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Abstract
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0 Introduction

Let us consider the controlled Euler system on the 2D torus T2:

u̇ + 〈u,∇〉u +∇p = η(t, x), div u = 0. (0.1)

Here u and p are unknown velocity field and pressure, and η stands for a con-
trol force taking values in a finite-dimensional space E ⊂ L2(T2,R2). Equa-
tions (0.1) are supplemented with the initial condition

u(0, x) = u0(x). (0.2)

It was proved by Agrachev and Sarychev [AS06] that Eqs. (0.1) are approxi-
mately controllable in L2 and exactly controllable in observed projections. More
precisely, they constructed a six-dimensional subspace E ⊂ C∞(T2,R2) such
that the following properties hold for any T > 0:

Approximate controllability: For any divergence-free vector fields u0 and û that
belong to the Sobolev space H2(T2,R2) and any ε > 0 there is a smooth
E-valued control η(t) such that the solution u of problem (0.1), (0.2)
satisfies the inequality ‖u(T )− û‖L2 < ε.

Exact controllability in projections: For any subspace F ⊂ H2(T2,R2) of finite
dimension, any divergence-free vector field u0 ∈ H2(T2,R2), and any func-
tion û ∈ F there is a smooth E-valued control η(t) such that PF u(T ) = û,
where PF denotes the orthogonal projection in L2 onto the space F .

In view of the above results, an important question arises here: is it possible
to prove the exact controllability for (0.1), or more generally, given an initial
state u0 and a control space E, what is the set of attainability at a time T ,
i. e., the family of functions AT (u0, E) that can be obtained at the time T by
solving problem (0.1), (0.2)? Since the Euler system is time-reversible, a natural
class of final states û for which one may wish to prove the exact controllability
is dictated by the regularity of the initial state u0 and the control η. Namely,
let us denote by Cs the Hölder space of order s on the torus and by Cs

σ the
space of divergence-free vector fields u ∈ Cs; see Notations below for the exact
definition. Assume that the initial state u0 and the control η are Cs-smooth
with respect to the space variables. In this case, if s > 1, then the solution u(t)
belongs to Cs for any t ≥ 0. Conversely, for any divergence-free vector field
û ∈ Cs we can find u0 ∈ Cs such that the solution of (0.1), (0.2) with η ≡ 0
issued from u0 coincides with û at t = T . Thus, it is reasonable to study the
problem of exact controllability for the class of final states that are as regular as
the initial function and the control. The following theorem, which is a simplified
version of the main result of this paper, shows that the set of attainability is
much smaller than the above-mentioned class of functions.

Main Theorem. Let u0 be an arbitrary divergence-free vector field belonging
to the Hölder space Cs with a non-integer s > 2 and let E ⊂ Cs be any finite-
dimensional subspace. Then, for any T > 0, the complement in Cs

σ of the set of
attainability AT (u0, E) is everywhere dense in Cs

σ.
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The proof of this theorem is based on two key observations. The first of
them is the Lipschitz continuity of the resolving operator for (0.1), (0.2) with
respect to the controls η endowed with the relaxation norm1 (see Theorem 6
in [AS06] and Proposition 1.3 below). It is curious that this property is also
crucial for proving the approximate controllability and exact controllability in
projections [AS06]. The second key ingredient of the proof is an upper bound
for the ε-entropy of the space of controls. Roughly speaking, we combine these
two properties to establish an upper bound for the ε-entropy for set of attain-
ability AT (u0, E) with given initial function u0 ∈ Cs

σ and control space E ⊂ Cs.
It turns out that this upper bound is much smaller than the ε-entropy of Cs

σ,
and the required property follows.

It should be mentioned that the above theorem is false in the case when E
is the space of functions supported by a given domain D ⊂ T2. In this situa-
tion, it is well known that the Euler system is exactly controllable (see [Cor96]
and [Gla00] for the 2D and 3D cases, respectively).

In conclusion, let us note that the Kolmogorov ε-entropy has proved to be
an effective tool for studying various problems in analysis. For instance, we
refer the reader to [Mit61, Lor66, Lor86, KH95, VC98, CE99, Zel01, CV02] for
a number of applications of the ε-entropy in approximation theory, dynamical
systems, and theory of attractors. This paper shows that it can also be used in
the control theory for PDE’s.

