
DYNAMICAL LOWER BOUNDS FOR 1D DIRAC
OPERATORS

ROBERTO A. PRADO AND CÉSAR R. DE OLIVEIRA

Abstract. Quantum dynamical lower bounds for continuous and dis-
crete one-dimensional Dirac operators are established in terms of trans-
fer matrices. Then such results are applied to various models, including
the Bernoulli-Dirac one and, in contrast to the discrete case, critical
energies are also found for the continuous Dirac case with positive mass.

1. Introduction

We consider discrete, resp. continuous, Dirac operators

D(m, c) := D0(m, c) + V I2 =
(

mc2 cD∗

cD −mc2

)
+ V I2,(1)

with Dirichlet boundary conditions, acting on !2(N, C2), resp. L2([0,∞), C2),
where c > 0 represents the speed of light, m ≥ 0 the mass of a particle, I2 is
the 2× 2 identity matrix and V is a bounded real potential. In the discrete
case D is the finite difference operator defined by (Dϕ)(n) = ϕ(n+1)−ϕ(n),
with adjoint (D∗ϕ)(n) = ϕ(n − 1) − ϕ(n), and in the continuous case D =
D∗ = −i d

dx .
Model (1) in the continuous case is well known in relativistic quantum

mechanics [1, 13], and the discrete version was introduced and studied in
[6, 7].

The goal of this paper is to establish lower bounds on the dynamics as-
sociated to D(m, c) through the behaviour of the corresponding transfer
matrices. To this end we will consider the time averaged q-th moments Aψ

of the position operator
[
X
( ϕ+

ϕ−

)]
(x) =

( x ϕ+(x)
x ϕ−(x)

)

acting in !2(N, C2), resp. L2([0,∞), C2), defined by (T > 0)

Aψ(m, T, q) :=
2
T

∫ ∞

0
e−2t/T

∥∥∥|X|q/2 e−itD(m,c)ψ
∥∥∥

2
dt,(2)
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with initial state ψ = δ+
1 in !2(N, C2), resp. ψ = f in L2([0,∞), C2), where

δ+
1 is an element of the canonical basis of !2(N, C2) and f is an element

of L2([0,∞), C2) with compact support which satisfies a suitable technical
condition.

To investigate the polynomial behaviour in time T of Aψ(m, T, q), one
usually considers the lower growth exponents

β−
ψ (m, q) := lim inf

T→∞

log Aψ(m, T, q)
log T

.(3)

In the Schrödinger setting, dynamical lower bounds was found for random
polymer models [11] and for random palindrome models [2], due to existence
of critical energies [11]. For discrete Schrödinger operators in !2(N) and
!2(Z), in [5] a general method was developed which allows one to derive dy-
namical lower bounds from upper bounds on the growth of norms of transfer
matrices. Damanik, Lenz and Stolz [4] have presented an extension of this
method to continuous Schrödinger operators in L2([0,∞)) and L2(R), with
application to the continuous Bernoulli-Anderson model.

In this paper we adapt the above mentioned methods to the Dirac model
(1) for both discrete and continuous cases. One important consequence of
Theorem 1 ahead is the following: suppose that there is an energy E0 ∈ R
such that the transfer matrices Φm(E0, x, y) (defined in Section 2) satisfies
‖Φm(E0, x, y)‖ ≤ CNα for all N large enough, α ≥ 0, C > 0 and 0 ≤ x, y ≤
N , then it follows that

Aψ(m, T, q) ≥ C̃T
q−1−4α

1+α ,

for ψ as in (2) and C̃ > 0. We then apply such result to the continuous
Bernoulli-Dirac model, the discrete Dirac model with zero mass (m = 0)
and any two-valued potential, the Thue-Morse Dirac model and discrete
Dirac model with Sturmian potentials.

There are some reasons justifying the adaptation of known results in the
Schrödinger setting to the Dirac one. First of all, although expected, it is not
immediately clear (nor trivial) which and how such adaptations work. Sec-
ond, although we have found the abstract results have similar statements, in
applications usually different conditions on the potentials appear in case of
Dirac operators (see, e.g., Theorem 3). Third, and this was our main moti-
vation for considering dynamical lower bounds for model (1), is that for the
continuous Bernoulli-Dirac model it is possible to construct examples (see
Subsection 3.1) which have critical energies for m = 0 and also for m > 0, in
contrast with the discrete case which have critical energies only for m = 0
[6, 7]. Fourth, with respect to transfer matrices, the discrete Dirac opera-
tor has some kind of “built-in dimerization” [7] (implying transport) which
motivates the study of the corresponding continuous case. Finally, we have
found that the upper and lower components of some initial conditions in the
Dirac setting produce interferences so that the technique in the Schrödinger
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case does not apply (so leaving an interesting open problem); see the remark
at the end of Subsection 3.1.

