

(A.29) ≤
∫

I−

|χ̂h(~q)|
[ ∫

Γ
(t)
j

|h~P |
2‖I~P (Ψσt

~P
)− I~P− ~q

s
(Ψσt

~P− ~q
s

)‖2
F d

3P
] 1

2d3q , (A.32)

and

(A.30) ≤
∫

I−

|χ̂h(~q)|
[ ∫

Γ
(t)
j

|∆ ~q
s
(h~P e

iγσt (~vj ,~∇E
σt
~P

,s))|2 ‖I~P− ~q
s
(Ψσt

~P− ~q
s

)‖2
F d

3P
] 1

2d3q , (A.33)

and

(A.31) ≤
∫

I−

|χ̂h(~q)|
[ ∫

Oj
~q
s

|h~P |
2 ‖I~P (Ψσt

~P
)‖2
F d

3P
] 1

2d3q , (A.34)

where

∆ ~q
s
(h~P e

iγσt (~vj ,~∇E
σt
~P

,s)) := h~P e
iγσt (~vj ,~∇E

σt
~P

,s) − h~P− ~q
s
e

iγσt (~vj ,~∇E
σt
~P− ~q

s

,s)
, (A.35)
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and Oj
~q
s

:= (Γ
(t)
j ∪ Γ

(t) , ~q
s

j ) \ (Γ
(t)
j ∩ Γ

(t) , ~q
s

j ), where Γ
(t) , ~q

s
j is the translate by ~q

s
of the cell Γ

(t)
j .

Using (A.3), the C1−regularity of h~P , and the definition of I−, one readily shows that

the terms (A.33), (A.34) satisfy the bound (A.20), as desired.

To estimate (A.32), we use the inequality

‖I~P

(
Ψσt

~P

)
− I~P− ~q

s

(
Ψσt

~P− ~q
s

)
‖F (A.36)

≤ ‖I~P

(
Wσt(~∇Eσt

~P
)Ψσt

~P

)
− I~P− ~q

s

(
Wσt(~∇Eσt

~P− ~q
s

)Ψσt

~P− ~q
s

)
‖F (A.37)

+‖I~P− ~q
s

(
(W ∗

σt
(~∇Eσt

~P
)−W ∗

σt
(~∇Eσt

~P− ~q
s

))Wσt(~∇Eσt

~P− ~q
s

)Ψσt

~P− ~q
s

)
‖F , (A.38)

where it is clear that

Wσt(~∇Eσt

~P
)Ψσt

~P
= Φσt

~P
. (A.39)

Moreover, we use properties (I 2), (I 5) in Theorem III.1, where we recall that

(I 2) Hölder regularity in ~P ∈ S uniformly in σ ≥ 0 holds in the sense of

‖Φσ
~P
− Φσ

~P+∆~P
‖F ≤ Cδ′|∆~P |

1
4
−δ′ (A.40)

and

|~∇Eσ
~P
− ~∇Eσ

~P+∆~P
| ≤ Cδ′′|∆~P |

1
4
−δ′′ , (A.41)

for any 0 < δ′′ < δ′ < 1
4
, with ~P , ~P + ∆~P ∈ S, and where Cδ′ and Cδ′′ are finite

constants depending on δ′ and δ′′, respectively.

We can bound (A.37) by use of (A.40).

In order to bound (A.38), we recall the definition of the Weyl operator

Wσ(~∇Eσ
~P
) := exp

(
α

1
2

∑
λ

∫
BΛ\Bσ

d3k
~∇Eσ

~P

|~k| 32 δ~P ,σ(k̂)
· (~ε~k,λb

∗
~k,λ
− h.c.)

)
, (A.42)

and we note that

(A.38) ≤ c
∣∣ ~∇Eσt

~P
− ~∇Eσt

~P− ~q
s

∣∣ R3
t

(
R3

t +
( ∫

BΛ\Bσt

d3k ‖ b~k,λΦ
σ
~P− ~q

s

‖2
F

) 1
2
)

(A.43)

from a simple application of the Schwarz inequality, where

R3
t :=

( ∫
BΛ\Bσt

d3k

|~k|3
) 1

2
= O(| lnσt|

1
2 ) . (A.44)

Moreover, we have ∫
BΛ\Bσt

d3k ‖ b~k,λΦ
σ
~P− ~q

s

‖2
F ≤ c | lnσt| , (A.45)

which is derived similarly as (V.74).