Acknowledgements. I am grateful to P. Gérard for discussion on the Euler
equations.

Notations

Let X be a Banach space with a norm ‖·‖X , let J ⊂ R be a finite closed interval,
let s > 0 be a non-integer, and let Td be the d-dimensional torus. We shall use
the following function spaces.

Lp(J,X) is the space of Bochner-measurable functions f : J → X such that

‖f‖Lp(J,X) :=
(∫

J

‖f(t)‖p
Xdt

)1/p

< ∞.

In the case p = ∞, the above norm should be replaced by

‖f‖L∞(J,X) := ess sup
t∈J

‖f(t)‖X .

W 1,p(J,X) stands the space of functions f ∈ Lp(J,X) such that ∂tf ∈ Lp(J,X).
It is endowed with the natural norm. In the case X = R, we shall write Lp(J)
and W 1,p(J).

1The relaxation norm of η is defined as the least upper bound of the norm for the integral
of η with respect to time.
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C(Td) is the space of continuous functions u : Td → Rd with the norm

‖u‖ := sup
x∈Td

|u(x)|.

Cs(Td) is the Hölder class of order s with the norm

‖u‖s := max
|α|≤[s]

‖∂αu‖+ max
|α|=[s]

sup
x 6=y

|∂αu(x)− ∂αu(y)|
|x− y|γ ,

where ∂α is a standard notation for derivatives, [s] stands for the integer part
of s, and γ = s− [s].
Cs

σ(Td) denotes the space of functions u ∈ Cs(Td) such that div u ≡ 0. In the
case d = 2, we shall drop Td from the notation and write Cs and Cs

σ.
We denote by 〈a, b〉 or a · b the usual scalar product of the vectors a, b ∈ R2 and
by C1, C2, . . . unessential positive constants.

1 Cauchy problem for Euler equations on the
2D torus

1.1 Existence and uniqueness of solution

Consider the Cauchy problem for the following Euler type system on the 2D
torus T2:

u̇ + 〈u + z,∇〉(u + z) +∇p = f(t, x), div u = 0, (1.1)
u(0, x) = u0(x), (1.2)

where z, f , and u0 are given functions, and ∇ = (∂1, ∂2). Let us recall the
concept of strong solution for (1.1), (1.2). We fix a time interval J = [0, T ] and
a non-integer s > 1 and introduce the spaces

DT := Cs
σ ×W 1,1(J,Cs

σ)× L1(J,Cs), XT := L∞(J,Cs) ∩W 1,∞(J,Cs−1),

where the spaces Cs, Cs
σ and W 1,p are defined in the Introduction (see Nota-

tions). The spaces DT and XT are endowed with natural norms.

Definition 1.1. Let (u0, z, f) ∈ DT be an arbitrary triple. A pair of functions
(u, p) is called a strong solution of the Cauchy problem for the Euler type sys-
tem (1.1) if u and p belong to the spaces XT and L1(J,Cs), respectively, and
Eqs. (1.1), (1.2) are satisfied in the sense of distributions.

In what follows, when dealing with solutions of Eq. (1.1), we shall some-
times omit the function p(t, x) and write simply u(t, x). This will not lead to
a confusion because p can be found, up to an additive function depending only
on time, from the relation

∆p = div
(
f − 〈u + z,∇〉(u + z)

)
,

4



which is obtained by taking the divergence of the first equation in (1.1).
The following existence and uniqueness result is essentially due to Wolib-

ner [Wol33] and Kato [Kat67] (see also [Gér92] for a concise presentation of the
proofs).

Theorem 1.2. For any non-integer s > 1, any time interval J = [0, T ] and
an arbitrary triple (u0, z, f) ∈ DT , problem (1.1), (1.2) has a unique solution
u ∈ XT . Moreover, the resolving operator

R : DT → XT , (u0, z, f) 7→ u(t, x),

is bounded, that is, it maps bounded sets in DT to bounded sets in XT .

Proof. In the case z ≡ 0, existence and uniqueness of solutions for (1.1), (1.2) is
proved in [Kat67]. The general case can be reduced to the former by the change
of unknown function u = v − z. Boundedness of the resolving operator follows
easily from the proof of existence given in [Kat67].