We anticipate that the presence of critical energies in continuum Bernoulli-
Dirac models produces dynamical lower bounds in the sense that almost
surely

β−
f (m, q) ≥ q − 1

2
,

for all q > 0, for any mass m ≥ 0 and suitable initial conditions f .
Another method to obtain dynamical lower bounds from upper bounds on

transfer matrices was lately developed in [9], with application to Schrödinger
operators with random decaying potentials and sparse potentials. Their
method is suitable for models that admit upper bounds on transfer matrix
norms for large sets of energies (i.e., sets with positive Lebesgue measure),
while with the method used here (based on [4, 5]) it is possible to get dy-
namical bounds for models with large or small (e.g., finite) sets of such
energies. An approach for quasi-ballistic dynamics for discrete Schrödinger
as well Dirac operators with potentials along some dynamical systems have
recently been obtained in [8].

This paper is organized as follows: In Section 2 the result about dynamical
lower bounds (Theorem 1) for the Dirac model (1) is presented, whose proof
appears in Section 4. In Section 3 applications of Theorem 1 are discussed,
including the continuous Bernoulli-Dirac model.

2. Dynamical Bounds

In this section we will present results about dynamical lower bounds for
the operators D(m, c) defined by (1) in both the discrete and continuous
cases.

For a given operator D(m, c) on !2(N, C2), resp. L2([0,∞), C2), the trans-
fer matrices Φm(E, x, y) between sites y and x are defined as

Φm(E, x, y) =
(

uN
+ (x + 1) uD

+(x + 1)
uN
− (x) uD

−(x)

)
, resp.

(
uN

+ (x) uD
+(x)

uN
− (x) uD

−(x)

)
,

where uN =
(

uN
+

uN
−

)
and uD =

(
uD

+

uD
−

)
denote the solutions of equation

D(m, c)u = Eu, E ∈ R, satisfying
(

uN
+ (y + 1)
uN
− (y)

)
=
(

1
0

)
,

(
uD

+(y + 1)
uD
−(y)

)
=
(

0
1

)
,

resp.

uN (y) =
(

1
0

)
, uD(y) =

(
0
1

)
.
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It follows from the definitions that if u =
(

u+

u−

)
is a solution of the

eigenvalue equation D(m, c)u = Eu, then
(

u+(x + 1)
u−(x)

)
= Φm(E, x, y)

(
u+(y + 1)

u−(y)

)
,

resp. (
u+(x)
u−(x)

)
= Φm(E, x, y)

(
u+(y)
u−(y)

)
.

Note that in the discrete case, the matrix Φm(E, x, y), x > y ≥ 0, can be
written as

Φm(E, x, y) = Tm(E, V (x)) · · ·Tm(E, V (y + 1)),

with

Tm(E, V (k)) =





1 +
m2c4 − (E − V (k))2

c2

mc2 + E − V (k)
c

mc2 − E + V (k)
c

1




.

We denote by δ±n the elements of the canonical position basis of !2(N, C2),

for which all entries are
(

0
0

)
except the nth one, which is given by

(
1
0

)

and
(

0
1

)
for the superscript indices + and −, respectively.

In the continuous case, consider the measurable locally bounded vector-
valued functions wE , vE defined by

wE(x) = uN
+ (0)




−uD

+(x)

uD
−(x)



+ uD
+(0)




uN

+ (x)

−uN
− (x)





and

vE(x) = uN
− (0)




−uD

+(x)

uD
−(x)



+ uD
−(0)




uN

+ (x)

−uN
− (x)



 .

For g =
(

g+

g−

)
, with g+, g− measurable and locally bounded functions,

and f =
(

f+

f−

)
∈ L2([0,∞), C2) of compact support, define

[g, f ] :=
∫ ∞

0

(
g+(t) f+(t) + g−(t) f−(t)

)
dt.

Note that in case all involved functions are square integrable [·, ·] coincides
with their inner product.
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For fixed parameters m and c, let HE be the set of the vectors f =(
f+

f−

)
∈ L2([0,∞), C2) with compact support, which satisfies one of the

following conditions:
(i) f+ (= 0, f− = 0 and [u, f ] =

∫∞
0 u+(t)f+(t)dt (= 0 for some solution

u =
(

u+

u−

)
of D(m, c)u = Eu;

(ii) f+ = 0, f− (= 0 and [u, f ] =
∫∞
0 u−(t)f−(t)dt (= 0 for some solution

u =
(

u+

u−

)
of D(m, c)u = Eu;

(iii) f+ (= 0, f− (= 0 and [wE , f ] (= 0 or [vE , f ] (= 0 (or both).

For α, m ≥ 0, C > 0 and N > 1 define the set

Pm(α, C, N) =
{

E ∈ R : ‖Φm(E, x, y)‖ ≤ CNα for all 0 ≤ x, y ≤ N

}
.

Now we are in position to state the main result about dynamical lower
bounds.