From Hölder continuity of ~∇Eσ
~P

in ~P , (A.41), we obtain a contribution to the upper

bound on (A.38) which exhibits a power law decay in s.
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We conclude that (A.32) is bounded by (A.20), as claimed. �

Remark: By a similar procedure, one finds that for t2 ≥ s ≥ t1,∥∥∥χh(
~x

s
) eiγt2 (~vj ,~∇E

σt2
~P

,s) e−iE
σt2
~P

s ψ
(t1)
j,σt2

−χh(~∇E
σt2

~P
) eiγt2 (~vj ,~∇E

σt2
~P

,s) e−iE
σt2
~P

s ψ
(t1)
j,σt2

∥∥∥ ≤ c
1

sν

ln(σt2)

t
3/2
1

. (A.46)

Analogous extensions hold for the estimates in the next theorem.

Theorem A.4. Both∥∥∥ ∫ +∞

t

eiHσtsWσt(~vj, s)
[
J |σS

s
σt

(s)χh(
~x

s
)−

dγ̂σt(~vj,
~x
s
, s)

ds

]
eiγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

s(Eσt

~P
+i)ψ

(t)
j,σt
ds

∥∥∥
(A.47)

and ∥∥∥ ∫ +∞

t

eiHσtsWσt(~vj, s)
{ dγ̂σt(~vj,

~x
s
, s)

ds
eiγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

s(Eσt

~P
+ i)ψ

(t)
j,σt

(A.48)

−
dγσt(~vj, ~∇Eσt

~P
, s)

ds
eiγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

s(Eσt

~P
+ i)ψ

(t)
j,σt

}
ds

∥∥∥
are bounded by

1

tη
| ln(σt)|2 t−

3ε
2 , (A.49)

where η > 0 is ε-independent. J |σ
S
s

σt (s),
dbγσt (~vj ,~x

s
,s)

ds
, and

dγσt (~vj ,~∇E
σt
~P

,s)

ds
are defined in (IV.36),

(IV.37), and (IV.7) – (IV.8), respectively.

Proof.

We recall from (IV.36) that for σS
s > σt,

J |σS
s

σt
(s) = α i[Hσt , ~x] ·

∫
B

σS
s
\Bσt

~Σ~vj
(~k)

1

Hσt + i
cos(~k · ~x− |~k|s)d3k ,

where σS
s := 1

sθ is the slow cut-off, and from (IV.37)

dγ̂σt(~vj,
~x
s
, s)

ds
:= α e−iHσts 1

Hσt + i

d{eiHσts~xh(s)e
−iHσts}

ds
eiHσts ·

·
∫
B

σS
s
\Bσt

~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
s− |~k|s)d3k . (A.50)

For s such that σS
s ≤ σt the expressions (A.47) and (A.48) are identically zero. By unitarity

of eiHσts and Wσt(~vj, s), we can replace the part in the integrand of (A.47) proportional to
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J |σ
S
s

σt (s) by

eiHσtsWσt(~vj, s)α i[H
σt , ~x]

1

Hσt + i
χh(

~x

s
) · (A.51)

·
∫
B

σS
s
\Bσt

d3k ~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
s− |~k|s) eiγσt (~vj ,~∇E

σt
~P

,s) e−iE
σt
~P

s(Eσt

~P
+ i)ψ

(t)
j,σt

,

up to a term which yields an integral bounded in norm by

1

tη
| ln(σt)|2 t−

3ε
2 . (A.52)

To justify this step, we exploit the fact that the operator

i[Hσt , ~x]
1

Hσt + i
(A.53)

is bounded. Moreover, we are applying the propagation estimate∥∥∥{∫
B

σS
s
\Bσt

~Σ~vj
(~k) cos(~k · ~x− |~k|s)d3k (A.54)

−
∫
B

σS
s
\Bσt

~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
s− |~k|s)d3k

}
eiγσt (~vj ,~∇E

σt
~P

,s) e−iE
σt
~P

s(Eσt

~P
+ i)ψ

(t)
j,σt

∥∥∥
≤ c

1

s1+ν

1

t
3ε
2

| ln(σt)| ,

for some ν > 0, which is similar to (A.19). To obtain the upper bound, we exploit the fact

that due to the slow cut-off σS
s = s−θ, θ > 0, in J |σ

S
s

σt (s), the upper integration bound in the

radial part of the momentum variables vanishes in the limit s→∞. We note that we have

to assume θ < 1 as required in (IV.35), in order to use the result in Lemma A.2.