1.2 Lipschitz continuity of the resolving operator

We now study continuity properties of the operator R constructed in Theo-
rem 1.2. Let BDT (R) be the closed ball in DT of radius R centred at origin.
The following proposition is one of the two key points in the proof of non-
controllability for the Euler equations. A similar result in the case of L2-norm
in the target space was established earlier by Agrachev and Sarychev [AS06].

Proposition 1.3. For any positive constants T and R and any non-integer
s > 2 there is C = C(T, R, s) > 0 such that

‖R(u01, z1, f1)−R(u02, z2, f2)‖L∞(J,Cs−1)

≤ C
(‖u01 − u02‖Cs−1 + ‖z1 − z2‖L1(J,Cs) + ‖f1 − f2‖L1(J,Cs−1)

)
, (1.3)

where (u0i, zi, fi), i = 1, 2, are arbitrary triples belonging to the ball BDT
(R).

Proof. Derivation of (1.3) is based on a well-known idea of reduction of the 2D
Euler system to a nonlinear transport equation for the vorticity (e.g., see [Gér92]).
For the reader’s convenience, we give a detailed proof of the proposition. We
shall confine ourselves to derivation of (1.3) for smooth solutions. The proof in
the general case can be carried out by a standard approximation argument.

Let u(t, x) be a smooth solution for (1.1), (1.2). Applying the operator
∇⊥ = (−∂2, ∂1) to the first relation in (1.1) and to (1.2), we obtain

v̇ + 〈u + z,∇〉(v + ζ) = g, v(0, x) = v0(x),

where v = ∇⊥ · u, ζ = ∇⊥ · z, g = ∇⊥ · f , and v0 = ∇⊥ · u0. It follows that if
ui, i = 1, 2, are two smooth solutions associated with data (u0i, zi, fi), then the
function v = ∇⊥(u1 − u2) is a solution of the problem

v̇ + 〈u2 + z2,∇〉v = g − 〈u2 + z2,∇〉ζ − 〈u + z,∇〉(v1 + ζ1), (1.4)
v(0, x) = v0(x), (1.5)
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where u = u1 − u2, z = z1 − z2, ζ = ∇⊥ · z, ζi = ∇⊥ · zi, g = ∇⊥ · (f1 − f2),
and v0 = ∇⊥ · (u01− u02). Thus, v is a solution of an inhomogeneous transport
equation associated with the divergence-free vector field u2 + z2. It follows that

v(t, x) = v0(U0,t(x)) +
∫ t

0

h(τ, Uτ,t(x)) dτ, (1.6)

where Ut,τ (x) denotes the flow defined by the vector field u2 + z2, and h stands
for the right-hand side in (1.4). Let us denote by ∆−1 the inverse of the Laplace
operator in the space of functions on T2 with zero mean value. Recalling that
the functions u and v are connected by the relations v = ∇⊥ · u and u = Gv,
where G = ∇⊥∆−1, from (1.6) we derive

u(t, x) = G
[
(∇⊥u0)(U0,t(x))

]
+

∫ t

0

G
[
h(τ, Uτ,t(x))

]
dτ. (1.7)

Now note that Ut,τ (x), t, τ ∈ J , are diffeomorphisms of the torus with uniformly
bounded Cs-norms, and the function h can be written as

h = ∇⊥ · f − div
(
ζ(u2 + z2)− (v1 + ζ1)(u + z)

)
,

where f = f1 − f2. Since the operator G : Cs−1 → Cs is bounded (see [GT01,
Section 4.3], taking the Cs−1-norm of both sides in (1.7), we see that

‖u(t)‖s−1 ≤ C1‖u0‖s−1 +C1

∫ t

0

(‖f‖s−1 +‖ζ(u2 +z2)− (v1 +ζ1)(u+z)‖s−1

)
dτ,

(1.8)
where C1 > 0 depends only on R. The second term under the integral in (1.8)
can be estimated by

‖ζ‖s−1‖u2 + z2‖s−1 + ‖v1 + ζ1‖s−1‖u + z‖s−1 ≤ C2

(‖z‖s + ‖u‖s−1

)
.

Substituting this expression into (1.8), we obtain

‖u(t)‖s−1 ≤ C1‖u0‖s−1 + C3

∫ t

0

(‖f‖s−1 + ‖z‖s + ‖u‖s−1

)
dτ,

where C3 is a constant depending only on R. Application of the Gronwall
inequality gives the required estimate (1.3).