Theorem 1. Let D(m, c) be the operator defined by (1). Suppose E0 ∈ R
is such that there exist C > 0 and α ≥ 0 with E0 ∈ Pm(α, C, N) for all
sufficiently large N .
(i) (discrete case) Let A(N) be a uniformly bounded sequence of subset of
Pm(α, C, N) containing E0 and µm

+ the spectral measure for D(m, c) associ-
ated to δ+

1 . Then, there exists C̃ > 0 such that for T > 0 large enough

Aδ+
1
(m, T, q) ≥ C̃

(
|B2(T )| + µm

+ (B1(T ))
)
T

q−3α
1+α ,

where Bj(T ), j = 1, 2, is the j/T neighborhood of A(T
1

1+α ).
(ii) (continuous case) Let A(N) be a subset of Pm(α, C, N) containing E0

such that diam(A(N)) → 0 as N → ∞. Then, for every f ∈ HE0 there
exists C̃ > 0 such that for T > 0 large enough

Af (m, T, q) ≥ C̃ |B1(T )|T
q−3α
1+α .

Remarks. 1. Theorem 1 can be adapted to the operator D(m, c) on !2(Z, C2)
and L2(R, C2), and always with similar statements.
2. The dynamical lower bounds obtained in Theorem 1 are stable under
suitable power-decaying perturbations of the potential V as in [5], because
the power-law bounds of the transfer matrices keep unchanged.

The proof of Theorem 1 will be given in Section 4. As in [4, 5], Theorem 1
have the following immediate consequences.
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Corollary 1. Let A be a nonempty bounded subset of Pm(α, C, N) for some
C > 0, α ≥ 0 and for all N large enough, such that µm

+ (A) > 0. Then

β−
δ+
1
(m, q) ≥ q − 3α

1 + α
.

Proof. Take A(N) = A for every N . Since µm
+ (B1(T )) ≥ µm

+ (A) > 0, by
Theorem 1(i) there exists C̃ > 0 such that for T > 0 large enough

Aδ+
1
(m, T, q) ≥ C̃ T

q−3α
1+α .

Hence the result follows.

Corollary 2. Suppose there is an energy E0 ∈ R such that ‖Φm(E0, x, y)‖ ≤
CNα for all N large enough and 0 ≤ x, y ≤ N . Then,

β−
ψ (m, q) ≥ q − 1 − 4α

1 + α
,

for every ψ = f ∈ HE0 in the continuous case and ψ = δ+
1 in the discrete

case.

Proof. Take A(N) = {E0} for every N . Then B1(T ) =
[
E0 − 1

T , E0 + 1
T

]

and by Theorem 1 there exists C̃ > 0 such that for T large enough

Aψ(m, T, q) ≥ C̃

T
T

q−3α
1+α = C̃ T

q−1−4α
1+α ,

for ψ as in the hypothesis. Hence the result follows.

3. Applications

This section is devoted to applications of Theorem 1 and its corollaries.

3.1. The continuous Bernoulli-Dirac model. Let g0 and g1 be two real-
valued potentials with support in [0, 1]. Consider the family of Dirac oper-
ators in L2([0,∞), C2),

Dω(m, c) := D0(m, c) + VωI2, ω ∈ Ω := {0, 1}N ,(4)

with potential Vω(x) =
∑

n gωn(x−n), where ωn ∈ {0, 1} are i.i.d. Bernoulli
random variables with common probability measure µ satisfying µ({0}) = p,
µ({1}) = 1 − p, for some 0 < p < 1, and product measure P =

∏
n µ (ωn))

on Ω.
Let T (j)

m (E) be the transfer matrix for Dω(m, c) with potential Vj(x) =∑
n gj(x − n), j = 0, 1, at energy E from 0 to 1.
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Definition 1 ([11]). E0 ∈ R is a critical energy for Dω(m, c) if the matrices
T (j)

m (E0), j = 0, 1, are elliptic (i.e., |trace T (j)
m (E0)| < 2) or equal to ±I2,

and commute.

If E0 is a critical energy for Dω(m, c), it follows from Definition 1 that
there exists a real invertible matrix Q such that

Q T (j)
m (E0) Q−1 =

(
cos(ηj) − sin(ηj)
sin(ηj) cos(ηj)

)
, for j = 0, 1.

Adapting the arguments used in [11, 4] for the Bernoulli-Dirac model (4),
we obtain the following (details omitted).

Lemma 1. Assume that η0 − η1 is not an integer multiple of π. Let λ > 0
be arbitrary. Then there are b > 0 and C < ∞ such that for every N ∈ N,
there exists a set ΩN (λ) ⊂ Ω with P (ΩN (λ)) ≤ Ce−bNλ and

∥∥Φω
m(E, x, y)

∥∥ ≤ C

for all ω ∈ Ω\ΩN (λ), 0 ≤ x, y ≤ N and E ∈ [E0−N−λ−1/2, E0 +N−λ−1/2].