Next, we approximate (A.51) by

eiHσtsWσt(~vj, s)α e
−iHσts 1

Hσt + i

d~x(s)

ds
χh(

~x(s)

s
) · (A.55)

·
∫
B

σS
s
\Bσt

d3k ~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
s− |~k|s) (Eσt

~P
+ i)eiγσt (~vj ,~∇E

σt
~P

,s)ψ
(t)
j,σt

where ~x(s) := eiHσts~xe−iHσts. To pass from (A.51) to (A.55), we have used

d~x(s)

ds

1

Hσt + i
=

1

Hσt + i

d~x(s)

ds
− 1

Hσt + i

d[~x(s) , Hσt ]

ds

1

Hσt + i
, (A.56)

and we have noticed that the term containing

1

Hσt + i

d[~x(s) , Hσt ]

ds

1

Hσt + i
(A.57)

can be neglected because an integration by parts shows that the corresponding integral is

bounded in norm by 1
tν
| ln(σt)|2 t−

3ε
2 . This uses

sup
~P∈S

∣∣∣ ∫
B

σS
s
\Bσt

d3k ~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
s− |~k|s)

∣∣∣ ≤ O
( | ln (

σt)|
s

)
(A.58)
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and

sup
~P∈S

∣∣∣ d
ds

∫
B

σS
s
\Bσt

d3k ~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
s− |~k|s)

∣∣∣ ≤ O
( 1

s1+θ

)
, (A.59)

which can be derived as in Lemma A.2.

To bound the integral corresponding to (A.55), we note that up to a term whose integral

is bounded in norm by (A.49), one can replace d~x(s)
ds

χh(
~x(s)

s
) by

d

ds

(
eiHσts~xh(s)e

−iHσts
)
, (A.60)

where ~xh(s) := ~xχh(
~x
s
), with χh(~y) defined as in Section IV.1. This is possible because

d

ds

(
eiHσts~xh(s)e

−iHσts
)

(A.61)

= − eiHσts~x [
~x

s2
· ~∇χh(

~x

s
)]e−iHσts (A.62)

+ eiHσtsi[Hσt , ~x]χh(
~x

s
)e−iHσts (A.63)

+ eiHσts~x

s

[
~∇χh(

~x

s
) · i[H

σt , ~x]

2

]
e−iHσts (A.64)

+ eiHσts~x

s

[i[Hσt , ~x]

2
· ~∇χh(

~x

s
)
]
e−iHσts , (A.65)

where (A.63) corresponds to d~x(s)
ds

χh(
~x(s)

s
). Moreover, we use the fact that the vector operator

1
Hσt+i

i[Hσt , ~x] is bounded, and apply the propagation estimate (A.19) to xixj

s2 ∇jχh(
~x
s
) and

to xi

s
∇jχh(

~x
s
) with appropriate modifications (see (A.72) and recall that ~∇χh(~∇Eσt

~P
) = 0 for

~P ∈ supph).

We observe that

eiHσtsWσt(~vj, s)α e
−iHσts 1

Hσt + i

d( eiHσts~xh(s)e
−iHσts )

ds
· (A.66)

·
∫
B

σS
s
\Bσt

d3k ~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
s− |~k|s) (Eσt

~P
+ i) eiγσt (~vj ,~∇E

σt
~P

,s) ψ
(t)
j,σt

corresponds to

eiHσtsWσt(~vj, s)
[dγ̂σt(~vj,

~x
s
, s)

ds

]
eiγσt (~vj ,~∇E

σt
~P

,s) ψ
(t)
j,σt

. (A.67)

This immediately implies (A.47).