2 Kolmogorov ε-entropy

2.1 Definition and an elementary property

Let X be a Banach space and let K ⊂ X be a compact subset. Let us re-
call the concept of ε-entropy, which characterises the “massiveness” of K (e.g.,
see [Lor86]). For any ε > 0, we denote by Nε(K) the minimal number of sets
of diameters ≤ 2ε that are needed to cover K. The Kolmogorov ε-entropy (or
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simply ε-entropy) of K is defined as Hε(K) = lnNε(K). Thus, the ε-entropy
of a compact set K ⊂ X is a non-increasing function of ε > 0, and it is easy
to see that Hε(K) depends only on the metric on K (and not on the ambient
space X). If we wish to emphasise that K is endowed with the norm of X, then
we shall write Hε(K, X).

Now let Y be another Banach space and let f : K → Y be a Lipschitz-
continuous function:

‖f(u1)− f(u2)‖Y ≤ L‖u1 − u2‖X for u1, u2 ∈ K, (2.1)

where L > 0 is a constant. The following lemma is a straightforward conse-
quence of the definition.

Lemma 2.1. For any compact set K ⊂ X and any function f : K → Y
satisfying inequality (2.1), we have

Hε(f(K)) ≤ Hε/L(K) for all ε > 0. (2.2)

2.2 Estimates for the ε-entropy of some compact sets

Let ϕ1 and ϕ2 be two non-increasing functions of ε > 0. We shall write ϕ1 ≺ ϕ2

if there are positive constants C and ε0 such that

ϕ1(ε) ≤ Cϕ2(ε) for 0 < ε ≤ ε0.

If ϕ1 ≺ ϕ2 and ϕ2 ≺ ϕ1, then we write ϕ1 ∼ ϕ2. The second key ingredient of
the proof of non-controllability for the Euler system is given by the following
two propositions.

Proposition 2.2. Let r < s be positive non-integers such that s − r /∈ Z and
let B ⊂ Cs

σ(Td) be an arbitrary closed ball. Then, for any δ > 0, we have

Hε(B,Cr(Td)) Â
(1

ε

) d
s−r−δ

. (2.3)

Proof. Let us recall that if Q is a closed ball in Cq
σ(Td) with a non-integer q > 0,

then

Hε(Q,C(Td)) ∼
(1

ε

) d
q

; (2.4)

see [Lor86, Section 10.2]. Since Cν(Td) is continuously embedded in C(Td) for
any ν > 0, it follows from (2.4) that if A ⊂ Cs−r+ν

σ (Td) is any closed subset
with non-empty interior and s− r + ν /∈ Z, then

Hε(A,Cν(Td)) Â
(1

ε

) d
s−r+ν

. (2.5)

Furthermore, if ν /∈ Z, then the operator (1 − ∆)−(r−ν)/2 (where ∆ is the
Laplacian) defines an isomorphism from Cν(Td) to Cr(Td) and from Cs−r+ν

σ (Td)
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to Cs
σ(Td) (see [GT01, Section 4.3]). Combining this with relation (2.5) and

Lemma 2.1, we see that

Hε(B,Cr(Td)) Â
(1

ε

) d
s−r+ν

, (2.6)

where B is an arbitrary closed ball in Cs
σ(Td). It remains to note that the

left-hand side of (2.6) does not depend on the parameter ν > 0, which can be
chosen arbitrarily small.

Proposition 2.3. Let J = [0, T ] and let E be a finite-dimensional vector space.
Then, for any closed ball B ⊂ W 1,1(J,E), we have

Hε(B, L1(J,E)) ≺ 1
ε

ln
1
ε
. (2.7)

Proof. We first note that it suffices to prove (2.7) for scalar functions. Indeed,
if E is an n-dimensional vector space, then B is a subset of the direct product
of n balls B1 ⊂ W 1,1(J). If (2.7) is established in the case dim E = 1, then

Hnε(B,W 1,1(J,E)) ≤ nHε(B1,W
1,1(J)) ≤ Cn

ε
ln

1
ε
;

see inequality (7) in Section 10.1 of [Lor86]. Replacing nε by ε in the above
estimate, we obtain (2.7).