We can now state our main result for model (4).

Theorem 2. Assume that η0−η1 is not an integer multiple of π. For every
f ∈ HE0 one has

β−
f (m, q) ≥ q − 1

2
, ω P− a.s. .

Proof. Due to Lemma 1, for each λ > 0, P (ΩN (λ)) is summable over N .
Thus, by Lemma 1 and a Borel-Cantelli argument, there exists 0 < C < ∞
such that ‖Φω

m(E, x, y)‖ ≤ C for all N , 0 ≤ x, y ≤ N , for almost every ω and
E ∈ A(N) := [E0 −N−λ−1/2, E0 +N−λ−1/2]. Note that |B1(T )| ≥ |A(T )| =
2T−λ−1/2. Applying Theorem 1(ii) with α = 0, it follows that almost surely
β−

f (m, q) ≥ q − 1
2 − λ for every f ∈ HE0 . Taking λ = 1

n → 0 and using a
countable intersection of full measure sets, we obtain the result.

It is possible to show, by applying similar arguments of [4, 11] for model (4),
that if E0 is a critical energy for Dω(m, c), then for every f ∈ HE0 one has
β−

f (m, q) ≥ q − 1, for every ω.
Recently, we have established (see [7]) the same lower bounds obtained

above for the discrete Bernoulli-Dirac model with zero mass (m = 0), due
to existence of critical energies. Now we will present a continuous Bernoulli-
Dirac model defined by (4) that have critical energies for both m = 0 and
m > 0 (note that for the latter case critical energies are absent in the discrete
case). As a consequence we will obtain lower bounds by Theorem 2.
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In fact, consider the Bernoulli-Dirac model (4) with g0 = 0 and g1 =
λχ[0,1], λ > 0. By solving the equation D0(m, c)u = Eu one finds the

following solutions for E2 > m2c4: uN =
(

uN
+

uN
−

)
and uD =

(
uD

+

uD
−

)
, with

uN
+ (x) = cos(ξE x), uN

− (x) =
−i(mc2 − E)

cξE
sin(ξE x),

uD
+(x) =

−icξE

mc2 − E
sin(ξE x), uD

−(x) = cos(ξE x),

where ξE =
√

E2 − m2c4

c
, and they satisfy

uN (0) =
(

1
0

)
and uD(0) =

(
0
1

)
.

Thus, the transfer matrices are

T (0)
m (E) =





cos ξE
−ic ξE

mc2 − E
sin ξE

−i(mc2 − E)
c ξE

sin ξE cos ξE





for E2 > m2c4 and T (1)
m (E) = T (0)

m (E − λ) for (E − λ)2 > m2c4.
If E = ±

√
m2c4 + n2π2c2 for n ∈ N∗ and m ≥ 0, then T (0)

m (E) = ±I2.
Moreover, taking

0 < λ <
√

m2c4 + n2π2c2 − mc2 or λ >
√

m2c4 + n2π2c2 + mc2

(this implies (E − λ)2 > m2c4), it follows that |trace T (1)
m (E)| < 2 (i.e.,

T (1)
m (E) is elliptic). On the other hand, if E = λ ±

√
m2c4 + n2π2c2 for n ∈

N∗, m ≥ 0 and λ as above, we have T (1)
m (E) = ±I2 and |trace T (0)

m (E)| < 2.
Thus, for such values of λ we have the following set of critical energies:

{
±
√

m2c4 + n2π2c2, λ ±
√

m2c4 + n2π2c2 : n ∈ N∗, m ≥ 0
}

.

For such energies the condition required in Theorem 2 holds, that is, η0−η1 (=
kπ, k ∈ Z.

Corollary 3. Let Dω(m, c) be defined by (4) with g0 = 0 and g1 = λχ[0,1],
λ > 0. If λ <

√
m2c4 + n2π2c2 − mc2 or λ >

√
m2c4 + n2π2c2 + mc2, then

β−
f (m, q) ≥ q − 1

2
, ω P− a.s.,

for all masses m ≥ 0 and any f =
(

f+

f−

)
∈ L2([0, 1], C2) satisfying one of

the following conditions:
(i) 0 (= f+ ∈ L2([0, 1]) and f− = 0.
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(ii) f+ = 0 and 0 (= f− ∈ L2([0, 1]).
(iii) f+ (= 0, f− (= 0 and

[wE , f ] =
∫ 1

0

[(
−inπc

mc2 ∓
√

m2c4 + n2π2c2

)
f+(x) sin(nπx) + f−(x) cos(nπx)

]
dx (= 0

or

[vE , f ] =
∫ 1

0

[
f+(x) cos(nπx) − i

(
mc2 ∓

√
m2c4 + n2π2c2

nπc

)
f−(x) sin(nπx)

]
dx (= 0.

Note that in this case the above conditions on f depends on m.