To prove (A.48), we need to control the integral∫ s̄

t

eiHσtsWσt(~vj, s)e
−iHσts α

Hσt + i

d( eiHσts~xh(s)e
−iHσts )

ds
· (A.68)

·
∫
B

σS
s
\Bσt

d3k ~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
s− |~k|s)(Eσt

~P
+ i)ψ

(t)
j,σt
ds
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for s̄→ +∞. An integration by parts with respect to s yields

eiHσtsWσt(~vj, s)
α

Hσt + i
~xh(s) ·

∫
B

σS
s
\Bσt

d3k ~Σ~vj
(~k)× (A.69)

× cos(~k · ~∇Eσt

~P
s− |~k|s)Eσt

~P
e−iE

σt
~P

s(Eσt

~P
+ i)ψ

(t)
j,σt

∣∣s̄
t

−
∫ s̄

t

{ d

ds
( eiHσtsWσt(~vj, s)e

−iHσts )
}
eiHσts α

Hσt + i
× (A.70)

×~xh(s) ·
∫
B

σS
s
\Bσt

d3k ~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
s− |~k|s)

× e−iE
σt
~P

s(Eσt

~P
+ i)ψ

(t)
j,σt
ds

−
∫ s̄

t

eiHσtsWσt(~vj, s)
α

Hσt + i
× (A.71)

×~xh(s) ·
{ d

ds

∫
B

σS
s
\Bσt

d3k ~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
s− |~k|s)

}
× e−iE

σt
~P

s(Eσt

~P
+ i)ψ

(t)
j,σt
ds.

Here, we notice that

~xh(s) = ~xχh(
~x

s
) = −is

∫
~∇χ̂h(~q)e

−i~q·~x
s d3q . (A.72)

Furthermore, the operator

−i
∫
~∇χ̂h(~q)e

−i~q·~x
s d3q (A.73)

tends to

−i
∫
~∇χ̂h(~q)e

−i~q·~∇E
σt
~P d3q (A.74)

for s→∞, if it is applied to the vectors

eiγσt (~vj ,~∇E
σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

, (A.75)

or ∫
B

σS
s
\Bσt

d3k ~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
s− |~k|s)eiγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

, (A.76)

or { d

ds

∫
B

σS
s
\Bσt

d3k ~Σ(~k,~vj) cos(~k · ~∇Eσt

~P
s− |~k|s)

}
eiγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

. (A.77)

The rate of convergence of the corresponding expression in (A.48) is bounded by (A.49).
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Therefore, we can replace expressions (A.69),(A.70), and (A.71) by

eiHσtsWσt(~vj, s)e
−iHσtsα s~∇Eσt

~P
· (A.78)

·
∫
B

σS
s
\Bσt

d3k ~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
s− |~k|s)eiγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

∣∣∣s̄
t

−
∫ s̄

t

ds
{ d

ds
( eiHσtsWσt(~vj, s)e

−iHσts )
}
α s~∇Eσt

~P
· (A.79)

·
∫
B

σS
s
\Bσt

~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
s− |~k|s)d3keiγσt (~vj ,~∇E

σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt

−
∫ s̄

t

eiHσtsWσt(~vj, s)e
−iHσtsα s~∇Eσt

~P
· (A.80)

·
{ d

ds

∫
B

σS
s
\Bσt

~Σ~vj
(~k) cos(~k · ~∇Eσt

~P
s− |~k|s)d3k

}
×

× eiγσt (~vj ,~∇E
σt
~P

,s)e−iE
σt
~P

sψ
(t)
j,σt
ds .

Recalling the definition of the phase factor, the sum of the expressions (A.78), (A.79), and

(A.80) can be written compactly as∫ s̄

t

ds eiHσtsWσt(~vj, s)
dγσt(~vj,∇E~P , s)

ds
eiγσt (~vj ,~∇E

σt
~P

,s) e−iE
σt
~P

s ψ
(t)
j,σt

, (A.81)

after an integration by parts.

This implies the asserted bound for (A.47). �
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[18] J. Fröhlich, G. Morchio, F. Strocchi. Charged sectors and scattering state in quantum electrodynamics

Annals of Physics, 119 (2), June 1979
[19] J.M. Jauch, F. Rohrlich, Helv, Phys, Acta 27, 613 (1954).
[20] J.M. Jauch, F. Rohrlich. Theory of photons and electrons. Addison-Wesley.
[21] T. Kibble. J. Math. Phys. 9, 315, (1968).
[22] E. Nelson. Interaction of nonrelativistic particles with a quantized scalar field. J. Math. Phys., 5 1190–

1197, 1964.
[23] A. Pizzo. One-particle (improper) states in Nelson’s massless model. Ann. H. Poincaré, 4 (3), 439–486
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E-mail address: pizzo@itp.phys.ethz.ch