We now prove (2.7) for scalar functions. Without loss of generality, we
can assume that J = [0, 1] and B ⊂ W 1,1(J) is a closed ball of radius R
centred at zero. Let us fix ε > 0 and describe a finite family of functions
F ⊂ W 1,1(J) that form an ε-net for B. To this end, we choose sufficiently large
integers L and M and denote by Ik the interval [tk−1, tk), where tk = k/L.
The family F consists of all functions f ∈ L1(J) that are constant on every
interval Ik, k = 1, . . . , L, and take one of the values 2jR/M , j = −M, . . . , M ,
on each interval of constancy. It is clear that F consists of N(L,M) := (2M+1)L

elements. Let us show that, for an appropriate choice of L and M , the family F
is an ε-net for B.

We first note that

‖u‖L∞(J) ≤ 2R for any u ∈ B.

Furthermore,

|u(t)− u(tk−1)| ≤
∫ t

tk−1

|u̇(τ)| dτ for t ∈ Ik,

whence it follows that
L∑

k=1

∫

Ik

|u(t)− u(tk−1)| dt ≤
L∑

k=1

∫

Ik

∫ t

tk−1

|u̇(τ)| dτ dt

≤
L∑

k=1

∫

Ik

|u̇(τ)|(tk − τ) dτ

≤ L−1‖u̇‖L1(J) ≤ RL−1. (2.8)
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Now note that for any L-tuple (u0, . . . , uL−1) there is f ∈ F such that

|f(t)− uk−1| ≤ 2RM−1 for t ∈ Ik, k = 1, . . . , L. (2.9)

Combining inequalities (2.8) and (2.9), in which uk = u(tk), we obtain

∫ 1

0

|u(t)− f(t)| dt =
L∑

k=1

∫

Ik

|u(t)− f(t)| dt

≤
L∑

k=1

∫

Ik

(|u(t)− u(tk−1)|+ |u(tk−1)− f(t)|) dt

≤ RL−1 + 2RLM−1. (2.10)

Let us set
L =

[
2R/ε

]
+ 1, M =

[
4RL/ε

]
+ 1, (2.11)

where [a] stands for the integer part of a ≥ 0. In this case, it follows from (2.10)
that

‖u− f‖L1(J) ≤ E.

Thus, the family F is an ε-net for B.
Let us estimate the number of elements in F . Relations (2.11) imply that

N(L,M) = (2M + 1)L ≤ (
C1ε

−2
)C2ε−1

≤ exp
(
C3ε

−1 ln ε−1
)
.

Taking the logarithm, we arrive at the required estimate (2.7).

3 Main result

3.1 Formulation

Let us fix a time interval J = [0, T ] and consider the controlled 2D Euler system
on the domain J × T2:

u̇ + 〈u,∇〉u +∇p = h(t, x) + η(t, x), div u = 0, (3.1)
u(0, x) = u0(x). (3.2)

Here h and u0 are given functions, and η is a control. In what follows, we fix a
non-integer s > 2 and assume that h ∈ L1(J,Cs) and u0 ∈ Cs. Let E ⊂ Cs be
a closed subspace and let K ⊂ Cs

σ be any subset.

Definition 3.1. We shall say that the 2D Euler system with given external
force h ∈ L1(J,Cs) and initial function u0 ∈ Cs

σ is exactly controllable in time T
for the class K if for any û ∈ K there is η ∈ L1(J,E) such that

u(T, x) = û(x),

where u ∈ XT stands for the solution of (3.1), (3.2).
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Let us give an equivalent definition of exact controllability in terms of the
set of attainability. Let us denote by Rt(u0, f) the operator that takes the pair
(u0, f) ∈ Cs

σ × L1(J,Cs) to u(t) ∈ Cs, where u ∈ XT stands for the solution
of problem (1.1), (1.2) with z ≡ 0. For given u0 and h, let AT (u0, h, E) be
the image of L1(J,E) under the mapping RT (u0, h + ·). It is clear that the
Euler system is exactly controllable in time T for a class K ⊂ Cs

σ if and only if
AT (u0, h, E) ⊃ K.

Let Ac
T (u0, h, E) be the complement of AT (u0, h, E) in the space Cs

σ. The
following theorem is the main result of this paper.