Proof. We consider two cases:
1. ω0 = 0, that is, Vω(x) = 0 on [0, 1].
2. ω0 = 1, that is, Vω(x) = λ on [0, 1].

If ω0 = 0, then applying Theorem 2 for the critical energies

E = ±
√

m2c4 + n2π2c2, n ∈ N∗, m ≥ 0,

we obtain

β−
f (m, q) ≥ q − 1

2
, ω P − a.s.,

for all mass values m ≥ 0 and for any f ∈ HE with supp f ⊂ [0, 1]. Note
that for such energies

uN (x) =





cos(nπx)

−i
(mc2 ∓

√
m2c4 + n2π2c2)
nπc

sin(nπx)





and

uD(x) =





−inπc

mc2 ∓
√

m2c4 + n2π2c2
sin(nπx)

cos(nπx)





are fundamental solutions of D0(m, c)u = Eu. By definition we have the

vectors wE(x) =
(

−uD
+(x)

uD
−(x)

)
and vE(x) =

(
uN

+ (x)
−uN

− (x)

)
.

For any f+ ∈ L2([0, 1]), f+ (= 0, there is at least one n ∈ N such that
∫ 1

0
f+(t) cos(nπx)dt (= 0 or

∫ 1

0
f+(t) sin(nπx)dt (= 0

(similarly for 0 (= f− ∈ L2([0, 1])). This is valid because

{1} ∪ {cos(2kπx), sin(2kπx) : k ∈ N}
form a basis of L2([0, 1]). Therefore, by using the definition of the set HE

the required result is obtained.
If ω0 = 1, then we conclude the result in the same way, but now based on

the critical energies E = λ ±
√

m2c4 + n2π2c2, n ∈ N∗ and m ≥ 0.
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Remark. Note that Corollary 3(iii) does not assure β−
f (m, q) ≥ q − 1

2 for

any f =
(

f+

f−

)
∈ L2([0, 1], C2), due to some kind of quantum interference.

For instance, for any integer n, ñ, by taking

f+(x) =
mc2 ∓

√
m2c4 + n2π2c2

inπc
sin(ñπx) and f−(x) = − cos(ñπx),

one obtains [wE , f ] = 0 and [vE , f ] = 0. In the corresponding Schrödinger
model [4] one has β−

f (q) ≥ q − 1
2 for any f ∈ L2([0, 1]), f (= 0.

3.2. The discrete massless Dirac model with two-valued potentials.
Consider the discrete Dirac operator D(0, c) defined by (1). The following
result holds.

Theorem 3. Let V : N → {a, b} ⊂ R be a potential for D(0, c).
(i) If |a − b| < 2c, then for every q > 0, β−

δ+
1
(0, q) ≥ q − 1.

(ii) If |a − b| = 2c, then for every q > 0, β−
δ+
1
(0, q) ≥ q−5

2 .

Proof. We shall find upper bounds for the transfer matrices Φ0(E0, x, y) for
a suitable energy E0. Let E0 = a. Then

T0(E0, a) = I2 and T0(E0, b) =





1 − (a − b)2

c2

a − b

c

−a + b

c
1




.

This implies that Φ0(E0, x, y) = (T0(E0, b))nb , where nb is the number of
times that b occurs in the product. If |a − b| < 2c, then T0(E0, b) is elliptic
(|trace T0(E0, b)| < 2) and hence

‖Φ0(E0, x, y)‖ ≤ C(E0), ∀ x, y ∈ N.

Thus, by Corollary 2 with α = 0, we obtain

β−
δ+
1
(0, q) ≥ q − 1, ∀ q > 0.

On the other hand, if |a−b| = 2c, then T0(E0, b) is parabolic (|trace T0(E0, b)| =

2) and hence T0(E0, b) can be written as
(

1 d
0 1

)
with d (= 0. Because

∥∥∥∥

(
1 d
0 1

)nb
∥∥∥∥ =

∥∥∥∥

(
1 nbd
0 1

)∥∥∥∥ ≤ Cd nb,

it follows that

‖Φ0(E0, x, y)‖ ≤ C(E0)nb ≤ C(E0)|x − y|, ∀ x, y ∈ N.
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Therefore, by Corollary 2 with α = 1, we obtain

β−
δ+
1
(0, q) ≥ q − 5

2
, ∀ q > 0.

3.3. The Thue-Morse Dirac model. This model is defined as in (1) by

Dω(m, c) := D0(m, c) + VωI2,

acting on !2(N, C2) or L2([0,∞), C2), where Vω is generated by the Thue-
Morse substitution on the alphabet {a, b} given by S(a) = ab, S(b) = ba.
For more details see [4, 5]. Let ΩTM be the associated subshift.

Since the boundedness of the transfer matrices in this case depends only
on the structure of the potential and it is independent on the explicit form of
these matrices, by adapting a similar model [4, 5] in the Schrödinger setting
we obtain the following result (details omitted).