Theorem 3.2. Let s > 2 be any non-integer, let E ⊂ Cs be an arbitrary finite-
dimensional subspace, and let u0 ∈ Cs

σ and h ∈ L1(J,Cs) be given functions.
Then, for any non-negative γ < 1 and any ball Q ⊂ Cs+γ

σ , we have

Ac
T (u0, h, E) ∩Q 6= ∅. (3.3)

In particular, the 2D Euler system is not exactly controllable in any time T for
the class Cs+γ

σ .

3.2 Proof of Theorem 3.2

Step 1. We first show that it suffices to consider the case E ⊂ Cs
σ. Indeed, let

us denote by Π the Leray projection, that is,

Πu = u−∇(
∆−1(div u)

)
.

The above relation and the continuity of ∆−1 in Hölder spaces (see [GT01])
imply that Π is a continuous operator from Cs to Cs

σ. It is well known that

RT (u0, f) = RT (u0, Πf),

whence it follows that AT (u0, h, E) = AT (u0, h, ΠE). Thus, if relation (3.3) is
established for any finite-dimensional subspace E ⊂ Cs

σ, then it remains true in
the general case.

Step 2. We now assume that E is a finite-dimensional subspace in Cs
σ. Let

us write solutions of (3.1), (3.2) in the form

u(t, x) = v(t, x) + z(t, x), z(t, x) =
∫ t

0

η(τ, x) dτ. (3.4)

In this case, the function v belongs to the space XT and satisfies the equations

v̇ + 〈v + z,∇〉(v + z) +∇p = h(t, x), div v = 0, v(0, x) = u0(x). (3.5)

In view of Theorem 1.2, for any z ∈ W 1,1(J,E), problem (3.5) has a unique
solution u ∈ XT . Let us denote by S : W 1,1(J,E) → XT the operator that
takes z to u and by ST its restriction to the time T . It follows from (3.4) that
we can write the solution of (3.1), (3.2) at the time t = T in the form

RT (u0, h + η) = z(T ) + ST (z), (3.6)
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where z is given by the second relation in (3.4).
To prove (3.3), we argue by contradiction. Suppose that AT (u0, h, E) con-

tains a closed ball Q ⊂ Cs+γ
σ . In this case, it follows from (3.6) that the image

of the space E×W 1,1(J,E) under the mapping K(y, z) := y+ST (z) contains Q.
Let us write

E ×W 1,1(J,E) =
∞⋃

n=1

Bn, (3.7)

where Bn denotes the closed ball in E × W 1,1(J,E) of radius n centred at
zero. Since the union of K(Bn) covers Q, by the Baire theorem, there is an
integer m ≥ 1 such that K(Bm) is dense in a ball Q̂ ⊂ Q with respect to the
metric of Cs+γ . Furthermore, Proposition 1.3 implies that the mapping K is
continuous from E×L1(J,E) to Cs−1. Now note Bm is compact in E×L1(J,E).
It follows that K(Bm) is closed in Cs−1 and, hence, K(Bm) ∩ Cs+γ is closed
in Cs+γ . Thus, K(Bm) contains Q̂. On the other hand, we shall show in the
next step that

Hε(K(Bm), Cs−1) ≺ ενHε(Q̂, Cs−1), (3.8)

where ν > 0. This contradicts the inclusion Q̂ ⊂ K(Bm).

Step 3. Without loss of generality, we can assume that s + γ /∈ Z. By
Proposition 2.2, for any δ > 0, we have

Hε(Q̂, Cs−1) Â
(1

ε

) 2
1+γ−δ

.

Let us choose δ > 0 so small that the exponent in the right-hand side of the
above relation is bigger than 1. Thus, we can find α > 1 such that

Hε(Q̂, Cs−1) Â
(1

ε

)α

. (3.9)

On the other hand, let us endow Bm with the metric of E × L1(J,E). Since E
is finite-dimensional, for any ball B ⊂ E, we have (see Theorem 10.2 in [Lor86])

Hε(B, E) ∼ ln
1
ε
.

Combining this with Proposition 2.3, we see that

Hε(Bm, E × L1(J,E)) ≺ 1
ε

ln
1
ε
. (3.10)

It follows from Proposition 1.3 that the mapping K is Lipschitz-continuous
from Bm to Cs−1. Relation (3.10) and Lemma 2.1 now imply that

Hε(K(Bm), Cs−1) ≺ 1
ε

ln
1
ε
. (3.11)

The required estimate (3.8) is a consequence of (3.9) and (3.11). The proof of
the theorem is complete.
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