Lemma 2. There are E0 ∈ R and C > 0 such that for every ω ∈ ΩTM and
every m ≥ 0,

‖Φω
m(E0, x, y)‖ ≤ C, ∀ x, y ∈ N or ∀ x, y ∈ [0,∞).

Thus, by Corollary 2 with α = 0, it follows that

β−
ω,ψ(m, q) ≥ q − 1,

for every ω ∈ ΩTM, q > 0, m ≥ 0 and for every ψ = f ∈ HE0 in the
continuous case and ψ = δ+

1 in the discrete case. This should be compared
with Theorem 3.

3.4. The discrete Dirac model with Sturmian Potentials. We discuss
dynamical lower bounds for the model

Dλ,ω,θ(m, c) := D0(m, c) + Vλ,ω,θI2

defined by (1) on !2(N, C2), whose potential is given by

Vλ,ω,θ(x) = λχ[1−ω,1)(xω + θ mod1),

where λ (= 0 is the coupling constant, ω ∈ (0, 1) irrational is the rotation
number and θ ∈ [0, 1) is the phase. For more details on this potential in the
corresponding Schrödinger case see [3, 10].

Since the boundedness of the transfer matrices in this case depends only
on the structure of the potential, again a direct adaptation of results in the
Schrödinger setting shows that
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Lemma 3. Suppose ω is a number of bounded density. For every λ, there
are a constant C > 0 and α = α(λ, ω) > 0 such that for every θ and every
E ∈ σ(Dλ,ω,θ) we have

‖Φω
m,λ,θ(E, x, y)‖ ≤ C |x − y|α,

for every x, y ∈ N and any m ≥ 0.

Therefore, by Corollary 1 with A = σ(Dλ,ω,θ) (so µm
+ (A) = 1), it is found

that for every λ, θ, the operator Dλ,ω,θ satisfies

β−
δ+
1
(m, q) ≥ q − 3α

1 + α
,

for every q > 0 and any m ≥ 0.

4. Proof of Dynamical Bounds

In this section the proof of Theorem 1 will be presented. We first gather
some preliminary results that we will used in the proof.

For the operator D(m, c), m ≥ 0, on !2(N, C2), we introduce the two-
components Green’s function

(
G+

m(z, n)
G−

m(z, n)

)
=





〈
δ+
n , (D(m, c) − z)−1 δ+

1

〉

〈
δ−n , (D(m, c) − z)−1 δ+

1

〉



 , z ∈ C\R,

so that

(D(m, c) − z)
(

G+
m(z, n)

G−
m(z, n)

)
= δ+

1 (n) .(5)

By using transfer matrices, one obtains for n ≥ 1,
(

G+
m(z, n)

G−
m(z, n − 1)

)
= Φm(z, n, 1)

(
G+

m(z, 1)
G−

m(z, 0)

)
.(6)

Lemma 4. Let D(m, c) be the operator (1). For z = E + i/T (T > 0) and
m ≥ 0, one has

(i) Aδ+
1
(m, T, q) =

1
πT

∑

n∈N
nq
∫

R

(
|G+

m(z, n)|2 + |G−
m(z, n)|2

)
dE,

in the discrete case and

(ii) Af (m, T, q) =
1

πT

∫ ∞

0
xq
∫

R

∥∥∥(D(m, c) − z)−1 f(x)
∥∥∥

2
dE dx,

for every f ∈ L2([0,∞), C2), in the continuous case.

Proof. The identity (i) follows by Lemma 3.2 in [12] adapted for the operator
D(m, c) on !2(N, C2), and the identity (ii) follows by Lemma 2.3 in [4]
applied to D(m, c) in L2([0,∞), C2).
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Lemma 5. Let E ∈ R, N > 0, m ≥ 0 and consider

Lm(N) := sup
0≤x,y≤N

∥∥Φm(E, x, y)
∥∥ .

Then, there is 0 < C1 < ∞ such that for every δ ∈ C and 0 ≤ x, y ≤ N , one
has

∥∥Φm(E + δ, x, y)
∥∥ ≤ Lm(N) exp

[
|δ|
c

(
|δ|
c

+ C1

)
Lm(N)|x − y|

]
.

Proof. We consider the discrete case with x, y ∈ N, x > y (the continuous
case is similar). An inductive argument shows that, for δ ∈ C and m ≥ 0,
we can write the identity

Φm(E + δ, x, y) = Φm(E, x, y) − δ
x−1∑

j=y

Φm(E + δ, x, j + 1) Bδ(E, j) Φm(E, j, y) ,

with

Bδ(E, j) =
δ

c2

(
1 0
0 0

)
+

1
c

(
2
c (E − V (j)) −1

1 0

)
.

By iteration, using the hypothesis and the above identity, we obtain
∥∥Φm(E + δ, x, y)

∥∥ ≤ Lm(N)
[
1 +

|δ|
c

(
|δ|
c

+ C1

)
Lm(N)

]x−y

≤ Lm(N) exp
[
|δ|
c

(
|δ|
c

+ C1

)
Lm(N)(x − y)

]
,

for some 0 < C1 < ∞ and for 1 ≤ y < x ≤ N .

The following result will be important for the proof of Theorem 1 in the
continuous case; it is based on Lemmas 2.6 and 2.7 of [4].

Lemma 6. Let D(m, c) be the operator defined by (1) on L2([0,∞), C2).
For z ∈ C\R, define um

f,z = (D(m, c) − z)−1 f . Suppose E ∈ R and 0 (= f =(
f+

f−

)
∈ L2([0,∞), C2) with supp f ⊂ [0, s] are such that

lim inf
δ→0+

{
‖um

f,z(s)‖ : z ∈ C+, |z − E| ≤ δ
}

= 0.(7)

Then f /∈ HE.
Proof. By (7) there exists a sequence (zn) ⊂ C+ with zn → E and um

f,zn
(s) →(

0
0

)
for n → ∞. Since um

f,zn
(0) =

(
0
0

)
for all n and by continuity, the

inhomogeneous equation

(D(m, c) − E)
(

u+

u−

)
=
(

f+

f−

)
(8)
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has a solution v =
(

v+

v−

)
with v(0) = v(s) =

(
0
0

)
.

Let Y (t) be the fundamental matrix of the homogeneous equation at
x = s, i.e.,

Y (t) =




vN
+ (t) vD

+ (t)

vN
− (t) vD

− (t)



 ,

where vN =
(

vN
+

vN
−

)
and vD =

(
vD
+

vD
−

)
are solutions of the homogeneous

equation which satisfy vN (s) =
(

1
0

)
and vD(s) =

(
0
1

)
. By writing

equation (8) as
(

u′
+(x)

u′
−(x)

)
=
(

0 i
c(mc2 − V (x) + E)

i
c(−mc2 − V (x) + E) 0

)(
u+(x)
u−(x)

)

+
i

c

(
f−(x)
f+(x)

)
,

we have the variation of parameters formula
(

v+(x)
v−(x)

)
= Y (x)

∫ x

s
Y (t)−1 i

c

(
f−(t)
f+(t)

)
dt.

Replacing Y (t) in the above equation and considering x = 0, we obtain

0 = v+(0) =
i

c
[wE , f ] and 0 = v−(0) =

i

c
[vE , f ],(9)

where

wE(t) = vN
+ (0)




−vD

+ (t)

vD
− (t)



+ vD
+ (0)




vN
+ (t)

−vN
− (t)



 ,

vE(t) = vN
− (0)




−vD

+ (t)

vD
− (t)



+ vD
− (0)




vN
+ (t)

−vN
− (t)





and f =
(

f+

f−

)
, with f+, f− (= 0.

Now,

u1(t) := −vN
+ (0)




vD
+ (t)

vD
− (t)



+ vD
+ (0)




vN
+ (t)

vN
− (t)





and

u2(t) := −vN
− (0)




vD
+ (t)

vD
− (t)



+ vD
− (0)




vN
+ (t)

vN
− (t)




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are solutions of equation D(m, c)
(

u+

u−

)
= E

(
u+

u−

)
satisfying u1(0) =

(
0
−1

)
and u2(0) =

(
1
0

)
. Thus, u1, u2 form a fundamental system of

solutions of D(m, c)u = Eu and it follows from (9) that
[
ui,

(
f+

0

)]
= 0 =

[
ui,

(
0
f−

)]
, i = 1, 2.

Therefore, if f =
(

f+

0

)
, f+ (= 0, resp. f =

(
0
f−

)
, f− (= 0, one has

∫ s

0
u+(t)f+(t)dt = 0, resp.

∫ s

0
u−(t)f−(t)dt = 0,

for every solution u =
(

u+

u−

)
of D(m, c)u = Eu. Hence, we conclude that

f /∈ HE .

Proof. (Theorem 1)
(i) By Lemma 4, we have for T > 0,

Aδ+
1
(m, T, q) =

1
πT

∑

n∈N
nq
∫

R

(
|G+

m(E + i/T, n)|2 + |G−
m(E + i/T, n)|2

)
dE.

Define N(T ) := T
1

1+α . By hypothesis,

Lm(N(T )) := sup
0≤n,k≤N(T )

∥∥Φm(E
′
, n, k)

∥∥ ≤ C (N(T ))α, ∀ E
′ ∈ A(N(T )).

By Lemma 5, we obtain for every E ∈ B2(T ) and 1 ≤ n ≤ N(T ),
∥∥Φm(E + i/T, n, 1)

∥∥ ≤ B (N(T ))α,

with B = C e
3
c ( 3

c +C1)C . For every E ∈ B2(T ) and T sufficiently large, it
follows from (6) and the above estimate that

∑

n≥N(T )
2

(
|G+

m(E + i/T, n)|2 + |G−
m(E + i/T, n)|2

)
(10)

≥
N(T )∑

n=N(T )
2 +1

(
|G+

m(E + i/T, n)|2 + |G−
m(E + i/T, n − 1)|2

)

≥ B−2

4
(N(T ))1−2α(|G+

m(E + i/T, 2)|2 + |G−
m(E + i/T, 1)|2

+ |G+
m(E + i/T, 1)|2 + |G−

m(E + i/T, 0)|2).
Observe that

G+
m(E + i/T, 1) =

〈
δ+
1 , (D(m, c) − E − i/T )−1 δ+

1

〉
= Fm(E + i/T ),
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where Fm(z) is the Borel transform of the spectral measure corresponding
to the pair (D(m, c), δ+

1 ). Using equation (5) one shows that

|G+
m(E + i/T, 2)|2 + |G−

m(E + i/T, 1)|2 + |G−
m(E + i/T, 0)|2 ≥ a > 0

for some uniform constant a. Therefore, it follows from (10) that for T
sufficiently large,

1
πT

∫

R

∑

n≥N(T )
2

(
|G+

m(E + i/T, n)|2 + |G−
m(E + i/T, n)|2

)
dE

≥ B̃

T
(N(T ))1−2α

∫

B2(T )

(
1 + /m2Fm(E + i/T )

)
dE

≥ B̃

T
(N(T ))1−2α

∫

B2(T )

(
1
2

+ /mFm(E + i/T )
)

dE,

for some constant B̃ > 0. In the last step it was used that 1 +/m2Fm(z) ≥
2 /mFm(z).

For any set S ⊂ R, denote by Sε the ε-neighborhood of S. It was shown
in [5, 12] that

∫

Sε

/mFm(E + i/T ) dE ≥ π

2
µm

+ (S).

Thus, taking S = B1(T ) we conclude that for T large enough,

Aδ+
1
(m, T, q) ≥

≥ 1
πT

(
N(T )

2

)q ∫

R

∑

n≥N(T )
2

(
|G+

m(E + i/T, n)|2 + |G−
m(E + i/T, n)|2

)
dE

≥ C̃

T
(N(T ))q+1−2α

∫

B2(T )
(1 + /mFm(E + i/T )) dE

≥ C̃ T
q−3α
1+α

(
|B2(T )| + µm

+ (B1(T ))
)
.

(ii) As in Lemma 6 we write um
f,z = (D(m, c) − z)−1 f . Let s > 0 with

supp f ⊂ [0, s] and define N(T ) := T
1

1+α . By Lemma 4, we have for T > 0,

Af (m, T, q) =
1

πT

∫ ∞

0
xq
∫

R
‖um

f,E+i/T (x)‖2 dE dx(11)

≥ 1
2πT

∞∑

n=s+1

(n − 1)q
∫ n+1

n−1

∫

R
‖um

f,E+i/T (x)‖2 dE dx

≥ 1
2πT

∞∑

n=s+1

(n − 1)q
∫

B1(T )

∫ n+1

n−1
‖um

f,E+i/T (x)‖2 dx dE.
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Using the fact that um
f,E+i/T is a solution of D(m, c)u =

(
E + i

T

)
u on

[n − 1, n + 1] and the transfer matrices satisfy ‖Φ−1
m ‖ = ‖Φm‖, we obtain

from (11) that

Af (m, T, q) ≥
1

2πT

∞∑

n=s+1

(n − 1)q
∫

B1(T )

∫ n+1

n−1
‖Φm(E + i/T, x, s)‖−2‖um

f,E+i/T (s)‖2dx dE.

By hypothesis and Lemma 5, it follows that for T large enough,

Af (m, T, q)≥ 1
πT

N(T )∑

n=N(T )
2 +1

(
N(T )

2

)q ∫

B1(T )
C0 N(T )−2α‖um

f,E+i/T (s)‖2 dE

≥ 1
πT

(
N(T )

2

)q+1

|B1(T )|C0 N(T )−2α inf
dist(z,B1(T ))≤ 1

T

‖um
f,z(s)‖2,

for some constant C0 > 0.
For every f ∈ HE0 with supp f ⊂ [0, s], Lemma 6 implies that there exists

κ > 0 and δ > 0 satisfying

inf
{
‖um

f,z(s)‖2 : z ∈ C+, |z − E0| ≤ δ
}
≥ κ.

By hypothesis, diam(A(N)) −→ 0 as N → ∞ and E0 ∈ A(N) for all N .
Hence,

inf
{
‖um

f,z(s)‖2 : dist(z, B1(T )) ≤ 1
T

}
≥ κ > 0

for T sufficiently large.
Therefore, for T large enough we obtain

Af (m, T, q) ≥ C̃

T
N(T )q+1−2α |B1(T )| = C̃ T

q−3α
1+α |B1(T )|.

The proof is complete.
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